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Abstract
ExcessN application on agricultural land greatly impacts the environment inmultiple ways, driven by
population growth and improving quality of humandiets. Therefore, it is essential to quantify the
sources of the emissions ofN compounds and their determinants (e.g. biological Nfixation (BNF),
mineral fertilizer,manureN andNdeposition) to develop adequatemitigationmeasures. Herewe aim
at comprehensivelymapping and quantifyingNfluxes on agricultural land to analyze these sources on
different scales. As underlying grazing landmaps used for such calculations are fairly different in terms
ofmethodology and definition and thus spatial extent and pattern, we investigate how this diversity in
grazing landmaps affects quantification ofN indicators.We compared three different global grazing
landmaps and analyzed the propagation of differences to discrepancies inN indicators calculated
from them.We discovered that (i) area differences propagated to high discrepancies inN surplus
mostly in Asia, and to aminor extent also in Europe andNorthernAfrica. (ii)BNF constitutes an
important translator for differences on grazing land toN indicators, while also being a source of
further uncertainty, whichwarrants further scrutiny. (iii)Amore inclusive definition of grazing land
results in overall lessN surplus given the larger areas included but allows to provide amore
comprehensive estimate of the influence of human activity on theN cycle. This study is the first to
provide an in-depth analysis of the effect of grazing land and agricultural land area differences on
variousNbudget terms andN indicator calculation, highlighting opportunities for further research,
and the importance of a comprehensive accounting ofN surplus when using an inclusive definition of
grazing land.

1. Introduction

Nitrogen (N) compounds as plant nutrients play a key role in food production and the increase in agricultural
yields.Many of the current agricultural practices are associatedwith an excess application ofN to agricultural
land (Vitousek et al 1997, Galloway et al 2013). In order to increase agricultural output and to replenish anyN
lost from soils, under industrial settings,mineral N-fertilizers are used abundantly, and livestockmanure is
releasedmerely as an add-on. As a consequence, human activity results in a perturbation of the globalN cycle,
with impacts on the local and global environment through eutrophication, acidification and through the
formation ofN2O, a powerful greenhouse gas (Fowler et al 2013, Reis et al 2016).With globalN2O emissions
from agriculture on the rise and theN cycle reported to having overshot a ‘safe operating space’withinwhich the
functioning and resilience of the Earth system can be sustained (Steffen et al 2015), action to reduceN inputs is
pressing (IPCC2020).

For the development of policies tomanage and reduce the globally increasedN input it is key to quantify and
monitormajorN flows (Meisinger et al 2008,Winiwarter and Expert Panel onNitrogen Budgets 2016). To take
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into account not only the global but also local effects of excessN application, it is essential to know the spatial
distribution ofmajorNflows to and fromagricultural land. This can be achieved by calculatingN indicators
such asN surplus andNitrogenUse Efficiency (NUE) using global land-usemaps. Suchmaps have been
developed for cropland (Liu et al 2010,West et al 2014, Bouwman et al 2017) being complimentedwithmaps
provided by several process-basedmodels that also include calculations on pastures and rangeland (Tian et al
2018). Covering also grazing land in theN2O calculation is essential as this is the origin of around half of the total
agriculturalN2O emissions (Dangal et al 2019, IPCC2020).

Previous studies demonstrate that the underlying land-usemaps for such calculations showdistinct
variations. For cropland, Kaltenegger andWiniwarter (2020) show that the variations in cropmaps also
influence theN indicators calculated from them. Including grazing land in spatially explicit N surplus
calculations (fromwhichN2O emissions can be estimated), is particularly challenging due to the lack of robust
data and the high variability in existingmaps (Erb et al 2007, 2016, Fetzel et al 2017, Phelps andKaplan 2017).
Maps on the extent of global grazing lands suffer fromdifferences in classification,methodologies, errors in
georeferencing or the use of different satellite sensors and the particular difficulties to separate grazing land from
other land uses; note that grazing can occur in awide range of ecosystems and is not bound to the occurrence of
grassland ecosystems such as steppes or artificial grasslands (Milchunas and Lauenroth 1993, Robinson et al
2011). Thus,mapping of grazing land bymeans of remote sensing is challenging due to theweak link between
the land use (grazing) and land cover (artificial grasslands, natural grasslandswith andwithout trees,
semideserts, shrublands, etc) (Kuemmerle et al 2013, Erb et al 2016). In consequence, key differences in grazing
landmaps result from the use of different grazing area definitions. Themost commonly usedmaps are based on
or are adjusted tofit the freely available, global statistics by the Food andAgricultural Organization (FAO), which
only include information on permanentmeadows and pastures. These grazing lands are defined as land used
permanently, i.e.five years ormore, for herbaceous forage crops, either cultivated or growingwild. This
definition excludes natural grazing lands that are used for non-permanent land uses such as occasional or
sporadic grazing, land uses typical for e.g. transhumance. The omission of such areas can result in an area
difference as large as 10%of terrestrial ice-free surface (Erb et al 2016, Arneth et al 2019). Furthermore, besides
this omission, the quality of the national FAOdata is highly variable between countries and inconsistencies
become apparentwhen combinedwith other land-use information (Ramankutty et al 2008, Stadler et al 2018).

Such large differences in land usemaps havemostly been neglected in the calculation of global spatially
explicit N surplus orN2O emissions, with studies assessingN2O emissions from grazing land often using the
same land-usemap (Dangal et al 2019, Tian et al 2018). Even the globalN2OModel Intercomparison Project
(NMIP: Tian et al 2018) that compared ten process-basedmodels and analyzed differences to establish a global
N2Obudget consistently used cropland and grassland extent from just one source, theHistorical Database of the
global Environment -HYDE (Klein-Goldewijk et al 2017). Understanding the uncertainty, that origins not only
fromdifferences in data, but also fromdifferences in definitions, however, is key for deriving robust
interpretations, especially for developing or assessingNmanagement policies (Oenema et al 2003).

Considering themethodological and semantic discrepancies in the derivation of grazing land area datasets as
described above, combinedwith the effect cropmap discrepancies have onN surplus calculation, we here aim to
explore (i) the influence ofmethodological discrepancies in grazing landmaps onN surplus calculations and (ii)
the effect of amore inclusive grazing land definition.

