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Abstract 

The problem of solid waste management presents an issue of increasing importance in many low-

income settings, including the progressively urbanised context of Kenya. Kisumu County is one such 

setting with an estimated 500 tonnes of waste generated per day and with less than half of it regularly 

collected. The open burning and natural decay of solid waste is an important source of greenhouse 

gas (GHG) emissions and atmospheric pollutants with adverse health consequences. In this paper, we 

use system dynamics modelling to investigate the expected impact on GHG and PM2.5 emissions of 

(i) a waste-to-biogas initiative and (ii) a regulatory ban on the open burning of waste in landfill. We 

use life tables to estimate the impact on mortality of the reduction in PM2.5 exposure. Our results 

indicate that combining these two interventions can generate over 1.1 million tonnes of cumulative 

savings in GHG emissions by 2035, of which the largest contribution (42%) results from the biogas 

produced replacing unclean fuels in household cooking. Combining the two interventions is expected 

to reduce PM2.5 emissions from the waste and residential sectors by over 30% compared to our 

baseline scenario by 2035, resulting in at least around 1,150 cumulative life years saved over 2021-
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2035. The contribution and novelty of this study lies in the quantification of a potential waste-to-

biogas scenario and its environmental and health impact in Kisumu for the first time.  

 

Key Words 

Municipal solid waste management, system dynamics, greenhouse gas emissions, GHG accounting, 

health impact assessment, Kisumu 

 

Abbreviations 

AD, anaerobic digestion; BC, black carbon; CO, carbon monoxide; COP, Conference of the Parties; DOC, 

degradable organic carbon; EU, European Union; GBD, Global Burden of Disease; GHG, greenhouse gas; 

GWP, global warming potential; HDI, human development index; ICS, improved cookstove; IHD, ischaemic 

heart disease; IPCC, Intergovernmental Panel on Climate Change; KISWAMP, Kisumu Integrated Solid 

Waste Management Plan; KNBS, Kenyan National Bureau of Statistics; LCA, life cycle assessment; LPG, 

liquefied petroleum gas; LRI, lower respiratory infections; MJ, megajoule; MSW, municipal solid waste; 

MSWM, municipal solid waste management; MW, megawatt; PM, particulate matter; SD, system dynamics; 

SDG, Sustainable Development Goals; SSA, sub-Saharan Africa; SWM, solid waste management; WHO, 

World Health Organization; WtE, waste-to-energy. 

 

1. Introduction 

Municipal solid waste management (MSWM) in sub-Saharan Africa (SSA) remains a critical 

challenge despite the development of several continent-wide and regional policies and strategies to 

address this (see for example African Union Commission (2015), EAC (2016), WHO (2018)). With 

projected population growth, rapid urbanization and economic growth, production of solid waste is 
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expected to increase, and this, coupled with weak implementation of existing legislation and 

budgetary constraints for waste services, may worsen the situation (UNEP, 2018). In most cities in 

the region, open dumpsites (both controlled and uncontrolled) are the final resting place of the 

collected municipal solid waste (MSW), posing environmental and health challenges for city 

dwellers (UNEP, 2018). Emissions of climate changing greenhouse gases (GHG) occur at various 

stages across the SWM service chain. Across many African cities, waste collection and 

transportation fleets are old, leading to higher emissions of GHGs (Friedrich and Trois, 2011). In 

addition, with the prevalence of open dumpsites without gas harvesting systems, the decomposition 

of organic waste leads to the release of methane (Friedrich and Trois, 2011). This gas can, however, 

be harnessed as an alternative and clean source of energy for the more than half of households in 

SSA who rely on biomass and kerosene for cooking (Lambe et al., 2015; Morrissey, 2017). Biomass 

fuels as well as kerosene have been associated with high emissions of household air pollutants with 

implications for the health of users and their families (WHO, 2021). With the 2030 deadline of the 

SDGs—including SDG 7 on access to clean affordable energy—less than a decade away, 

governments in Africa and elsewhere where biomass is a dominant fuel must find alternative clean 

fuels for households. Via exploring the potential of a proposed waste-to-biogas initiative in 

providing energy for cooking, in reducing GHG emissions, and in improving air quality and 

associated health outcomes, this paper provides a unique opportunity in the search for pathways 

towards affordable and clean energy in Kisumu County, Kenya. 

 

Kisumu County, which has Kisumu City as its capital, is strategically positioned in the west of 

Kenya on the shores of Lake Victoria (Figure 1), the second largest freshwater Lake in the world. 

Kisumu, the third largest city in Kenya, is a key commercial and transport hub for the Western 

region of Kenya and the East African region. In spite of that, over half of Kisumu City‘s population 

are categorised as poor (Olang, Esteban and Gasparatos, 2018), and the County scores 0.49 on the 
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Human Development Index (HDI), below the national average at 0.56 (County Government of 

Kisumu, 2019). The 2019 population census indicates that the county has a population of about 

1,156,000 people (KNBS, 2019). Population has been growing at a rapid rate of about 2.3% per year 

and is expected to continue to grow at over 2% per year until 2030 (United Nations, 2019).   

 

Figure 1 – Map of Kisumu County. Source: African Population and Health Research Centre 

Rapid urbanisation and changing consumption patterns, together with poor environmental 

management, have turned MSW into an alarming crisis for Kenya, manifest in the commonly 

overflowing dumpsites in the cities which are cause for environmental and health hazards (Awuor et 

al., 2019). As with many urban areas in the Global South, Kisumu is struggling with an overflowing 

dumpsite as well as consequent environmental and health risks associated with improper disposal of 

MSW (Sibanda, Obange and Awuor, 2017). Kisumu County generates about 500 tonnes of solid 

waste per day
1
 (Oyake-Ombis, 2017) out of which, based on estimates we obtained from local actors 

in the system, only about 40% is collected for disposal at the city‘s open landfill (see Appendix A, 

                                                 
1
 Estimates for the amount of waste generated in Kisumu vary widely, from 200 up to 500 tonnes/day (Sibanda et al 

2017). The wide range of these estimates is due to the lack of systems to formally weigh generated waste (e.g. via a 

weighbridge at dumpsites), leaving the Kisumu Department of Environment to rely on rough per capita methods for 

estimating waste volumes. Here, we use the Oyake-Ombis (2017) figure which covers the entire Kisumu County. 
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Section i). Other estimates indicate even lower shares, starting from as low as 10-20% (Aguko et al., 

2018; Awuor et al., 2019). 

 

Kachok dumpsite (Figure 2 left photo), located within the city‘s central business district and only 2 

km from the centre, has accumulated the city‘s waste since 1975 (Awuor et al., 2019). The dumpsite 

is about 2.7 hectares and is characterised by open burning of waste—aimed at reducing the volume 

of waste and preserving disposal space at the site (Awuor et al., 2019)—as well as noise, odour from 

decaying organic matter, dust, and smoke. There are also concerns around insecurity, public health, 

and environmental degradation due to the pollution of Lake Victoria through leachate run-off which 

typically contains heavy metals, organic pollutants and microbial pathogens (County Government of 

Kisumu, 2017; Sibanda, Obange and Awuor, 2017; Tyagi et al., 2018). Uncontrolled open dumping 

and open burning of waste contribute to the emission of climate altering GHGs such as methane 

(CH4), as well as carbon dioxide (CO2) and black carbon (BC). In addition, the open burning of 

waste also generates toxic air pollutants such as fine particulate matter into the air which cause 

respiratory, cardiovascular and other kinds of diseases when inhaled (Sibanda, Obange and Awuor, 

2017). Aguko et al. (2018) report higher concentrations of such air pollutants over and around 

Kachok dumpsite (Aguko et al., 2018). Efforts towards relocating the overflowing dumpsite to a 

larger site farther away from the city centre have so far not been successful. In a comprehensive 

review of the state and history of Kachok dumpsite, Awuor et al. (2019, p. 4) make the following 

observation: ―[i]n its location and current state, [Kachok dumpsite] is an environmental and health 

hazard defeating the purpose for waste disposal sites; which is to protect human and wildlife 

populations from health hazards and the environment from degradation.‖ 

 

The lion‘s share of the city‘s waste remains uncollected and accumulates in skips (or where skips 

used to be), is openly burnt, illegally dumped on vacant land, alongside roads (resulting in numerous 
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unsightly garbage heaps scattered around the city, see Figure 2 right photo) or in drainage systems 

(resulting in frequent flooding of neighbourhoods with waste and sewage water) (Gutberlet et al., 

2017; Sibanda, Obange and Awuor, 2017). The County has developed and revised an Integrated 

Solid Waste Management Plan (KISWAMP) (County Government of Kisumu, 2017), but this has so 

far failed to result in a transformation of the state of MSWM in Kisumu (Awuor et al., 2019). 

 

 

Figure 2 – Kachok dumpsite (left) and roadside scattered waste in Nyalenda slum (right). Photo credit: Aarathi Prasad. 

In line with Kenya‘s strategic target of reducing GHG emissions by 30% by 2030, as pledged at 

COP-21 in Paris 2015 with a strong focus on increasing access to renewable energy (Dalla Longa 

and van der Zwaan, 2017), Kisumu County‘s KISWAMP (County Government of Kisumu, 2017) 

discusses the potential in waste-to-energy (WtE) technologies. Currently, a wide range of such 

technologies exist. These are broadly categorised as thermal (e.g., incineration, pyrolysis, 

gasification) and biological (e.g., aerobic composting or anaerobic digestion/biogasification) (Moya 

et al., 2017). We assert that incineration, which is the most widely used method (Fernández-

González et al., 2017), is not suitable for the context of Kisumu primarily because the composition 

of waste in Kisumu, which consists of over 60% biowaste (Sibanda, Obange and Awuor, 2017), as is 

common in low-income settings (Hoornweg and Bhada-Tata, 2012; Kumar and Samadder, 2017), 

negatively affects its calorific value and impairs the practicability and energy efficiency of thermal 

treatment options which are more suitable for low-moisture waste (Dlamini, Simatele and Serge 

Kubanza, 2019; Franca and Bassin, 2020). Secondly, incineration requires very large waste input to 
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be viable and is more suited to areas of higher population (Fernández-González et al., 2017). It is 

also very capital-intensive, estimated by Kisumu County to require around $20M of initial capital 

investment (County Government of Kisumu, 2017, p. 54) and also involves high operating costs 

(Tyagi et al., 2018). Lastly, there are important environmental and health concerns around 

incineration, as it may emit various particulate and gaseous pollutants (Kumar and Samadder, 2017; 

Tyagi et al., 2018; Istrate et al., 2020). Other advanced thermal treatment processes such as pyrolysis 

and gasification are deemed to be ―technically challenging, relatively unproven at commercial scale, 

and […] the generated energy may be needed to power the process (Tyagi et al., 2018, p. 381).‖ 

 

The same mostly organic composition of Kisumu‘s waste, however, makes it highly suited for 

biological treatment (Gebreegziabher et al., 2014). Anaerobic digestion (AD) is the biological 

decomposition of organic waste in an oxygen deficient environment (Dlamini, Simatele and Serge 

Kubanza, 2019), which turns the ‗biowaste‘ into two valuable products: (a) energy-rich renewable 

biogas, a methane-rich gas produced by biological means, and (b) nutrient-rich digestate which can 

be used directly or after composting in agriculture (Tyagi et al., 2018). As it entails relatively lower 

capital investment compared to thermal treatment options, AD is also considered the most feasible 

MSWM solution in low-income countries (Kumar and Samadder, 2017), with various studies 

asserting that it holds significant promise in SSA for helping to mitigate the problems of urban waste 

management, energy insecurity and climate change (Abila, 2014; Gebreegziabher et al., 2014; 

Dlamini, Simatele and Serge Kubanza, 2019; Franca and Bassin, 2020). Biogas technology helps 

mitigate climate change by reducing GHG emissions, both via substituting fossil fuels for cooking, 

heating, lighting, or electricity generation, and via avoiding emissions associated with mineral 

fertilizer production (Gebreegziabher et al., 2014). There is generally a consensus on the favourable 

environmental consequences of the diversion of organic waste from aerobic, GHG emitting 

composting to anaerobic digestion (Istrate et al., 2020). 
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In Kenya, in the city of Naivasha, 76 km from Nairobi, a 2.4 MW commercial biogas plant, with a 

cost of $6.5 million and an annual treatment capacity of 50,000 tonnes of organic waste, inaugurated 

in 2017 and is reportedly the largest grid-connected biogas power plant in Africa, meeting the power 

needs of 6,000 rural homes (Roopnarain and Adeleke, 2017; Kemausuor, Adaramola and Morken, 

2018). In this paper, however, rather than proposing to use biogas from waste to generate electricity, 

we explore the option of making the biogas directly accessible to households for use in cooking. 

