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Abstract 

In this paper, we consider a communicable disease whose dynamics is described by a simple three-

compartment epidemic model. The epidemic spread begins with a small number of infected persons brought 

into a totally susceptible population. We assume that the central planner can introduce policy measures to 

reduce the transmission rate and hence the basic reproduction number over some time interval in order to 

minimize the total number of infected individuals over the entire time horizon of the model. Our model is 

arguably the simplest possible model that can describe an epidemic spread and its control. This enables 

analytical treatment of the model and the derivation of the closed-form solution. We make the following 

conclusions. We observe that the total number of infected individuals depends only on the lowered basic 

reproduction number and the increment in the number of recovered individuals over the period of the policy 

measures’ application; it does not depend, for example, on the number of infected or recovered at the time of 

the policy inception. Since our model does not include policy costs, we obtain that in order to minimize the 

total number of infected individuals, the central planner should impose infinitely long policy measures. There 

is a set of optimal measures: Measures from this set are characterized by the tradeoff between the lowered 

basic reproduction number and the inception time of the measures. Since infinitely long application of 

measures is likely to be infeasible in the real world, we derive measures of finite duration which are near-to-

optimal, that is measures which lead to the total number of infected individuals that is higher than the optimal 

number by a small positive 𝜀. Our analysis of these near-to-optimal measures suggests that a robust way to 

ensure a reasonable duration of measures and at the same time to achieve that they indeed lead to an 𝜀-

optimal outcome is as follows. The central planner could choose the optimal policy inception time and the 

optimal lowered basic reproduction number, and then keep these measures for as long as it is feasible. The 

duration of this period will determine the number of infected individuals that will be achieved and the 

corresponding 𝜀.  
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1. Introduction 

The COVID-19 pandemic boosted modelers’ interest to analyze compartmental models in epidemiology. 

Rooted in the Kermack–McKendrick theory that was developed in the late 1920s (Kermack et al., 1927), these 

models split the population into several compartments based on the status of individuals with regard to the 

contagious disease under study. The most commonly used compartment model in epidemiology is the SIR 

model, which operates with three compartments – susceptible (S), infected (I), and recovered (R). The main 

process represented in this model is the flow of individuals from the compartment of susceptible to the 

compartment of infected. This flow depends on the stocks of individuals in both compartments, as well as on 

the transmission rate.  

The transmission rate is a key parameter that defines the dynamics of an epidemic. It is a product of the 

contact rate of individuals and the risk of infection. The risk of infection depends on the disease type as well 

as on the immunity of individuals, and thus can be reduced through, for example, vaccination. In the absence 

of the vaccine, as it was the case with the COVID-19 outbreak, policy measures to confine the disease should 

target the contact rate of individuals; these typically include isolation, social distancing, and quarantine. These 

measures save people’s lives and reduce negative health effects – but they create a disutility to the entire 

population which ranges from a simple inconvenience to significant economic losses. Ideally, measures that 

reduce the contact rate (and hence, the transmission rate) should be optimally phased-in and phased-out 

through the disease dynamics to make the maximum effect on the public health.   

In this paper, we consider a communicable disease whose dynamics is described by the SIR model over an 

infinite time horizon. We assume that the government can introduce policy measures to reduce the 

transmission rate over some time interval within the considered time horizon. Thus, the transmission rate is 

modeled as a piecewise constant function with two switching points. The beginning and the end of the time 

interval over which the policy measure is active, as well as the lowered transmission rate in this time interval 

are control parameters in the model. The objective function to be minimized is the total number of infected 

individuals over the entire time horizon of the model.  

Several optimal control problems for compartmental models in epidemiology were proposed and investigated 

before COVID-19 (Grigorieva et al., 2016; Hansen and Day, 2011; Rowthorn et al., 2009). The ongoing 

pandemic created a fertile ground for such analyses and thus a number of publications have appeared very 

recently, which consider models of optimal control of an epidemic (Mandal et al., 2020; Perkins and España, 

2020; Tsay et al., 2020). These models attempt to analyze tradeoffs between stricter epidemic control policy 

measures and the economic losses that such measures entail. In terms of epidemic control policies, different 

papers focus on different policy outcomes, such as the number of deaths due to COVID-19 (Perkins and 

España, 2020), or the peak number of infected (Tsay et al., 2020), or the total number of infected (Mandal et 

al., 2020). As such models are too complex to be solved analytically, these publications present some 

numerical solutions, which give only a limited information on the entire picture.  

In our paper, we take a different approach. We focus exclusively on the health impact of the disease. First, 

we derive a policy measure that minimizes the number of infected individuals and analyze its potential to 

confine the epidemic. Naturally, in the absence of a tradeoff, such an optimal policy measure prescribes to 

maintain as-low-as-possible transmission rate infinitely long. While this is infeasible in reality, the optimal 

number of infected individuals in this case can serve as a benchmark to which other, near-to-optimal policies 

could be related. In particular, we analyze solutions, which deliver the total number of infected individuals 

that is higher than the benchmark value by some small 𝜀 (as fraction of the entire population). In this case, 

the policy application interval can be finite. We analyze the tradeoffs between the duration and the strictness 
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of the policy measure for such near-optimal solutions. Information on these tradeoffs can inform decisions 

where other objective functions than the number of infected individuals are part of the decision making.  

2. Model 

2.1. Epidemic dynamics in time  

In this section, we briefly describe the dynamics of the basic SIR model (Kermack et al., 1927). We assume 

that the population stays constant over time and that all infected individuals recover. Hence, the compartment 

stocks can be normalized by the total population. Let 𝑆(𝜏), 𝐼(𝜏), and 𝑅(𝜏) stand for the normalized stocks of 

the susceptible, infected, and recovered individuals at time moment 𝜏 ≥ 0. The dynamics of the contagious 

disease propagation within the population is described by the following initial value problem (IVP): 

 

𝑆̇(𝜏) = −𝛽𝑆(𝜏)𝐼(𝜏), 𝑆(0) = 𝑆0,

𝐼(̇𝜏) = 𝛽𝑆(𝜏)𝐼(𝜏) − 𝛾𝐼(𝜏), 𝐼(0) = 𝐼0,

𝑅̇(𝜏) = 𝛾𝐼(𝜏), 𝑅(0) = 𝑅0.

 (1) 

Here, nonnegative initial values 𝑆0, 𝐼0, 𝑅0 are such that 𝑆0 + 𝐼0 + 𝑅0 = 1; parameter 𝛽 > 0 is the transmission 

rate and parameter 𝛾 > 0 is the recovery rate, which is the inverse of the average infectious period. It is 

during the time period 1/𝛾 from the moment of getting infected that the individual can transmit the infection 

to another (susceptible) individual.  

We introduce a linear transformation of time that allows to reduce the dimensionality of the parameter space 

as follows: 𝑡 = 𝛾𝜏. Now, considering phase variables 𝑆, 𝐼, and 𝑅 as functions of 𝑡 ≥ 0, we obtain the following 

equations equivalent to (1): 

 

𝑆̇(𝑡) = −𝜇𝑆(𝑡)𝐼(𝑡), 𝑆(0) = 𝑆0,

𝐼(̇𝑡) = 𝜇𝑆(𝑡)𝐼(𝑡) − 𝐼(𝑡), 𝐼(0) = 𝐼0,

𝑅̇(𝑡) = 𝐼(𝑡), 𝑅(0) = 𝑅0.

 (2) 

Here 𝜇 = 𝛽/𝛾 – which in literature is often denoted as ℛ0 – is the basic reproduction number describing the 

average number of secondary cases produced by an average infectious individual in a totally susceptible 

population over the duration of time when s/he remains infectious. In (2), ℛ0 = 𝜇, and we use 𝜇 instead of 

ℛ0 as a notation for the basic reproduction number simply to make formulas look more elegantly.  

“Time” 𝑡 is a unitless variable; it can be understood as the number of individual infectious periods stacked one 

after another. Let us point that such a transformation of time in the SIR model that leads to (2) was used 

before in, for example, (Bertozzi et al., 2020) and (Khoshnaw et al., 2017).  

We introduce the following assumptions.  

Assumption A1. We consider an epidemiological process that begins with a positive number of infected 

individuals and no recovered individuals, that is 𝑅0 = 0 and 𝐼0 = 1 − 𝑆0 > 0.  

Assumption A2. ℛ𝑒(0) = 𝑆0ℛ0 = 𝑆0𝜇 > 1, where ℛ𝑒(0) is the initial effective reproduction number that is 

the average number of secondary cases produced by an average infectious individual in a population with 𝑆0 

susceptible individuals over the duration of time when s/he remains infectious.  

Assumptions A1 and A2 together mean that system (1) spans the whole lifecycle of an epidemic of a new 

disease. Assumption A1 means that initially, the population is close to be totally susceptible with a small 

number of initially infected individuals. There are no recovered individuals yet. The infection begins to spread 

as the initially infected individuals contact with the susceptible ones and transmit the disease to them. In this 

way, the number of infected individuals begins to grow (Assumption A2 implies a positive gradient of 𝐼(𝑡) in a 
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right-hand side neighborhood of 𝑡 = 0). Over time, the number of susceptible individuals decreases which 

leads to a decrease of the effective reproduction number, ℛ𝑒(𝑡) = 𝑆(𝑡)𝜇. This decelerates growth of the 

number of infected and eventually growth turns into decline as more and more individuals recover. This 

turning point occurs when the number of susceptible 𝑆(𝑡) reaches 1/𝜇. Thus, in a well-mixed population, once 

the probability that a randomly selected individual is susceptible becomes lower than the threshold value 1/𝜇, 

the number of infected individuals begins to decline. This situation is often referred to as herd immunity 

(Hethcote, 2000).  

Lemma 1 formally establishes some useful properties of the solution to the IVP (2). 

