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ISSUES IN MODEL VALIDATION 

Andrzej Lewandowski 

1 .  INTRODUCTION 

It is commonly agreed between modeling methodologists that 
model validation is one of the most important stages in the model 
building process. Many papers addressing this subject have been 
published and an SCS Technical Committee on Model Credibility has 
been established in order to generalize and summarize the experi- 
ences in this field (see Appendix) . However, at the present 
stage of research there are almost no suggestions concerning con- 
crete methods of validation. Practically all authors only discuss 
definition of validation - not methods. The number of papers 
dealing with methods of model validation is also rather limited. 

The reason for this gap between methodological consciousness 
and the practice of model building seem to be obvious - the dis- 
cussion stays at too h.igh a level of abstraction. In general, 
all authors consider "model" as a description of reality, and on 
this level of concretization it is only possible to generate 
rath.er general statements, frequently true but without operational 
meaning. The author of this paper believes that, in order to ex- 
amine validation methods, it is necessary to specify more precisely 
the model under consideration, the properties of the model, the 
modeling techniques, and, most importantly, the purpose of the 
model. 

The aim of this paper, threfore, is to present a classifi- 
cation of models and an analysis of the modeling process from 
the point of view of model validation. At this stage of the 
investigation, however, it is not yet possible to design, nor to 
analyze, methods of validation. Our goal is to design a frame- 
work for model validation as a first and important step in 
establishing a model validation methodology. 



2. VALIDATION: DEFINITIONS 

There are variousdefinitions for model validation, but all 
are very similar and have been summarized by SCS Technical 
Committee on Model Credibility (1979). This set of modeling 
methodology definitions and concepts is quite precise and clear. 

..... (model validation is) substantiation that a com- 
puterized model within its domain of applicability 
possesses a satisfactory range of accuracy consistent 
with the intended application of the model. 

This definition also coincides very well with the definitions 
given by, for example, Naylor (1972) and Mihram (1974). The 
most interesting consideration of validation methodology, 
however, can be found in Mankin et al. (1975), where a more 
formal definition is given. 

..... model is valid if its behaviour corresponds to 
system behaviour under all conditions of interest. 
A model is considered invalid if we can devise an 
experiment in which the model outputs disagree with 
system measurements within the specified area of 
interest. .. 

Similar notions have also been investigated by Beck (1980) : A 
somewhat broader notion I s  that of usefulness "...a model is 
useful if it accurately represents some of the system behavior 
and useless if it does not." (Mankin et al.) 

Model validity can be related to model reliability and 
adequacy: 

-- reliability is defined as the fraction of the model 
outputs which correspond correctly to system outputs; -- adequacy is the fraction of system outputs which can 
be modeled correctly. 

In the definitions formulated above, "model output" should be 
understood in a rather general sense and by "output" is meant 
the result of the modeling experiment. 

Since the last two concepts have more definite operational 
meaning and can be relatively easily measured and computed, they 
can be treated as more practical tools for model testing and 
choosing between alternative models. These more qualitative 
model validity measures imply application possibilities of more 
advanced techniques, for example, statistical hypothesis testing 
(Greig 1979). Hence, there is now a good terminological back- 
ground for model validation in the sense that we know generally 
what model validation means. There remains open, however, the 
problem of how to validate a given model. 

3. MODEL ATTRIBUTES 

A large number of mode2 a t t r i b u t e s  can be listed, but only 
three of them seem to be interesting for model validation pur- 



poses. The first attribute can be called model background which 
gives information on the natural and behavioral background of the 
model. This attribute determines to what extent basic consideration 
and natural laws have been applied when building the model. Hard 
models with a natural background are built on the basis of well 
established natural laws, for example, such precise and well- 
defined concepts as mass or energy balances, variational mechanical 
principles, etc. In other words, the validity of these models 
can be judged on the basis of well-known and accepted theories. 
This type of validity consideration can be called internal 
validation, and consists of checking the preservation of the 
basic laws which have been used when building the model. Models 
of electrical circuits, technological processes, and selected 
environmental problems (water quality) are examples of hard models 
with natural backgrounds. 

At the other end of the spectrum we have soft models with 
behavioral background. They are formulated on the basis of more 
inductive analysis of system behavior - without such a priori 
knowledge of natural laws governing the system under consideration. 
In many important practical cases we must hypothesize when dealing 
with system behavior, either because of the complexity of the 
system, large numbers of factors, or because of an insufficient 
level of basic knowledge dealing with the phenomena being modeled. 
This situation frequently arises in the modeling of social, 
environmental, or economic systems. Similar considerations have 
been performed by Kalman (1979): 

..... the usual procedure of making a model of a system 
is obvious. A catalog of known facts,and data is com- 
piled and equations are written down by taking into ac- 
count all available quantitative information ... An 
absolutely essential assumption for this process to work 
is that the "laws" governing physical phenomena are in- 
dependent of the system context... Oversimplifying a bit, 
no matter what system is built, who builds it, how it is 
built, and why it is built, Ohm's law is immutable. The 
essential feature of economics is that this is simply 
not so... There are no "laws" in economics as this term 
is understood in physics, because economics is a system- 
determined science ... 