Currently, close to 80% of households in Kisumu use traditional biomass fuels (mainly wood and 

charcoal) for cooking (KNBS, 2019, p. 336). Indoor air pollution caused by traditional cooking is 

today's most important environmental health risk and second-largest risk factor in all categories in 

Eastern SSA (Lim et al., 2012). Women and children are disproportionately at risk of health issues 

caused by indoor air pollutants. Furthermore, the use of wood and charcoal for cooking is a major 

driver of deforestation and GHG emissions (Carvalho et al., 2019). Evidence shows that using 

alternative cook stoves significantly reduces indoor air pollution, and numerous studies demonstrate 

the link between reductions in household air pollution and improved respiratory health (Anderman et 

al., 2015). Tumwesige et al. (2017) monitored real-time PM2.5 and CO concentrations in 35 

households in Cameroon and Uganda where biogas and firewood (or charcoal) were used and found 

that fully switching to biogas for cooking reduces both CO and PM2.5 concentrations to below 

WHO recommended limits. Although no direct evidence on the health benefits of households 

switching to biogas is available, comparable studies of households switching to LPG suggest that 

such a shift could bring respiratory and cardiovascular health benefits of the order of 20–25% 

reduction in risk of a wide range of diseases (Semple et al., 2014). Within the context of Kisumu, 

Carvalho et al. (2019) compare the results of four biomass cookstove strategies on reducing energy 

consumption and air pollutant emissions in Kisumu County and find that, at least in the medium-

term, the highest energy savings, as well as reductions in GHG, PM2.5 and BC emissions and the 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



9 
 

accompanying burden-of-diseases, in comparison to business-as-usual, are achieved via a transition 

to biogas cookstoves (Carvalho et al., 2019). Currently, 18.7% of households in Kisumu use LPG for 

cooking, versus less than 1% using electricity (KNBS, 2019), testament to the higher degree of 

readiness for the uptake of gas-burning cookstoves versus electric ones. Furthermore, electricity 

generated from biogas plants would have to compete with low-priced (often subsidised) electricity 

from other sources, while electricity generation from biogas is relatively expensive, even with free 

substrates, especially in countries where the technology is imported (Kemausuor, Adaramola and 

Morken, 2018). The above considerations justify the choice to use the biogas directly for cooking 

rather than for electricity generation. 

 

In Kenya, there are already numerous small-scale biogas installations in operation (Kemausuor, 

Adaramola and Morken, 2018), including in Kisumu (Sibanda, Obange and Awuor, 2017). Within 

the Africa Biogas Partnership Program, which aimed to promote adoption of biodigesters by rural 

households in SSA, over 27,000 households in Kenya, Tanzania and Uganda installed a biodigester 

between 2009 and 2017, half of which in Kenya (Clemens et al., 2018). In fully replacing traditional 

cooking fuels by clean biogas, Kenya showed the highest success, with half of the adopters 

exclusively using biogas, while the other two countries reported higher rates of fuel stacking, i.e., 

using a mix of fuels rather than a complete transition to biogas. Clemens et al. (2018) suggest that 

the Africa Biogas Partnership Program has succeeded in creating a nascent biodigester market in 

East Africa, but challenges such as high upfront cost, limited access to credit, and lack of 

maintenance still remain. Similarly, Sibanda et al. (2017) maintain that technical knowhow and 

financial investment in this area is limited and further capacity building is needed (Sibanda, Obange 

and Awuor, 2017). 
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In summary, it appears that anaerobic digestion of biowaste to produce biogas for use in household 

cooking holds great potential in reducing waste to landfill and associated externalities (e.g., pollutant 

and GHG emissions, groundwater contamination), while simultaneously improving indoor air quality 

and related health outcomes. Within this context, the purpose of this study is therefore to explore the 

idea of a transition towards anaerobic digestion of Kisumu‘s organic fraction of MSW and the use of 

the produced biogas in household cooking on the levels of waste accumulating in landfill or waste 

scattered elsewhere, on waste related GHG emissions, on air pollutant concentrations, and on related 

health impacts. The novelty and importance of this paper lies in the quantification of a potential 

waste-to-biogas scenario and its environmental and health impact in Kisumu for the first time. 

 

Existing studies on the impacts of WtE technologies in other contexts—e.g., Ayodele, Ogunjuyigbe 

and Alao (2017) in Nigeria, Chaya and Gheewala (2007) in Thailand, Evangelisti et al. (2014) in the 

UK, and Rigamonti, Grosso and Giugliano (2010) and Cremiato et al. (2018) in Italy—tend to take a 

static Life Cycle Assessment (LCA) approach. Considering that the waste system involves distinctly 

dynamic processes, such as the accumulation, depletion and degradation of stocks of waste, static 

methods do not appear up to the task of informing policymaking in this area, where investments are 

often large-scale with long timeframes in mind. Thus, for various reasons, the primary method used 

in this study is system dynamics (SD). Firstly, a key advantage of SD over common spreadsheet 

waste management models such as LCA is the dynamic nature of SD models, versus the static 

optimization in spreadsheet-based methods (Adamides et al., 2009; Inghels and Dullaert, 2011).  

Secondly, it not only allows to simulate material flows but also captures the decision-making 

structures managing these flows. Thirdly, SD is a white-box modelling approach, with fully 

transparent model boundary and assumptions. Fourth, it allows for a visual representation of the 

underlying system, which enhances the model‘s communicability. As reviewed later in Section 2.1, 

SD has been widely applied to problems of MSW around the world. 
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The rest of the paper is structured as follows. In the next section, the methodology used in this study 

is described. Subsequently, in Section 3, the results from our scenario analyses are visualised, 

compared and contrasted. The paper concludes in Section 4 with a brief discussion of the results, 

implementation challenges and study limitations. This manuscript is accompanied by three 

Appendices including a full documentation of the model, list of model parameters, and detailed 

specification of the scenarios. The paper is accompanied by an online supplement containing a folder 

with the model and all scenario runs. 

 

2. Methods 

The aims and scope of this study were determined based on a series of eight focus group discussions 

in Kisumu during July 2019 with representatives from Kisumu County‘s Department of 

Environment, the local industry, non-government groups, community-based organisations, academia 

and resident associations. These discussions, which were audio-recorded and later transcribed, 

provided context information of the current waste management situation and diverse stakeholder 

perspectives about it (Salvia et al., 2021). Our scenario definitions were also informed by these 

discussions. 

 

Multiple methods are combined for the purpose of this study. First, the central method applied is SD 

(Sterman, 2000), which is introduced in the following sub-section 2.1. In sub-section 2.2, a 

description of the SD model follows. As seen in Appendix B, where all parameter assumptions used 

in the SD model and their sources are listed, the primary source for parametrising the model has been 

existing academic papers, national and international databases and industry publications. Data for 

certain parameters specific to the state of SWM in Kisumu, such as the city‘s current waste 
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collection capacity or estimates of the current stock of waste in the city‘s landfill, were obtained in 

correspondence with the Kachok dumpsite manager and Kisumu county officials.  

 

Second, emission factors used to calculate GHG emissions were obtained according to the IPCC 

guidelines (IPCC, 2006), as described in Section 2.3. Third, the method for estimating ambient and 

household PM2.5 concentrations is described in Section 2.4. Fourth, these estimates are fed into a 

life table health impact assessment model (as described in Section 2.5). This Methods section 

concludes with a description of our scenarios.  

 

In their review of the main existing approaches to GHG accounting in waste management, including 

national accounting, corporate level accounting, life cycle assessment, and carbon trading 

methodologies, Gentil, Christensen and Aoustin (2009) emphasise the importance of transparency in 

GHG accounting concerning aspects such as waste type and composition, time period considered, 

GHGs included, choice of system boundaries, etc. Following this guideline, full transparency is 

followed in describing the method and the model in the following sub-sections, and in more detail in 

the Appendices. This being an initial, high-level, aggregate model, it has several limitations, as 

discussed later in Section 4.3. 

 

2.1. System Dynamics and Its Past Applications to SWM 

System dynamics is a method based on computer simulation where a model of the cause-and-effect 

relationships of a real-world complex system is built, parametrised and validated using real-world 

information. The sources of such information can be varied and can include not only those available 

in numerical datasets and scientific literature, but also those gleaned from the mental models of 

experts (Forrester, 1987).    
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Thanks to its strengths in bringing together knowledge from a variety of fields in an integrated 

framework and in tackling dynamically complex problems, SD has been widely applied to the 

problem of MSWM in the past. In terms of quality, papers applying SD to SWM are very mixed. The 

history of such applications goes back around three decades, starting with Mashayekhi (1993) who 

uses an SD model capturing major interactions between different socioeconomic and environmental 

factors to study the problem of solid waste disposal in New York.  Later, and within the context of a 

lower-income country, Sudhir, Srinivasan, & Muraleedharan (1997) propose an SD model for the 

study of the potential consequences of various structural and policy alternatives for a sustainable 

urban SWM system for a typical metropolitan city in India, and conclude by recommending the 

allocation of waste management funds in proportion to the requirements of collection, disposal and 

processing, as opposed to prioritising short-term interests such as only collection of waste. Still 

within the context of India, Talyan, Dahiya, Anand, & Sreekrishnan (2007) use an SD approach to 

quantify CH4 emissions from MSW disposal under various scenarios in Delhi. Their model shows 

that an improved waste management system, involving the introduction of composting, 

biogasification, and refuse-derived fuel, would significantly reduce CH4 emissions over time despite 

an increase in waste generation. Sufian & Bala (2007) build an SD model for SWM in the city of 

Dhaka, Bangladesh, the results of which show that in order to improve environmental outcomes, it is 

not sufficient to increase budget for waste collection capacity, but this needs to be accompanied by 

increasing the budget for treatment, mirroring the finding of Sudhir et al. (1997). This mindset 

informs the current study as well. 

 

Within the context of Kisumu, Gutberlet et al. (2017) apply a combination of action net theory and 

systems thinking to build a map of the waste management system in Kisumu with all its actors, 

actions, processes and interconnections. Their main conclusion is that ―new waste initiatives should 

build on existing waste management practices already being performed within informal settlements 
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by waste scavengers, waste pickers, waste entrepreneurs, and community-based organizations 

(Gutberlet et al., 2017, p. 106).‖ 

 

2.2. Model Description 

The full model documentation is provided in Appendix A – Full Model Documentation. In this 

section, a high-level schematic overview of the model is shown in Figure 3. The model consists of 

four inter-connected sectors: (1) Waste Collection, (2) Biogas, (3) Landfill, and (4) Scattered Waste.  