Lemma 1. Under Assumptions A1 and A2, solution (𝑆(⋅), 𝐼(⋅), 𝑅(⋅)) to the IVP (2) over the time interval 𝑡 ∈

[0, ∞) has the following properties: 

1. 𝑆(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0 and 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1 for all 𝑡 ∈ [0, ∞); 

2. 𝑆(⋅) is a strictly decreasing and 𝑅(⋅) is a strictly increasing functions of time 𝑡 over the entire 𝑡 ∈

[0, ∞); 

3. As  𝑡 → ∞, (𝑆(⋅), 𝐼(⋅), 𝑅(⋅)) converges to a fixed point (𝑆∞, 𝐼∞, 𝑅∞) such that 𝑆∞ = 1 − 𝑅∞, 𝐼∞ = 0, and 

0 < 𝑅∞ ≤ 1. This means that 𝑅(𝑡) ∈ [0, 𝑅∞) for 𝑡 ∈ [0, ∞).  

Equilibrium in statement 3 of Lemma 1 is sometimes referred to as endemic equilibrium (Choisy et al., 2007). 

The proof of Lemma 1 is in the Appendix. 

2.2. Epidemic dynamics in the phase space  

According to Lemma 1, 𝑅(𝑡) is a monotonic, strictly increasing function of 𝑡 that maps the time interval [0, ∞) 

into interval 𝑅 ∈ [0, 𝑅∞). Thus, there exists an inverse of this mapping, 𝑡(𝑅) – a monotonic, strictly increasing 

function of 𝑅 that maps 𝑅 ∈ [0, 𝑅∞) back to 𝑡 ∈ [0, ∞). Using this bijection, we will consider phase variables 𝑆 

and 𝐼 as functions of 𝑅 ∈ [0, 𝑅∞). To eliminate the time dimension in (2), we divide each of the first two 

equations by the third one and obtain the following equations  

 

𝑑𝑆

𝑑𝑅
(𝑅) = −𝜇𝑆(𝑅), 𝑆(𝑅0) = 𝑆0,

𝑑𝐼

𝑑𝑅
(𝑅) = 𝜇𝑆(𝑅) − 1, 𝐼(𝑅0) = 1 − 𝑆0

 (3) 

over 𝑅 ∈ [0, 𝑅∞). The advantage of this transition is that the IVP (3) has a closed-form solution as follows:  

 𝑆(𝑅) = 𝑆0𝑒−𝜇𝑅, (4) 

 𝐼(𝑅) = 1 − 𝑅 − 𝑆0𝑒−𝜇𝑅. (5) 

Lemma 2 establishes some useful properties of function 𝐼(⋅) (5).  

Lemma 2. Consider 𝑅∞ from Lemma 1. Under assumptions A1 and A2, 𝑅∞ is a unique root of equation 

𝐼(𝑅) = 0 over 𝑅 ∈ [0, ∞) where 𝐼(𝑅) is given by (5). Moreover, 𝐼(𝑅) > 0 for 𝑅 ∈ [0, 𝑅∞) and 𝐼(𝑅) < 0 for 𝑅 >

𝑅∞.  

Solving the transcendental equation 𝐼(𝑅) = 0 where 𝐼(𝑅) is given by (5), we obtain the exact formula for 𝑅∞ 

is as follows: 

 𝑅∞ = 1 + 𝜇−1 𝑊(−𝜇𝑆0𝑒−𝜇) (6) 

where 𝑊(⋅) is the principal branch of the Lambert function (Corless et al., 1996). In what follows, unless 

indicated differently, we will use “Lambert function” to refer to its principal branch.  

Building on Lemma 2, Lemma 3 presents the equivalence between the IVP (2) and the IVP (3) formally.  

Lemma 3. Let assumptions A1 and A2 hold.  
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• Let (𝑆(2)(𝑡), 𝐼(2)(𝑡), 𝑅(2)(𝑡)) be the solution to the IVP (2) over 𝑡 ∈ [0, ∞).  

• Let (𝑆(3)(𝑅), 𝐼(3)(𝑅)) be the solution to the IVP (3) over 𝑅 ∈ [0, 𝑅∞) as defined by (4) and (5), where 

𝑅∞ is a unique root of equation 𝐼(3)(𝑅) = 0 as given by (6). 

Then 

• 𝑆(2)(𝑡) ≡ 𝑆(3) (𝑅(2)(𝑡)) and 𝐼(2)(𝑡) ≡ 𝐼(3) (𝑅(2)(𝑡)) over 𝑡 ∈ [0, ∞). 

• 𝑆(3)(𝑅) ≡ 𝑆(2) (𝑡(2)(𝑅)) and 𝐼(3)(𝑅) ≡ 𝐼(2) (𝑡(2)(𝑅)) over 𝑅 ∈ [0, 𝑅∞).  

• 𝑅(2)(⋅) satisfies to the following IVP: 

𝑅̇(𝑡) = 1 − 𝑅(𝑡) − 𝑆0𝑒−𝜇𝑅(𝑡), 𝑅(0) = 0, 

and 𝑅(2)(𝑡) → 𝑅∞ as 𝑡 → ∞.  

• 𝑡(2)(⋅) is inverse to 𝑅(2)(⋅) and satisfies to the following IVP: 

𝑡̇(𝑅) = (1 − 𝑅 − 𝑆0𝑒−𝜇𝑅)−1, 𝑡(0) = 0, 

and 𝑡(2)(𝑅) → ∞ as 𝑅 → 𝑅∞. 

2.3. Epidemic containment policy 

We consider an outbreak of a contagious disease with ℛ0 = 𝜇0 > 1 and assume that the social planner aims 

to contain the outbreak by introducing an epidemic containment policy (ECP) over a certain period of time. 

We focus on ECPs which aim to decrease the transmission rate 𝛽 – these include measures such as social 

distancing, quarantine etc. A decrease of the transmission rate leads to a proportional decrease of the basic 

reproduction number 𝜇 = 𝛽/𝛾. Hence, in our model we assume that an ECP is applied over a time segment 

[𝑡𝑐 , 𝑡𝑐 + Δ𝑡𝑐] to reduce the basic reproduction number from the original 𝜇0 to some lower 𝜇𝑐. Then the disease 

dynamics is described by the IVP (2) in which 𝜇 – instead of being constant – is of the following form  

 𝜇 = 𝜇(𝑡) = {

𝜇0 if 𝑡 ∈ [0, 𝑡𝑐),

𝜇𝑐 ∈ [0, 𝜇0] if 𝑡 ∈ [𝑡𝑐 , 𝑡𝑐 + Δ𝑡𝑐),

𝜇0 if 𝑡 ∈ [𝑡𝑐 + Δ𝑡𝑐 , ∞).

 (7) 

The social planner can choose three control parameters of the ECP: the inception time, 0 ≤ 𝑡𝑐 < ∞, the 

effectiveness of the control measures, i.e., the lowered basic reproduction number, 0 ≤ 𝜇𝑐 ≤ 𝜇0, and the 

duration, 0 ≤ Δ𝑡𝑐 < ∞. Denote the set of all admissible ECPs as  

𝑍 = {(𝑡𝑐, 𝜇𝑐 , Δ𝑡𝑐): 0 ≤ 𝑡𝑐 < ∞, 0 ≤ 𝜇𝑐 ≤ 𝜇0, 0 ≤ Δ𝑡𝑐 < ∞} ⊂ 𝑅3. 

The choice of the ECP control parameters defines the evolution of the phase variables (𝑆(⋅), 𝐼(⋅), 𝑅(⋅)) over 

time 𝑡. The piecewise constant 𝜇(⋅) (7) allows splitting the corresponding IVP (2) into a series of three IVPs 

each with a constant 𝜇. Due to this fact, the solution to this IVP has following properties.   

Lemma 4. For any triple (𝑡𝑐 , 𝜇𝑐, Δ𝑡𝑐) ∈ 𝑍, under assumptions A1 and A2, the corresponding solution 

(𝑆(⋅), 𝐼(⋅), 𝑅(⋅)) to the IVP (2) over the time interval 𝑡 ∈ [0, ∞) has properties 1, 2, and 3 from Lemma 1.  

In the same way as above, we eliminate time and proceed from the IVP (2) with the piecewise constant 𝜇 (7) 

to the IVP (3) in which 𝜇 is of the following form  

 𝜇 = 𝜇(𝑅) = {

𝜇0 if 𝑅 ∈ [0, 𝑅𝑐),

𝜇𝑐 ∈ [0, 𝜇0] if 𝑅 ∈ [𝑅𝑐 , 𝑅𝑐 + Δ𝑅𝑐),

𝜇0 if 𝑅 ∈ [𝑅𝑐 + Δ𝑅𝑐 , 𝑅∞).

 (8) 

By this construction, 𝑅𝑐 = 𝑅(𝑡𝑐) and 𝑅𝑐 + Δ𝑅𝑐 = 𝑅(𝑡𝑐 + Δ𝑡𝑐).  

Thus, the inception and the duration of the ECP are now marked not in terms of time 𝑡 but in terms of the 

corresponding levels of the recovered individuals. Hence, an ECP in model (3), (8) consists of the level of the 
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recovered individuals which should be reached to kick off an ECP, 0 ≤ 𝑅𝑐 < 𝑅∞, the lowered basic 

reproduction number, 0 ≤ 𝜇𝑐 ≤ 𝜇0, as well as the increment in the number of recovered that should be 

achieved to end the application of the measures, 0 ≤ Δ𝑅𝑐 < 𝑅∞ − 𝑅𝑐. Denote the set of all admissible ECPs as  

Ω = {(𝑅𝑐 , 𝜇𝑐 , Δ𝑅𝑐): 0 ≤ 𝑅𝑐 < 𝑅∞, 0 ≤ 𝜇𝑐 ≤ 𝜇0, 0 ≤ Δ𝑅𝑐 < 𝑅∞ − 𝑅𝑐} ⊂ 𝑅3. 