2.Methodology

In order to assess howdiscrepancies in grazing landmaps translate to differences in patterns andmagnitude of
variousN indicators, we calculatedN surplus, ameasure for the amount ofN remaining on the soil surface, and
NitrogenUse Efficiency (NUE), ameasure for the efficiency ofNuptake by the crop, using three different land-
usemaps. Following the summary table of book-keeping for soil surfaceNbudgets as described byOenema et al
(2003), we includemineral fertilizer,manureN, biological Nfixation andNdeposition asN inputs andN in
crop harvest as well asN grazed by livestock asN outputs for ourN indicator calculations.We exclude
mineralization, the decomposition to inorganicmaterial or crop residues. These stocks are assumed to stay
within the system.N surplus was calculated by subtractingNoutputs fromN inputs and dividing it by the
respective area, andNUEwas calculated by dividingNoutput byN input.

N budget calculations on croplandwere added to our grazing land calculations using theM3 cropmap
(Monfreda et al 2008) so that a possible effect of discrepancies on grazing land to discrepancies on agricultural
land generally (cropland and grazing land) could be detected.M3was chosen because it was identified as being
themost suitable product to expand cropland calculations to grazing land (Kaltenegger andWiniwarter 2020).
The base year for all calculations is 2010.
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2.1. Grazing land
Three different grazing landmapswere chosen tomakedifferences and their implication for thefinal calculations
visible: (1)Ramankutty et al (2008), (2)HYDE (Klein-Goldewijk et al 2017) and (3) anupdatedmapbasedon the
approachoutlined inErb et al (2007). Ramankutty et al (2008) andHYDEuse the FAOdefinition for pastureland
(‘Permanent Pastures’)but use different approaches to downscale national information fromtheFAO’s Statistical
Database (FAOSTAT) to the spatially explicit grid.HYDEdata for this category is split into rangeland (less
accessible land) andpastureland,whereasRamankutty et al (2008)donot differentiate grazing land categories, but
correct national pasture areas onbasis of plausibility checks. Themore comprehensive approachbyErb et al (2007)
aims at including permanent andnon-permanent grazing land, integrated in a ‘closed-budget’ land-use dataset
(comprising cropland, infrastructure area, forests,wilderness andnon-productive area and grazing land and
covering 100%of the area in each grid cell). A similar approachwas followed in the constructionof theGlobal
Agroecological Zone (GAEZ)mappingby IIASAandFAO (Fischer et al 2008).More informationon the differences
between themaps and an analysis of their discrepancies canbe found in the publications byErb et al (2016) and
Fetzel et al (2017). Allmaps are available at the spatial resolutionof 5 arcminutes.

HYDE grassland (pastureland& rangeland) is calculated using FAOSTATdata combinedwith a spatially
explicitmap of present land cover by the European Space Agency (ESA) based onMediumResolution Imaging
Spectrometer (MERIS) satellite data for the year 2010 (Klein-Goldewijk et al 2017). Each land cover type from
the satellite dataset is assigned a probability of cropland and pastureland to occur in a grid cell. Through four
allocation steps, FAOSTAT cropland and pastureland data is distributed according to themap’s probability of a
certain land use type occurring in a grid cell, thereby producing amapwith spatially distributed land use data
which is representative for the year 2010. Protected areas (from theUNEnvironment ProgrammeWorld
ConservationMonitoring Center -UNEP/WCMC) andAustralian ‘non-used areas’ (from theNational Land
andWater Resources Audit -NLWRA)were excluded aswell as inaccessible tundra areas inNorthernAmerica
andRussia.Maximum90%of total area of a grid cell could be assigned to agricultural land due to the
assumption that at least 10%of the area (in a 5’ grid cell)would be used for small infrastructure orwould be
unsuitable for cultivation.

Ramankutty et al (2008) combined two satellite datasets to create the spatial distributionpattern for cropland and
pastureland in the year 2000.Onedatasetwas fromBostonUniversity (BU-MODIS)where 17different land cover
classeswere identified fromOctober 2000 toOctober 2001.This datasetwas developedby combining SPOT (satellite
type) vegetationdata,which ismonitoring global vegetationdaily or in a ten-dayperiod, and expert assessments
using aflexible classification scheme.Theother datasetwas theGlobal LandCover 2000 (GLC2000), where 22
different land cover classeswere identifiedwith the helpof regional experts and regional classifications between
November 1999 andDecember 2000.The combinationof these twomaps rendered thebest results because themaps
counteracted eachother’sweaknesses.However, to include all possible landuse categories (newones emergeddue to
the overlapof twodifferent classifications ofBU-MODIS andGLC2000) thefinalmap contained391 land cover
types.Multiple linear regressionwasused to calculate theparameters for the cropland andpasturelanddistribution.
Bootstrap techniquewasused to estimate theuncertainty for thedistributionparameters using inventorydata. In a
last step, the derived landuse datawas aggregated to compare it to inventory (FAOSTATplus census data on
subnational levels) cropland andpasturelanddata for approximately 15,990different administrative units (an
agricultural censususually only takes place every 5–10 years, inwhich time also administrative units can change) for
the year 2000. From this comparison, a correction factorwas calculated for the satellite data,whichwas restricted to a
predefined range, trusting satellite datamore than inventory data.As thedata providedbyRamankutty et al (2008)
was only available for the year 2000, for thepurpose of this paperwe adjusted it tofit FAOSTATcountry data for the
year 2010 (see supplementary information formoredetails (available online at stacks.iop.org/ERC/3/055003/
mmedia)). The grasslandmapprovidedbyRamankutty et al (2008), will hereafter be referred to as ‘Ramankutty’.

In contrast to the two approaches described above, where the extent of permanentmeadows and pastures
was derived from satellite data and adjusted to FAOSTAT statistics, the approach by Erb et al (2007)maps
grazing landwhich is defined as ‘potential grazing area’. Here, this basic approachwas followed but updated
information and newly availablemaps for cropland, forests, wilderness and non-productive areas were used.
Owing to the lack of data for non-permanent grazing land, the basic approach ofmapping the entirety of grazing
land is based on subtracting built-up area, cropland area, unproductive areas, wild areas and forest area from
total land area for each grid cell. In the updated version used here, non-productive land, built-up land, cropland
area and permanent pastures and rangelands are taken fromHYDE (version 3.2.1) (Klein-Goldewijk et al 2017).
Thewildernessmask is generated by combining human footprint data for 1993 and 2009 (Venter et al
2016a, 2016b)with data on intact forest landscapes, available for 2000 and 2013 (Potapov et al 2017). Core
wilderness areas were defined as areas with no human artefacts and, within the forest zone as defined by Potapov,
located in an intact forest landscape. Peripheral wilderness within the forest zone only satisfies one of those
criteria. Forest area is derived from theCCI land cover dataset of the European Space Agency (ESA) and
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distinguishes between closed forests, with tree cover greater than 40%, and open forests, with tree cover between
15 and 40% (ESA 2017).