Similar concepts of hard and soft models have also been introduced 
by Beck (1980)-, but his definition is a little bit broader. 

The second model attribute relates to the logical type of 
the model. One can consider two types of models - causal and 
descriptive. Causal models can be built if one can distinguish 
between cause and effect and the input and output variables in 
the system consideration. According to Zadeh's (1963) terminology, 
these models should be called "oriented models." Descriptive 
(or nonoriented) models are built on the basis of correlation 
analysis, without distinguishing between inputs and outputs. 
Correlation analysis makes it possible to test the dependence 
between various variables, but cannot give conclusive evidence 
about cause and effect. Independent information on natural laws 
and logical relations governing the system under consideration 



is needed to establish a causal relationship. Most of the econo- 
metric and regression-based models belong to this class. A 
typical example is a model of dependence between the weight and 
height of individuals in a population. There is a strong cor- 
relation between these variables, but what is cause and .effect, 
what is input and output? 

This second attribute is rather important from the point of 
view of validation methodology: causal models can be subjected 
to simulation experiments, while such experiments are not possible 
in the case of descriptive models. In other words we can 
experiment with modeling to answer what will happen with a spe- 
cific input signal. This kind of experiment cannot be performed 
for the model mentioned above. It is possible, however, to use 
a formally obtained relationship between height and weight (usu- 
ally inthe form of a linear equation) but such an experiment is 
not very sensible. 

The third attribute, called the interpretative type of 
model, is related to the way in which the modeling results are 
interpreted. Here we can distinguish between probabilistic and 
nonprobabilistic (or deterministic) approaches to model interpre- 
taticn, although there are also other ways of including uncer- 
tainty in model interpretation (e.g., the fuzzy approach). It 
is necessary to stress here that: 

-- the same model can be interpreted in both.!ways. For 
example, we can use a linear model estimated on the 
basis of least squares analysis, and interpret the 
results in terms of a probabilistic analysis, or 
compare only judgementally the numbers obtained from 
measurements and from the model. Thus, the interpreta- 
tive type of model depends on the methods of analysis 
rather than on the form of the model. 

-- the interpretative type of the model does not depend on 
the nature of the real world. The assumptions about the 
deterministic or indeterministic nature of the real 
world is a purely philosophical hypothesis and has 
nothing to do with the type of models we use: we can 
describe a deterministic world using probabilistic models 
and vice versa. 

The interpretative type of models automatically determine 
the possible tools for model validation. The only difficulty 
relates to the necessity of specifying assumptions about the 
model environment. In fact, when using probabilistic models it 
is also necessary to build models of the environment of the 
base model, for example, statistical properties of measurement 
errors. It is then necessary to validate these additional models, 
which, of course, causes further technical difficulties. 

In the case of deterministic models, the situation is even 
more difficult: there are no formal methods of model validity 
analysis. The only possibilities here are sensitivity analysis 
and heuristic methods (visual inspection of the results, judge- 
mental estimation, etc.). Model adequacy can then be tested only 
in a qualitative way. We are now able to characterize the model 
in terms of the attributes formulated above, and hopefully can 



suggest tools for model validation connected with every attribute. 
Possible situations are presented in Figure I .  Let us briefly 
consider the existing combinations (eight possibilities). Some 
of these combinations seem to be empty, for example, it does 
not seem possible to build a natural and descriptive model, or 
to build a descriptive and deterministic one. The suggestions 
dealing with possible validation tools, however, can be formulated 
rather automatically, on the basis of previous considerations. 
These suggestions have been collected in Figure 2. It can be 
seen, for example, that for a natural, causal, and deterministic 
model one can use an internal validity approach based on a simu- 
lation approach supported by sensitivity analysis and judgmental 
evaluation. If the last attribute is "probabilistic" we can also 
use internal validity based on simulation techniques but using 
probabilistic methods to interpret the results (Klejinen 1974) . 