Using (4) and (5), we obtain the closed-form solution to the IVP (3), (8) as follows:  

 𝑆(𝑅) = {

𝑆0𝑒−𝜇0𝑅 if 𝑅 ∈ [0, 𝑅𝑐),

𝑆0𝑒−𝜇0𝑅𝑐𝑒−𝜇𝑐(𝑅−𝑅𝑐) if 𝑅 ∈ [𝑅𝑐 , 𝑅𝑐 + Δ𝑅𝑐),

𝑆0𝑒−𝜇𝑐Δ𝑅𝑐𝑒−𝜇0(𝑅−Δ𝑅𝑐) if 𝑅 ∈ [𝑅𝑐 + Δ𝑅𝑐 , 𝑅∞).

  (9) 

 𝐼(𝑅) = 1 − 𝑅 − 𝑆(𝑅). (10) 

Analogously to Lemma 2, Lemma 5 establishes some useful properties of function 𝐼(⋅) (10) in this case.  

Lemma 5. Let (𝑅𝑐 , 𝜇𝑐 , Δ𝑅𝑐) ∈ Ω. Consider 𝑅∞ from Lemma 4 and consider a continuation of 𝑆(𝑅) and 𝐼(𝑅) 

over the entire 𝑅 ∈ [0, ∞) where in [𝑅∞, ∞) 𝑆(𝑅) takes values according to the third line in (9) and 𝐼(𝑅) is 

defined by (10). Under assumptions A1 and A2 and provided that  

 𝐼(𝑅𝑐) > 0 and 𝐼(𝑅𝑐 + Δ𝑅𝑐) > 0, (11) 

𝑅∞ is a unique root of equation 𝐼(𝑅) = 0. Moreover, 𝐼(𝑅) > 0 for 𝑅 ∈ [0, 𝑅∞) and 𝐼(𝑅) < 0 for 𝑅 ∈ (𝑅∞, ∞).  

Solving the transcendental equation 𝐼(𝑅) = 0 where 𝐼(𝑅) is given by (10), we obtain the exact formula for 𝑅∞ 

as follows:  

 𝑅∞ = 1 + 𝜇0
−1𝑊(−𝑆0𝜇0𝑒−𝜇0𝑒(𝜇0−𝜇𝑐)Δ𝑅𝑐). (12) 

Interestingly, 𝑅∞ does not depend on 𝑅𝑐, only on Δ𝑅𝑐 and 𝜇𝑐.  

Note that for any ECP (𝑅𝑐 , 𝜇𝑐 , Δ𝑅𝑐) ∈ Ω, inequality 𝑅∞ ≤ 𝑅∞
0  holds, where  

 𝑅∞
0 = 1 + 𝜇0

−1𝑊(−𝑆0𝜇0𝑒−𝜇0) (13) 

corresponds to a “degenerated” ECP, that is a policy that does not lead to any change in the disease 

dynamics; obviously a degenerated ECP has either 𝜇𝑐 = 𝜇0 or if 𝑅𝑐 = 𝑅∞ or if Δ𝑅𝑐 = 0. So, any non-

degenerated ECP reduces 𝑅∞ compared to 𝑅∞
0 .  

Denote  

Ω̂ = {(𝑅𝑐 , 𝜇𝑐, Δ𝑅𝑐) ∈ Ω: 𝐼(𝑅𝑐) > 0, 𝐼(𝑅𝑐 + Δ𝑅𝑐) > 0} ⊂ 𝑅3. 

Using (9) and (10) to obtain explicit formulas for conditions (11), we specify set Ω̂ in terms of control 

parameters 𝑅𝑐, 𝜇𝑐 , and Δ𝑅𝑐 as follows:  

 0 ≤ 𝑅𝑐 < 1 + 𝜇0
−1𝑊(−𝑆0𝜇0𝑒−𝜇0), (14) 

 0 ≤ 𝜇𝑐 ≤ 𝜇0, (15) 

 0 ≤ Δ𝑅𝑐 < 1 + 𝜇𝑐
−1𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐𝑒−(𝜇0−𝜇𝑐)𝑅𝑐) − 𝑅𝑐 . (16) 

Note that for 𝜇𝑐 = 0, inequality (16) should be understood as the limit case as follows:  

Δ𝑅𝑐 < 1 + lim
𝜇𝑐→+0

𝜇𝑐
−1𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐𝑒−(𝜇0−𝜇𝑐)𝑅𝑐) − 𝑅𝑐 = 1 − 𝑆0𝑒−𝜇0𝑅𝑐 − 𝑅𝑐 . 

Lemma 6 establishes the equivalence between the IVP (2) with 𝜇 = 𝜇(𝑡) as defined by (7) and the IVP (3) 

with 𝜇 = 𝜇(𝑅) as defined by (8).  

Lemma 6. Let (𝑡𝑐 , 𝜇𝑐 , Δ𝑡𝑐) ∈ 𝑍 and (𝑅𝑐 , 𝜇𝑐 , Δ𝑅𝑐) ∈ Ω̂. Let assumptions A1 and A2 hold. Moreover,  

• Let (𝑆(2)(𝑡), 𝐼(2)(𝑡), 𝑅(2)(𝑡)) be the solution to the IVP (2), (7) over 𝑡 ∈ [0, ∞). 

• Let (𝑆(3)(𝑅), 𝐼(3)(𝑅)) be the solution to the IVP (3), (8) over 𝑅 ∈ [0, 𝑅∞) as defined by (9) and (10), 

where 𝑅∞ is a unique root of equation 𝐼(3)(𝑅) = 0 as given by (12). 

Then 

• 𝑆(2)(𝑡) ≡ 𝑆(3) (𝑅(2)(𝑡)) and 𝐼(2)(𝑡) ≡ 𝐼(3) (𝑅(2)(𝑡)) over 𝑡 ∈ [0, ∞), where 𝑡𝑐 = 𝑡(2)(𝑅𝑐) and Δ𝑡𝑐 =

𝑡(2)(𝑅𝑐 + Δ𝑅𝑐) − 𝑡(2)(𝑅𝑐).  
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• 𝑆(3)(𝑅) ≡ 𝑆(2) (𝑡(2)(𝑅)) and 𝐼(3)(𝑅) ≡ 𝐼(2) (𝑡(2)(𝑅)) over 𝑅 ∈ [0, 𝑅∞), where 𝑅𝑐 = 𝑅(2)(𝑡𝑐) and Δ𝑅𝑐 =

𝑅(2)(𝑡𝑐 + Δ𝑡𝑐) − 𝑅(2)(𝑡𝑐). 

• 𝑅(2)(⋅) satisfies to the following IVP: 

𝑅̇(𝑡) = 1 − 𝑅(𝑡) − 𝑆0𝑒−𝜇(𝑡)𝑅(𝑡), 𝑅(0) = 0, 

and 𝑅(2)(𝑡) → 𝑅∞ as 𝑡 → ∞.  

• 𝑡(2)(⋅) is inverse to 𝑅(2)(⋅) and satisfies to the following IVP: 

 𝑡̇(𝑅) = (1 − 𝑅 − 𝑆0𝑒−𝜇(𝑅)𝑅)
−1

, 𝑡(0) = 0, (17) 

and 𝑡(2)(𝑅) → ∞ as 𝑅 → 𝑅∞. 

2.4. Optimization problem 

We assume that the aim of an epidemic containment policy is to minimize the total number of infected 

individuals within the entire time interval [0, ∞). Let us compute this number. The outbreak dynamics begins 

with 𝐼0 infected individuals, and at each time moment 𝑡 ∈ (0, ∞), there are 𝜇(𝑡)𝑆(𝑡)𝐼(𝑡) newly infected 

individuals. Eventually, all infected individuals recover and, hence, the total number of infected individuals 

(TNII) is 

𝐼0 + ∫ 𝜇(𝑡)𝑆(𝑡)𝐼(𝑡)𝑑𝑡

∞

0

= 𝐼0 + ∫[𝐼(̇𝑡) + 𝑅̇(𝑡)]𝑑𝑡

∞

0

= 𝑅∞. 

Thus, we consider the following optimization problem: 

 

𝑅∞ → inf

subject to:

𝑆̇(𝑡) = −𝜇(𝑡)𝑆(𝑡)𝐼(𝑡), 𝑆(0) = 𝑆0,

𝐼(̇𝑡) = 𝜇(𝑡)𝑆(𝑡)𝐼(𝑡) − 𝐼(𝑡), 𝐼(0) = 1 − 𝑆0,

𝑅̇(𝑡) = 𝐼(𝑡), 𝑅(0) = 0.
(𝑡𝑐 , 𝜇𝑐 , Δ𝑡𝑐) ∈ 𝑍.

 (18) 

Relation (12) provides an explicit formula for the objective function 𝑅∞ which depends only on two 

parameters, 𝜇𝑐 and Δ𝑅𝑐, and does not depend on 𝑅𝑐. As the Lambert function 𝑊(⋅) is strictly increasing, the 

search for an infimum of (12) with regard to 𝑅𝑐 , 𝜇𝑐, and Δ𝑅𝑐 is equivalent to the search for a supremum of 

the product (𝜇0 − 𝜇𝑐)Δ𝑅𝑐. Hence, based on Lemma 6, the following optimization problem is equivalent to 

problem (18):  

 

(𝜇0 − 𝜇𝑐)Δ𝑅𝑐 → sup
subject to:

0 ≤ 𝑅𝑐 < 1 + 𝜇0
−1𝑊(−𝑆0𝜇0𝑒−𝜇0),

0 ≤ 𝜇𝑐 ≤ 𝜇0,

0 ≤ Δ𝑅𝑐 < 1 + 𝜇𝑐
−1𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐𝑒−(𝜇0−𝜇𝑐)𝑅𝑐) − 𝑅𝑐 .

 (19) 

(Recall the comment to inequality (16) concerning the treatment of case 𝜇𝑐 = 0). 