Total grazing land thus subsumes permanent pastures and rangelands fromHYDE 3.2.1, a share of 25%of
peripheral wilderness, 50%of open forests, and, following the ‘closed-budget’ approach, the remainder of land
area per grid cell that has not been assigned to any of the other land uses above (other land,may be grazed) (Erb
et al 2007). This definition is in linewith the definition of the grassland category by the IPCC (Bickel and
Köhl 2006), with the exception that it does not include unused (wild) grasslands.

This approach leads to an inclusive grazing land definition, encompassing, for example, browsed land such
as shrubs, trees and succulents consumed by livestock (Phelps andKaplan 2017). It is important to note that all
uncertainties in underlyingmaps accumulate in thismap.However, comparisonswith remote sensing data and
census statistics reveal a goodfit (Erb et al 2007, 2016). This grazing landmap, based on the approach suggested
by Erb et al (2007), with extensions as described, will hereafter be referred to as ‘Erb’.

Given the differences in definition between these land-usemaps, the term ‘grazing land’ as it is used
throughout this paper includes both, permanent pastures as defined by FAO, aswell as areas used for occasional
grazing like browsing or transhumance, while the term ‘Grassland’ only refers to ‘permanent pastures’.

2.2. Fertilizer
Synthetic fertilizer application on cropland per crop type and country categorywas taken fromHeffer (2013),
complimentedwith additional information on grass crop fertilization fromHeffer et al (2017), and distributed
onM3harvested areas per crop type and country (see supplementary information S3 for details). Because
synthetic fertilizer applicationwithin an IFA country category such as ‘ROW –RestOfWorld’which includes
LatinAmerican countries as well as African countries is only given as total application per crop type, no further
differentiation between application rateswithin such a country categorywas possible. As LatinAmerican and
Asian countries can have an up to ten-fold higher application rate compared toAfrican countries, data was later
adjusted tofit FAOSTAT annual country totals (FAOSTAT 2019, TheWorld BankGroup 2020).

Factors provided by Lassaletta et al (2014)were used to calculate synthetic fertilizer application to grazing
land. These factors provide the fraction of total synthetic fertilizer applied per country that is diverted to such.
This informationwas only needed for calculations referring specifically to grazing land. Calculations performed
for total agricultural land do not require this separation aswe assume a different fertilizer distribution affects
only the respective grid cell, and cropland and grazing land are added together in such a grid cell for the
calculation ofN surplus andNuse efficiency (NUE) on agricultural land.

2.3.ManureN
Spatially explicit data on livestock numbers per livestock systemwere taken from theGridded Livestock of the
World (GLW) (Gilbert et al 2018) and combinedwithN excretion rates per animal type and country from the
GreenhouseGas –Air Pollution Interactions and Synergies (GAINS)model (Amann et al 2011). Fractions of
manure left on grazing land aswell asmanaged and lost during storage per livestock systemwere taken from
Herrero et al (2013b). Country-specific application rates to croplandwere taken fromLiu et al (2010) to calculate
the fraction ofmanureN applied to cropland aswell as the fraction ofmanureN recycled to grazing land. All
calculations weremade on the grid cell level.

AsmanureN spatial distributionwas determined byGLWand did not necessarilymatch the spatial
distribution of the cropland and grazing land combinations used here, all data wasfiltered to only include cells
wheremanureN and cropland or grazing land areawere collocated (see supplementary information for further
information).

2.4. Biological Nfixation
BNFon croplandwas calculated using crop specific factors such as harvest index, amount ofN content from
BNF (Ndfa) and below groundNprovided byHerridge et al (2008) for crops andBNF rates for leguminous and
non-leguminous grass crops by Smil (1999). Grass crops in this context refer to grass crops found in theM3 crop
maps that we interpreted as temporary pastures included in cropland (Kaltenegger andWiniwarter 2020) as
defined byMonfreda et al (2008).

BNF on grazing landwas calculated using two differentmethods. Thefirstmethodmade use of spatially
explicit data on global net primary production (NPP) – the energy provided by a plantminus the energy for its
ownmetabolism (Haberl et al 2014) - using a saturation function fromMeyerholt et al (2016) (equation 1). Data
onNPPwas derived by amodel run from a global vegetationmodel (LPJ-GUESS, Smith et al 2001) for the
potential vegetation, i.e. the vegetation that would prevail in the absence of land use butwith current
environmental conditions (Haberl et al 2014), and assumptions on reductions inNPP resulting from land cover
conversions (e.g. replacement of forests by artificial grazing lands) and fromdegradation (Zika and Erb 2009).
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The basis for the saturation function betweenNPP andBNFwas taken fromCleveland et al (1999)who
hypothesized thatNPPmay be a proxy for carbon potentially available toN fixers.

( ) ( )( )= ´ - ´BNF c e1 1d NPP

cK coefficient 1.8 gNm−2 yr−1

dK coefficient−0.003m2 yr gC−1

The secondmethod to calculate BNFwaswith the use of data on evapotranspiration (ET) – the sumof
evaporation from soil and plant and transpiration through plant canopy (Jørgensen and Fath 2008). This
relationship also follows an estimate given byCleveland et al (1999), who hypothesized a correlation between ET
andBNF. The corresponding equationwas taken fromMeyerholt et al (2016). Data on ETwas taken from two
sources, the Inter-Sectoral ImpactModel Intercomparison Project (ISIMIP) (https://esg.pik-potsdam.de/
search/isimip/) and theGLEAMmodel (https://www.gleam.eu/).

( )= ´ +BNF a ET b 2

aK slope of linear function 0.00234 gNmm−1m−2

bK intercept of linear function−0.0172 gNm−2 yr−1

2.5. Ndeposition
Ndeposition on a 0.5-degree grid was taken from ISIMIP (https://esg.pik-potsdam.de/search/isimip/).
Because it was available as total N deposition per grid cell, wemultiplied this value with the share of grazing land
or agricultural area respectively on each grid cell.

2.6. Nharvested
N in harvested cropswas calculated only for cropland bymultiplyingN content per crop takenmainly from the
European Panel onNitrogen Budgets (Winiwarter and Expert Panel onNitrogenBudgets 2016)with
production per crop (given by theM3 cropmap).We assumed that pastures that aremown fall into the category
‘grass crops’ of theM3 cropmap, whichwe interpreted as ‘temporary pastures’. This, however,may
underestimate the amount ofmown grass.