Variables calculated in one sector are often used as inputs in another sector. In the first sector, which 

captures waste collection, indicators such as total waste generated, total waste collection capacity, 

proportion of waste collected and greenhouse gas emissions due to waste transport are calculated. In 

particular, total food waste collection capacity becomes a key input to the Biogas Sector, as a 

constraint on biogas production capacity along with the cumulative capacity of the biogas facilities, 

together determining total biogas generated. Subsequently, the savings in GHG emissions resulting 

from a switch to clean biogas for cooking are calculated and accumulate in the stock of cumulative 

savings in GHG emissions due to products of anaerobic digestion. 

A by-product of the biogas plants is digestate, which can be used as fertiliser, either directly or upon 

further processing into compost. This organic fertiliser reduces the need for inorganic fertiliser use in 

the region, potentially countering another source of GHG emissions. However, there is substantial 

uncertainty around the extent of such savings (Møller, Boldrin and Christensen, 2009). Cecchi et al. 

(2011) estimate these savings in the range of 30-40 kg-CO2t
-1

 while cautioning that fugitive CH4 and 

N2O emissions when digestate is applied on land, ranging from 0 to 50 and from 30 to 60 kg-CO2t
-1

 

respectively, can cancel out any savings (Cecchi et al., 2011). The aggregate result will depend on 

the exact operating conditions and is likely to be small (Møller, Boldrin and Christensen, 2009). 

Therefore, any digestate-related GHG saving or load is disregarded in this model. Similarly, 
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assuming that any fugitive CH4 emissions from the biogas plant are flared, such emissions are not 

accounted for. 

 

Figure 3 – Overview of model sectors and interlinkages 

Next, the waste that remains and that is not used for biogas production is transported to landfill, as 

captured in the Landfill Sector, given our mixed waste collection constraints (coming from the Waste 

Collection Sector). The accumulation of food and non-food waste in landfill, together with any 

reductions in the waste mass via open burning, natural decomposition and informal waste-picking 

are captured in the Landfill Sector. Furthermore, emissions of different types of GHGs as a result of 

burning and decomposition, including carbon dioxide (CO2), methane (CH4) and black carbon (BC), 

are also calculated, along with the annual and cumulative savings in GHG emissions (both from 

landfill waste and from scattered waste, as imported from Scattered Waste Sector). Various emission 

factors for food and non-food waste required for these calculations are derived based on best 

available evidence, as described in Section 2.3. A key feature of the model is that the food and non-

food contents of the waste that remains after biogas production and is disposed of are dynamically 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



16 
 

calculated. This leads to outcomes which are not immediately evident without using simulation, as 

we will see in the results (Section 3). 

 

Similarly, the Scattered Waste Sector captures the accumulation, depletion and emission processes 

for food and non-food waste which is not collected due to the constraints of our waste collection fleet 

capacity and is structured in the same way as the Landfill Sector. Besides GHG emissions, 

particulate matter (PM2.5) emissions from both landfill and scattered waste are also calculated in this 

sector, which are then used for estimating the potential effects of our scenarios on population health, 

according to the method described in Section 2.5. 

 

With regards to the boundaries of the model, based on Gentil et al.‘s (2009) proposed upstream-

operating-downstream framework for GHG accounting in waste management, in the ‗indirect 

upstream‘ category, in the model we have accounted for emissions from waste transport; in the 

‗direct operating‘ category, we have accounted for landfill and scattered waste emissions (CH4 from 

decomposition and CO2 and BC from burning), and in the ‗indirect downstream‘ category, we have 

accounted for savings resulting from the biogas substituting biomass in household cooking. These 

boundaries for the model can be considered in compliance with Møller, Boldrin and Christensen's 

(2009, p. 823) conclusion that ―irrespective of the employed technology, as long as the produced 

biogas is utilized for energy substitution, the indirect downstream emissions are the most important 

factor. Direct emissions at the AD facility and indirect upstream emissions play less important 

roles.‖ 

 

2.3. Development of emission factors 

We use emission factors from the GAINS model (Amann et al., 2011, 2020) in our analysis. 

Methane emission factors and carbon flows follow Gómez-Sanabria et al. (2018) and are developed 
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in line with the method presented in the IPCC Guidelines (IPCC, 2006, vol. 5 ch. 3). Both are 

representative of the particular waste composition in Kisumu from County Government of Kisumu 

(2017).  Following the local waste management conditions, the estimated emission factor for landfill 

food waste is 20.27 tonnes CH4/kt dumped food waste. For the non-food waste fraction, the emission 

factor is estimated at 17.70 tonnes CH4/kt dumped non-food waste. For scattered waste, emission 

factors for food waste and non-food waste are estimated to be 10.13 tonnes CH4 /kt and 8.85 tonnes 

CH4 /kt, respectively.   

  

Furthermore, the method suggested in the IPCC Guidelines (IPCC, 2006, vol. 5 ch. 5) is applied to 

estimate CO2 emissions from open waste burning.  Emission factors are calculated for each fraction 

of waste based on the fossil carbon content. CO2 emissions from biogenic origin are not included in 

the estimates as advised in the IPCC Guidelines (IPCC, 2006, vol. 5 ch. 5). This means that 

CO2 emissions from open burning of food and wood waste are set to zero. The implied CO2 emission 

factor for open burning of the non-food waste fraction in Kisumu is 464.89 tonnes CO2/kt of waste 

burnt.     

  

Emission factors for black carbon (BC) and PM2.5  are adopted from Akagi et al. (2011) and Christian 

et al. (2010) and are in line with the emission factors used by Klimont et al. (2017) and Wiedinmyer, 

Yokelson, & Gullett (2014).  The emission factors are 8.74 tonne/kt waste burnt for PM2.5 and 0.65 

tonne/kt waste burnt for BC. These emission factors are for mixed waste and are not representative 

of Kisumu’s particular waste composition. 
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Table 1 presents estimated CH4 and CO2 emission factors for the Kisumu waste composition.  
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Table 1 – CH4 and CO2 emission factors 

Item  Unit  Food waste  Non-food waste  

CH4 emission factor for scattered waste  tonne CH4/kt   10.13  8.85  

CH4 emission factor for landfill waste  tonne CH4/kt   20.27  17.70  

CO2 emission factor for burnt waste  tonne CO2/kt   n/a  464.89  

  

Table 2 shows the background information needed to carry out the estimation of the emission 

factors.  

  

Table 2 – Estimation of emission factors 

Kisumu waste 

composition    

Composition in 

%   

kt waste  Dry matter content in % 

of wet waste   

DOC % in 

dry waste   

Fossil carbon 

content in % of 

total carbon  

Total CC in 

% of dry 

waste  

Food waste   0.636  49.56  40  38  0  38  

Paper  0.122  9.51  90  44  1  46  

Plastic  0.102  7.95  100  0  100  75  

Glass  0.032  2.49  100  0  0  0  

Scrap Metal  0.013  1.01  100  0  0  0  

Other  0.095  7.40  90  0  100  3  

  

  

2.4. Estimation of ambient and household PM2.5 concentrations 

The PM2.5 annual emissions obtained based on the above emission factor are converted into ambient 

PM2.5 concentrations using a simplified version of the atmospheric calculations in the GAINS model 

(Amann et al., 2020) which themselves rely on a linearized representation of full atmospheric 

chemistry transport model simulations. GAINS contains atmospheric transfer coefficients from all 

source pollutants for PM2.5 in Kenya to a 0.1° receptor grid. As detailed in Appendix A (Section iv), 

we developed an integrated atmospheric transport coefficient from near-ground emissions of PM2.5 
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in Kisumu to ambient PM2.5 concentrations in Kisumu, which is then applied to the respective 

emissions from residential combustion and MSW burning to estimate their impacts. 

 

For household PM2.5 concentrations, we used an approximation method with a high level of 

uncertainty, described in detail in Appendix A (Section ii), which is based on empirical 

measurements reported in Muindi et al. (2016, p. 7 Table 3) on mean levels of indoor PM2.5 

concentrations in households using different cooking fuel types. 

 

2.5. Health impact assessment 

We estimated the effect of changes in exposure to ambient and household PM2.5 on mortality in 

Kisumu under each scenario using life tables based on the IOMLIFET model (Miller and Hurley, 

2003) programmed in R (version 3.5.1, R Foundation for Statistical Computing, MA, USA). The 

effects of changes in PM2.5 were modelled by applying to the life tables the Global Burden of 

Disease (GBD) Integrated Exposure-Response functions relating long-term PM2.5 exposure to 

mortality risk from five causes – ischaemic heart disease (IHD), chronic obstructive pulmonary 

disease, stroke, lung cancer and lower respiratory infections (LRI) (Apte et al., 2015). The functions 

for IHD and stroke varied by age.  

 

The life tables were set up using age- and gender-specific population and cause-specific mortality 

data for Kenya from the GBD’s GHDx tool for the closest available year of data to the study period 

(2017). The national-level population data was downscaled to represent the population of Kisumu. 

Single-year-of-age mortality rates were calculated from 5-year rates via one-way spline interpolation 

using the MS Excel add-in, SRS splines (version 2.5, SRS1 Software LLC, MA, USA). 
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We combined ambient and household PM2.5 as a time-weighted average, assuming that men and 

women in Kisumu spend 50% and 80% of their time indoors at home, respectively. To account for 

delays in changes in mortality risk following air pollution exposure reductions, we incorporated 

cessation lags for each outcome. These were exponential functions parameterised using evidence 

from studies of smoking cessation (Lin et al., 2008) and assumptions about disease progression over 

time. For IHD and lung cancer, we assumed the full effect would be reached after 15-20 years, with 

shorter lags for COPD, stroke and LRI. 

 

The outputs from the life tables are life years lived by the population over the study period. Solid 

waste may give rise to other forms of adverse health impact but in the analysis presented in this 

paper, we concentrate only on those arising from contamination of the outdoor air by fine particles 

(PM2.5) arising from burning of solid waste. 

 

2.6. Description of scenarios 

In this study, we simulate four different scenarios as summarised in Table 3. The scenarios were 

developed in close connection to planned developments of Kisumu City regarding waste 

management strategies (County Government of Kisumu, 2017) and designed to account for local 

structural factors as well as international guidelines. 

 

In our (1) Baseline (business-as-usual) scenario, we assume only a gradual increase in the mixed 

waste collection transport fleet, in line with recent trends. Waste volume at the dumpsite is mainly 

managed through open burning (as the existing mechanical compactor is insufficient and usually 

non-operational due to inadequate maintenance). At the same time, since most of the waste is 

composed of moist organic matter, combustion occurs only on the surface and does not significantly 

reduce waste volume (Awuor et al., 2019). This open burning is a major contributor to emissions of 
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GHGs and atmospheric pollutants (Forbid et al., 2011). In scenario (1b) Ban on Burning, we assume 

the enforcement of a gradual regulatory ban on the open burning of waste in landfill.
2
 The ban on 

open burning is one of the Global Waste Management Goals set out by the United Nation‘s 

Environment Programme (UNEP) in the Global Waste Management Outlook (Wilson et al., 2015). 

This being a major change in SWM practices in Kisumu, in consultation with local county officials 

we assume that the Ban takes place over an extended period of eight years, bringing the fraction of 

waste annually burnt in landfill from the current 23 percent per year (Onyango and Kibwage, 2008) 

gradually down to zero. This Ban is assumed to be enforced only in dumpsite at this stage. 

 

In the (2) Biogas scenario, we assume a phased commissioning of 30 decentralised biogas facilities 

in different locations in Kisumu County over a period of eight years (about four new facilities each 

year). Each facility is envisaged as a medium-sized plant with a treatment capacity of 3,000 tonnes 

of biowaste per year (roughly 8 tonnes per day), taking the total cumulative capacity up to 90,000 

tonnes annually, roughly two thirds of Kisumu‘s food waste, by 2028. The plants are proposed to be 

commissioned gradually so that the required funding becomes less prohibitive and can be provided 

in installations and so that learning from commissioning and operation of plants can be transferred 

from each phase to the next. These are envisaged to be medium-sized facilities with trained staff, 

with the intention of avoiding dis-adoption of the technology reported to often take place in 

household-level initiatives as a result of technical problems and untrained users (Clemens et al., 

2018). Such a program is compatible with existing mindset in the County Government. In one of our 

focus group discussions with representatives from the local government one County official said the 

following: 

                                                 
2
 Here, we assume that all waste burning in the dumpsite is humanly induced. This is, however, not necessarily the case 

as spontaneous combustion without human intervention also occurs. 
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"even if we cannot get one big plant to produce that amount of biogas or energy, 

can we use this devolved system so that every sub-county has a place where we can 

drive and dispose of the organic waste.” 