3. Results 

In this section, we discuss problem (19) under assumptions A1 and A2. In the figures that provide illustration 

to our statements, we use 𝜇0 = 1.95, which corresponds to the average estimate of the basic reproduction 

number for China provided by WHO on 18 January 2020 (Liu et al., 2020). We use 𝑆0 = 1 − 10−7, which 

means that the initial number of infected individuals constitutes 0.00001% of the population. Officially, a very 
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close level to this value was achieved in China on 19 January 20201. Qualitatively, the results presented in the 

figures do not depend on the choice of these parameters. 

3.1. Epidemic containment policy that minimizes the total number of 
infected individuals  

Denote 𝑅̅ = 𝜇0
−1 ln(𝑆0𝜇0) and 𝜇̅ = (1 − 𝜇0

−1)−1 ln(𝑆0𝜇0). 

Proposition 1. The following one-parametric family accumulates optimal solutions to the TNII-optimization 

problem (19) under assumptions A1 and A2: 

 

𝑅𝑐
∗ ∈ [0, 𝑅̅],

𝜇𝑐
∗ =

ln(𝑆0𝜇0) − 𝜇0𝑅𝑐
∗

1 − 𝜇0
−1 − 𝑅𝑐

∗
,

Δ𝑅𝑐
∗ = 1 − 𝜇0

−1 − 𝑅𝑐
∗,

 (20) 

The optimal value of the objective function is then  

𝑅∞
∗ = 1 − 𝜇0

−1 = 𝑅𝑐
∗ + Δ𝑅𝑐

∗.  

Note that the optimal triples (𝑅𝑐
∗, 𝜇𝑐

∗, Δ𝑅𝑐
∗) in (20) lie on the boundary of the admissible set of problem (19). 

The optimal solution family could likewise be parametrized by 𝜇𝑐
∗ ∈ [0, 𝜇̅ ] or by Δ𝑅𝑐

∗ ∈ [1 − 𝜇0
−1 − 𝑅̅, 1 − 𝜇0

−1]. 

The proof of Proposition 1 can be found in the Appendix. 

Proposition 1 states that an ECP that minimizes the total number of infected individuals should continue until 

all infected people have recovered, thus the number of recovered reaches 𝑅∞
∗ = 1 − 𝜇0

−1. It means that the 

optimal terminal number of individuals who remain susceptive is 𝑆∞
∗ = 𝜇0

−1, which equals to the threshold 

value for herd immunity. The optimal TNII is higher for an epidemic with a higher basic reproduction number 

𝜇0.  

We illustrate the TNII-optimal solution set from Proposition 1 in Figure 1. The thick black curve depicts 

optimal pairs of 𝜇𝑐
∗ and 𝑅𝑐

∗ (20). Corresponding optimal Δ𝑅𝑐
∗ is the distance between the point on thick black 

curve and the vertical line 𝑅𝑐 = 𝑅∞
∗ . In order to minimize the total number of infected individuals – equal to 

𝑅∞ – the epidemic containment policy should kick off any time from the beginning of the disease outbreak 

and before the number of recovered individuals 𝑅𝑐
∗ reaches the critical threshold value 𝑅̅. The optimal 

increment of the number of recovered individuals Δ𝑅𝑐
∗ always complements 𝑅𝑐

∗ such that 𝑅𝑐
∗ + Δ𝑅𝑐

∗ = 𝑅∞
∗ . 

The choice of the optimal 𝑅𝑐
∗ ∈ [0, 𝑅̅] dictates the optimal level to which the basic reproduction number needs 

to be lowered – 𝜇𝑐
∗ ∈ [0, 𝜇̅ ] (20). There is a tradeoff between the strictness of an ECPs and the optimal start 

of the policy implementation period: A later start of an optimal ECP application (i.e., a higher 𝑅𝑐
∗) requires a 

larger reduction in the basic reproduction number (i.e., a lower 𝜇𝑐
∗).  

 

 

 
 

1 125 confirmed cases (WHO COVID-19 Table, 2020) with respect to the population of 1,408,526,449 people as of 1 
January 2020 (China population - Countrymeters, 2020). 
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Figure 1. The space of control parameters 𝜇𝑐 and 𝑅𝑐. All optimal 𝜇𝑐
∗ and 𝑅𝑐

∗ from the one-parametric family (20) lie on the 

thick black curve. Corresponding optimal Δ𝑅𝑐
∗ is the distance between a point on the thick black curve and the vertical line 

𝑅𝑐 = 𝑅∞
∗ . Two small plots located above and below the thick black curve in Figure 1 depict epidemic curves for different 

values of control parameters; in both plots, the black curve depicts the TNII-optimal dynamics; grey curves depict 

illustrative dynamics for non-optimal values of 𝜇𝑐 and 𝑅𝑐 – according to the placement of these plots on the Figure below 

or above the thick black curve.  

 

If the central planner has not managed to start the containment measures before the number of recovered 

individuals exceeds threshold 𝑅̅, s/he can still do so, however, reducing 𝜇𝑐 even to zero would not help 

achieve the optimal 𝑅∞
∗  and the resultant 𝑅∞ will be higher (area to the right from the line 𝑅 = 𝑅̅ in Figure 1).  

Similarly, there exists a critical threshold for the lowered basic reproduction number 𝜇̅. If the central planner 

cannot ensure that the basic reproduction number is reduced at least to this level, starting an ECP even right 

at the beginning of the disease outbreak would lead to 𝑅∞ that is higher than 𝑅∞
∗  (area above the line 𝜇 = 𝜇̅ 

in Figure 1). A higher basic reproduction number 𝜇0 implies tighter conditions on 𝑅𝑐
∗ and 𝜇𝑐

∗ that is for a higher 

𝜇0, both 𝜇̅  and 𝑅̅ are lower.  

According to Proposition 1, optimal ECPs should last until the number of recovered individuals reaches 𝑅∞
∗ , 

that is the optimal dynamics (𝑆∗(𝑅), 𝐼∗(𝑅)) consists of two (not three) segments (see (9), (10)). In the first 

segment, when 𝑅 ∈ [0, 𝑅𝑐
∗), that is before the ECP inception, the number of infected individuals 𝐼∗(𝑅) is 

growing. In the second segment, where an ECP is applied, 𝐼∗(𝑅) is decreasing until it reaches zero at 𝑅 = 𝑅∞
∗ . 

The thick black curves in small plots in Figure 1 depict corresponding epidemic curves.  

If the basic reproduction number during an ECP is reduced more than the optimal level, that is if 𝜇𝑐 is lower 

than 𝜇𝑐
∗, and/or if an ECP starts at some 𝑅𝑐 that is earlier than optimal 𝑅𝑐

∗, there will be a second wave of the 

epidemic. A set of grey curves in the small plot in area below the black thick curve in Figure 1 illustrates 

exemplary epidemic curves corresponding to different pairs of 𝑅𝑐 and 𝜇𝑐 from this area, while Δ𝑅𝑐 takes the 

highest hypothetically possible value (see (16)). As a too strict and/or too early application of an ECP leaves 

too many susceptible individuals in the population, each such trajectory contains a second wave, which can 

be of different magnitude. These dynamics result in a higher total number of infected individuals 𝑅∞ than 

optimal 𝑅∞
∗ .  
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If on the contrary, an ECP is less strict and/or kicks off later than prescribed by the optimal relation, the 

number of infected individuals will grow to higher levels than in the optimal scenario. A set of grey curves in 

the small plot in area above the black thick curve in Figure 1 illustrates exemplary trajectories corresponding 

to different pairs of 𝑅𝑐 and 𝜇𝑐 from this area, while Δ𝑅𝑐 takes the highest hypothetically possible value (see 

(16)). In both cases 𝐼(𝑅) overshoots 𝑅∞
∗  and leads to higher values of 𝑅∞.  

In terms of time 𝑡, an optimal ECP should start at 𝑡𝑐
∗ = 𝑡(𝑅𝑐

∗) where 𝑡(⋅) is the solution to the IVP (17) (see 

Lemma 6). According to Proposition 1, an optimal ECP must continue until the number of recovered 

individuals reaches 𝑅∞
∗ , hence, the duration of such an ECP in time 𝑡 is infinite: Δ𝑡𝑐

∗ = 𝑡(𝑅∞
∗ ) − 𝑡(𝑅𝑐

∗) = ∞. This 

contradicts our formal assumption that Δ𝑡𝑐
∗ < ∞. Indeed, in reality, if a reduction of the basic reproduction 

number is intended to be achieved through a reduction of the transmission rate, an infinitely long ECP is not 

viable: To decrease the transmission rate, the government implements various measures restricting contacts 

between people from pausing activities of different economic sectors (education, gastronomy, entertainment, 

etc.) to constraining mobility of people (e.g., a ban to leave homes except for certain reasons etc.). All such 

measures compromise people’s well-being and can lead to massive economic losses, so naturally, the central 

planner would like them to continue for as short time as possible, and certainly not forever. The central 

planner therefore may wish to implement near-to-optimal measures, so as to achieve the total number of 

infected individuals close to the optimal one, but by means of a finite-long ECP. In the next section, we 

explore such near-to-optimal controls in problem (19). 

3.2. Near-to-TNII-optimal epidemic control policies 

Consider a sufficiently small 𝜀 > 0 and consider a target value 𝑅∞
𝜀 = 𝑅∞

∗ + 𝜀. We aim to derive an epidemic 

control policy that allows to reach the 𝜀-optimal TNII value 𝑅∞
𝜀  within a finite time. We are interested in near-

to-optimal policies, so the deviation from the 𝑅∞
∗  should indeed be small. By all means, the 𝜀-optimal level of 

the infected individuals cannot exceed the number of recovered individuals in case of a degenerated ECP, 

equal to 𝑅∞
0  (13). Note that 𝑅∞

𝜀 ≤ 𝑅∞
0  as long as 

𝜀 ≤ 𝜇0
−1(1 + 𝑊(−𝑆0𝜇0𝑒−𝜇0)) = 𝜀0.  