2.7. N grazed
N intake by grazing livestockwas calculated using the IPCC guidelines 2019 update (Chapter 10, Volume 4,
Equation 10.31) (IPCC 2019).We rearranged the equation used to calculateN excretion to obtain the amount of
N intake per animal:

( )( )
( )

( )=
-

N
N

N1 _
3intake T

ex

retention frac T

T

Nex(T)K annualN excretion rates of animal of species/category T, kgN animal−1 yr−1

Nintake(T)K annualN intake per head of animal of species/category T, kgN animal−1 yr−1

Nretention(T)K fraction of dailyN intake that is retained by animal of species/category T
Nretention(T)was taken from IPCC (2019)Table 10.20, 10A.1–10A.4 and combinedwith shares of livestock in

a specific growth stage of animal type in herd from the same tables.

2.8. N indicator calculation
TheN inputs included for each calculation depended onwhether grazing land or agricultural area was used as a
basis. ForN surplus andNUE calculations on grazing land, synthetic fertilizer spread on grazing land only,
manure left and spread on grazing land andBNF andNdeposition on grazing landwere considered asN inputs
whileN grazedwas considered as being the onlyNoutput.WhenN indicators were calculated for total
agricultural land, total synthetic fertilizer application,manureN application on cropland and grazing land (with
volatilization losses and losses due to storage being subtracted) aswell asmanureN left on grazing land andBNF
andNdeposition on agricultural landwere included. N contained in crop harvest as well asN grazed by livestock
wereNoutputs.

3. Results

In order to trace backN indicator differences to grazing land area discrepancies we first take a closer look at
allocation and area variations between the three different grazing land sources before arriving at a detailed
analysis of the discovered grazing land discrepancies on theN indicator calculation.
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3.1. Grazing land discrepancies
Further to summing up grazing land areas per region for all three sources (figure 1), we calculated its relative
standard deviation in each grid cell to show the agreement or disagreement between the land usemaps inmore
detail (figure 2).While differences betweenHYDE andRamankutty only exceed 10% inWesternAsia andNorth
Africa, area size and allocation of grazing land in parts differ quite strongly between all three sources inmost
regions. Discrepancies in global grazing land area between Erb and each of the other sources amount to 1,061
km2, an area slightly bigger than the territory of Canada. For instance, Erb assignmore than tenfoldmore
grazing land area to India compared to Ramankutty andHYDE, highlighting the potential scale of the
conceptual differences between permanent and other forms of grazing.However, there are regionswith little
differences between all three sources such as theCaribbean, Australia &Oceania, Central America and Eastern
Asia. In general, given theirmore inclusive definition of grazing land, Erb allocate larger areas tomost regions.
Exceptions areWesternAsia andNorthernAfrica. As seen infigure 2, allocation differences between Erb and the
other two sources become visible forNorthern areas and Southern and Southeastern Asia which is also reflected
in area differences. However, allocation and area discrepancies can be detached. InAustralia, differences in
allocation become visible, however these do not affect the regional results for total grazing land area to a greater
extent, as the areas assigned toAustralia only differ in allocation and not size.

Figure 1.Grazing land area according to Ramankutty,HYDE and Erb.

Figure 2.Uncertainty in grazing landmaps. Themap shows the relative standard deviation ofHYDE, Ramankutty and Erb in regions
where allmaps contain grazing land areas (blue to red color ramp). Orangemarks grid cells where only Erb andHYDE allocate grazing
land, but not Ramankutty. Brownmarks grid cells where only Erb andRamankutty, and yellowmarks areas onlyHYDE and
Ramankutty allocate grazing land, respectively. Areas where only onemap contains information are green for Erb, Light green for
HYDE and olive green for Ramankutty.
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3.2. N indicator discrepancies on grazing land
Differences inN surplus, calculated from each of the grazing landmaps, are shown as as total N surplus per
region in figure 3 and relative standard deviation infigure 4. Grid cells containing less than 5%grazing land area
were excluded frombeing displayed in themap to avoid extreme values forN input produced by a difference in
allocation of grazing land andN inputs. AllN indicators compared in this section useNPP as a basis for BNF
calculations as discrepancies between theNPP and ET approach remain small. This does not to a greater extent
affect the results, nor the conclusion of this study as is explained inmore detail in the supplementary
information.

Most differences betweenN indicators calculated from the different grazing landmaps are smaller than the
area differences between the sources.While grazing land area for almost all regions is largest in Erb,N surplus
does not necessarily reflect this pattern. The biggest discrepancywhen calculatingN surplus based on the three
grazing landmaps, remain inCentral and Eastern Europe andChina (figures 3 and 4). Regardless, regionswhere
grazing land area discrepancies are high, like Southern and Southeastern Asia, also showhigher discrepancies in
theN indicators calculated from themas can be seen infigure 3. These discrepancies are driven by allocation
differences between the threemaps as can be observed infigure 4.N surplus difference is high forWestern
Industrial EuropewithN surplus based on Erb being over 20 kg ha−1 yr−1 lower thanN surplus based on
Ramankutty orHYDEwhich is rather similar. The same is true for Eastern and South Eastern Europe aswell as
Southeastern Asia.

Figure 3.NSurplus on grazing land based onRamankutty, HYDE and Erb. Grid cells containing less than 5%grazing land area are
excluded.

Figure 4.Uncertainty inN surplusmaps. Themap shows the relative standard deviation ofHYDE, Ramankutty and Erb in regions
where allmaps showN surplus (blue to red color ramp). Orangemarks grid cells where only Erb andHYDE allocate grazing land, but
not Ramankutty. Brownmarks grid cells where only Erb andRamankutty, and yellowmarks areas onlyHYDE andRamankutty
allocate grazing land, respectively. Areas where only onemap contains information are green for Erb, Light green forHYDE and olive
green for Ramankutty. Grid cells containing less than 5%grazing land area are excluded.
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For amore detailed analysis per region, we took a closer look at howdifferences in area and allocation
between the three datasets on grazing land area affect differences inN input andNoutput. Additionally, we
investigated the drivers for the discrepancies encountered by inspecting the countries dominating the regional
results and the budget terms constituting the biggest share ofN inputs. As can be seen in table 1, differences
between the budget terms often exceed differences observed for theN indicators (figure 3). This can be explained
byN inputs andNoutputs showing discrepancies of similar direction and sizewhich then balance each other as
they are put in relation forN indicator calculation.

Looking at Southern Asia, showing the second highest relative standard deviation, India and Pakistan are
mainly responsible for the differences inN surplus. These are regionswhere the Erb approach results inmuch
larger grazing land areas than the approaches by Ramankutty andHYDE. In these regions, themore
encompassing grazing landmap results inmoreN input, especially BNF andNdeposition, in theN surplus and
NUE calculations. Although also highermanureN and synthetic fertilizer input caused by allocation
discrepancies can be found in themanureN results based on Erb,NUE is not to a greater extent affected by this,
as input discrepancies are balanced by grazing discrepancies due to the large share ofmanureN in total N inputs
(more than 70%).

