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Abstract 8 

 Reliable access to clean and affordable freshwater is prerequisite for human well-being, but its 9 

provision in cities generates environmental externalities including greenhouse gas (GHG) emissions. 10 

As policy-makers target opportunities to mitigate GHGs in line with the Paris Agreement, it remains 11 

vague how urban water management can contribute to the goal of limiting climate warming to 1.5 ℃. 12 

This perspective guides policy-makers in the selection of innovative technologies and strategies for 13 

leveraging urban water management as a climate change mitigation solution. Recent literature, data and 14 

scenarios are reviewed to shine-a-light on the GHG mitigation potential and the key areas requiring 15 

future research. Increasing urban water demands in emerging economies and over-consumption in 16 

developed regions pose mitigation challenges due to energy and material requirements that can be partly 17 

offset through end-use water conservation and expansion of decentralized, nature-based solutions. 18 

Policies that integrate urban water and energy flows, or reconfigure urban water allocation at the river 19 

basin-level remain untapped mitigation solutions with large gaps in our understanding of potentials.  20 

Introduction  21 

 The Paris Agreement targets limiting global mean temperature change from pre-industrial 22 

levels to 1.5 ℃. Achieving the ambition requires a global transformation to net-zero GHGs by mid-23 

century across all sectors of society1. Simultaneously, there is the drive to construct, operate and 24 

refurbish urban water infrastructure in line with the Sustainable Development Goals (SDGs). Lifecycle 25 

analyses of cities in different regions of the world estimate that extraction, distribution and treatment of 26 

urban water creates between 0.5-2.5 kg of equivalent lifecycle CO2 emissions per m3 of freshwater 27 

delivered to end-use2–6. The CO2 intensity range suggests mid-century urban water demands, projected 28 

to reach 550-1100 km3/yr7, could create between 0.3-2.8 GtCO2/yr (0.2-2.6 % of global annual GHGs). 29 

Enhanced mitigation action in the urban water sector will be needed to achieve the net-zero goals of the 30 

Paris Agreement. 31 
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 Urban water actions that reduce GHGs will be different across geographies due to differences 1 

in development status, water resource availability and urban form. Energy used for water pumping and 2 

treatment is the main source of urban water sector GHGs in developed economies8. An estimated 4 % 3 

of electricity generated globally in 2010 was delivered to the global water sector, and this share could 4 

grow to 6 % by mid-century under implementation of the SDGs9.  5 

 Cities employing energy-intensive wastewater reuse and desalination processes supplied by 6 

fossil power generation are associated with the largest GHG footprints4. Importantly, one quarter of 7 

urban dwellers live in water-stressed cities10, which are at risk from increased water supply costs due to 8 

energy-intensive water sources and GHG emissions pricing consistent with the Paris Agreement9. 9 

Similar risks are posed by a growing global demand for advanced wastewater treatment in response to 10 

pharmaceuticals, petrochemicals, and plastics found in urban wastewater11. GHG mitigation from urban 11 

water systems reduces risks from future GHG emission pricing; thus, under the Paris Agreement urban 12 

planners and policy-makers are expected to integrate increasingly ambitious GHG mitigation solutions 13 

throughout the urban water sector. 14 

 Despite a number of studies outlining individual urban water solutions for reducing GHGs, 15 

there is an absence of synthesis distilling the innovations and challenges in the context of achieving net-16 

zero emissions by mid-century in line with the Paris Agreement’s goal of 1.5 ℃. This perspective fills 17 

this knowledge gap by reviewing recent observations and analyzing quantitative scenarios generated by 18 

engineering and economic models. The perspective links the major innovations, and identifies where 19 

future research and partnerships will be most fruitful. The main opportunities, policy linkages and 20 

implementation challenges are categorized across five solution themes in Table 1. The following 21 

sections detail each solution theme and discuss the implications for policy-making.  22 

  23 
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Solution Theme Prospective Urban Policies Implementation challenges Mitigation Potential Literature 