In what follows, we will derive ECP triples (𝑅𝑐 , 𝜇𝑐 , Δ𝑅𝑐) ∈ Ω̂, which ensure that 𝑅(𝑡) reaches 𝑅∞
𝜀  as 𝑡 → ∞; we 

denote the control parameters of such 𝜀-optimal ECPs as  𝑅𝑐
𝜀 , 𝜇𝑐

𝜀, and Δ𝑅𝑐
𝜀. Further, let us denote 𝑆∞

𝜀 = 1 −

𝑅∞
𝜀 = 𝜇0

−1 − 𝜀, 𝜎∞
𝜀 = 𝑆0/𝑆∞

𝜀 , and 𝜇∞
𝜀 = 𝑆∞

𝜀 𝜇0. 

Proposition 2. Under assumptions A1 and A2, for all 𝜀 ∈ (0, 𝜀0], an 𝜀-optimal triple (𝑅𝑐
𝜀 , 𝜇𝑐

𝜀 , Δ𝑅𝑐
𝜀) ∈ Ω̂𝜀 ⊂ Ω̂, 

where  

Ω̂𝜀 = {(𝑅𝑐
𝜀 , 𝜇𝑐

𝜀 , Δ𝑅𝑐
𝜀): 𝑅𝑐

𝜀 ∈ (𝑅̲𝑐
𝜀 , 𝑅̅𝑐

ε), 𝑅𝑐
𝜀 ≥ 0, 𝜇𝑐

𝜀 ∈ [0, 𝜇̅𝑐
𝜀), Δ𝑅𝑐

𝜀 =
𝑅∞

𝜀 𝜇0 − ln 𝜎∞
𝜀

𝜇0 − 𝜇𝑐
𝜀

}, 

𝑅̲𝑐
𝜀 = 1 − Δ𝑅𝑐

𝜀 + 𝜇0
−1𝑊−1(−𝜇∞

𝜀 𝑒−𝜇∞
𝜀

), 

𝑅̅𝑐
𝜀 =

ln 𝜎∞
𝜀 − 𝑅∞

𝜀 𝜇𝑐
𝜀

𝜇0 − 𝜇𝑐
𝜀

, 

𝜇̅𝑐
𝜀 = (𝑅∞

𝜀 )−1 ln 𝜎∞
𝜀 . 

Here 𝑊−1(⋅) is the second branch of Lambert function different from the principal branch 𝑊(⋅); it is defined in 

[−
1

𝑒
, 0) and takes values in (−∞, −1]. 

The proof of Proposition 2 can be found in the Appendix. 

Proposition 2 establishes the fact that for any 𝜀 ∈ (0, 𝜀0], one can choose values 𝑅𝑐
𝜀, 𝜇𝑐

𝜀, and Δ𝑅𝑐
𝜀 from Ω̂𝜀 and 

thus achieve 𝑅∞
𝜀 = 𝑅∞

∗ + 𝜀. Note that if the central planner chooses a 𝑅𝑐 ≥ 0 such that 𝑅𝑐 ∈ (𝑅̲𝑐
𝜀 , 𝑅̅𝑐

ε) and a 𝜇𝑐 
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such that 𝜇𝑐 ∈ [0, 𝜇̅𝑐
𝜀), but – instead of Δ𝑅𝑐

𝜀 =
𝑅∞

𝜀 𝜇0−ln 𝜎∞
𝜀

𝜇0−𝜇𝑐
𝜀   – s/he takes some admissible Δ𝑅𝑐 (i.e., Δ𝑅𝑐 satisfying 

(16) where 𝑅𝑐 = 𝑅𝑐
𝜀 and 𝜇𝑐 = 𝜇𝑐

𝜀) such that Δ𝑅𝑐 ≥ Δ𝑅𝑐
𝜀, the corresponding total number of the infected 

individuals will be 𝑅∞ ≤ 𝑅∞
∗ + 𝜀. 

For illustrative purposes, we choose 𝜀 = 0.1. Panel A in Figure 2 depicts the set of 𝜀-optimal ECPs Ω̂𝜀. Any 

triple (𝑅𝑐
𝜀 , 𝜇𝑐

𝜀 , Δ𝑅𝑐
𝜀) from the presented surface delivers the 𝜀-optimal TNII value 𝑅∞

𝜀 = 𝑅∞
∗ + 𝜀. As Δ𝑅𝑐

𝜀 does not 

depend on 𝑅𝑐
𝜀, for a constant 𝜇𝑐

𝜀, Δ𝑅𝑐
𝜀 is constant. Δ𝑅𝑐

𝜀 gets higher for higher 𝜇𝑐
𝜀 with an increasing return to 

scale. Thus, a less strict ECP requires reaching a disproportionally larger increment of the fraction of 

recovered individuals in the population to exit the ECP. If the central planner chooses an ECP such that the 

corresponding point (𝑅𝑐 , 𝜇𝑐 , Δ𝑅𝑐) is admissible (satisfies (16)) and lies above the 𝜀-optimal surface, the 

resultant TNII value will be lower than 𝑅∞
𝜀 .  

Recall that the need to introduce near-to-optimal ECPs arose from the fact that the ECP that minimized the 

total number of infected individuals requires an infinitely long application of the optimal policy, which may be 

infeasible. Panels B and C in Figure 3 present trough-like shapes which illustrate the ECP duration Δ𝑡𝑐
𝜀 in 

terms of time 𝑡 (measured as the number of infectious periods) in an 𝜀-optimal policy as a function of 𝜇𝑐
𝜀 and 

𝑅𝑐
𝜀  and as a function of 𝜇𝑐

𝜀 and 𝑡𝑐
𝜀 correspondingly. Any triple (𝑅𝑐

𝜀 , 𝜇𝑐
𝜀 , Δ𝑡𝑐

𝜀) and triple (𝑡𝑐
𝜀 , 𝜇𝑐

𝜀 , Δ𝑡𝑐
𝜀) from the 

presented surfaces deliver the 𝜀-optimal TNII value 𝑅∞
𝜀 = 𝑅∞

∗ + 𝜀. In these plots, Δ𝑅𝑐
𝜀 and 𝑅𝑐

𝜀 are translated 

into Δ𝑡𝑐
𝜀 and 𝑡𝑐

𝜀 according to Lemma 6 where 𝜇𝑐 = 𝜇𝑐
𝜀, 𝑡𝑐 = 𝑡𝑐

𝜀, 𝑅𝑐 = 𝑅𝑐
𝜀, Δ𝑅𝑐 = Δ𝑅𝑐

𝜀, Δ𝑡𝑐 = Δ𝑡𝑐
𝜀. If the central 

planner chooses an ECP such that the corresponding points (𝑅𝑐 , 𝜇𝑐 , Δ𝑡𝑐) and (𝑡𝑐 , 𝜇𝑐 , Δ𝑡𝑐) are admissible and lie 

above the corresponding 𝜀-optimal surfaces in Panels B and C, the resultant TNII value will be lower than 𝑅∞
𝜀 .  

As can be seen from comparison of Panel A with Panels B and C, the translation of Δ𝑅𝑐
𝜀 into Δ𝑡𝑐

𝜀 on the 

vertical axis is non-trivial. First, it features a new dependence as Δ𝑡𝑐
𝜀 depends not only on 𝜇𝑐

𝜀, but also on 𝑅𝑐
𝜀 

(and hence, on 𝑡𝑐
𝜀). Let us first consider the dependence of Δ𝑡𝑐

𝜀 on 𝜇𝑐
𝜀 and 𝑅𝑐

𝜀 depicted in Panel B. This 

dependence highly non-linear: Transverse sections of the trough-shaped surface in Panel B have a U shape 

with some relatively flat area around the minimum point. As 𝜇𝑐
𝜀 and 𝑅𝑐

𝜀 move away this minimum point and 

approach the boundaries of the trough-shaped surface, Δ𝑡𝑐
𝜀 increases steeply and tends to the infinity. The 

dependence of Δ𝑡𝑐
𝜀 on 𝜇𝑐

𝜀 and 𝑡𝑐
𝜀 depicted in Panel C has qualitatively similar. 

The shortest ECP duration Δ𝑡𝑐
𝜀 – in this case, equal to 2.6 infectious periods – is achieved at the edge of the 

trough corresponding to 𝜇𝑐
𝜀 = 0 (see Panel B). It requires 𝑅𝑐

𝜀 = 0.34, which means that the ECP should be 

kicked off once about 1/3 of the population have already had the disease. In terms of time, it means that this 

policy should start in 16.7 infectious periods from the beginning of the disease outbreak (see Panel C). In this 

case, the eventual 𝜀-optimal fraction of recovered is 𝑅∞
𝜀 = 0.59 which is less than 2/3, while minimum possible 

fraction of recovered that would require an infinitely long ECP is 𝑅∞
∗ = 0.49. Generally, if the central planner 

wants to minimize the duration of an ECP, s/he should wait until a sufficiently high number of individuals get 

the disease and recover from it, and then introduce strictest possible measures.  

Note that for any 𝜀 ∈ (0, 𝜀0], line  

 

𝑅𝑐 ∈ [0, 𝑅̅],

𝜇𝑐 =
ln(𝑆0𝜇0) − 𝜇0𝑅𝑐

1 − 𝜇0
−1 − 𝑅𝑐

,

Δ𝑅𝑐 =
𝜇0𝑅∞

𝜀 − ln 𝜎∞
𝜀

𝜇0 − 𝜇𝑐

 (21) 

fully belongs to Ω̂𝜀 (see details in the Appendix). The projection of this line onto the 𝑅𝜇-plane coincides with 

the projection of the optimal solution (𝑅𝑐
∗, 𝜇𝑐

∗, Δ𝑅𝑐
∗) (see Proposition 1 and formula (20)) onto the same plane. 