A similar phenomenon can be found inWestern and EasternAsia aswell asNorthAfrica, where lowNUE
discrepancy and highN surplus discrepancy can be found. In both cases highestN inputs of the respective source
are notmatchedwith largest areas thereby heightening the differences inN surplus. InWestern as well as Eastern
Asia, BNF andNdeposition contribute about half to total N input to an equal share. Although Erb allocates less
area than both other sources toWesternAsia, they allocatemore than twice asmuch area thanRamankutty and
HYDE toTurkey, where highest BNF rates inWesternAsia can be found. These area discrepancies lead to about
three times higher BNF andNdeposition values when calculated from the grazing landmap fromErb compared
to the other sources. InNorthAfrica, wheremanureN contributes 59%–64%ofN inputs, higher values of this
budget term are reachedwhen calculated based on Erb leading to total N input based on Erb being second
highest while grazing land area taken from this source is smallest.

In EasternAsia, China is the biggest influence on the regional results, being responsible for 87%–90%of total
N inputs to this region.However, it is the area difference inMongolia that leads toHYDE reporting the largest
grazing land area for EasternAsia, while derivedN inputs are only the second highest (highest N inputs have
been assigned to the grazing landmap derived fromErb). N inputs derived from each grazing landmap remain
similar because BNF rates are generally low in this region and hence area differences do not result in bigger BNF
differences.

Table 1.Relative StandardDeviation between area, N inputs (manureN (Nman), synthetic fertilizerN (Nsyn), BNF based onNPP
(NBNF_NPP,,)BNF based onET from ISIMIP (NBNF_ISIMIP ), BNF based on ET fromGLEAM (NBNF_GLEAM ) andNdeposition (Ndep)), N
output (Ngrazed) andN indicators (NUE andN surplus) calculated based onRamankutty,HYDE and Erb. Values larger than 10%are printed
in bold.

Relative StandardDeviation [%]

Area Nman Nsyn MBNF_NPP NBNF_ISIMIP NBNF_GLEAM Ndep Ngrazed NUE NSurplus

Australia andOceania 8% 3% 2% 9% 11% 10% 10% 3% 4% 2%

Caribbean 6% 3% 1% 6% 4% 3% 16% 4% 3% 9%

Central Africa 35% 18% 79% 39% 43% 44% 42% 18% 17% 5%

Central America 7% 3% 3% 5% 4% 4% 8% 3% 4% 1%

Central Asia andRus-

sian Federation

21% 1% 2% 33% 32% 33% 26% 1% 19% 8%

East Africa 30% 14% 0% 30% 29% 30% 44% 14% 11% 8%

Eastern and South

Eastern Europe

43% 3% 2% 43% 43% 42% 44% 3% 16% 12%

EasternAsia 6% 14% 23% 8% 17% 15% 12% 11% 6% 11%

NorthAfrica 23% 2% 67% 8% 9% 11% 14% 2% 4% 16%

NorthernAmerica 31% 9% 21% 30% 29% 31% 27% 8% 12% 8%

SouthAmerica 32% 3% 2% 31% 31% 32% 26% 3% 11% 2%

Southeastern Asia 128% 75% 86% 126% 120% 124% 111% 70% 27% 17%

SouthernAfrica 16% 1% 0% 17% 17% 18% 17% 1% 10% 3%

SouthernAsia 58% 65% 97% 67% 83% 86% 92% 63% 6% 29%

West Africa 15% 7% 20% 22% 24% 19% 7% 6% 7%

WesternAsia 56% 8% 10% 18% 25% 26% 42% 8% 8% 41%

Western Industrial

Europe

51% 5% 6% 51% 47% 48% 48% 4% 12% 20%
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The opposite is true for Central Africa, SouthAmerica, EasternAfrica, North America, Southern Africa and
Central Asia andRussian Federation, where allocation differences lead toNUEdiscrepancies. However,
discrepancies are not visible when looking atN surplus as area discrepancies lower the differences between theN
budget terms due to assigning relatively larger areas to largeN inputs and outputs. ForCentral Africa, BNF is an
important input constituting between 53%and 57% to totalN input. As Erb allocates around five times asmuch
area to theDemocratic Republic of Congo, this leads tofive timesmore BNF in this country, which is the largest
contributor in this region. BNF also plays a central role in SouthAmerica, where larger grazing land areas from
Erb in Brazil lead to almost twice asmuchBNF input in this country as they coincide with high BNF rates due to
highNPP rates. All otherN inputs are rather similar and as BNF constitutesmore than a third of total N inputs, it
is a driver for discrepancies. In EasternAfrica, largest area discrepancies can be found in Ethiopia, South Sudan
andKenyawhereas inNorthAmerica large area discrepancies can be found in theUS, which contributes over
85%ofN inputs in that region. These discrepancies lead to large discrepancies in BNF aswell, which contributes
more than one third to total N inputs in these regions and shows the highest differences between the different
sources. The same is true for Southern Africa andCentral Asia andRussian Federation, where BNF is the largest
N input. Influential countries in these regions are SouthAfrica andBotswana andRussia respectively.

InWestern Industrial and Eastern and South Eastern Europe, allocation differences are not externalized in
manureN and synthetic fertilizer differences, as hot spots for theseN inputs seem to be covered by all land use
maps.However, area and allocation discrepancies causing differences in BNF andNdeposition lead toNUE and
N surplus discrepancies. Large differences in BNF inWestern Europe can be found inNorway. Using the
updated Erb dataset results in allocatingmore than 100 times asmuchBNF to this country group than the
assessment based onRamankutty orHYDE. This leads to BNF contributing over 50% to the total N inputs when
calculated based on Erb as opposed to as little as 10%when calculated usingHYDEdata.However, Norway is a
countrywhere BNF shows high discrepancies between the different calculationmodes.WhenNPP is used for
the calculation, BNF is up to twice as high aswhen calculated using ETdue toNPPbeing relatively high in the
South ofNorwaywhile ET is relatively low forNorway as a whole. BNFdifferences in Eastern and South Eastern
Europe are driven byUkraine and Poland. Differences between different BNF calculationmodes are rather low.

Due to similarmethodologies, N indicators calculated based onRamankutty andHYDE aremore similar
thanwhen comparing them toN indicators based on Erb (table 2). Biggest differences betweenRamankutty and
HYDEbased results can be found in all regions of Asia (except Central Asia). On the global level, discrepancies
betweenN surplus results based on Erb and based onRamankutty orHYDE are up to seven times larger than
discrepancies betweenRamankutty andHYDE alone, while forNUE results, this number increases to over 28.