It is also in line with Gebreegziabher et al.'s (2014) recommendation of communal or institutional 

level installations as the ideal scale for overcoming the infrastructure challenges of biogas. Biogas 

initiatives of a similar scale have already been successfully implemented elsewhere in the developing 

world, e.g., the Valorgas project in India (VALORGAS, no date).  

 

In terms of substrate provision, these plants would need to be supplied with source-separated organic 

fraction of MSW. The decentralised approach has the advantage of minimising the distance travelled 

for transporting the waste to treatment facilities (Gebreegziabher et al., 2014). We assume that a 

separate collection system for food waste is gradually built up to match the plants‘ expanding waste 

treatment capacity. The collection and transportation of the food waste shall be done by special-

purpose handcarts, capable of accessing narrow alleyways in the informal settlements and operated 

by waste collectors formally employed by the City—perhaps recruited from among current informal 

actors in the sector, in line with Gutberlet et al.'s (2017) context-specific recommendation of 

building improved SWM practices on existing ones.  

 

As outlined and justified earlier in the Introduction, we assume that the produced biogas will then be 

bottled and distributed to households at filling stations for use in cooking instead of currently 

prevalent biomass and kerosene (KNBS, 2019, p. 336). A distributed set of facilities makes the 

filling stations more easily accessible for households while providing jobs to the local community. 

Based on the assumption of a 3,000 tonne per year treatment capacity, a yield of 100 m
3
 per tonne of 

food waste (Veeken (2005) cited in Müller (2007, p. 26, Table 3)), and an average household need of 

262.5 m
3 

biogas per year for cooking (see Appendix B for sources and calculation), each facility is 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



24 
 

expected to provide cooking fuel for around 1,150 households. A recent working paper by 

Twinomunuji et al. (2020) suggests that, in the SSA region, biogas-based cooking fuels would 

compete favourably in price with other commercial fuels, including LPG. While highlighting the 

promise in such initiatives, they furthermore identify several barriers towards widespread interest in 

bottled biogas in Africa, which will be discussed later in Section 4.2. 

 

Finally, in scenario (2b) Biogas + Ban on Burning, we combine the abovementioned assumptions of 

scenarios 1b and 2. In all scenarios we assume a growth in the number of households in line with the 

growth rates in the United Nation‘s Probabilistic Population Projections (median variant) (United 

Nations, 2019).  

 

Table 3 – Summary of scenarios 

No. Scenario name Waste collection fleet 

Biogas production 

capacity 

Ban on 

landfill 

waste 

burning 

(1) Baseline Slow gradual increase in mixed waste 

trucks (one additional truck every two 

years)* 

-- No. 

(1b) Ban on Burning  Same as above. -- Yes. Over 8 

years. 

(2) Biogas New organic waste handcarts from 83 

units (49.3 tonnes per day=18k 

tonnes/year) in 2022 gradually up to 

411 units (246.6 tonnes per day=90k 

tonne/year) in 2028. 

From 18,000 

tonnes/year (six 

facilities) in 2022 up 

to 90,000 tonnes/year 

(30 facilities) in 2028. 

No. 

(2b) Biogas + Ban 

on Burning 

Same as above. Same as above. Yes. Over 8 

years. 

* All other scenarios include this baseline assumption. 
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3. Results 

In this section, we use simulation to gain insight into the likely future developments in the dynamics 

of waste accumulation, associated GHG emissions, PM2.5 concentration and consequent health 

outcomes under the described sets of scenario assumptions. We will start by comparing projected 

trends in waste accumulation under the Baseline and Biogas scenarios in the first sub-section and 

continue by comparing GHG emissions under the two scenarios in the following sub-section. Next, 

we will look at results from the Ban on Burning scenario and the Combined scenario. The last two 

sub-sections deal with projections related to changes in PM2.5 and the resulting health impacts. 

 

3.1. Stocks of Waste: Baseline and Biogas Scenarios 

Figure 4 shows simulated developments in the stocks of waste under the Baseline scenario. As can 

be seen, landfill waste (both food and non-food components) keeps increasing, reaching over 

500,000 tonnes by 2035, as a result of population growth along with a gradual increase in the city‘s 

fleet of mixed waste trucks. Scattered Waste, on the other hand, starts rising initially, peaks at just 

over 300,000 tonnes around 2027 and gradually falls thereafter, down to about 242,000 tonnes by 

2035. This is because of the assumption of a gradual expansion in the waste collection fleet which 

eventually overtakes the slow growth in population, with the proportion of waste inappropriately 

disposed of (not shown here) going down from around 57% in the beginning to around 22% over the 

15 years of the simulation period. 
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Figure 4 – Baseline simulation: developments in A) landfill waste and B) scattered waste 

Figure 5 portrays developments in the four stocks of waste under the Baseline and Biogas scenarios. 

The top two graphs show projected developments in food and non-food waste in landfill, while the 

bottom two graphs show projected developments in scattered waste. Regarding landfill waste, both 

food and non-food components increase in a linear fashion under the Baseline scenario. As for the 

Biogas scenario, landfill food waste is projected to reach less than 60% of its Baseline value by 2035. 

This is not surprising because as more and more of the food waste (57% by 2035) is used for biogas 

production, there is less food waste being transported to landfill, to the point that the flow of food 

waste into the stock comes close to the aggregate outflows due to decomposition and burning, 

keeping landfill food waste relatively stable. Conversely, there is a relatively higher accumulation of 

non-food waste in landfill, as the waste that is left after biogas production to be transported to 

landfill becomes more non-organic in nature, with the non-food content ratio (not shown here) going 

from around 37% initially to 58% by the end of the simulation period in the Biogas scenario, while it 

stays roughly constant in the Baseline simulation. 

 

As for scattered waste, both stocks start decreasing after a few years in all simulations, with the 

decline being much greater under the Biogas scenario, where scattered waste reaches near zero by 

the end of our simulation period. The improvement in accumulated scattered waste under the 

Baseline scenario is a result of an assumed gradual expansion in the city‘s waste collection fleet 
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where it is assumed that one truck is added to the mixed waste collection fleet every two years. In the 

Biogas scenario, on top of this we have an assumption of a fleet of special-purpose food waste 

handcarts coming into operation. This increases total waste collection capacity to 100% of the waste 

by 2028 and leaves zero inflow to the stocks of scattered waste. It takes several more years, 

however, for the already existing scattered waste to completely vanish as a result of either natural 

decay or open burning.  

 

 

 

Figure 5 – Stocks of waste, Baseline vs. Biogas scenario. A) Landfill food waste; B) Landfill non-food waste; C) Scattered food waste; 

D) Scattered non-food waste 

3.2. Greenhouse Gas Emissions: Baseline and Biogas Scenario 

Projected GHG emissions resulting from scenarios 1 and 1b are shown in Figure 6. The behaviour of 

total CO2eq methane emissions due to waste decomposition (panel A) can be understood by referring 

to the two graphs on the left hand-side of Figure 5. With waste being transported increasingly to 
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landfill, landfill waste tends to dominate in determining the behaviour of total CH4 emissions, with 

the CH4 emission curves following the curves of accumulating landfill waste in trend, albeit at a 

slightly slower rate which is a result of the fall in scattered waste. The Biogas scenario is expected to 

cut such emissions down by 45% by 2035, from around 24,400 to around 13,500 tonnes per year. 

Similarly, black carbon emissions due to waste burning rise at a decreasing rate in the Baseline 

scenario, while they stay fairly stable under the Biogas scenarios, cut by about 33% by 2035 as 

compared to Baseline. Since the BC emission factor assumed for all three types of waste is the same, 

the change in emissions in our scenarios cannot be the result of a redistribution of waste among the 

various stocks (food/non-food landfill/scattered waste) but is rather the result of a reduction in the 

sum total amount of the waste that is disposed of due to the recycling of a part of the total waste for 

biogas production. 

 

On the bottom left (panel C), we can see that total direct CO2 emissions due to waste burning do not 

change in the Biogas scenario compared to Baseline, with the two curves fully overlapping. This is 

because, as mentioned in Section 2.3, these emissions are a product of non-food waste only, and total 

non-food waste does not change under the Biogas scenario, rising slowly with population as it does 

in Baseline.  
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Figure 6 – Comparison of emissions Baseline vs. Biogas scenario. 

Total CO2eq emissions from waste (panel D), resulting from both burning or decomposition, is the 

sum of the other three variables. Here we see a decrease in total emissions under the Biogas scenario 

of about 25% per year by 2035, from around 116,000 to around 87,000 tonnes per year.  

 

As a result of this reduction in emissions throughout the 15 years of the simulation as shown in the 

above figures, as well as many households being able to switch from fossil fuels to renewable biogas 

for cooking and the resulting digestate from the biogas production process replacing an equivalent 

amount of inorganic fertiliser, we expect to see a substantial cumulative saving in GHG emissions in 

the Biogas scenario, as shown in Figure 7. Simulation suggests that by 2035, each year around 9 

million m
3
 of biogas can be generated in this way, providing cooking fuel for 8-9% of total 

households in Kisumu county. Total cumulative savings in emissions reach 700,000 tonnes of CO2eq 
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by 2035. Two thirds of these savings come from households switching to biogas, with one third 

resulting from the reduction of waste in landfill and scattered waste.  

 

 

Figure 7 – Cumulative saving in GHG emissions under the Biogas scenarios 

3.3. Ban on Burning Scenario 

Based on what we saw in Figure 6, it becomes clear that potentially significant improvements in total 

emissions are undermined by the lack of any improvements in direct CO2 emissions from burning. 

Therefore, if we are to make more substantial and sustainable improvements in GHG emissions, we 

need to stop the open burning of landfill waste. Scenarios 1b and 2b are envisaged around this 

assumption. These are the same as Scenarios 1 and 2, except that in each case a ban on the open 

burning of landfill waste is gradually enforced, on top of the other assumptions in each scenario. Let 

us first compare the results of Scenario (1b) Ban on Burning with the (1) Baseline and (2) Biogas 

scenarios to see how stopping the burning would affect developments in the stocks of waste and the 

resulting emissions.  
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Figure 8 – Total waste in landfill: Baseline, Ban on Burning and Biogas Scenarios 

In Figure 8, the Baseline stacks are shown on the left for each year (in blue), the ones for the Ban on 

Burning scenario are in the middle (in grey), and those for the Biogas scenario are on the right (in 

green). Food waste columns are darker in colour, with non-food columns lighter and on top. As can 

be seen, both types of waste accumulate more rapidly in landfill under the Ban on Burning scenario, 

as open burning constitutes an important way of reducing the mass of waste in landfill and stopping 

it would lead to waste piling up more rapidly. In total, by 2035, we expect total landfill waste to be 

2.3 times higher than the Baseline scenario. Mentally simulating the aggregate outcome of this 

intervention for total emissions is not straightforward because on the one hand landfill waste is 

growing faster but on the other hand emissions due to burning are reduced to zero in landfill. 