These statements seem to be rather general and, of course, 
do not constitute a solution to the problem, but provide instead 
guidelines for the solution of a concrete problem. Moreover, 
for some combinations of model attributes there are no existing 
tools for model validation. Thus, on the basis of these investi- 
gations, we can see what kind of methods should be used in future 
and what classes of validation techniques are interesting from 
the practical point of view. It is necessary to point out here 
the model attributes listed above are incomplete. It is, of 
course, possible to formulate many other attributes but they are 
not so important from the point of view of model validation; how- 
ever they do have influence on the validation process, and for 
this reason we shall call them "secondary attributes." In this 
way we obtain two model classification levels. It is also nec- 
essary to point out that these attributes can be essential at the 
early model building stage to determine possible technical tools 
for the modeling. These secondary attributes consist of the 
following: 

-- linearity - nonlinearity 
-- time constant - time dependent 
-- continuous time - discrete time 
-- dynamic - static 

4. SYSTEM ATTRIBUTES 

The model is only the first component in the validation pro- 
cess. The second component is the system or the real world. 
Clearly, system attributes and their relationship to model attri- 
butes will influence the validation methodology. 

The first attribute we shall consider is the e x p e r i m e n t a l  
t y p e  of t h e  s y s t e m .  This attribute determines which kind of ex- 
periments can be performed with the system. Three possible situ- 
ations may occur: 

1. The system is a design abstraction, not yet existing in 
the real world and there is no experimental basis for modeling. 
This kind of situation arises very frequently in engineering 
problems when determining new systems: modeling is then used to 
test complicated projects. As the real system does not exist, 



Figure 1. Model Attributes and Classes 
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there is no "reality" which can correspond tothemodel. In every 
realistic situation system being modele-d, however, there is a 
correspondence with reality; practically every new system under 
construction consists of components already applied in other ex- 
isting systems. This means that the model consists of submodels 
which have previously been tested. A good example is chemical 
engineering modeling where new technology connects a series of 
apparatus (reactors, distillation columns, mixers, etc.). Models 
of these apparatus are well known and in this case we are able to 
extrapolate our knowledge. Models consisting of well-validated 
submodels will probably be valid, and this kind of approach can 
be called component validation. 

2. The system exists in the real world, but it is not pos- 
sible to make active experiments. This is the situation which 
arises most frequently. It occurs in economic and social system 
modeling, and environmental and technological problems. The 
"reality" in this case is a data record which in most instances 
is too short and of too low a quality. This situation makes 
things rather difficult from the point of view of model valida- 
tion. Because of a small data base, typical statistical methods 
frequently cannot be applied. A possible solution is to apply 
the extended model concept developed by Wierzbicki (1977). The 
extended model is built starting with the basic model in question 
and supplementing it by models of possible differences between 
the basic model and reality from a priori knowledge of system 
properties and partially validated by existing measurements. The 
extended model is then treated as the "real world" for evaluation 
and verification of the simplified model. This concept has been 
applied with success in the modeling of technological processes 
(in chemical engineering, gas and water transmission systems). 
The author also believes it is possible to apply this concept 
to environmental systems modeling (e.g., water quality problems) 
or even economic systems. 

3. The system exists in the real world and it is possible 
to make a series of active experiments. This is the best situ- 
ation, of course, but it occurs very rarely. In this case we 
have good support for model validation; it is possible to generate 
as much. data as necessary, to apply experiment design techniques, 
and so on. Statistical methods can be applied as well as those 
described in the literature (for examples of Turing test and 
extensions, see Schruben, 1980; for hypothesis testing, see 
Greig, 1979). Possible situations in the model validation pro- 
cess are shown in Figure 3. 

5. VALIDATION ATTRIBUTES 

Let us now consider the validation process. It is obvious 
that this process depends both on the model and system attributes 
and that it is necessary to combine them; some combinations, how- 
ever, limit the number of possible validation approaches. It is 
not possible, for example, to use statistical methods for analyz- 
ing the validity of a deterministic model. Model type, however, 
is only one of the important attributes of the validation pro- 
cedure. Two other important aspects are the model purpose and 
the relationship between the model and the real world. 
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Many authors point out that the model validation process 
should be goal-oriented, however, it is not an easy task explain- 
ing what this statement means. Let us consider possible situ- 
ations: 

Modeling for Understanding 

In many instances, the only modeling goal is to understand 
the system structure and its behavior better. The modeler can 
perform simulation experiment, he can "play" with the model in 
order to observe what will happen in certain situations. One of 
the most important advantages of such experiments is the fact 
that it is then possible .to view the internal structure of the 
model and see the processes "inside" the investigated phenomena. 
This kind of investigation is especially popular in physics and 
astrophysic research, and has also been utilized in ecological 
research (Mankin, et al., 1975) . 