Save water at 

end-use to avoid 

embodied energy 

and materials 

Incentives for wastewater reuse, water 

conservation and low-carbon materials 

/ processing chemicals 

Education to support understanding 

differences between curtailment and 

technological efficiency 

Water and energy standards for 

appliances and distribution system 

auditing 

Smart meter implementation and 

incentive programs 

Water pricing including GHG costs 

Subsidies to protect low-income 

populations from GHG price impacts 

in water stressed regions 

Anticipated demand growth 

combined with energy-

intensive water treatment in 

rapidly developing, water 

stressed regions 

Costs for ICT enabled smart 

metering technology 

Lack of wholesale water 

markets and carbon prices  

Rebounds after 

implementation of 

conservation and efficiency 

measures   

~ 0.5-1.1 GtCO2/yr 

avoided by 2050  

Attari, S. Z. (2014)12 

Britton, T. C., et al. (2013)13 

Dieu-Hang, T., et al. (2017)14 

Dworak, T. et al. (2007)15 

Escriva‐Bou, A., et al (2018)16 

Flörke, M. et al. (2013)17 

Gonzales, P. et al. (2017)18 

Grafton, R. Q. et al. (2018)19 

Gurung, T. R., et al. (2016)20 

Hsien, C., et al. (2019)5 

Kajenthira, A., et al. (2012)21 

Meron, N., et al. (2020)4 

Mo, W., et al. (2014)2 

Parkinson, S., et al. (2019)9 

Rothausen, S. et al. (2011)8 

Sambito, M. et al. (2017)3 

Slagstad, H. et al. (2014)6 

Stillwell, A., et al. (2011)22 

Vassolo, S. et al. (2005)23  

Tap the energy 

and nutrient 

potential of 

wastewater 

Incentives and establishment of 

markets for nutrient capture and 

distribution 

Incentives for renewable energy and 

energy efficiency targeting wastewater 

treatment 

Investment, energy and 

material requirements for 

pumping, distributing and/or 

transporting recovered 

resources 

Social acceptance of 

wastewater reuse 

~ 0.2-0.7 GtCO2/yr 

avoided by 2050 

Bertrand, A., et al. (2017)24 

Gomez Sanabria, A., (2018)25 

Guo, X. et al. (2018)26 

McCarty, P. L., et al. (2011)27 

Qadir, M. et al. (2020)28 

Song, X. et al. et al. (2018)29 

Stillwell, A. S. et al. (2014)30 

Tubiello, F. N. et al. (2013)31 

Integrate 

decentralized and 

nature-based 

solutions 

Spatially-explicit capacity expansion 

planning considering energy and net-

zero GHG paths 

Prioritizing parks, wetlands and 

reforestation projects in urban and 

peri-urban areas for combined water 

storage, wastewater/stormwater 

management and carbon sequestration. 

High investment costs for 

distributed technologies and 

system reconfiguration 

ICT requirements for 

managing water quality at 

decentralized suppliers 

Recovering nutrients and 

flexible energy services for 

nature-based solutions 

? 

Engström, R., et al. (2018)32 

Engström, R., et al. (2017)33 

Guo, T., et al. (2013)34 

Kavvada, O, et al. (2018)35 

Lafortezza, R., et al. (2018)36 

Liu, L. et al. (2020)37 

Wu, D., et al. (2020)37 

 

Market system 

flexibility in real-

time 

Incentives for water efficiency 

solutions that enable automated 

response to electricity pricing 

Including demand response in power 

sector capacity markets 

ICT investment 

requirements  

Harmonizing water and 

electricity market time and 

spatial scales 

Reliability of the control 

strategies and their ability to 

fully replace conventional 

storage 

? 

Kernan, R, et al. (2019)38 

Kernan, R., et al. (2017)39 

Menke, R., et al. (2016)40 

Muhanji, S. O., et al. (2021)41 

Oikonomou, K., et al. (2020)42 

Santosh, A., et al. (2014)43 

Wang, D., et al. (2013)44 

 

Reprioritize 

users to support 

decarbonization 

Establishment of a basin system 

operator to coordinate urban water 

savings across basin-connected cities 

and with other sectoral water uses 

Existing user prioritization 

and transboundary policies  
? Vinca et al. (2020)45 

Table 1: Solution themes for guiding urban water management towards 1.5 ℃. Each theme is linked to 1 
prospective urban policies and implementation challenges. The global mitigation potential is measured relative to 2 
a business-as-usual scenario in which no mitigation actions are taken in the urban water sector, and has been 3 
estimated based on the literature indicated.  4 

 5 
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Save water at end-use to avoid embodied energy and materials 1 

 If the urban freshwater supply-chain creates GHGs, a low-risk mitigation pathway is to reduce 2 

urban water withdrawals and wastewater generation at end-use. This strategy avoids the embodied 3 

energy and materials associated with the development and operation of urban water infrastructure16. 4 

The scale of potential urban water savings is dependent on how inflexible current water uses are to 5 

behavioural changes and the accessibility of financing for implementing technological solutions15.  6 