Simulation can help here by providing a projection for future emissions, as shown in Figure 9. 
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Figure 9 – GHG Emissions: Baseline, Ban on Burning and Biogas Scenarios 

In Figure 9, once again, left-hand side (blue) bars represent the Baseline scenario, middle bars (grey) 

the Ban on Burning scenario, and the right-hand ones (green) represent the Biogas scenario. The 

three different types of GHG emissions are distinguished in each column using different colours. As 

can be seen, in the Ban on Burning scenario, CH4 emissions due to waste decomposition rise faster, 

due the quicker accumulation of waste in landfill, as seen earlier in Figure 8. The other two types of 

emissions (i.e., CO2 and BC emissions due to burning), however, are drastically reduced and, upon 

the full enforcement of the ban (in 2029), only arise from the burning of scattered waste in places 

other than the managed landfill. This reduction more than compensates for the increase in CH4 

emissions, and as a result the aggregate emissions decline notably, standing at about 35% lower than 

Baseline and 13% lower than Biogas by 2035. The dynamic behaviour of aggregate emissions under 

the Ban on Burning can be understood in the following way: In the beginning the enforcement is 

weak and thus aggregate emissions keep rising, albeit behind the Baseline. By 2026, aggregate 

emissions peak as the enforcement of the ban is strengthened. By 2029, a trough is reached as the 
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ban goes into full enforcement, after which aggregate emissions start rising slowly again in line with 

increases in waste generation, but still more slowly than Baseline. Cumulative savings in GHG 

emissions as a result of this single intervention amount up to 342,000 tonnes by 2035, evidence of 

how effective the enforcement of such regulation could be in reducing emissions. As for the Biogas 

scenario, with significantly lower dumping of food waste, BC and especially CH4 emissions are 

lower than Baseline, with total emissions standing 25% lower by 2035. 

 

3.4. Combined Scenario 

Having seen the significant potential of this intervention for reducing emissions, we will now 

investigate the expected outcome of combining this with our Biogas scenarios, identified as Scenario 

2b in Table 3. Under the Biogas + Ban on Burning scenario, savings as a result of changes in landfill 

and scattered waste, at 661,300 tonnes CO2eq during the 15 years of simulation (~44,000 tonnes per 

year on average), are drastically higher than the Biogas scenario alone at 226,700 tonnes CO2eq 

(~15,000 tonnes per year on average).  Cumulative savings in emissions due to the produced biogas 

is equal in both scenarios, amounting up to around 473,400 tonnes CO2eq (~31,500 tonnes per year). 

Total cumulative savings under the Biogas + Ban on Burning scenario amounts up to over 1.1 

million tonnes of CO2eq over 15 years. Per capita annual GHG emissions in Kenya has been 

estimated to be 0.41 tonnes CO2eq in 2018 (Knoema, no date). If we assume current per capita 

emissions in Kisumu to be approximately at this level, total GHG emissions in Kisumu amounts to 

around 480,000 tonnes CO2eq per year. Therefore, a cumulative saving of 1.1 million tonnes of 

CO2eq would be equivalent to 2.35 years‘ worth of total annual CO2 emissions of all sources in 

Kisumu at the current rate. 

 

Furthermore, it would be of interest to investigate the share of each individual intervention in the 

resulting cumulative savings in GHG emissions. This is visualised in Figure 10 below. As can be 
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seen, the largest contribution (42% of total in 2035) is derived as a result of the biogas produced 

replacing unclean fuels in the community‘s kitchens. On top of that there are significant savings 

(30% of total in 2035) thanks to the gradual enforcement of a ban on the open burning of waste, 

pointing to the crucial importance of enforcing such measure for reducing emissions. Next, we 

expect substantial savings (20% of total in 2035) in emissions associated with recycling part of the 

organic waste, diverting it away from landfill and into biogas production. Also interesting is the non-

negligible portion of the savings (8% of total in 2035) that cannot be contributed to any individual 

intervention alone and is rather the synergistic outcome of simultaneous implementation of all 

interventions (the portion shown in black in Figure 10). As we saw earlier (Figure 9), the ban on 

burning policy alone significantly reduces emissions due to burning but at the same increases 

emissions due to waste decomposition, due to the higher levels of accumulated waste. Therefore, 

combining this intervention with the Biogas scenario which helps decrease the accumulation of food 

waste gives results that are superior to simply superimposing improvements from each separate 

intervention. Therefore, a ban on open burning together with the biogas production intervention 

helps maximise potential benefits. 
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Figure 10 – Share of individual interventions and synergy in total cumulative savings in GHG emissions 

3.5. PM2.5 Concentrations 

In this section, we look at results for changes in ambient PM2.5 concentration from cooking and 

waste burning as shown in Figure 11. These results take into account PM2.5 emissions due to both the 

open burning of waste (dark grey) and household cooking (light grey). The totals are compared at 

present (Year 2021) versus at the end of our simulation period under our four scenarios (Year 2035). 

Concerning the demographics of cooking fuel types, the proportions of households using different 

fuel types are assumed to stay constant relative to each other (based on national statistics (KNBS, 

2019)), except for the proportion of households using biogas which is endogenously and dynamically 

generated in the model. As this proportion goes up with expanding waste-to-biogas capacity, the 

proportion of households using other types of fuels decrease proportionately while staying constant 

relative to each other.  
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Figure 11 – Changes in ambient PM2.5 concentrations from cooking and waste burning 

As seen above, at present the estimated average contribution of cooking to ambient PM2.5 

concentration in Kisumu County is about 7.0 µg/m
3
 and the part attributed to waste burning is 
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3
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3
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compared to Baseline, with all of this reduction naturally deriving from less waste burning (which 

only takes place in places other than landfill in this case). As expected, the highest reduction results 

from combining the two interventions, which brings total PM2.5 concentration from the two sources 

down to 8.7 µg/m
3
, over 30% lower than Baseline, and only 5% higher than the present level, despite 

the nearly 40% projected rise in population over the period. 
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result of a fraction of households (8.2%) being able to switch to biogas for cooking, as well as 

slightly improved ambient air pollution. 

 

3.6. Health Outcomes 

Figure 12 shows results of the health impact assessment using life tables. Panel A presents total 

annual life years saved over the population of Kisumu, while panel B shows cumulative results by 

the end of the study period (2035). The highest impact is associated with the combined scenario, 

under which by 2035 we expect to see nearly 220 life years saved annually and a cumulative saving 

of over 1,150 life years between 2020 and 2035. The Biogas intervention contributes approximately 

70% of this estimated health benefit since it affects both indoor and outdoor air pollutant 

concentrations via reductions in the amount of waste burnt outdoors and the amount of unclean 

cooking fuels burnt indoors. 

 

Given the time lags between changes in exposure and health outcomes, the estimated improvements 

are expected to grow substantially larger over time and would be greater than presented here if we 

were to extend the follow up period.  
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4. Discussion and Conclusions 

In this section, we will start with a summary of our findings and continue with a discussion of some 

of the implementation challenges of our proposed policies and conclude by briefly enumerating some 

of the limitations of this study and suggesting avenues for further research. 

 

4.1. Summary of Findings  

Consistent with the qualitative forecasts of Awuor et al. (2019), Sibanda et al. (2017) and others, our 

results show that under business-as-usual, the state of waste accumulated in Kisumu’s landfill is 

expected to worsen significantly, with the volume of waste reaching over 550,000 tonnes by 2035, 

three times its current volume. Under the Biogas scenario however, which entails a gradual 

expansion of waste -to-biogas capacity up to 90,000 tonnes per year by 2028, we can expect to see a 

reduction of about 7% in accumulated waste in landfill by 2035. As for scattered waste, under the 

Biogas scenario we can expect it to reach near zero by 2035, promising clean roads as a result of an 

assumed gradual expansion in the city’s waste collection fleet. In addition, simulation suggests that, 

given our assumptions, by 2028 each year around 9 million m
3
 of biogas can be generated from 

biowaste, providing cooking fuel for 8-9% of total households in the Kisumu county. Under the 

Biogas scenario, total cumulative savings in emissions reach just over 700,000 tonnes of CO2eq by 

2035, two thirds of which come from the biogas replacing traditional fossil fuels for cooking.   

 

On the other hand, with an assumed regulatory ban on the open burning of waste in landfill, waste is 

shown to accumulate more rapidly in landfill, as would be expected. However, aggregate GHG 

emissions decline notably, standing at about 35% lower than Baseline by 2035. Combining the two 

interventions, i.e., Biogas and Ban on Burning, gives over 1.1 million tonnes of cumulative savings 

by 2035. Out of this total, the largest contribution (42% in 2035) is derived as a result of the biogas 

produced replacing unclean fuels in the community’s kitchens. This result is consistent with the 
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findings of Møller, Boldrin and Christensen, (2009) who report that indirect downstream emissions 

tend to be the most important factor in GHG accounting of waste-to-biogas initiatives.  

  

With regards to air pollutant emissions and concentrations, combining the two interventions is 

expected to bring total PM2.5 emissions from the residential and waste sectors down by over 30% 

compared to Baseline by 2035; a level only 6% higher than present, despite the nearly 40% projected 

rise in population over the period. Furthermore, the model estimates a potential improvement of 

around 10% in indoor air PM2.5 concentrations by 2035 as a result of a fraction of households (8.2%) 

being able to switch to biogas for cooking, as well as improved ambient air quality. This mirrors the 

qualitative but empirical findings of Clemens et al. (2018), who report that 45%-91% of users in the 

Africa Biogas Partnership Program reported reduced eye problems and respiratory symptoms. Our 

health impact assessment suggests that these combined improvements in exposure can be expected to 

result in nearly 1,150 cumulative life years saved by 2035, with an additional ~220 years or more 

added to those savings every year by that point.  

 

4.2. Implementation Challenges 

In our modelling and analysis, we did not consider potential difficulties in the implementation of the 

interventions considered. Kemausuor, Adaramola and Morken (2018) present a comprehensive 

review of barriers towards the uptake of biogas technology in Africa and maintain that, given the 

large initial investment costs, financing is at the heart of the barriers to extended uptake of biogas. 

Therefore, this study is part of a larger multi-partner effort to obtain funding for the described waste-

to-biogas initiative from an international green climate fund. Other barriers identified by 

Twinomunuji et al. (2020) based on their case studies in Uganda and Ghana include varying 

enforcement of regulations, uncertainties around user experience with biogas including cooking 

preferences, and lack of in-country expertise. Furthermore, there are safety issues around operation 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



40 
 

of biogas installations having to do with the toxicity and the combustibility of biogas which can 

cause fires and explosions, although the associated risks are lower than chemical plants (Trávníček 

and Kotek, 2015). 

 

In addition, transitioning towards our particular preferred scenario (Scenario 2b. Biogas + Ban on 

Burning) would require planning for and investing in the filling stations needed to make the product 

available to households, which poses an important technical and organisational challenge. It would 

also call for significant behavioural changes by households and other actors involved in the system. 

Firstly, households would need to sort their organic waste for collection. This has been identified as 

an ongoing challenge in Kisumu over several decades (Henry, Yongsheng and Jun, 2006; M. Aurah, 

2013; Sibanda, Obange and Awuor, 2017; Awuor et al., 2019), although some household waste is 

sorted for composting and informal waste picking (Sibanda, Obange and Awuor, 2017). Field studies 

suggest there is an interrelated set of barriers to efficient waste sorting at scale. One is that 

households and public spaces in the city lack segregated bins (Sibanda, Obange and Awuor, 2017; 

Awuor et al., 2019). Where they are available, waste types are still often mixed either at the point of 

disposal, or when the bins are emptied and waste transported to the dumpsite (Sibanda, Obange and 

Awuor, 2017; Awuor et al., 2019). Knowing this may undermine households‘ motivation to 

segregate waste. This might be further compounded by disagreement among stakeholders about who 

is responsible for the city‘s solid waste management, and a perceived mismatch between the 

government‘s expectations of the public and the public‘s willingness to participate in waste 

management (Schlueter, 2017). 