This means that one feasible policy for the central planner is to initiate an ECP with optimal 𝜇𝑐
∗ and 𝑅𝑐

∗, 

however, with a duration Δ𝑅𝑐 < Δ𝑅𝑐
∗ that is finite in time. By regulating this duration, the central planner 



www.iiasa.ac.at 15 

would be able to adjust 𝑅∞ and, if so desired, to bring it to a certain 𝑅∞
𝜀 = 𝑅∞

∗ + 𝜀. The relatively flat areas 

that we discussed above are located around this curve and this supports robustness of this policy 

recommendation.  

A 

 

B 

 

C 

 

Figure 2. Near-to-optimal solutions for 𝜀 = 0.1. The optimal TNII is 𝑅∞
∗ = 0.49 and thus 𝑅∞

𝜀 = 0.59. Panel A depicts a set 

of 𝜀-optimal triples (𝑅𝑐
𝜀 , 𝜇𝑐

𝜀 , Δ𝑅𝑐
𝜀), i.e., set Ω̂𝜀. In Panel B, the dependence of Δ𝑡𝑐

𝜀 on 𝑅𝑐
𝜀 and 𝜇𝑐

𝜀 is depicted. Panel C presents 

a dependence of Δ𝑡𝑐
𝜀 on 𝑡𝑐

𝜀 and 𝜇𝑐
𝜀. Black curves in all plots depict line (21). In Panels B and C, Δ𝑅𝑐

𝜀 and 𝑅𝑐
𝜀 are translated 

into Δ𝑡𝑐
𝜀 and 𝑡𝑐

𝜀 according to Lemma 6 where 𝜇𝑐 = 𝜇𝑐
𝜀, 𝑡𝑐 = 𝑡𝑐

𝜀, 𝑅𝑐 = 𝑅𝑐
𝜀, Δ𝑅𝑐 = Δ𝑅𝑐

𝜀, Δ𝑡𝑐 = Δ𝑡𝑐
𝜀. 

 

Additionally, in Figure 3 we demonstrate some two-dimensional projections of sets presented in Figure 2 and 

how they change with the change of 𝜀. (Three exemplary values of 𝜀 are used for illustraiton: 0.05; 0.1; and 

0.15). The black curve depicts the projection of the optimal solution (20). Clearly, the projection of near-to-

optimal sets Ω̂𝜀 onto 𝑅𝑐
𝜀𝜇𝑐

𝜀-plane as well as their translation onto 𝑡𝑐
𝜀𝜇𝑐

𝜀-plane expand with the increase of 𝜀 

(see Panels A and C) allowing for more space for maneuvering. Simultaneously, the increase of 𝜀 allows for 

shorter corresponding ECP durations Δ𝑅𝑐
𝜀 (see Panel B).  

From Panel A we can see that lower values of 𝜇𝑐
𝜀 provide broader ranges of values for the fraction of 

recovered at which an 𝜀-optimal ECP should start. For example, for 𝜀 = 0.1 and 𝜇𝑐
𝜀 = 0 this range is between 

0.24 and 0.45. However, in terms of time 𝑡, this range is rather narrow, as can be seen from Panel C. In the 

above example, 𝑡𝑐 ranges from 16 to 17.5 (numbers of infectious periods). This is because the translation of 

𝑅𝑐 into 𝑡𝑐 is non-linear, especially for lower values of 𝜇𝑐
𝜀: The epidemic dynamics proceeds very fast when 

approaching the peak of the epidemic curve. Since lower ECP durations Δ𝑅𝑐
𝜀 require lower values of 𝜇𝑐

𝜀, if the 

central planner wants to achieve 𝑅∞
𝜀  with a shorter ECP, s/he has a rather short time period during which an 

ECP should kick off. 
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A 

 

B 

 

C 

 

 

Figure 3. Panels A and B present orthogonal projections of Ω̂𝜀 onto 𝑅𝑐
𝜀𝜇𝑐

𝜀- and 𝜇𝑐
𝜀Δ𝑅𝑐

𝜀- planes for 𝜀 = 0.05, 𝜀 = 0.1, 𝜀 =

0.15 (hatched). Panel C presents sets from Panel A where 𝑅𝑐
𝜀 is translated into 𝑡𝑐

𝜀. Black line on both plots indicates 

corresponding orthogonal projections of the optimal solution (20) (𝜀 = 0). Optimal 𝑅∞
∗ = 0.49 and thus 𝑅∞

0.05 = 0.54, 

𝑅∞
0.1 = 0.59, and 𝑅∞

0.15 = 0.64. 

4. Conclusions and discussion 

In this paper, we investigated a possibility to minimize the total number of infected individuals by applying an 

epidemic control policy in a compartmental epidemic model. We considered an epidemic control policy (ECP) 

that, starting from a certain time moment, reduces the basic reproduction number to a certain value and 

keeps this value constant over a certain period of time. Hence, the following three parameters are at the 

discretion of the central planner: the ECP inception time, the lowered basic reproduction number and the 

duration of the ECP. In real life, the reduction of the basic reproduction number can be achieved through 

various measures, for example, social distancing and pausing selected economic and social activities to reduce 

the rate of contacts between people as well as through progress in disease prevention. All these measures 

reduce the transmission rate of the disease. In the model that we analyze in this paper, we do not consider 

economic or other costs of these measures. We also do not discuss the feasibility of some of the policies 

which we consider mathematically admissible, for example, the feasibility of a significant reduction of the 

basic reproduction number way below 1, potentially even down to 0, and the feasibility of a very early 

inception of an epidemic control policy, potentially even as early as the beginning of the epidemic.  
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Hence, our model is arguably the simplest possible model that can describe an epidemic spread. This enables 

its analytical treatment and the derivation of the closed-form solutions for optimal and near-to-optimal 

controls. We make the following conclusions. 

First, we observe that the total number of infected individuals over the entire time horizon of the disease 

dynamics depends only on the lowered basic reproduction number and the increment in the number of 

recovered individuals over the period of the ECP application; it does not depend, for example, on the number 

of infected or recovered at the time of the ECP inception.  

Second, since ECPs do not imply any costs in our model, we naturally obtain that in order to minimize the 

total number of infected individuals, the central planner should impose an infinitely long ECP. There is a set of 

optimal ECPs; each ECP from this set yields the same (minimal) total number of infected individuals.  

Third, ECPs from this optimal solution set are characterized by the tradeoff between the optimal lowered basic 

reproduction number and the optimal ECP inception time. Namely, stricter ECPs, that is ECPs with a lower 

value of the reduced basic reproduction number, require a later implementation time. Deviations from the set 

of optimal ECPs lead to higher total number of infected individuals in the model. In particular, too strict ECP 

and/or too early implementation later leads to a second wave of epidemic. There is no second wave if a too 

mild ECP is implemented and/or if an ECP is implemented too late, but in both cases, a higher level of the 

total number of infected individuals will be observed. 

Fourth, the range of optimal lowered basic reproduction numbers and the range of optimal ECP inception 

times are narrower for a disease with a higher (original) basic reproduction number. This means that the 

more expansive is the propagation of the disease, the stricter and earlier measures are needed. 

Fifth, an infinite ECP duration is likely to be infeasible in the real world; to address this problem, we derived 

ECPs of finite duration which are near-to-optimal, that is ECPs which lead to the total number of infected 

individuals that is higher than the optimal number by a small positive 𝜀. Again, for each 𝜀 there is a set of 

near-to-optimal ECPs each yielding the same total number of infected individuals.  

Sixth, a higher target number of infected individuals to be achieved allows for wider ranges of ECP inception 

times and the lowered basic reproduction numbers to choose from. Also, in this case, the ECP duration can be 

shorter.  

Seventh, all pairs of optimal ECP inception times and lowered basic reproduction numbers belong to the set of 

near-to-optimal ECPs for any 𝜀. This means that in order to achieve an 𝜀-optimal number of recovered 

individuals, the central planner can always choose an optimal pair of these two parameters and then s/he only 

needs to determine the duration of the ECP application sufficient to reach an 𝜀-optimal number of infected 

individuals. Or, put it differently, the social planner can choose a pair of optimal ECP inception time and 

lowered basic reproduction number and then keep this ECP for as long as it is feasible. The duration of this 

period will determine the number of infected individuals that will be achieved and the corresponding 𝜀. This 

approach provides a robust way to ensure that the ECP duration is reasonable. Deviating from this approach 

contains the risk to select a pair of the other two control parameters which will require very long ECP.  

The model presented in this paper is indeed the simplest possible epidemic control model. Despite its 

simplicity, it reveals a number of interesting and non-trivial qualitative observations as discussed above. 

Disease-caused mortality is not included in the model which simplifies the mathematical derivations. In the 

presence of mortality, formulas would become much more cumbersome, however, we do not expect that the 

results will be qualitatively different. Another possible extension to make the model more realistic could be to 

consider an age-structured population in which transmission and recovery rates depend on the individual’s 

age. This dependence has been critical in case of COVID-19. It would also be interesting to consider other 

objective functions, for example, a meaningful objective function could be the number of infected individuals 
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at the peak of the epidemic curve. This number would characterize the maximum load on hospitals and the 

central planner would like to keep it well below the existing capacity. Taking into consideration costs of 

implementing an epidemic control policy is another very significant extension that can offer a wealth of new 

results. We leave some of these extensions to our next studies. 
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Appendix 

Proof of Lemma 1. 

From the first and the second differential equations (DEs) of (2), we obtain that  

𝑆(𝑡) = 𝑆0𝑒−𝜇 ∫ 𝐼(𝑠)d𝑠
𝑡

0  and 𝐼(𝑡) = 𝐼0𝑒𝜇 ∫ 𝑆(𝑠)d𝑠
𝑡

0 −𝑡, 𝑡 ≥ 0. 