The main problem that arises with validation is the relation- 
ship between the structure of the process and the structure o f  
the model. According to the terminology introduced above, the 
internal validity (or model testing "part-by-part" 1 should be 
performed in this case. One other factor can also be important: 
that the model should pose a level of "internal stability" with 
respect to data. Sensitivity analysis is then recommended for 
checking this property. "Sensitivity" should be understood here 
in a rather broad sense. During the modeling process we make a 
number of assumptions dealing with the external world (system 
neighborhood), model structure and model parameters, and one 
of the goals should be the exploration of the influence that these 
assumptions have on model behavior. It is necessary to mention 
here that a single simulation run without more exact analysis is 
of little practical value from the point of view of understanding 
the system. The importance of sensitivity testing has been des- 
cribed well by Quade (1968) : 

Ordinarily there is no unique, "best" set of assump- 
tions in modeling, but a variety of possibilities, 
each of which has some basis for support. A good 
system study will include sensitivity tests on the 
assumptions in order to find out which ones really 
affect the outcome and to what extent. This enables 
the analyst to determine where further investigation 
of assumptions is needed and to call attention to 
the decisionmaker to possible danger that might be 
present ... 

Similar ideas are also considered in Quade and Findeisen (1980). 
There are many formal tools for sensitivity analysis and basic 
concepts have been considered by Tomovic (1970) and Wierzbicki 
(1977). Especially interesting is the general framework for 
senstlvity analysis developed by Wierzbicki and his concept of 
basic and extended models. There are also a number of good ex- 
amples of model sensitivity analysis, especially in ecosystem 
modeling (see, for example, Rose and Harmsen 1978). A lot of 
research in this direction has also been performed at IIASA: 



sensivity analysis for energy models (Konno and Srinivasan 1974; 
Suzuki and Schrattenholzer 1974), for demograph.ic models (Arthur 
1980; Willekens 1976) as well as some more general investigations 
(Stehfest 1975). There are, of course, many other excellent works 
available in the literature (see, for example, Thornton, et al., 
1979) but because of lack ofspace these will not be considered 
in detail here. 

It is necessary to point out here, however, that the exist- 
ing methods of sensitivlty analysis are only local and parametric. 
This means that it is rather difficult to investigate large devi- 
ations of parameters and structural changes in the model. All 
methods are also only applicable to models continuously depending 
on parameters - there is no way to analyze sensitivity in a dis- 
continuous case. In the non-differentiable case, for large 
parameter variations,estimation of Lipschitz constant might be 
a help; however, there are only a few theoretical papers on model 
sensitivity that deal with this question and the theoretical basis 
is as yet not fully advanced. 

Modeling for Forecasting 

This is one of the most frequent situations, and probably 
the most difficult one from the point of view of validation ap- 
proach. This particular situation has been considered by Beck 
(1980) and Mankin et al. (1975). The main difficulty arises from 
the fact that a well-validated model, in the sense that the 
model responses correspond very well to the system outputs, does 
not necessarily reflect the future behavior of the system well. 
The reasons seem to be rather obvious in that there can be an 
essentialnonstationarity in the system environment, or that there 
are some additional input variables which are not considered in 
the model. In both cases the model is evidently inadequate al- 
though it may happen that factors not considered in the model 
manifest their presence only during the forecasting (model 
utilization) period. Mankin et al. (1975) have therefore 
introduced a concept of model u s e f u l n e s s  and model r e l i a b i l i t y .  
According to their terminology, a v a l i d  model has no behavior 
which does not correspond to system behavior, and a u s e f u l  
model predicts some system behavior correctly. It is of course 
obvious, however, that although generally a valid model is useful 
this may not always be the case. There still remains the problem, 
however, of how to determine the usefulness of the model, and, 
of course, it is not possible to do it a p r i o r i .  In the case 
of statistical model interpretation, validation of forecasting 
models is understood better, and we can use these tools to 
determine the model usefulness. Moreover, by applying the Bayes 
approach it is possible to determine the confidence intervals 
for predicted system behavior. Pioneering work has been performed 
by Box and Jenkins (1970) andtheirmethodology is a good example 
of general modeling methodology. As a final test for the useful- 
ness of the model they consider the statistical properties of 
the prediction error. Another criterion for model validation 
has been considered by Kashyap and Rao (1976) and in every case 
they assume that the quality of prediction is the main criteria 
for model quality analysis. In this case, however, it is 



necessary to assume t b t  prediction will be performed many times, 
and only in this case can we apply probabilistic methods to 
analyze th.e quality of the prediction; and consequently the 
quality of the model. 