 

Secondly, our combined scenario would require households to switch to and sustain the use of biogas 

as a cooking fuel. Despite the health, climate and economic advantages of switching from traditional 

to cleaner cooking fuels, studies in Kenya and other low- and middle-income settings indicate that 
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such considerations do not necessarily drive sustained adoption (Jonušauskait, 2010; Rupf et al., 

2015; Puzzolo et al., 2016; Chalise et al., 2018; Hamid and Blanchard, 2018; Thompson et al., 

2018). Barriers identified among rural Kenyan communities to the sustained adoption of biogas 

included a lack of information and understanding about its use, benefits and cost-efficiency 

compared to traditional fuels (Ndereba, 2013; Hamid and Blanchard, 2018).  

 

For both sorting waste and switching fuels, tools for designing and implementing behaviour change 

interventions may help achieve these transitions. Systems methods can also be used to understand the 

wider network of actions needed to support these changes (Gutberlet et al., 2017). Planned future 

work within the Complex Urban Systems for Sustainability and Health (CUSSH) programme 

(Belesova et al., 2018) will involve qualitative systems mapping of human behaviours involved in 

SWM in Kisumu to identify drivers of behaviour. From these, frameworks such as the Behaviour 

Change Wheel (Michie, van Stralen and West, 2011) may be applied to identify possible 

interventions which can be assessed for their suitability to the local context against criteria such as 

APEASE (Affordability, Practicality, Effectiveness and cost-effectiveness, Acceptability, Side-

effects/safety, and Equity) (Michie, Atkins and West, 2014). 

 

Thirdly, there are likely to be several challenges towards implementing a ban on the open burning of 

waste in landfill. Since Kisumu‘s main landfill, Kachok dumpsite, is already overflowing, and since 

open burning is a key method used to reduce the volume of accumulated waste (Schlueter, 2017; 

Awuor et al., 2019), banning open burning, if unaccompanied by other interventions to reduce the 

inflow of waste to landfill and to keep waste levels down, can lead to more severe environmental 

problems due to waste overflow. Additionally, scavenging on dumpsites often involves the use of 

fire to recover recyclables such as tyre wire/tyre derived steel, and these practices are likely to 

continue unless alternative methods of recovering these materials are introduced. Furthermore, in 
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open dumpsites spontaneous combustion can happen that is not humanly induced. Spontaneous 

combustion occurs when landfill waste is heated beyond ignition temperature as a result of 

exothermic reactions (Awuor et al., 2019).  

 

4.3. Limitations 

In building the model used in this study we have made a number of simplifying assumptions. For 

example, we have assumed that waste generation per household will stay constant over our 

simulation period of 15 years. However, Olang et al. (2018) have demonstrated that the amount of 

waste generated per household for Kisumu is dependent on factors such as household size and 

income. The model can be improved by incorporating these drivers based on any existing future 

projections for income and household size and by allowing waste generated per household to vary 

based on these. 

 

Another key limitation of the model has to do with its choice of boundaries concerning the GHG 

accounting aspect, which includes only those components believed to be the most significant. The 

upstream-operating-downstream framework suggested by Gentil, Christensen and Aoustin (2009) 

includes several other components that, albeit less important in scale, represent useful potential 

additions to our model. These include leaked N2O and CH4 emissions from the biogas plant and 

digestate-related considerations (including fugitive and transport emissions and mineral fertiliser 

substitution savings). 

 

Certain limitations are imposed on this study by the generally poor availability of data in the context 

of Kisumu. For instance, our estimation of PM2.5 emissions and particularly ambient concentrations 

resulting from them are subject to considerable uncertainty. While the GAINS model has been 

validated against ambient PM2.5 observations globally (Amann et al., 2020), we are not able to 
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provide ground truthing of estimated PM2.5 concentrations in Kisumu due to the lack of ambient 

PM2.5 monitoring data there. 

 

In addition, as explained in Appendix A (Section ii), the parameters we have used to estimate the 

average household PM2.5 concentration due to cooking are necessarily simplifications. Such 

estimates are obtained using a simplified method outlined in Appendix A (Section iv) and our focus 

is solely on the potential for biogas in reducing pollutant concentrations. The methodology for 

evaluating changes in indoor air PM2.5 concentration can be improved if empirical data on household 

air pollution for the context of Kisumu becomes available. 

 

Moreover, with regards to capturing the health impacts of our scenarios, we have limited our analysis 

to the effects of particulate matter, while the risks associated with for instance contamination of Lake 

Victoria or flooding as a result of drainage systems being blocked by waste or the risks of vector-

borne disease from breeding in water deposits in the waste are not considered, and therefore our 

reported health impact results are likely to be underestimates. 

 

Lastly, concerning our Biogas scenario, while we have assumed the provision of substrate only from 

household food waste, a potentially promising alternative could involve an industrial symbiosis 

scenario where MSW is co-digested with waste from breweries operating in Kisumu. Under such 

scenario, the resulting biogas could be used not only for the required heat in the brewing process but 

also to produce electricity for the grid. There is an abundance of studies exploring the potential in co-

digestion of brewery waste, although most studies appear to be in experimental and pilot stages 

(Tewelde et al., 2012; Murunga et al., 2016; Gunes et al., 2019). 
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Notwithstanding the above limitations, we maintain that, with respect to orders of magnitude and the 

relative performance of scenarios, our results are still valid and can be useful as a basis for policy 

planning over the medium term in the area of solid waste management in Kisumu. Findings can also 

provide informative background for policy planning in similar contexts. 

 

In summary, the analysis presented in this paper demonstrates that a move towards recycling food 

waste to biogas for use in home cooking, along with a regulatory ban on the open burning of waste in 

landfill, can considerably mitigate the emission of GHGs and atmospheric pollutants in Kisumu. 

While helping the country towards achieving its emission reduction targets within the framework of 

the Paris Agreement, these measures also contribute to reducing the adverse impacts of waste and 

waste-related air pollution on public health. Having in mind the scarcity of health impact studies of 

environmental policy interventions in the context of Kisumu, as well as the rapid pace of change in 

this context and the opportunities this presents for sustainable development initiatives, we believe 

this study makes an important and timely contribution. The pioneering of Kisumu in reimagining its 

SWM system through measures such as those suggested in this paper can turn the County into a role 

model for others in Kenya, potentially providing a steppingstone towards a full revamping of SWM 

in the country, which can boost the positive impacts estimated in this study by orders of magnitude. 
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Appendix A – Full Model Documentation 

In this appendix, the formulation and parametrisation of the SD model is explained in detail. The 

model and the simulation runs are available as online supplementary material to this paper. The 

model is built in Vensim, a widely used SD simulation software package. The whole 120-plus-

variable model is presented sector by sector, with visual snapshots to aid understanding. The 

following table elaborates the colour-coding and other information needed to interpret the diagrams. 

 

Table 4 – Model coding explained, adapted from (Dianati et al., 2019) 

Code Meaning 

Lower-case variable Endogenous variable (formulated based on other variables 

within the model). The dynamic behaviour of such variables is 

given by software simulation. 

Upper-case variable Constant. Such constants are either fixed parameters (black), or 

policy/scenario variables set by the user (green) 

Variable with first word in 

upper case, rest in lower 

case 

Exogenous (data) variable. Past behaviour of such variables is 

given by historical data. Variables stays constant for future 

simulation, unless otherwise specified. 

Red variable Key indicator. 

Green variable Policy/scenario variable, decided upon by the user. 

Blue variable, in angle 

brackets 

‗Shadow‘ variable, copied from another section of the model. 

Blue arrows Causal relationships, from cause to effect. Each (endogenous) 

variable is formulated based on variables connected to it via 

incoming arrows. 

Grey arrows Initial condition setting. 

  

As outlined earlier in the body of the paper, the model consists of four inter-connected sectors: (1) 

Waste Collection, (2) Biogas, (3) Landfill, and (4) Scattered Waste. In this section, the four sectors 

will be described in detail. 
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i) Waste Collection Sector 

This sector, as depicted in Figure 13, carries out simple accounting operations and involves no 

dynamic complexity (such as feedback loops, delays or accumulations). It is, however, useful in 

capturing the waste collection process within the case study in a visual and aggregate way. 

 

Specifically, two different types of waste collection capacity are modelled: Firstly, the currently 

existing mixed waste collection trucks which transport the waste to landfill without any segregation 

of waste; and secondly, potential specialised waste collection capacity for separated food waste, 

whereby a number of waste handcarts would collect food waste from households (including in 

narrow alleyways of informal settlements where poor access prohibits the use of trucks) and take it 

to decentralised biogas production facilities, as modelled in the next sector. Total mixed/food waste 

collection capacity in Figure 13 is the number of trucks/handcarts multiplied by the average capacity 

of the vehicles. The only currently existing capacity for waste collection consists of five mixed-waste 

trucks (with an average capacity of about 45 tonnes per day
3
). Total waste collection capacity, which 

is the sum of all existing capacity plus any future added capacity, determines the proportion of waste 

collected, as a key indicator, on the right-hand side of the diagram. Currently, this capacity stands at 

about 225 tonnes per day, which is about 43% of the total approximately 522 tonnes per day of waste 

generated. Any remaining waste that is not collected is assumed to be inappropriately disposed of in 

open pits or scattered on roadsides and elsewhere, as modelled later in the Scattered Waste Sector. 

Total GHG emissions due to waste transport, which is accounted for in total GHG emissions from 

waste as seen later, is also calculated in this sector based on a constant level of GHG emissions per 

                                                 
3
 All our assumptions for model parameters (whether or not quoted here), together with our sources for this data, are 

listed in Appendix B. 
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waste truck of around 52.6 kg of CO2 per day. This is based on an average consumption of around 20 

litres of diesel per day and an emission factor of 2.63 kg/litre (DEFRA, 2007, p. 29).
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Figure 13 – Sector One – Waste Collection
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ii) Biogas Sector  

The second sector of the model includes another set of accounting equations for keeping 

track of the portion of waste that is – or rather could be, in the future – recycled into biogas 

and fertiliser. The sector is presented in two diagrams: Figure 14 shows the structure where 

savings in GHG emissions are calculated. 

 

Starting with Figure 14, the cumulative number of biogas facilities is a ‗policy variable‘, 

which means that it is a user-determined external input to the model that is based on our 

scenario assumptions (as described in  

). The resulting total biogas capacity, based on an average waste processing capacity per 

biogas facility, together with the concurrent restriction of total food waste collection capacity 

(imported from the previous sector), gives total food waste treated for biogas production. 

This determines total biogas generated based on a constant food waste to biogas yield factor, 

assumed equal to 100 m
3
 of biogas per tonne of food waste. This is based on the figure 

provided by Veeken (2005) cited in (Müller, 2007, p. 26) for plants of a similar scale and 

technology in India as those we envisage for commissioning in Kisumu. Subsequently, total 

biogas generated gives on the one hand the number and proportion of households using 

biogas from waste for cooking, which is determined based on a constant average biogas 

consumption per household of 262.5 m
3
 per household per year

4
. On the other hand, total 

biogas generated can be used to calculate saving in GHG emissions due to households 

switching to biogas for cooking based on a constant saving in GHG emissions per m
3
 of 

biogas from waste used as cooking fuel, which is estimated at 4.93 kg/m
3
. This estimate is 

based on the current proportions of households using different types of cooking fuel in 

                                                 
4
 An average household in Kenya uses 125 kg of LPG annually for cooking (Nerini et al 2017, p6). 1kg LPG has 

the same energy content as 2.1 m
3
 of biogas adjusted for stove efficiency (IRENA 2016, p18). 125kg multiplied 

by 2.1m
3
/kg gives 262.5 m

3
. 
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Kisumu (KNBS, 2019, p. 336) along with the GHG emission factors associated with those 

types of fuels (International Renewable Energy Agency (IRENA), 2016, pp. 18, 21). 