3.3. N indicator discrepancies on agricultural land
Some of the discovered differences become smaller when expanding to agricultural land by including cropland
(table 3). This can be observedwhen comparing results forWestern and Southeastern Asia. For both regions,
synthetic fertilizer application can explain this effect. Due to only 18% (HYDE) to 36% (Ramankutty) of

Table 2.PairwiseNUE andN surplus ratios. Ratios larger than 1.1 are printed in italic, ratios smaller than 0.9 are printed in bold.

N Surplus NUE

HYDE/Raman Erb/Raman Erb/HYDE HYDE/Raman Erb/Raman Erb/HYDE

Australia andOceania 1.05 1.03 0.98 0.96 0.92 0.96

Caribbean 1.00 1.17 1.17 1.00 0.95 0.95

Central Africa 1.02 1.10 1.08 1.10 0.78 0.71

Central America 0.98 0.99 1.01 1.00 0.96 0.93

Central Asia andRussian Federation 1.01 1.15 1.14 0.98 0.70 0.71

East Africa 1.05 1.10 1.05 1.03 0.84 0.82

Eastern and South Eastern Europe 1.02 0.81 0.80 1.02 0.76 0.75

EasternAsia 0.90 1.13 1.26 1.11 1.02 0.92

NorthAfrica 0.99 1.31 1.32 1.05 1.07 1.02

NorthernAmerica 1.16 1.02 0.88 0.97 0.80 0.82

SouthAmerica 0.97 1.01 1.04 0.99 0.81 0.82

Southeastern Asia 1.20 0.85 0.71 1.19 0.68 0.57

SouthernAfrica 1.05 1.04 0.99 0.96 0.82 0.86

SouthernAsia 0.87 1.49 1.72 1.00 0.89 0.89

West Africa 1.00 1.14 1.13 1.03 0.91 0.88

WesternAsia 0.70 1.58 2.25 0.87 0.89 1.02

Western Industrial Europe 0.99 0.68 0.69 0.99 0.80 0.81

Global 0.98 1.12 1.14 1.00 0.88 0.87
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agricultural area being cropland area inWesternAsia, compared to 89% (HYDE) to 90% (Ramankutty) in
Southeastern Asia, the difference between grazing land and agricultural landNUEs inWesternAsia is smaller
than in Southeastern Asia. In Southeastern Asia, the difference ofNUEon grazing land as described before
almost disappears due to synthetic fertilizer becoming the primaryN input forHYDE andRamankutty based
calculations.

However, in SouthernAsiaNUEdiscrepancies betweenHYDEandRamankutty based calculations arisewhen
including cropland area. This canbe explainedby the additionalmanure applied from livestock kept indoors
balancing out the beforehandobserveddiscrepancies inmanureN.However, as this is only true for the combination
of indoor andoutdoor excretedmanure, discrepancies remain forNgrazed leading todifferences inNUE.

N surplus andNUEdiscrepancies between calculations based on Erb versus Ramankutty also become
smaller when cropland area is added. Discrepancies in synthetic fertilizer disappear completely andmanureN
discrepancy only remains inCentral Africa, where Ramankutty allocates neither enough cropland nor grazing
land area to cover all cells wheremanureN is located. This can on the one hand be explained bymore area being
covered by agricultural area, smoothing out allocation discrepancies and by additionalmanureN andmost
synthetic fertilizerN being located on cropland. Because croplandN is equal for Erb andRamankutty based
calculations it acts as amoderator toN surplus andNUEdiscrepancies. Higher discrepancies remain in
NorthernAmerica, whereN input differences decreasedmore than area differences, leading to a lowerNUE
based on Erb grazing land. In Southeastern Asia, wheremanureN and synthetic fertilizer account formore than
70%ofN input the decrease of discrepancies between themwhile area differences remain leads to similarNUE
but differingN surplus.

4.Discussion

Calculating spatially explicit N indicators from land-usemaps is commonpractice, however little attention has
been given to the differences in these land-usemaps and their effect on the resultingNUEorN surplus. Our
results suggest that conceptual differences originating fromdifferent grazing land definitions are highly
influential on theN indicator calculation, especially on grazing land. Comparing the global N surplus ratio
between Erb and each of the other two sources (1.12& 1.14) to the ratio betweenHYDE andRamankutty (0.98),
hints towards the impact of conceptual grazing land differences being about six times stronger than impacts of
other uncertainties.

We also identified BNF as playing a crucial role in the translation of the discrepancies on grazing land, with
uncertainties related to the calculation of thisN input being high in some regions.

4.1.Differences in grazing and agricultural land
Discrepancies rooted in themethodology used to develop the respective land-usemap (observable in the
comparisonRamankutty versusHYDE) offer away to identify areas where data uncertainties prevail. In

Table 3.Regional N surplus andNUE comparison betweenRamankutty, HYDE and Erb.

N Surplus onAgricultural Land

[kg ha−1 yr−1] NUEonAgricultural Land [%]

Ramankuty HYDE Erb Ramankuty HYDE Erb

Caribbean 15.68 15.76 19.12 76% 76% 70%

SouthernAsia 83.95 85.73 56.13 35% 34% 47%

Central Africa 18.65 18.98 20.45 29% 32% 23%

Western Industrial Europe 53.82 52.92 43.89 56% 56% 52%

Eastern and South Eastern Europe 36.73 35.52 34.32 53% 54% 50%

WesternAsia 18.67 11.68 21.97 56% 54% 55%

SouthAmerica 22.26 21.43 20.18 66% 66% 59%

Australia andOceania 13.47 13.61 13.69 42% 40% 39%

East Africa 18.17 16.66 17.04 52% 57% 49%

West Africa 11.94 10.31 11.78 66% 70% 64%

Central America 20.38 19.87 20.20 58% 58% 55%

NorthernAmerica 31.55 31.75 27.66 57% 58% 54%

Southeastern Asia 64.44 61.93 42.24 37% 40% 39%

SouthernAfrica 12.54 13.11 12.74 40% 39% 34%

EasternAsia 55.39 47.39 52.05 37% 40% 39%

NorthAfrica 16.42 16.76 20.18 55% 56% 59%

Central Asia andRussian Federation 15.05 15.36 16.06 39% 39% 32%
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contrast, discrepancies rooted in the definition of grazing land (Ramankutty&HYDE versus Erb) can be
interpreted as an opportunity to evaluate human perturbation of theN cycle in amore encompassing way.
Areas, that were not considered as being affected by human activity before, are enclosed in this approach. This
could be of importancewhen looking at countries, where livestockmay be kept as an asset or a draught animal
andmight not graze on permanent pastures but rather on smaller areas with variable land use (Teufel et al 2010,
Herrero et al 2013a). Such activity is excluded from the approaches used byHYDE andRamankutty who refer
only to a subset of grazing activities.While, ensuing, the approaches byHYDE andRamankutty are biased to the
lower end, the approach by Erb et al (2007) is probably biased to the higher end. It can be assumed that area
derived by the subtractive approach (seemethod section) results in the inclusion of other land uses that prevail
on the areas identified as grazing land by the Erb approach. This indicates the importance and need for further
research on grazing land in order to enhance themapping and assessment capacities aimed at evaluating the
effect of human activity in the agricultural sector on theN cycle.