A different situation arises frequently in the case of eco- 
nomic forecasting where we have a very short data series and a 
prediction is only made once. This is complicated and only a 
few rather heuristic methods have been developed. Introductory 
work on this subject has been made by Waszkiewicz (1976) where 
some new validation criteria for forecasting methods have been 
formulated and analyzed. 

Modeling for Scenario Analysis 

Scenario analysis model simulate the future behavior of a 
system on the basis of a judgementally chosen set of assumptions 
called scenarios and where the time horizon here may be rather 
long, say, 100 years. The World Global Models and the IIASA 
Energy Models are good examples of this type of model, and in 
this case there is no accepted methodology for model validation. 

An additional difficulty connected with scenarios is the 
fact that they are also models, models of the neighborhood of 
the system being modeled, andthesemodels should also be validated. 
As yet, there are only a few works dealing with this problem, 
and much more researchinthis direction is needed. A critical 
analysis of the existing modeling approaches for scenario- 
analysis has recently been made by Kalman (1979) where he 
analyzes the world models of Forrester and Meadows from a system 
theorist point of view. In his opinion: 

..... the model consists of a system of nonlinear dif- 
ference equations which are analyzed by simulation. 
It is a well-known fact that in such a system almost 
anything can happen ... Unless there is an "organizing 
principle" for writing down these equations and thereby 
a p r i o r i  controlling their properties, rather compli- 
cated and erratic behavior may be expected on general 
theoretical grounds. Such an organizing principle is 
not available from theoretical economics and the naive 
faith that the equations (might) "represent" reality 
is certainly not good enough ... 

Kalman also stresses the role of sensitivity analysis as a vali- 
dation tool in scenario model analysis: 

..... ( they observed) that small variations in the 
assumed parameters and initial conditions result 
in gross changes in observed behavior. Since these 
parameter variations of the order of 2 - 10 percent 
are much smaller than the reasonable uncertainties 
in their values on economic grounds (of the order of 
30 - 100 percent), the value.of-the Meadow exercise 
is utterly destroyed. Any general conclusion from 
the model must be rejected because the behavior of 
the model is just not robust enough under parameter 
uncertainty ... 



A c r i t i q u e  of t he  e x i s t i n g  methodology of  s c e n a r i o  a n a l y s i s  has 
a l s o  been performed by Scoln ik  (19781, and Dubovsky and Pirogov 
(19791.. P r a c t i c a l l y ,  s e n s i t i v i t y  a n a l y s i s  i s  t h e  on ly  method 
f o r  v a l i d a t i n g  t h e s e  models. I n  a c a s e  mentioned by Kalman, 
this a n a l y s i s  has  shown nonadequacy of t h e  model. However, 
t h e r e  a r e  a number of o t h e r  works a v a i l a b l e  where s e n s i t i v i t y  
a n a l y s i s  a p p l i e d  t o  s c e n a r i o  models does  n o t  g i v e  s u c h  a p e s s i -  
m i s t i c  conc lus ion  ( fo r  example, Konno and S r in ivasen  1974, 
Suzuki and Schra t t enho lze r  1974, and Schroeder e t  a l . ,  19701. 

Despi te  these e f f o r t s  and t h e  unders tanding p a r t i a l l y  given 
by them, w e  must conclude t h a t  t h e  methodology f o r  v a l i d a t i o n  of 
s c e n a r i o  models does ,  a s  y e t ,  n o t  e x i s t .  

Opt imizat ion Models 

There are three b a s i c  t y p e s  of  model where o p t i m i z a t i o n  
methods can be a p p l i e d ,  and i n  every  c a s e  the r o l e  of  opt imiza-  
t i o n  is  quite d i f f e r e n t ;  t h u s ,  d i f f e r e n t  methods f o r  model v a l i -  
d a t i o n  should be a p p l i e d .  

The f i r e t  s i t u a t i o n  occur s  when thephenomenabeing modeled 
can be desc r ibed  i n  te rms  of v a r i a t i o n a l  p r i n c i p l e  - h e r e  
minimizat ion ( o r  maximization) of  something is  a b a s i c  p r i n c i p l e  
of  system behavior .  A t y p i c a l  example i s  t h e  minimizat ion of 
energy i n  mechanical  o r  e l e c t r i c a l  system; eve ry  system o p e r a t e s  
i n  such a way as t o  minimize t h e  t o t a l  energy accumulated. I n  
this s i t u a t i o n  i n s t e a d  of w r i t i n g  down a l l  t h e  e q u a t i o n s  and then  
s o l v i n g  them, w e  can formula te  t h e  func t ion  by d e s c r i b i n g  t h e  
t o t a l  energy which depends on t h e  system v a r i a b l e s .  Then, 
minimizat ion of t h i s  f u n c t j o n a l  s o l v e s  t h e  problem and we o b t a i n  
t h e  v a r i a b l e s  a t  the p o i n t  o f  equ i l i b r ium.  Th i s  approach has 
been i n v e s t i g a t e d  by many a u t h o r s  ( f o r  example, Kurman 1975).  
The r o l e  of op t imiza t ion  i s  ev iden t :  it i s  on ly  a t o o l  f o r  s o l v i n g  
the model, whi le  t h e  model i t s e l f  belongs t o  one o f t h e p r e v i o u s l y  
mentioned c l a s s e s .  