Hence, due to assumption A1, 𝑆(𝑡) > 0 and 𝐼(𝑡) > 0, and 𝑆(⋅) is decreasing, 𝑡 ≥ 0.  

Based on this, from the third DE of (2) we conclude that 𝑅(⋅) is increasing and hence 𝑅(𝑡) > 0, 𝑡 > 0. 

Summing up all three DEs of (2) gives 𝑆̇(𝑡) + 𝐼(̇𝑡) + 𝑅̇(𝑡) = 0,  and hence 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1, 𝑡 ≥ 0. 

Therefore, all phase variables are bounded and take positive values over (0, ∞). This proves the first and 

second statements of Lemma 1. 

Let us prove the third statement of Lemma 1. As mentioned above, all state variables of system (2) are 

bounded from above by 1 and from below by 0. Being monotonic and continuous, 𝑆(⋅) and 𝑅(⋅) necessarily 

converge to some 𝑆∞ ∈ [0,1) and 𝑅∞ ∈ (0,1] as 𝑡 → ∞. Then, thanks to equality 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1 for all 

𝑡 ∈ [0, ∞), as 𝑡 → ∞ function 𝐼(⋅) also converges to some 𝐼∞ ∈ [0,1]. As point (𝑆∞, 𝐼∞, 𝑅∞) must be an 

equilibrium point, we conclude that 𝐼∞ = 0 and then 𝑆∞ = 1 − 𝑅∞. The third statement of Lemma 1 is proven. 

Proof of Lemma 2. 

Consider (5) over [0, ∞), whose first- and second-order derivatives are as follows: 

𝐼′(𝑅) = −1 + 𝜇𝑆0𝑒−𝜇𝑅, 𝐼′′(𝑅) = −𝜇2𝑆0𝑒−𝜇𝑅 < 0. 

Obviously, 𝐼(⋅) is strictly concave, and 𝑅∗ = 𝜇−1 ln 𝑆0𝜇 > 0 is the unique maximum point of function 𝐼(⋅). 

Hence, 𝐼(⋅) is increasing over [0, 𝑅∗) and decreasing over (𝑅∗, ∞). Since 𝐼(0) > 0, 𝐼(𝑅∗) > 0 and 𝐼(𝑅) → −∞ as 

𝑅 → ∞, there exists a unique root 𝑅∞ > 𝑅∗ > 0 of equation 𝐼(𝑅) = 0 over 𝑅 ∈ [0, ∞), and 𝐼(𝑅) > 0 for 𝑅 ∈

[0, 𝑅∞) and 𝐼(𝑅) < 0 for 𝑅 > 𝑅∞. The value 𝑅∞ coincides with the one from Lemma 1 thanks to the 

established connection between systems (2) and (3). 

Proof of Lemma 3. 

The one-to-one correspondence between solutions of IVPs (2) and (3), presented in the first two statements 

of Lemma 3, will be proven if mapping 𝑡 → 𝑅 is proven to be a diffeomorphism. Let us prove this. Substituting 

(5) in the equation of IVP (2), we obtain a Cauchy problem, whose solution defines mapping 𝑡 → 𝑅: 

𝑅̇(𝑡) = 1 − 𝑅(𝑡) − 𝑆0𝑒−𝜇𝑅(𝑡), 𝑅(0) = 0. 

A simple analysis of the right-hand side of this equation leads to the result that 𝑡 → 𝑅 is a strictly increasing 

smooth function, and if 𝑡 → ∞ then 𝑅 → 𝑅∞. Hence, mapping 𝑡 → 𝑅 has a smooth inverse, provided by the 

corresponding Cauchy problem 

𝑡̇(𝑅) = (1 − 𝑅 − 𝑆0𝑒−𝜇𝑅)−1, 𝑡(0) = 0, 

and, therefore, it is a diffeomorphism. 

Proof of Lemma 4. 

To analyze system (2) under (7), we consider three consequent IVPs of type (2) over intervals 𝑡 ∈ [0, 𝑡𝑐), 𝑡 ∈

[𝑡𝑐, 𝑡𝑐 + Δ𝑡𝑐), and 𝑡 ∈ [𝑡𝑐 + Δ𝑡𝑐 , ∞) respectively, each of which with a constant 𝜇 as specified in (7) and an 

appropriate initial condition to guarantee a continuous conjunction of the solution parts. All three IVPs are 

analogous to (2) and thus their combined solution has all properties of system (2) established in Lemma 1. 

Proof of Lemma 5. 

Obviously, after substitution of (9) into (10), over each of the three segments [0, 𝑅𝑐), [𝑅𝑐 , 𝑅𝑐 + Δ𝑅𝑐) and 

[𝑅𝑐 + Δ𝑅𝑐 , 𝑅∞) function 𝐼(⋅) has the same behavior as function 𝐼(⋅) from Lemma 2, namely, it is strictly 

concave and tends to minus infinity as 𝑅 → ∞ (see proof of Lemma 2). Therefore, analogously to Lemma 2, 

relations (11) ensure that there exists unique value 𝑅∞ > 𝑅𝑐 + Δ𝑅𝑐 such that 𝐼(𝑅∞) = 0, and 𝐼(𝑅) > 0, 𝑅 ∈
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[0, 𝑅∞) and 𝐼(𝑅) < 0, 𝑅 ∈ (𝑅∞, ∞). The value 𝑅∞ coincides with the one from Lemma 4 thanks to the 

established connection between systems (2) and (3). 

Proof of Lemma 6. 

The proof of Lemma 6 is fully analogous to the proof of Lemma 3. 

Proof of Proposition 1. 

The objective function (𝜇0 − 𝜇𝑐)Δ𝑅𝑐 has no local extremum in Ω̂ and, hence, it achieves it supremum at one 

of its boundaries. As function (𝜇0 − 𝜇𝑐)Δ𝑅𝑐 is strictly increasing in Δ𝑅𝑐, it achieves its supremum at the right 

boundary of the last inequality in (19), that is: 

 Δ𝑅𝑐 = 1 + 𝜇𝑐
−1𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐𝑒−(𝜇0−𝜇𝑐)𝑅𝑐) − 𝑅𝑐. (22) 

Substituting (22) into the objective function (𝜇0 − 𝜇𝑐)Δ𝑅𝑐, we obtain its representation as a function of 𝜇𝑐 and 

𝑅𝑐 as follows: 

 𝐹(𝑅𝑐 , 𝜇𝑐) = (𝜇0 − 𝜇𝑐)(1 + 𝜇𝑐
−1𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐𝑒−(𝜇0−𝜇𝑐)𝑅𝑐) − 𝑅𝑐), (23) 

which is to be maximized subject to (14) and (15).  

This maximization problem has a solution either at a stationary point of 𝐹(⋅,⋅) or at the boundary of the 

domain in 𝑅2 defined by (14) and (15). 

First, let us look for and analyze stationary points of 𝐹(⋅,⋅). Consider the case of 𝜇𝑐 = 0. Then function (23) 

takes the form  

𝐹(𝑅𝑐 , 0) = 𝜇0(1 − 𝑆0𝑒−𝜇0𝑅𝑐 − 𝑅𝑐). 

Obviously, it is strictly concave in 𝑅𝑐 and has a unique positive maximum point  

𝑅̅ = 𝜇0
−1 ln 𝑆0𝜇0. 

Let us prove that 𝑅̅ < 1 + 𝜇0
−1𝑊(−𝑆0𝜇0𝑒−𝜇0). The following inequality is true: 

−1 < 𝑊(−𝑆0𝜇0𝑒−𝜇0) < 0. 

Then 

1 < −
1

𝑊(−𝑆0𝜇0𝑒−𝜇0)
⟺ 𝑆0𝜇0 < 𝑒𝜇0

−𝑆0𝜇0𝑒−𝜇0

𝑊(−𝑆0𝜇0𝑒−𝜇0)
. 

Employing the definition of the Lambert function, we further simplify this to the following  

𝑆0𝜇0 < 𝑒𝜇0+𝑊(−𝑆0𝜇0𝑒−𝜇0). 

Taking the logarithm, we obtain  

ln 𝑆0𝜇0 <  𝜇0 + 𝑊(−𝑆0𝜇0𝑒−𝜇0)  ⟺ 

𝑅̅ = 𝜇0
−1 ln 𝑆0𝜇0 <  1 + 𝜇0

−1𝑊(−𝑆0𝜇0𝑒−𝜇0). 

Thus, 𝑅̅ satisfies inequalities (14). Let us calculate the value of the objective function:  

𝐹(𝑅̅ ,0) = 𝜇0 − 1 − ln 𝑆0𝜇0 > 0. 

Now let us consider the case of 𝜇𝑐 > 0. We calculate the first-order derivatives of 𝐹(⋅,⋅) as follows: 

𝐹𝑅𝑐
′ (𝑅𝑐 , 𝜇𝑐) = −

(𝜇0 − 𝜇𝑐)(𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐𝑒−(𝜇0−𝜇𝑐)𝑅𝑐)𝜇0 + 𝜇𝑐)

𝜇𝑐(1 + 𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐𝑒−(𝜇0−𝜇𝑐)𝑅𝑐))
, 

and 

𝐹𝜇𝑐
′ (𝑅𝑐 , 𝜇𝑐) = −

(−𝑅𝑐𝜇𝑐 + 𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐𝑒−(𝜇0−𝜇𝑐)𝑅𝑐) + 𝜇𝑐)(𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐𝑒−(𝜇0−𝜇𝑐)𝑅𝑐)𝜇0 + 𝜇𝑐)

𝜇𝑐
2(1 + 𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐𝑒−(𝜇0−𝜇𝑐)𝑅𝑐))

. 

The following one-parametric family (𝑅𝑐
∗, 𝜇𝑐

∗): 

 
𝜇𝑐

∗ =
ln(𝑆0𝜇0) − 𝜇0𝑅𝑐

∗

1 − 𝜇0
−1 − 𝑅𝑐

∗
.  