 Urban water uses are diverse, covering all water-related activities in the domestic, commercial 7 

and industrial sectors of cities. Sectoral water use trends vary across cities due to differences in incomes, 8 

industries, and urban form17,46. Recent analysis of Spain finds cities therein are on average using 69 % 9 

of urban water in households, 11 % for commercial services, 10 % for industry, and the remaining 9% 10 

for public space maintenance47. The manufacturing sector generally features wide differences in water 11 

intensities across products23. In the domestic sector, water heating is a particularly energy-intense aspect 12 

of the urban water system16. Co-designed industry standards and labelling schemes targeting combined 13 

water and energy efficiency are needed at the appliance- or process-level14. Ratcheting-up standards 14 

over time will help guide technology manufacturers and end-users towards solutions aligned with 15 

ambitious sustainability goals. Additionally, improving public understanding of key differences 16 

between curtailment (behavioural change) and efficiency (technological change) will accelerate water 17 

saving efforts12, leading to GHG savings through avoided development and operation of urban water 18 

infrastructure.  19 

 Water savings achieved through conservation and efficiency can be negated by increased water 20 

use elsewhere in the system18. This rebound effect has the potential to impact GHGs, with net changes 21 

determined by the relative GHG-intensity of the shifted water demands. If rebounds occur in sectors 22 

with higher energy use, there is the potential for increased GHGs. Rebounds are managed by setting 23 

and tracking absolute water saving targets at both the end-user and river basin (aquifer) levels19. Multi-24 

scale water budgeting helps prevent reallocation of saved water to other uses, but requires a framework 25 

for monitoring and control.  26 

 Digital technologies including smart water meters support real-time tracking of water resource 27 

use, identification of leaks, user demand feedback, and dynamic resource pricing13. Research on savings 28 

potentials in the EU highlights behavioural changes induced by simple metering have the potential to 29 

provide 10-25 % reduction in urban water demands15. The incremental cost and GHG footprint from 30 

developing smart water metering is likely minimal, as modern appliances are already incorporating 31 

information and communications technology (ICT) for alternate reasons (e.g., increased end-user 32 

controllability). The highly-resolved data from smart meters and ICT-enabled appliances supports 33 
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distribution system monitoring and optimization of water supply planning20. These enhancements bring 1 

further opportunities for energy, GHG and cost savings at the municipal- or utility-level. 2 

 Urban water withdrawals from rivers and aquifers and the associated material and energy 3 

footprint for pumping and distribution infrastructure can further be avoided through the direct reuse of 4 

urban wastewater for applications that do not require potable quality21,22. For example, industrial 5 

processing, power plant cooling, and park/garden irrigation can be supported with urban wastewater23,30. 6 

Pumping distances and GHG impacts are minimized by focusing on applications located within the 7 

same building, industry or neighbourhood35. In the reverse direction, the expansion of distributed low-8 

carbon thermal power generation in response to the Paris Agreement has the potential to create a new 9 

source of waste-heat. This heat can be repurposed to offset thermal energy requirements in co-located 10 

advanced water treatment43. The cross-sector efficiency benefits will be realized in the future through 11 

the integrated planning of distributed power and water projects serving urban areas.  12 

Tap the energy and nutrient potentials of wastewater 13 

 Recent inventories estimate that 4 % of anthropogenic methane emissions are caused by the 14 

degradation of organic material in domestic wastewater25. The emissions can be captured as biogas at 15 

wastewater treatment plants using mature technologies29. Globally, there is potential to generate 16 

between 70-530 TWh of renewable electricity each year25,28, which if fully exploited could support more 17 

than half of the existing global water sector electricity requirements9. Emerging microbial fuel cell 18 

technologies demonstrate even greater electricity conversion efficiencies, and are making the prospect 19 

of energy positive wastewater treatment a promising target for the future27.  20 

 Recent work further estimates that 13.4% of global agricultural demand for nitrogen (14.4%), 21 

phosphorous (6.8%) and potassium (18.6%) can be recovered from domestic wastewater flows28. 22 

Synthetic fertilizers delivering these nutrients are often produced from fossil fuels, with annual global 23 

emissions from these sources estimated at 0.68 GtCO2eq31. By combining the nutrient availability 24 

estimates with the reported emission intensity ranges for each fertilizer it is estimated here that 0.03-25 