The second s i t u a t i o n  occur s  when we want t o  make some expe r i -  
ments w i t h  the model t o  determine t h e  p o s s i b l e  model responses .  
I n  many si!tuatsons,optimization methods are good t o o l s  w i t h  
which t o  perform this t a s k .  Usual ly  w e  can formula te  an objec-  
t i v e  f u n c t i o n  (sometimes a l s o  called t h e  performance i n d e x ) .  
While us ing  a p p r o p r i a t e  pa rame te r i za t ion  and o p t i m i z a t i o n  proce- 
d u r e s  it is p o s s i b l e  t o  i n v e s t i g a t e  system responses .  It i s  
necessary  t o  p o i n t  o u t  however, t h a t  v e r y  o f t e n  a s i n g l e  o b j e c t i v e  
func t ion  h a s  no economic o r  o t h e r  p r a c t i c a l  meaning and should 
be cons idered  more as a t e c h n i c a l  t o o l  f o r  d imin ish ing  the 
number of i n v e s t i g a t e d  parameters .  C l e a r l y ,  it i s  more convenien t  
t o  o p e r a t e  w i t h  low numbers of o b j e c t i v e  f u n c t i o n  parameters  t han  
wi th  a l a r g e  numberofmodel s o l u t i o n s  o r  t r a j e c t o r i e s .  I n  t h i s  
s i t u a t i o n ,  a more s t r a i g h t f o r w a r d  approach i s  t o  s p e c i f y  many 
o b j e c t i v e  f u n c t i o n s  wi th  good economic, o r  o t h e r  p r a c t i c a l ,  in-  
t e r p r e t a t i o n s  and app ly  ane of t h e  e x i s t i n g  m u l t i p l e - o b j e c t i v e  
op t imiza t ion  methods. A s  r e f e r e n c e  p o i n t ,  an o p t i m i z a t i o n  
method developed by Wierzbicki  (1977) is a very  u s e f u l  t o o l  f o r  
ana lyz ing  p o s s i b l e  s o l u t i o n s  t o  op t imiza t ion  models w i t h  many 
o b j e c t i v e  f u n c t i o n s .  Th i s  approach h a s  r e c e n t l y  been a p p l i e d  



t o  s e v e r a l  IIASA models, s e e ,  f o r  example, t h e  i n v e s t i g a t i o n  of 
t h e  F inn i sh  f o r e s t  and wood i n d u s t r y  s e c t o r s  ( K a l l i o  1980) .  I n  
t h i s  c a s e ,  t h e  use  of t h e  op t imiza t ion  approach a l s o  does n o t  re- 
f l e c t  d i r e c t l y  on v a l i d a t i o n  methodology because op t imiza t ion  i s  
o n l y  used he re  a s  a  t o o l  f o r  model a n a l y s i s .  

T h e  t h i r d  s i t u a t i o n  i s  e s s e n t i a l l y  d i f f e r e n t  from t h e  pre- 
v ious  ones  i n  t h a t  a  model i s  used t o  determine an opt imal  system 
o p e r a t i o n a n d t h e  r e s u l t i n g  d e c i s i o n s  a r e  then  a p p l i e d  t o  t h e  
r e a l  system. These kind of  models a r e  c a l l e d  d e c i s i o n  and controZ 
models. It Is necessary  t o  s t r e s s  from t h e  beginning one 
important  f a c t  which very  o f t e n  i s  on ly  i m p l i c i t l y  understood: 
i n  t h e  case  of  d e c i s i o n  and c o n t r o l  models, we d e a l ,  i n  f a c t ,  
wi th  two models - t h e  model of t hesys t em being opt imized and 
t h e  o b j e c t i v e  f u n c t i o n  model. This  d i s t i n c t i o n  is  impor tan t  
a s  it i s  r e l a t e d  t o  t h e  fo l lowing  obse rva t ions :  

-- s o l u t i o n s  ob ta ined  i n  a  d e c i s i o n  and c o n t r o l  model a r e  
o f t e n  ve ry  s e n s i t i v e  t o  t h e  form of  t h e  o b j e c t i v e  func- 
t i o n s ;  p r a c t i c a l l y ,  t h e  o b j e c t i v e  f u n c t i o n  determines  
t h e  s o l u t i o n  of t h e  problem. 