 

This gives total annual saving in GHG emissions due to products of anaerobic digestion, 

which is accumulated in the stock of cumulative savings in GHG emissions. Stock variables, 

denoted inside a box, represent processes of accumulation in the real world, mathematically 

formulated via integration of the inflows minus the outflows, which are shown as valves 

flowing into or out of stocks. 

 

The number of households using biogas from waste for cooking, as obtained above, is 

subsequently used to calculate total PM2.5 emissions due to cooking with regards to ambient 

air. The former is first subtracted from the total number of households to give number of 

households without access to biogas for cooking. This number is then multiplied by the initial 

proportion of households by cooking fuel type. This is a subscripted (vector) variable with 

eight elements representing different cooking fuel types, namely wood OF (open-fire), wood 

ICS (improved cookstove), charcoal trad (traditional), charcoal ICS, kerosene, LPG, electric 

and biogas. The proportion of households using each different fuel type is given by census 

data from the Kenyan National Bureau of Statistics (KNBS, 2019, p. 336). The product of 

this multiplication gives the number of households by cooking fuel type for the first seven 

elements of the vector. The value of the final element (biogas) is simply equal to the number 

of households using biogas from waste for cooking, which is driven by total biogas 

generated, as we saw above. This variable is then used to obtain total energy consumption by 

cooking fuel type via multiplying by the annual useful energy for cooking per household by 

cooking fuel type and dividing by the thermal efficiency by cooking fuel type. All these 

variables are similarly vector variables and the two sets of parameters for thermal efficiency 
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and useful energy are based on Carvalho et al., 2019 (p. 173). The result is then multiplied by 

PM2.5 emissions factor by cooking fuel type (also from Carvalho et al. (2019, p. 172) to give 

the total PM2.5 emissions due to cooking. This total is added to emissions related to waste 

burning in the Scattered Waste Sector to obtain ambient PM2.5 concentration from cooking 

and waste burning. 

 

The same piece of structure also gives a rough estimate for the average household PM2.5 

concentration due to cooking. This estimate is based on empirical measurements reported in 

Muindi et al. (2016, p. 7 Table 3) on mean levels of indoor PM2.5 concentrations in 

households using different cooking fuel types. To the authors this appeared to be the best 

practical method to come up with this estimate. However, it must be noted that the method 

suffers from two major caveats: (1) Although the measurements are taken within the Kenyan 

context, they relate to a different setting, namely the Korogocho informal settlement within 

the peri-urban areas of Nairobi, and (2) The given measurements do not have the same level 

of granularity as the rest of the sector. Only three figures are given for households using (a) 

charcoal or wood (used for the first four elements in our vector), (b) kerosene and (c) 

LPG/electricity (used for the last three elements of our vector). Albeit very rough, we believe 

that using this method to obtain an estimate for the health impact of our different scenarios is 

superior to completely ignoring the effect of changes in indoor PM2.5 concentrations. Thus, 

the estimated average household PM2.5 concentration is obtained as the weighted average of 

the empirically indicated household PM2.5 concentrations by cooking fuel type where the 

weights are given by the proportion of households by cooking fuel type. 
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Figure 14 – Biogas Sector 
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iii) Landfill Sector 

All remaining waste which is collected but not treated for biogas production is sent to the 

landfill as much as the current waste collection capacity allows. The part which is not 

collected due to a lack of capacity is assumed to be disposed of inappropriately and scattered 

or dumped anywhere other than the main landfill, as modelled in the next sector. A fraction 

of the waste dumped in landfill or elsewhere is burnt to reduce volume (Klimont et al., 2017, 

p. 8700). Waste burning emits CO2 into the atmosphere, while the decomposition of organic 

waste emits CH4, both of which are greenhouse gases. The dumping of the waste in landfill 

and the resulting GHG emissions are captured via the structure introduced in this sector. 

 

Figure 15 shows the structure of this sector, which is a key part of the model as it captures the 

dynamics of the accumulation of waste as well as the potentially changing composition of the 

waste in landfill. Landfill waste is disaggregated into the two stocks of landfill food and non-

food waste, as the two types have different profiles in terms of GHG emission potentials. The 

two stocks are similarly configured in terms of inflows and outflows.  

 

The stocks are initialised according to estimates of total amount of waste currently existing in 

the city‘s main landfill, which is estimated by dumpsite management at around 140,000 

tonnes. This amount is split between the stocks of food and non-food landfill waste initially 

based on Aguko et al. (2018, p. 6), who estimate empirically that 51.8% of Kachok‘s waste 

content is organic.  

 

Total mixed waste to landfill is the lesser value between total mixed waste collection capacity 

and the total waste that remains after recycling some of it for biogas (i.e. total waste 

generated minus total food waste treated for biogas production). These variables are 
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imported from the Waste Collection Sector. A useful indicator calculated here is the 

percentage of food waste recycled for biogas production, i.e. total food waste treated for 

biogas production divided by food content of waste generated. 

 

The split of the total mixed waste to landfill going into each of the two food/non-food stocks 

depends on a dynamic food content ratio of waste to be disposed. This ratio varies depending 

on how much of the food waste generated by households is used for biogas production. In 

order to calculate the food content ratio of waste to be disposed we first take out total food 

waste being treated for biogas production from food content of waste generated (which is 

63% of total waste generated in the Kisumu context), obtaining the food waste left after 

biogas production. Dividing this by the sum of the same plus non-food content of waste 

generated (37% of total waste generated) gives the dynamic food content ratio of waste to be 

disposed. As we will see later in our scenarios, this ratio will naturally go down as we start to 

recycle a part of the food waste into biogas. Multiplying this ratio by total mixed waste to 

landfill gives total food waste to landfill, with the rest flowing into the landfill non-food 

waste stock. 

 

As for the outflows, each stock has an outflow of waste burning. The fraction of waste burnt 

every year is assumed equal to 23% for all three stocks based on Onyango & Kibwage (2008) 

cited in (Gutberlet et al., 2017, p. 113). Note that in our Ban on Burning scenarios this waste 

burning fraction is linearly brought down to zero over eight years. Moreover, there are the 

outflows which represent waste decomposition. This is in accordance with the (IPCC, 2006, 

vol. 5 ch. 3) recommendation of using a first order-decay for calculating methane emissions. 

The waste decomposition fraction differs in each case, depending on the proportion of 

biodegradable matter for each type of waste.  Höglund Isaksson, Winiwarter, Purohit, & 
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Gomez-Sanabria (2016) assumes an approximate average half-life of 10 years for fast-

degrading organic waste like food waste, i.e. a rate of 10% per year, and 20 years, i.e. 5% per 

year, for slow-degrading waste such as paper, which constitutes one third of non-food waste 

in Kisumu. Therefore, non-food waste decomposition fraction is assumed equal to one third 

of 5% or 1.67% per year. 

 

In the case of landfill non-food waste, an additional outflow of waste is captured which 

represents the landfill non-food waste informally recycled by scavengers who contribute 

towards recycling plastics, bottles, cans and metallic objects (Awuor et al., 2019). Based on 

our consultation with Kisumu county‘s waste officials, there are currently around 80 such 

informal workers, each collecting on average about 25 kg of waste every day. In the future, 

the number of informal waste-pickers is assumed to grow according to the projected 

population growth rate. Since the composition of the waste will change under our scenarios, 

we assume that the capacity of each waste-picker is a function of the non-food content ratio 

of the waste in landfill. We assume that this capacity stays at its current value of an estimated 

25 kg/day per person under the current non-food content ratio. However, if the non-food 

content ratio goes down to zero or up to 100%, in conjunction with that, it is assumed that the 

waste-pickers‘ average capacity goes respectively down to zero or up to twice the current 

capacity (linearly, in both cases). 

 

Next, we are going to calculate waste-related GHG emissions for landfill waste based on the 

outflows of waste burning and decomposition. This is done by multiplying the amount of 

food/non-food waste that is burnt or decomposed each year by the respective emission factors 

for CO2, CH4, and BC. The structure for making these calculations is shown in Figure 15.  

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



62 
 

The method suggested in IPCC (2006, vol. 5 ch. 5) is applied here to estimate CO2 emissions 

from open waste burning. Emission factors are calculated for each type of waste based on the 

fossil carbon content. CO2 emissions from biogenic origin are not included in the estimates as 

stated in the IPCC (2006, vol. 5 ch. 5). This means that CO2 emissions from open burning of 

food, paper and wood waste are set to zero. The implied CO2 emission factor for landfill non-

food waste burning for the particular waste composition is Kisumu is assumed to be 464.89 

kg CO2 per tonne of waste burnt. (see Section 2.3 for details on these calculations).
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Figure 15 – Landfill Sector 
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The other important contributor to global warming which results from the incomplete 

combustion of waste is black carbon (BC). BC is a carbonaceous aerosol (Klimont et al., 

2017) with a global warming potential
5
 (GWP) of 460 based on a 100-year time horizon 

(IPCC, 2007).  The emission factor used here to estimate BC emissions is 0.65 kg BC per 

tonne of waste burnt (Akagi et al., 2011, p. 4047). 

 

CH4 emissions are calculated and summed up using an emission factor of 17.70 kg per tonne 

of waste decomposed for landfill non-food waste and 20.27 kg for landfill food waste (see 

Section 2.3). Total CH4 emissions from the two stocks is then summed up with CH4 

emissions due to scattered waste decomposition as obtained in the next sector (Scattered 

Waste Sector) and the sum total converted to CO2 equivalent using methane‘s GWP of 28 

(Meyer and Pachauri, 2014). Summing up the resulting total CO2eq methane emissions due to 

waste decomposition with total direct CO2 emissions due to waste burning and total CO2eq 

black carbon emissions (both including emissions for landfill as well as scattered waste 

imported from the Scattered Waste Sector gives total GHG emissions from waste burning 

and decomposition. Finally, summing this up with total GHG emissions due to waste 

transport, imported from the Waste Collection Sector, gives total GHG emissions from waste 

burning, decomposition and transport. Using the additional stock variable of cumulative 

savings in GHG emissions from waste, we accumulate the difference between GHG emissions 

in current scenario versus baseline. Adding the value of this stock with cumulative savings in 

GHG emissions due to products of anaerobic digestion, imported from the Biogas Sector, 

gives our final key indicator of interest for each scenario, i.e. total cumulative savings in 

GHG emissions. 

 

                                                 
5
 This parameter measures the ability of different GHGs to trap heat in the atmosphere. 
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iv) Scattered Waste Sector 

The final sector captures the accumulation of waste anywhere other than in landfill, such as 

on the roadside or in open pits, along with the resulting GHG and PM2.5 emissions. This 

sector (Figure 16) is constructed very similarly to the previous one, in the sense that scattered 

waste is conceptually divided between the two stocks of scattered food and non-food waste, 

with similarly configured inflows and outflows. 

 

What remains of total waste generated after subtracting total food waste treated for biogas 

production (Biogas Sector) and total mixed waste to landfill (Landfill Sector) constitutes total 

waste inappropriately disposed of, which finds its way into one of the two stocks, depending 

on the dynamic food content ratio of waste to be disposed as calculated in the Landfill Sector. 

The stock of scattered waste is initialised in relation to the stocks of landfill waste. Based on 

an initial total waste generated of around 522 tonnes per day in 2021 and an initial total 

mixed waste collection capacity of around 225 tonnes per day, it is estimated that initially 

around 225/522=43% of the waste is being collected and the remaining 57% is 

inappropriately disposed of in places other than the landfill. Therefore, it is considered a fair 

assumption that the ratio of initial scattered waste to initial landfill waste should also be 

close to 57/43. Given the rough estimate of 140,000 tonnes for initial landfill waste, we reach 

an estimate of 185,000 tonnes for initial scattered waste. As before, each stock has two 

outflows of decomposition and burning with the same fractions previously used for landfill 

waste.  