 

(24) 

Solves the system of equations 𝐹𝑅𝑐
′ (𝑅𝑐 , 𝜇𝑐) = 0, 𝐹𝜇𝑐

′ (𝑅𝑐 , 𝜇𝑐) = 0. 
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It is easy to show that 𝜇𝑐
∗ ≥ 0 only for 𝑅𝑐

∗ ∈ [0, 𝑅̅]. Note that if 𝑅𝑐
∗ = 𝑅̅ then 𝜇𝑐

∗ = 0, which coincides with the 

case considered above. Also 𝜇𝑐
∗ is decreasing in 𝑅𝑐

∗ and if 𝑅𝑐
∗ = 0, then 𝜇𝑐

∗ =
ln(𝑆0𝜇0)

1−𝜇0
−1 < 𝜇0. Thus, family (24), 

𝑅𝑐
∗ ∈ [0, 𝑅̅], satisfies inequalities (14), (15).  

Let us calculate 

𝐹(𝑅𝑐
∗, 𝜇𝑐

∗) = (𝜇0 − 𝜇𝑐
∗)(1 + 𝑊(−𝑆0𝜇𝑐

∗𝑒−𝜇𝑐
∗
𝑒−(𝜇0−𝜇𝑐

∗)𝑅𝑐
∗
) − 𝑅𝑐

∗) ≡ 𝜇0 − 1 − ln 𝑆0𝜇0 > 0. 

 

Let us now find the maximal value of 𝐹(⋅,⋅) at the boundaries of inequalities (14), (15). The case of 𝜇𝑐 = 0 

was considered above. Let us consider the case of 𝑅𝑐 = 0, 𝜇𝑐 ∈ (0, 𝜇0]. The stationary points of function 𝐹(0,⋅)  

in this case are solutions to equation 

𝐹𝜇𝑐
′ (0, 𝜇𝑐) = −

(𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐) + 𝜇𝑐)(𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐)𝜇0 + 𝜇𝑐)

𝜇𝑐
2(1 + 𝑊(−𝑆0𝜇𝑐𝑒−𝜇𝑐))

= 0. 

There exists a unique stationary point 𝜇̅𝑐 =
ln(𝑆0𝜇0)

1−𝜇0
−1 . This point coincides with the case above, where 𝜇𝑐

∗ =  𝜇̅𝑐 

and 𝑅𝑐
∗ = 0. Hence, 𝐹(0, 𝜇̅𝑐) = 𝜇0 − 1 − ln 𝑆0𝜇0.  

 

In the remaining cases of 𝑅𝑐 ∈ [0,1 + 𝜇0
−1𝑊(−𝑆0𝜇0𝑒−𝜇0)), 𝜇𝑐 = 𝜇0 and 𝑅𝑐 = 1 + 𝜇0

−1𝑊(−𝑆0𝜇0𝑒−𝜇0), 𝜇𝑐 ∈

(0, 𝜇0], the value of 𝐹(⋅,⋅) is zero and, therefore, these pairs are not optimal. 

 

Thus, the solution to the maximization problem (19) is (𝑅𝑐
∗, 𝜇𝑐

∗), 𝑅𝑐
∗ ∈ [0, 𝑅̅]. 

 

Substituting (24) into (22), we obtain 

Δ𝑅𝑐
∗ = 1 + (𝜇𝑐

∗)−1𝑊(−𝑆0𝜇𝑐
∗𝑒−𝜇𝑐

∗
𝑒−(𝜇0−𝜇𝑐

∗)𝑅𝑐
∗
) − 𝑅𝑐

∗ = 1 − 𝜇0
−1 − 𝑅𝑐

∗ 

and finally, 𝑅∞
∗ = 𝑅𝑐

∗ + Δ𝑅𝑐
∗ = 1 − 𝜇0

−1. 

Proof of Proposition 2. 

From formula (12), where 𝑅∞ = 𝑅∞
𝜀 , we immediately obtain  

 Δ𝑅𝑐
𝜀 =

𝑅∞
𝜀 𝜇0 − ln 𝜎∞

𝜀

𝜇0 − 𝜇𝑐
𝜀

> 0. (25) 

Then the set Ω̂𝜀 of all triples (𝑅𝑐
𝜀 , 𝜇𝑐

𝜀 , Δ𝑅𝑐
𝜀) is defined by (14)-(16), where (𝑅𝑐 , 𝜇𝑐 , Δ𝑅𝑐) = (𝑅𝑐

𝜀 , 𝜇𝑐
𝜀 , Δ𝑅𝑐

𝜀) and (25). 

Substituting (25) in (16), we obtain. 

𝑅∞
𝜀 𝜇0 − ln 𝜎∞

𝜀

𝜇0 − 𝜇𝑐
𝜀

< 1 + (𝜇𝑐
𝜀)−1𝑊(−𝑆0𝜇𝑐

𝜀𝑒−𝜇𝑐
𝜀
𝑒−(𝜇0−𝜇𝑐

𝜀)𝑅𝑐
𝜀
) − 𝑅𝑐

𝜀 

Denote 

 𝐺(𝑅𝑐
𝜀 , 𝜇𝑐

𝜀) = 1 + (𝜇𝑐
𝜀)−1𝑊(−𝑆0𝜇𝑐

𝜀𝑒−𝜇𝑐
𝜀
𝑒−(𝜇0−𝜇𝑐

𝜀)𝑅𝑐
𝜀
) − 𝑅𝑐

𝜀 −
𝑅∞

𝜀 𝜇0−ln 𝜎∞
𝜀

𝜇0−𝜇𝑐
𝜀 .  

Then inequalities 𝐺(𝑅𝑐
𝜀 , 𝜇𝑐

𝜀) > 0, (14), and (15) define set Ω̂𝜀.  

As long as 𝜇𝑐
𝜀 ∈ [0, 𝜇̅𝑐

𝜀), equation 𝐺(𝑅𝑐
𝜀 , 𝜇𝑐

𝜀) = 0 has two solutions: 𝑅𝑐
𝜀 = 𝑅̲𝑐

𝜀 and 𝑅𝑐
𝜀 = 𝑅̅𝑐

𝜀. The derivative 

becomes: 

𝐺𝑅𝑐
𝜀

′ (𝑅𝑐
𝜀 , 𝜇𝑐

𝜀) = −
(𝑊(−𝑆0𝜇𝑐

𝜀𝑒−𝜇𝑐
𝜀
𝑒−(𝜇0−𝜇𝑐

𝜀)𝑅𝑐
𝜀
)𝜇0 + 𝜇𝑐

𝜀)

𝜇𝑐
𝜀 (1 + 𝑊(−𝑆0𝜇𝑐

𝜀𝑒−𝜇𝑐
𝜀
𝑒−(𝜇0−𝜇𝑐

𝜀)𝑅𝑐
𝜀
))

 

 

The solution to equation 𝐺𝑅𝑐
𝜀

′ (𝑅𝑐
𝜀 , 𝜇𝑐

𝜀) = 0 is the following one-parametric family: 

 𝜇𝑐
𝜀 =

ln(𝑆0𝜇0) − 𝜇0𝑅𝑐
𝜀

1 − 𝜇0
−1 − 𝑅𝑐

𝜀
, 𝑅𝑐

𝜀 ∈ [0, 𝑅̅]. (26) 

It coincides with formula (24). 
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The second derivative becomes: 

𝐺(𝑅𝑐
𝜀)2

′′ (𝑅𝑐
𝜀 , 𝜇𝑐

𝜀) =
(𝜇0 − 𝜇𝑐)2𝑊(−𝑆0𝜇𝑐

𝜀𝑒−𝜇𝑐
𝜀
𝑒−(𝜇0−𝜇𝑐

𝜀)𝑅𝑐
𝜀
)

𝜇𝑐 (1 + 𝑊(−𝑆0𝜇𝑐
𝜀𝑒−𝜇𝑐

𝜀
𝑒−(𝜇0−𝜇𝑐

𝜀)𝑅𝑐
𝜀
))

3 < 0. 

Hence, 𝐺(⋅, 𝜇𝑐
𝜀) is concave in 𝑅𝑐

𝜀 and (26) is its maximum point. Substituting (26) into 𝐺(⋅,⋅), we obtain: 

𝐺(𝑅𝑐
𝜀 , 𝜇𝑐

𝜀) = 1 + (𝜇𝑐
𝜀)−1𝑊(−𝑆0𝜇𝑐

𝜀𝑒−𝜇𝑐
𝜀
𝑒−(𝜇0−𝜇𝑐

𝜀)𝑅𝑐
𝜀
) − 𝑅𝑐

𝜀 −
𝑅∞

𝜀 𝜇0 − ln 𝜎∞
𝜀

𝜇0 − 𝜇𝑐
𝜀

=
−𝛾 ln(1 − 𝜀𝜇0) − 𝜇0𝜀

𝜇0 − 𝜇𝑐
𝜀

> 0. 

Therefore, family (26) fully belongs to Ω̂𝜀. It is easy to show that one-parametric family (26) belongs to the 

set of all such 𝑅𝑐
𝜀 , 𝜇𝑐

𝜀 that 𝑅𝑐
𝜀 ∈ (𝑅̲𝑐

𝜀 , 𝑅̅𝑐
ε), 𝑅𝑐

𝜀 ≥ 0, 𝜇𝑐
𝜀 ∈ [0, 𝜇̅𝑐

𝜀). 

Aggregating the obtained above information about function 𝐺(⋅,⋅), we finally conclude that inequalities 

𝐺(𝑅𝑐
𝜀 , 𝜇𝑐

𝜀) > 0, (14)-(16) are equivalent to inequalities 𝑅𝑐
𝜀 ∈ (𝑅̲𝑐

𝜀 , 𝑅̅𝑐
ε), 𝑅𝑐

𝜀 ≥ 0, 𝜇𝑐
𝜀 ∈ [0, 𝜇̅𝑐

𝜀). 

 

 