-- t h e  o b j e c t i v e  f u n c t i o n  model is o n l y  an approximation 
of t h e  r e a l  c o s t s  i n  many c a s e s  ( e s p e c i a l l y  i n  s o c i a l  
s c i e n c e s  and ecology)  and I t  is n o t  p o s s i b l e  t o  expres s  
a l l  t h e  a s p e c t s  of  the system o p e r a t i o n  i n  t h e  same 
(monetary) u n i t s .  

I t  i s  a l s o  necessary ,  t h e r e f o r e ,  t o  v a l i d a t e  t h e  o b j e c t i v e  func- 
t i o n  model. E s s e n t i a l  methodological  d i f f i c u l t i e s  a r i s e  when 
cons ider ing  t h e  r e l a t i o n s h i p  between a  d e c i s i o n  and c o n t r o l  model 
and a  r e a l  system. P r a c t i c a l l y ,  t h e  f i r s t  goa l  of d e c i s i o n  and 
c o n t r o l  modeling i s  t o  improve t h e  system o p e r a t i o n ,  t h a t  i s ,  t o  
opt imize t h e  va lue  of  t h e  r e a l  o b j e c t i v e  f u n c t i o n ,  measured on 
t h e  r e a l  system. This  c a u s e s  s e v e r a l  problems, one of them being 
that it i s  n o t  always p o s s i b l e  t o  measure r e a l  va lues  of objec- 
t i v e  func t ions .  A second, and impor tan t ,  problem i s  t h a t  t h e  
p r o p e r t i e s  of t h e  p a i r  - model - r e a l  system - depend on t h e  s t r u -  
t u r a l  p r o p e r t i e s  of t h e  connect ion between t h e  model and t h e  
system, and on t h e  method of apply ing  computed d e c i s i o n s  t o  t h e  
r e a l  system. 

one of t h e  p o s s i b l e  ways of  v a l i d a t i n g  d e c i s i o n  and c o n t r o l  
models i s  t o  u t i l i z e  t h e  knowledge of an exper ienced system op- 
e r a t o r  ( a  manager, a  d i s p a t c h e r ,  o r  a  s i m i l a r  e x p e r t  f a m i l i a r  
wi th  system b e h a v i o r ) .  In  p r a c t i c e ,  t h i s  knowledge i s  q u i t e  
s u b s t a n t i a l  and such e x p e r t s  u s u a l l y  have no d i f f i c u l t y  i n  evalu- 
a t i n g  computed s o l u t i o n s .  There a r e  a l s o  more formal approaches 
of t ak ing  e x p e r t  op in ion  i n t o  account ,  i . e . ,  m u l t i o b j e c t i v e  
methods, developed,  f o r  example, by Ra i f f a  and Keeney (1976) and 
t h e  methods proposed by Eremin and Mazurov (1979) among o t h e r s .  
A v a l i d  d e c i s i o n  model can be de f ined  i n  t h i s  c a s e  a s  a  model 
whose s o l u t i o n s  do n o t  c o n t r a d i c t  w i th  t h e  e x p e r t ' s  op in ions .  
An e x t e n s i v e  a n a l y s i s  of t h e  r e l a t i o n s h i p  between the "model - 
r e a l  system" p a i r  can be found i n  Wierzbicki  (1977) b u t  s o  f a r  
h i s  r e s u l t s  have o n l y  been a p p l i e d  t o  c o n t r o l  eng inee r ing  
problems. However h i s  methodology i s  u n i v e r s a l  and could  a l s o  



he appl ied i n  o t h e r  f i e l d s .  T h e  fundamental concept i n  t h i s  
methodology i s  t h e  d i s t i n c t i o n  between b a s i c  land  extended models, 
mentioned e a r l i e r ,  and supplemented w i t h  a r a t h e r  ex tens ive  sen- 
s i t i v i t y  a n a l y s i s .  