0.09 GtCO2eq yr-1 can be mitigated through nutrient recovery from urban wastewater. This excludes 26 

the additional GHG impacts resulting from the collection and distribution of nutrients to agricultural 27 

regions.  28 

 Thermal energy recovery in urban wastewater systems represent additional GHG mitigation 29 

potential. Heat exchangers installed on wastewater pipes and in sewers can be used to repurpose thermal 30 

energy in domestic and industrial wastewater flows for low-grade building heating services24. Similarly, 31 

building cooling services can be recovered from urban water systems by exchanging heat with low-32 

temperature water found in the freshwater distribution system26. Recent technical assessment of similar 33 
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technologies embedded within the Paris water supply systems estimates a 75% reduction in GHGs 1 

typically resulting from building heating and cooling26. Additional research is needed to generalize 2 

these results for other cities, particularly for more extreme climates where there could be challenges 3 

with reliability.   4 

Integrate decentralized and nature-based solutions 5 

 Many urban water systems were originally designed at a time when water resources were 6 

assumed to be more plentiful and predictable. Opportunities for resource recovery and reuse were 7 

neglected. The result is a propensity for unidirectional system designs, where wastewater treatment 8 

plants are typically located across an elevation gradient that reduces energy use during pumping from 9 

consumers48. Nevertheless, energy used for pumping urban water can still be greater than that used in 10 

the treatment processes34. Moreover, the configuration makes pumping recycled wastewater back to 11 

consumers particularly energy-intensive, because it must be moved in reverse across the elevation 12 

gradient. When wastewater systems are distributed throughout cities and communities, there is less need 13 

to pump/transport recovered resources over great distances and elevations. There is also potential to use 14 

smaller distribution pipes. Decentralization can therefore reduce the energy and material footprint of 15 

resource recovery from wastewater treatment.  16 

 Reconfiguring urban water systems for decentralization drives massive investments into new 17 

infrastructure and the replacement of existing distribution systems. For regions lacking existing 18 

infrastructure, there is the opportunity to integrate decentralization from the bottom-up. Challenges for 19 

decentralization include missing out on economies-of-scale, both in terms of capital cost, maintenance 20 

and process energy efficiency34. Capacity investment planning trade-offs have not been assessed 21 

comprehensively from the perspective of future GHG price implications of the Paris Agreement. The 22 

GHG impacts of system reconfiguration have been demonstrated for the city of Houston, Texas in the 23 

United States49. The data-driven analysis of hybrid system designs finds energy savings on the order of 24 

80% compared with a baseline centralized configuration. Direct comparison between the degree of 25 

centralization and lifecycle energy use for a given urban area is needed to understand and manage GHG 26 

trade-offs.   27 

 Water quality tracking is another important consideration for decentralized water treatment 28 

systems, posing risks to human health. City-scale distributed monitoring of water quality in real-time 29 

will help manage water quality risks37. These functions could be co-developed with smart metering and 30 

ICT targeting conservation and energy flexibility.  31 

 Nature-based solutions (NBS) are also relevant for urban water management, and include urban 32 

design choices such as green roofs, permeable concrete, parks and wetlands36. These systems retain 33 
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precipitation and reduce wastewater and stormwater flows. NBS can mitigate GHGs from urban water 1 

systems by avoiding the development and operation of conventional water infrastructure providing 2 

similar services. A recent cost-benefit analysis of NBS options for municipal planners in New York 3 

City indicates some options are no-regret (i.e., negative cost) due to combined savings on energy and 4 

water infrastructure32. Despite the potential benefits, NBS remain largely passive; there is limited 5 

potential to recover nutrients, energy resources and flexibility. The associated trade-offs for GHG 6 

mitigation have not been assessed. Required is lifecycle analysis with the scope to compare the material 7 

and operational impacts of NBS versus conventional water system solutions. 8 

Market system flexibility in real-time 9 

 Urban water systems must be reliable and resilient; thus, the pumps, pressure valves and 10 

intermediate storage tanks contained therein are designed to handle extreme conditions, including peak 11 

demands, droughts and storm surges. The drive for reliability results in operating capacity that sits idle 12 

under normal operating conditions. This idle capacity can be engaged for real-time energy flexibility. 13 

 Specifically, the operation of pumps, pressure valves, and storage tanks can be deferred for 14 

short periods or initiated earlier than planned to modulate electricity usage in response to real-time 15 

prices or requests from the electricity system operator39,40. These real-time requests help manage the 16 

variability from loads and generation on the grid38. Supplying these services with urban water systems 17 

avoids development of dedicated energy storage infrastructure. Future energy storage investments could 18 

be directed towards the digitization and modernization of flexible urban water supplies.  19 