While discrepancies inN indicators on grazing land are quite striking, differences on agricultural land are
not as prominent. Nevertheless, using amore inclusive definition of grazing land (Erb) leads to a larger account
ofN inputs to agricultural lands by approximately 29 Tg yr−1 as compared to results based on themaps
following the FAO ‘permanent grass land’ definition. CombinedwithNoutputs, which show a difference of only
11Tg yr−1 between the exclusive (Ramankutty, HYDE) and inclusive (Erb) grazing land definition, this leads to
an increasedNbalance on agricultural lands of approximately 17Tg yr−1. This excessN found in the
calculations based on Erb equals about 6%of the total globalN input and over 12%of the globalN balance. Still,
globalN surplus based on Erb is lowest for agricultural land and rather low for grazing land due to larger areas
being considered in the calculation. Regional and sub-regional differences remainwhere in some casesN surplus
based on Erb is higher and in other cases lower compared to the other two sources.

However, not only the effect of differing area definitions onN surplus is loweredwhen including cropland
but also the overall N surplus calculation. This effect is visualized infigure 5wherewe subtracted a ‘best estimate’
for cropland only (Kaltenegger andWiniwarter 2020), which is based on very similar approaches, fromour
calculations for agricultural land based on Erb (figure 6).We note that for large parts in theworld, only a part of
N surplus in cropland area also remainswhen looking at total agriculture. This indicates the transfer ofN
material via livestock (extracted from grazing land) to cropland, where it causes excess surplus. Although still
being rather high, biggest reduction inN surplus when considering its distribution over agricultural area rather
than cropland only, can be observed inChina.

For someNpoor areas, a similar effect is visible the other way around: areas of significantNdeficiency that
appear in cropland only, e.g. inWesternAfrica, become invisible when total agricultural land is considered. This
may point to land use rotation (not visible from the land usemaps) causing amore or less balanced situation, at
least forN, on the longer timescale and the grid size used (not excluding sub-grid and shorter-term effects).

Nevertheless, our results still showhighN surplus inChina, India, Central Europe andNortheasternNorth
America (figure 6). Still, even in those regions, distribution ofN towards grazing land creates amuch smaller
surplus than otherwise expected (see Kaltenegger andWiniwarter 2020).Moreover, whileN surplus is very low
inmany developing countries, a consistent long-termdepletion of nitrogen is not visible –which alsowould be
difficult tomaintain over extended periods.

Figure 5.Difference betweenN surplus on agricultural land (the sumof grazing land fromErb and cropland based on theM3 crop
map) andN surplus on cropland (M3). Blue indicates grid cells where a lowerN surplus remains on agricultural land than on
cropland. Red indicates grid cells where higherN surplus is found on agricultural land than on cropland.
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4.2. Biological Nfixation (BNF)
Additional to uncertainties related to grazing land differences, uncertainties related to BNF calculations were
identified to influenceN indicator calculations.

Area differences in grazing land affect BNFmost strongly, leading to discrepancies inN input as BNF
contributesmore than 50% to total N inputs in some. Its influence onN indicator calculations on grazing land
highlights the importance to investigate BNF and uncertainties related to itmore closely.

We calculated global BNF on grazing land based onNPP and ET to range from31Tg yr−1 using ISIMIP ET
data on theRamankutty grazing landmap to 53Tg yr−1 usingGLEAMETdata on grazing land taken fromErb.
Due to the correlation ofNPP and ET, both being linked towater availability and solar radiation, differences
betweenNUE calculated using BNFbased on ETorNPP remain small. Highest discrepancies between BNF
calculation based onNPP and ET can be found inCentral Asia andRussian Federation (9%difference between
NPP and ISIMIP ET). In this regionmoreNPP can be found than ET leading to higherN input and consequently
a lowerNUE. This is also true for theNorthAfrica region.

While only small discrepancies between the differentmodes for calculation in this paper were discovered,
differences to other sources are slightly bigger. Herridge et al (2008) used FAOSTATdata on yield and area
combinedwith values onBNF taken from literature to calculate global BNF rates per agricultural system. They
estimated BNF frompasture and fodder legumes to lie between 12Tg yr−1 and 25Tg yr−1 and BNF from
savannas to amount to less than 14 Tg yr−1. Adding these two estimates amounts to a range of 26–39TgN yr−1

beingfixed biologically, being rather at the low end of our global BNF results on grazing land.However, this can
most likely be explained byHerridge et al (2008) only including legumes andno other grazing areas.

Meyerholt et al (2016) used the land surfacemodel ‘O-CN’ to calculate BNF spatially explicit and per plant
functional type (PFT). They estimated about 40TgN yr−1 globally being fixed byC3 andC4 grasses, which is
well within our calculated range. The reason for the estimate byMeyerholt et al (2016) being lower than the
estimate based on the inclusive grazing land definition, following Erb, could be that vegetation types such as
Mediterranean and arid shrubland’ as well as wet savannas andmoist tundras are not included in theC3 andC4
PFTs but could, at least partially, be considered as grazing land by Erb.

Cleveland et al (1999) derived BNF rates per ecosystem froma literature review and arrived at a global BNF
estimate between 100Tg yr−1 and 290Tg yr−1. Selecting all ecosystemswhere grazing land could be found, such
as savannas, tundra, shrubland etc, amounts to an estimate between 52Tg yr−1 and 193Tg yr−1 which fits the
results we provide here based on the grazing land definition used by Erb.