 

Resulting GHG emissions are calculated in the same way and with emissions factors equal to 

those of the respective types of landfill waste, except for CH4 emissions which are calculated 

using different emission factors. This is because in the case of scattered waste there is 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



66 
 

assumed to be a lower level of compacting and therefore weaker anaerobic conditions 

resulting in lower CH4 emission factors for scattered waste as compared to landfill waste. 

CH4 emission factors for scattered food and non-food waste are assumed to be 10.13 and 8.85 

kg CH4 per tonne of waste decomposed respectively (see Section 2.3). Total scattered waste 

emissions is calculated by summing up direct CO2 emissions due to waste burning, CO2 

equivalent black carbon emissions due to scattered waste burning, and CO2 equivalent CH4 

emissions due to scattered waste decomposition. 

 

Additionally, in this sector total PM2.5 emissions due to waste burning is calculated by 

summing up the burning rates of different types of waste (food/non-food; landfill/scattered) 

and multiplying by waste burning PM2.5 emission factor. This factor is set to 8.74 kg PM2.5 

per tonne of waste burnt based on (Klimont et al., 2017, p. 8700) for all different types of 

waste as an approximation. Total PM2.5 emissions due to cooking is imported from the Biogas 

Sector. 

 

Each of the two emissions figures is converted into an implied figure for concentration via 

multiplying by a constant mean pm2.5 concentration per kt of annual emissions of 2.05 

(µg/m
3
)/(kt/year). This coefficient is derived from the global atmospheric calculations in the 

GAINS integrated assessment model (Amann et al., 2020), which themselves rely on a 

linearized version of full atmospheric chemistry transport model simulations. Since Kenya is 

a source region in GAINS, the model contains atmospheric transfer coefficients from all 

source pollutants for PM2.5 from Kenya to a 0.1° receptor grid. Here we use the coefficient 

for primary PM2.5 emissions from urban low-level sources in Kenya in conjunction with the 

share of Kisumu‘s population in total Kenyan urban population to first calculate the response 

of ambient PM2.5 concentrations at 0.1° resolution to primary PM emissions from Kisumu, 
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and then take a population-weighted average across all grid cells in the city to derive an 

integrated coefficient from Kisumu to itself. Thereby, we take two simplifying assumptions: 

1) that only primary PM emissions play a role and local secondary particle formation can be 

neglected, and 2) that the contribution from such sources in other Kenyan cities to ambient 

PM in Kisumu is low. Assumption 1 may lead to a small underestimation of the coefficient, 

while assumption 2 may lead to a small overestimation. Given the large uncertainties in 

emissions, these simplifications seem justified. 

The sum of the two implied concentrations gives an estimate for ambient PM2.5 concentration 

from cooking and waste burning. Changes in the resulting concentrations have important 

health implications, as reported earlier in the Results chapter. 
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Figure 16 – Scattered Waste Sector
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Appendix B – List of Parameter Assumption 
 

Variable Name Note Value Unit Source 

Waste Collection Sector 

Waste generated per 

household 

500 tonnes per day divided by 

301,000 households (representing 

2017 population of 1,145,747 with a 

household size of 3.81, based on 

2019 data) 

606.3 kg per year or about 1.66 kg per day kg/year or day 
(Oyake-Ombis, 

2017, p. 24) 

Average mixed waste 

truck capacity 

 Two trucks with a capacity of 

10 tonnes each, 6 trips each per 

day 

(2x10x6=120 tonnes/day) 

 Two farm trucks with capacity 

6 tonnes and 4 tonnes making 5 

and 8 trips per day, respectively 

(6x5+4x8=62 tonnes/day) 

 Skip loader with capacity 7 

tonnes, 6 trips daily on average  

(7x6=42 tonne/day) 

120+62+42=224 tonnes/day, combined capacity of 5 trucks 

 224/5=45 tonnes/day average capacity of each truck 
 Tonnes/day  

Dumpsite 

Manager, Director 

Environment City 

and County 

Director 

Environment 

Conservation  

GHG emissions per waste 

truck 

Vehicles using 20 litres per day of 

fuel  

Average Diesel truck CO2 

emission is 2.63 kg/l. This makes 

2.63x20 = 52.6 kg of CO2 

emissions per day or 19.2 

Tonne/Year. 

 19.2  Tonnes/Year (DEFRA, 2007) 
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Biogas Sector 

Food waste to biogas yield 

factor  
 100  m

3 
per tonne 

Veeken (2005) 

cited in (Müller, 

2007, p. 26, Table 

3) 

Average biogas 

consumption per 

household 

Equivalent to 125 kg 

LPG/household/year Nerini et al. 

(p.6).  

1 kg LPG is equivalent to 2.10 m3 

biogas (IRENA 2016, Table 8, p18) 

=> 125*2.1 = 262.5 m3 per 

household per year 

 262.5 
 m3 per household 

per year
 

 Nerini et al 

(2017, p6), 

(IRENA 2016, 

Table 8, p18) 

Saving in GHG emissions 

per m
3
 of biogas from 

waste used as cooking fuel 

...as opposed to equivalent energy 

from fossil fuels 
 4.93 

 Kg emissions per 

m
3
 of biogas 

(KNBS, 2019, p. 

336) for types of 

cooking fuel used 

by households and 

(International 

Renewable 

Energy Agency 

(IRENA), 2016, 

pp. 18, 21) for 

converting those 

into potential 

savings 

Initial proportion of 

households by cooking 

fuel type 

 

Wood Open-Fire (OF): 31%, Wood Improved Cook Stove (ICS): 2%, 

Charcoal Trad (Traditional): 16%, Charcoal ICS: 30%, Kerosene: 13%, 

LPG: 5%, Electric: 1%, Biogas: 0% 

% 

(Carvalho et al., 

2019, p. 173 Table 

3) 

Annual useful energy for 

cooking per household by 

cooking fuel type 

 

Wood OF: 23,544, Wood ICS: 16,416, Charcoal Trad: 22,464, 

Charcoal ICS: 20,628, Kerosene: 10,476, LPG: 7,236, Electric: 5,879, 

Biogas: 7,344 

MJ/household/year 

(Carvalho et al., 

2019, p. 173 Table 

3) 

Thermal efficiency by 

cooking fuel type 
 

Wood OF: 15%, Wood ICS: 24%, Charcoal Trad: 31%, Charcoal ICS: 

38%, Kerosene: 42%, LPG: 54%, Electric: 71%, Biogas: 57% 
% 

(Carvalho et al., 

2019, p. 173 Table 

3) 
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PM2.5 emission factor by 

cooking fuel type 
 

Wood OF: 14, Wood ICS: 8, Charcoal Trad: 9, Charcoal ICS: 18, 

Kerosene: 1, LPG: 1, Electric: 0, Biogas: 4 
g PM2.5/MJ energy 

(Carvalho et al., 

2019, p. 172 Table 

1) 

GHG saving per kg of 

organic nitrogen replacing 

inorganic fertiliser 

 13.5 kg GHG per kg N 
(Zhang et al., 

2013) 

 

Landfill Sector 

Waste decomposition 

fraction 

Proportion of waste that is 

decomposed over a year? 
10% for food waste and 1.67% for non-food waste  % per year 

(Höglund 

Isaksson et al., 

2016) 

Waste burning fraction 
Proportion of waste that is reduced 

over a year as a result of burning  
23%  % per year 

(Onyango and 

Kibwage, 2008) 

CO2 emissions per tonne 

of food waste burnt   
 Zero 

Tonne of CO2 per 

tonne of waste 

(IPCC, 2006, vol. 

5 ch. 5) 

CO2 emissions per tonne 

of non-food waste burnt 
 464.887 

kg CO2 per tonne 

of waste burnt 
See Section 2.3 

CH4 emission factor for 

landfill food waste   
 20.27 

kg CH4 per tonne 

of waste 

decomposed 

See Section 2.3 

CH4 emission factor for 

landfill non-food waste  
 17.70 

kg CH4 per tonne 

of waste 

decomposed 

See Section 2.3 
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Black carbon emissions 

per tonne of waste burnt 
 0.65 

kg BC per tonne 

of waste burnt 

(Akagi et al., 

2011) 

CH4 global warming 

potential  
 28 dmnl 

(Meyer and 

Pachauri, 2014) 

Black carbon’s global 

warming potential 
 460 dmnl (ICCT, 2009) 

Normal capacity per waste 

picker 
  

25 

 
 Kg/day/person 

Dumpsite 

manager  

Initial landfill waste Very rough estimate.  140,000  tonnes 
 Dumpsite 

manager 

Food content ratio of 

waste generated 
 63% % 

(Gutberlet et al., 

2017, p. 113) 

Initial food content ratio of 

dumped waste 
 51.8% % 

(Aguko et al., 

2018, p. 6)
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Scattered Waste Sector 

Initial scattered waste 
 

185,000  tonnes 
 See Scattered 

Waste Sector 

CH4 emission factor for 

scattered food waste 
 10.13 

kg CH4 per tonne 

of waste 

decomposed 

See Section 2.3 

CH4 emission factor for 

scattered non-food waste 
 8.85 

kg CH4 per tonne 

of waste 

decomposed 

See Section 2.3 

Waste burning PM2.5 

emission factor 
 8.74 

kg PM2.5 per tonne 

of waste burnt 

(Klimont et al., 

2017, p. 8700) 

Mean PM2.5 concentration 

per kt of annual emissions 
 2.05 (µg/m

3
)/(kt/year) 

See Appendix A, 

Section (iv) 
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Appendix C – Scenario Assumptions 
 

Time 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 Unit 

1. Waste Collection Sector 

waste generated per household 543.00  
              

kg/household/year 

number of households 314,449  321,323 328,347 335,525 342,859 349,881 357,047 364,359 371,821 379,436 386,596 393,891 401,324 408,897 416,613 households 

number of households growth rate 2.2% 2.2% 2.2% 2.2% 2.0% 2.0% 2.0% 2.0% 2.0% 1.9% 1.9% 1.9% 1.9% 1.9% 

 

dmnl/year 

number of mixed waste trucks 5 5 6  6  7  7 8  8  9  9 10  10 11   11   12  dmnl 

average mixed waste truck capacity 

(tonnes per day) 45 

              

tonne/day 

number of food waste handcarts 

(Scenarios 1 & 1b) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 dmnl 

number of food waste handcarts 

(Scenarios 2 & 2b) 0 83 137 192 247 302 357 411 411 411 411 411 411 411 411 dmnl 

average food waste handcart capacity 

(kg per day) 600 

              

kg/day 

2. Biogas Sector 

cumulative number of biogas facilities 
(Scenarios 1 & 1b) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 dmnl 

cumulative number of biogas facilities 

(Scenarios 2 & 2b) 2 6 10 14 18 22 26 30 30 30 30 30 30 30 30 dmnl 

waste processing capacity per biogas 

facility 3000 

              

tonne/year 

                 3. Landfill Sector 

number of informal waste-pickers 84 85 87 89 91 93 95 97 99 101 103 105 107 109 111 persons 

waste burning fraction (Scenarios 1 & 

2) 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 dmnl/year 

waste burning fraction (Scenarios 1b & 
2b) 0.23 0.2 0.17 0.14 0.11 0.08 0.05 0.02 0 

0 0 0 0 0 0 
dmnl/year 
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Highlights 
 We present a system dynamics study of solid waste management in Kisumu, Kenya.  

 Scenarios involve a waste-to-biogas initiative and a ban on open burning in landfill.  

 Combined scenario generates 1.1m tonnes cumulative GHG savings by 2035. 

 Largest contribution (42%) is from biogas substituting traditional cooking fuels. 

 Combined scenario may save 1,150 cumulative life years by 2035, plus ~220 more p.a. 
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