 Urban water managers at the municipal- or utility-level can play an important role in enabling 20 

effective demand response programs by: i) acting as a service aggregator that compiles real-time 21 

information on urban water assets to estimate systemic flexibility; ii) brokering the interactions with 22 

the real-time energy market operators; and iii) dispatching the resulting control requests to achieve the 23 

electricity demand response44. Managing the latter at a municipal- or utility-level could be important 24 

for ensuring control requests do not threaten the simultaneous goals for water quality.  25 

 Third party operators have emerged as alternative demand response service aggregators in the 26 

water sector, particularly for large consumers such as wastewater treatment plants50. These electricity 27 

customers receive revenue from participating as a balancing reserve in electricity markets. Balancing 28 

services might alternatively be configured using real-time pricing of electricity51. Customers utilize 29 

automated control technologies to respond to real-time price changes in an intuitive way.  30 

 Challenges with real-time pricing include potential impacts to affordable access and data 31 

privacy. Operational decision-making in urban water systems would also need to be harmonized with 32 
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the same time frames used in the electricity market41,42. Moreover, significant investment into ICT-1 

based technologies will be needed to track and dispatch urban water sector demand response. To reduce 2 

these costs, energy flexibility considerations should be co-integrated with smart metering technologies 3 

targeting water conservation and system monitoring. Further cost-sharing with the electricity sector 4 

might be sought to account for the multi-sector benefits of enhanced ICT in the urban water sector. 5 

Multi-sector system studies will be needed to quantify the scale of the offered energy flexibility, and to 6 

assess an appropriate benefit-sharing mechanism with the electricity sector.  7 

Reprioritize users to support decarbonization 8 

 Urban water savings can in principle be reallocated to other uses within the same river basin. 9 

These managed rebounds are particularly appealing where and when basin water resources offer limited 10 

room for expanded use because of a lack of precipitation, excessive consumption upstream, or user 11 

prioritizations. In non-cooperative transboundary basins, existing geopolitical disputes are leading to 12 

sub-optimal coordination of sustainable development across regions52. These water management 13 

inefficiencies are anticipated to create GHGs indirectly, through the constraints they impose on water 14 

use across multiple sectors. The potential benefits of reallocation for decarbonization include: i) more 15 

flexibility with hydrologically-connected hydropower assets to generate low-carbon electricity and to 16 

support grid-integration of other low-carbon renewables (e.g., wind and solar); ii) additional water to 17 

support manufacturing and operation of low-carbon technologies, including for cooling of concentrating 18 

solar power and for carbon capture, utilization and storage (CCUS) processes; and iii) displacement of 19 

alternative energy-intensive water sources (e.g., desalination) from operating downstream. 20 

 Long-term river basin scenarios generated for the Indus Basin with the Nexus Solutions Tool 21 

(NEST) provide new insights into the potential scale of GHG mitigation cost benefits from 22 

reallocation45. The configuration of the Indus Basin in relation to the urban areas it contains means 23 

urban water savings translate to more water for hydropower generation in the lower Indus Basin, and 24 

for meeting future urban demand growth in the delta regions facing water stress without switching to 25 

unconventional and energy-intensive water resources. Marginal benefits of enhanced basin-scale 26 

coordination are likely less important in regions that do not face water scarcity, and this requires future 27 

research. Research is also needed to understand if integration of CCUS in the urban industrial sectors 28 

will be constrained by the availability of water resources. A combination of urban water efficiency 29 

solutions and re-prioritization might compete as cost-competitive water supply options, with 30 

implications for GHG mitigation costs.  31 
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Discussion 1 

 If urban water demand can be governed so that it reduces in developed economies and grows 2 

slowly in developing regions, there is more room to reduce absolute GHG emissions from the urban 3 

water sector. If urban water related GHGs increase, enhanced mitigation actions will be needed in other 4 

sectors of the economy to reach the net-zero ambitions of the Paris Agreement. Reducing future water 5 

demands and wastewater flows relative to those observed today hedges against risks from uncertainties 6 

in future costs of alternative technological solutions, and is the strategy with the least uncertainty and 7 

complexity for urban water managers to promote for GHG mitigation.  8 

 Urban water planners can further mitigate GHGs through the integration of low-carbon 9 

materials and decentralized technologies for water treatment and resource recovery. Moreover, urban 10 

water managers can support decarbonization of electricity by cooperating with utilities on the 11 

implementation of demand response programs. Purchasing zero-carbon electricity will be critical for 12 

supporting the widespread roll-out of advanced water treatment in line with the SDGs. Redistribution 13 

of water-intensive manufacturing activities away from energy-intensive water sources present 14 

additional GHG mitigation opportunities, but come with uncertain costs and impacts for other resources.  15 