Further research to producemore robust results will be needed to undermine the hypothesis that BNFplays
a crucial role in the translation of grazing land discrepancies to differences inN indicators. This is especially true
for the calculationmethod used. Although a link betweenNPP andBNF as described byCleveland et al (1999)
was also found byAshworth et al (2018), recent work suggests limitations in the use ofNPP and ET as proxies for
BNF calculation (Davies-Barnard and Friedlingstein 2020). This is also truewhen aiming to include effects on
BNF from grazing landmanagement such as legume intercropping (Rumpel et al 2015), which comeswith the

Figure 6.N surplus on agricultural area (the sumof grazing land fromErb and cropland based on theM3 cropmap). Grid cells with
less than 5%of agricultural land are excluded.
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challenge of species distinction on grazing landwhere no global dataset is available. Additionally, Fetzel et al
(2017)findNPP to be responsible for>30%of the variance found inmapping grazing intensity at the global
level (ranging from about 10%up to 50%at theworld-regional level). This variance is caused by the huge range
of availableNPP estimates due to differentmodelling approaches. From this one could assume a strong impact
fromNPPuncertainty onBNF and subsequentlyN indicator calculation.

Further research aimed at gatheringmore information on global species distinction on grazing land and
narrowing the uncertainty related toNPP is certainly warranted. However, as this affects all grazing landmaps to
the same extent, this remains outside the scope of ourworkwherewe aim to scrutinize the discrepancies
resulting from the use of differentmaps.

4.3. Comparison ofN indicators to other studies
While the largest differences inN indicators and their compounds result fromdifferences in grazing land
definitions, a comparison between the results for permanent pastures from this study (HYDE&Ramankutty)
with the same reference presented byDangal, reveals that a discrepancy of similarmagnitude relates to the role of
manureN (49.02 Tg yr−1 Ramankutty, 52.46 Tg yr−1HYDE and 74.20 Tg yr−1 Dangal). This difference can
most likely be explained by differing animal numbers and excretion rates.WhileDangal et al (2019) usemanure
Ndata fromZhang et al (2017), which combines a previous version ofGLWwith IPCC 2006 guidelines default
excretion values, we use regional and animal specific excretion factors as provided by theGAINSmodel.

Data for synthetic fertilizer, however, is well in agreement with our calculations (4.54 Tg yr−1 Ramankutty,
5.12 Tg yr−1HYDE and 4.2 Tg yr−1Dangal).

To check for further discrepancies, our global and regional results onNUEandN surplus fromagricultural land
were compared toBouwman et al (2009), while results forEuropewere additionally compared todata presented by
Leip et al (2011). Bouwman et al (2009) calculated globalNbudgets on agricultural land for the years 1970, 2000,
2030 and2050. Their budgets for the year 2000 are similar to the ones calculated byuswith somediscrepancies in
the details (see table 4). BNF is calculated fromyield andNcontents for leguminous cropswhile an invariant BNF
rate is applied to all pastures. This leads to rather lowBNFfixation (30Tg yr−1) compared to our results for
agricultural land (75–78Tg yr−1).ManureN,on the contrary, is very high inBouwman et al (2009)with 101Tg yr−1

compared to our results of 76Tg yr−1. This couldbe explainedbyour lowmanureNmanagement and application
rates taken fromHerrero et al (2013b). Looking at table 4, one can see that the regionalN surplus as calculated in this
studyfitswellwith the results presented byBouwman et al (2009), keeping inmind that the base year of our
calculations is 2010 as oppose to 2000 as usedbyBouwman et al (2009).

TheNUE calculated for Europe for 2001–2003 by Leip et al (2011) is 54%which fits well to our calculation of
56%–57%.However, looking at each country inmore detail, greater discrepancies become visible, especially for
Estonia, Finland, Italy, Ireland and Sweden (figure 7). In Italy, synthetic fertilizer input influences the results the
greatest with Leip et al (2011) ascribing nearly 70%higher synthetic fertilizer input. This discrepancy can be
explained by the difference in base years between Leip et al (2011) (2001–2003) and ourNUE calculations (2010).
Mineral fertilizer application in Italywas reduced bymore than 60% from2001 to 2010 (UNFCCC2020). In
Sweden, Leip et al (2011) calculates a higherNwithdrawal leading to a higherNUE than our results. This could
be explained by a reduction in crop production from2001 to 2010 (FAOSTAT 2020). The same is true for crop
production in Ireland, which decreased by about 25% from2002 to 2010 (FAOSTAT 2020). In Estonia, BNF
highly influences the discrepancies as the approach used by Leip et al (2011) (using afixed share ofNneeded for
uptake being covered by BNF for all grazing land) leads to a 30-fold lower result.

Table 4.Regional comparison ofN surpluswith results presented byBouwman et al (2009).

N Surplus [Tg yr−1]

Ramankutty HYDE Erb Bouwman et al (2009)

Africa 16.51 16.07 21.74 18.16

Central and SouthAmerica 14.75 14.89 19.76 13.54

Europe 9.98 9.93 12.02 11.36

NorthAmerica 14.57 14.53 16.96 18.75

NorthAsia 5.69 5.68 8.45 4.77

Oceania 4.82 5.18 5.44 5.23

SouthAsia 71.18 70.42 69.48 74.85
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5. Conclusion

Aswas shown throughout this paper, N surplus calculations vary greatly between regions, with discrepancies in
grazing land definition beingmore influential on the results thanmethodological differences. Highest
discrepancies in both cases were found inAsia.We found that BNF constitutes an important translator for these
differences, while also being a source of further uncertainty, highlighting the opportunity for further research.

The right choice of a land-usemap is fully determined by its objective as eachmaphas its ownadvantages and
disadvantages.WhileHYDEoffers the opportunity to develop a time series for thepast 12.000 years, Ramankutty
facilitates the combinationof a croplandmapwith a cropmap (M3). Bothmaps also enable an easier comparison
with other studies as they follow themost commondefinitionof grazing land–permanent pastures.

When aiming at evaluating the impact of human activities on the globalN cycle, we argue that the Erb
grazing landmap is a better choice. Itsmore encompassing grazing land definition leads to the inclusion ofN
surplus in areas that would otherwise have not been considered.While these areasmay be low in productivity,
their contribution to overall N supply remains relevant hinting towards amore profound anthropogenic
influence on natural systems.

Given this extension, thatwould also redistribute someadditionalNover a considerably larger area, the overall
pattern provides new insights into the anthropogenic alterations onNand specifically onNUEandN surplus.

These insights offer away to expand the coverage of previouswork (e.g. Bouwman et al 2013, Tian et al 2018,
Dangal et al 2019) to not only include permanent pastures but also browsing and transhumance land. This
expansion is essential for improving the understanding of the role of human activity in terms of planetary
boundaries. Furthermore, it paves theway towards amore complete accounting of potential N release from
agricultural lands, e.g. when attempting to assess non-linear effects of N availability onN2O emissions (see e.g.
Shcherbak et al 2014) aswell as for forging effective policy strategies aimed at amore sustainable development of
the food and land systems.
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