 Integrated water-energy efficiency standards for appliances and manufacturing processes 16 

combined with GHG-aware water pricing represent important future policy levers for driving urban 17 

water users towards low-carbon, water-efficient decision-making. Yet, increased municipal water costs  18 

could pose challenges for low-income populations. Subsidies will protect these consumers under a real-19 

time, GHG-aware water pricing strategy consistent with the Paris Agreement.  20 

 Urban water managers seek an economic characterization of GHG mitigation opportunities, so 21 

they can prioritize efforts while minimizing costs for consumers. Marginal abatement cost curves have 22 

previously been proposed for this purpose, particularly for coordinating climate action at the municipal-23 

level; however, the static view and limited scope neglects the effects from project sequencing and 24 

opportunities to reduce GHGs through cross-sector and basin-scale water reallocation. Quantifying the 25 

climate change mitigation potential of urban water instead requires a comprehensive characterization 26 

of existing systems from supply to end-use over a timeframe consistent with project lifecycles53,54.  27 

 High-resolution mapping of urban water systems and associated energy use should be used by 28 

utilities and municipalities to inform the design of economically optimized pathways for sequential 29 

water system transformations at a river basin-scale (Figure 1). In this context, urban water sector 30 

mitigation opportunities are coordinated with other municipal and regional mitigation solutions54. A 31 

basin pathways approach enables intelligent prioritization of efforts that aim at reducing GHGs, while 32 

maintaining water quality and enhancing environmental flows both to surface and groundwater 33 
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systems45. Basin-scale models can be co-developed and shared with urban stakeholders to enable their 1 

widespread use in urban planning55.  2 

 3 

Figure 1: Basin pathways modeling incorporating urban infrastructure and policy options across basin-connected 4 
cities informs the economic optimization of net zero GHG transformations under constrained water resources. 5 
Multiple sectors, decades and spatial scales are represented simultaneously to identify a least-cost portfolio of 6 
projects and policies and the sequential implementation plan. 7 

 Potential synergies with the electricity sector that could be beneficial to explore include 8 

establishment of an independent system operator at the basin-scale. Similar to a grid operator 9 

orchestrating electric load balancing, the basin operator’s objective is to coordinate water allocations 10 

across basin-connected users. Comparable organizations are already helping manage scarce water 11 

resources in heavily urbanized catchments of the Western United States56. The basin operator could 12 

leverage a market approach to plan and direct the development of decentralized solutions and the 13 

reprioritization of users to support both water quality and decarbonization goals57. Basin-connected 14 

cities become market participants that remain flexible to manage their own portfolio of water-related 15 

projects58, as well as their interactions with electricity markets. Interconnection policies are defined by 16 

the basin system operator to ensure decentralized systems have the required ICT infrastructure for 17 

maintaining and reporting real-time water quality and GHGs. Time horizons for urban water supply, 18 

river basin and distribution operations are harmonized with electricity markets such that opportunities 19 

for cross-sector demand response and resource recovery are co-optimized.  20 

 Despite the breadth of previous work linking urban water, energy and GHG flows, important 21 

knowledge gaps exist in the scientific literature that limit estimation of the total GHG mitigation 22 

potential. First, urban water systems represent an attractive new source of electricity flexibility that 23 

could provide short-term and long-term services beneficial to decarbonization. More research is needed 24 

to develop control strategies and to size the potential flexibility at city-scales. Second, buildings 25 

represent a key focal area for coupled water-energy management. Future research should focus on 26 

quantifying the global potential to offset building cooling and heating requirements through the capture 27 

and re-utilization of thermal energy found in urban water flows. Third, carbon sequestration within 28 
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vegetation incorporated into nature-based urban water solutions applied at large-scale (as well as 1 

associated urban cooling benefits) represent important aspects for future analysis to explore. For 2 

example, reforestation of urban and peri-urban areas to alleviate urban stormwater risks could offset 3 

GHG emissions occurring elsewhere in the urban water system that are difficult to mitigate (e.g., 4 

material requirements). Finally, future studies are needed to understand how the integration of urban 5 

water management with river basin management opens new doors for GHG mitigation through 6 

coordinated, multi-scale planning.  7 
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