6 .  VALIDATION PROCESS 

Val ida t ion  is no t  a s i n g l e  a c t ,  it i s  a process.  It f o l -  
lows from t h e  f a c t  t h a t  model bui ld ing  i s  an i t e r a t i v e  procedure. 
It is  poss ib le ,  however, t o  sepa ra te  t h i s  process  i n t o  s t a g e s ,  
connected s t r i c t l y  with t h e  s t a g e s  of model bui ld ing .  I n  t h e  
first s t a g e  of model bui ld ing  it is necessary t o  determine t h e  
model type,  what i t s  b a s i c  a t t r i b u t e s  a r e  and what i t s  r e l a t i o n  
t o  the system being modeled is.  This  s t a g e  of modeling and con- 
sequent ly the d e t a i l  a n a l y s i s  of t h e  assumptions made (which can 
be c a l l e d  " i n i t i a l  v e r i f i c a t i o n n  o r  "hypothesis v e r i f i c a t i o n " )  
is e s p e c i a l l y  important a s  any mistakes a r e  c o s t l y  and time con- 
suming. For example, a t  t h i s  s t a g e  important a s p e c t s  such a s  
t h e  poss ib le  a p p l i c a t i o n  of t h e  d i s c r e t e  t i m e  model t o  the con- 
t inuous time system, s t a t i c  models f o r  dynamic system, etc. ,  a r e  
d iscussed .  In  any case ,  however, t h e  i n i t i a l  assumption should 
be very c a r e f u l l y  analyzed tak ing  i n t o  account t h e  purpose and 
poss ib le  f u t u r e  a p p l i c a t i o n s  of t h e  model being developed. 

I n  t h e  second s t a g e  of model bu i ld ing ,  when t h e  model i s  
being f o r m u l a t e d  and computerized, it is necessary t o  v a l i d a t e  
the "model i t s e l f , "  t h a t  i s ,  without t ak ing  i n t o  account the 
modeling purpose. One of t h e  ques t ions  a t  t h i s  s t a g e  is  t h e  
r e l a t i o n s h i p  between the computerized model and the conceptual  
model obtai'ned i n  t h e  f i r s t  s t age .  I n  o t h e r  words, the corres-  
pondence between t h e  model, the i n i t i a l  knowledge of t h e  modeled 
phenomena and theexpec ted  model behavior should be checked. 
According t o  Hermann terminology t h i s  s t a g e  of model v e r i f i c a t i o n  
can be c a l l e d  " face  v a l i d i t y n  " . . . face  v a l i d i t y  i s  a su r face  o r  
i n i t i a l  impression . o f  a s imula t ion  o r  game's rea l i sm" (Hermann 
19671.  From the methodological po in t  of vfew, however, this is  
not  r e a l l y  va l ida t ion :  this s t a g e  should r a t h e r  be c a l l e d  a 
test of reasonable c r e d i b i l i t y  of the model. I n  many cases ,  in- 
formation can be obtained from e x p e r t s  ( o r  managers) t h a t  could 
judge w h e t h e r  t h e  model is reasonable.  I n  o t h e r  c a s e s  more f o r -  
mal methods can a l s o  be used. 

T h e  t h i r d  s t a g e  of v a l i d a t i o n  depends s t r i c t l y  on the pur- 
pose of modeling, and f o r  this  reason t h i s  s t a g e  can be c a l l e d  
" e s s e n t i a l  v a l i d a t i o n . "  Poss ib le  ques t ions  a r i s i n g  from t h i s  
s t a g e  have a l r eady  been considered i n  a previous s e c t i o n  and w i l l  
not  be repeated here.  It is  u s e f u l ,  however, t o  stress t h e  d i f -  
fe rence  between " face  v a l i d i t y "  and n e s s e n t i a l  v a l i d i t y . "  Con- 
s i d e r  f o r  example, a model f o r  p r e d i c t i n g  f u t u r e  system outputs .  
Face v a l i d a t i o n  is concerned wi th  t h e  correspondence of model 
ou tpu t s  t o  p a s t  h i s t o r i c a l  d a t a ,  where e s s e n t i a l  v a l i d a t i o n  i s  
concerned wi th  t h e  q u a l i t y  of p red ic t ion .  It i s  obvious t h a t  we 
cannot expect  good p r e d i c t i o n s  from a model which has been rejec- 
t e d  a t  t h e  f a c e  v a l i d a t i o n  s t age ;  however, a p o s i t i v e  f a c e  v a l i -  
da t ion  cannot guarantee good q u a l i t y  p red ic t ions .  Face va l ida-  



tion can be interpreted as a sieve for the selection of models 
before further, more complicated stages of validation are per- 
formed. 

7. CONCLUSIONS 

In this work, a framework for model validations has been pro- 
posed. The main conclusion is that the problem of model valida- 
tion can be more strictly defined by analyzing in more detail 
the model itself and the purpose of modeling. On the basis of 
this analysis it is possible, in many specific cases, to propose 
appropriate tools for model validation. The problem still remains, 
however, of putting these tools to the best use. Moreover, in 
many important cases such tools do not exist, or are insufficiently 
developed. In the author's opinion, a more detailed analysis of 
possible situations, appropriate tools, and their use is an in- 
teresting and important direction to take in model validation re- 
search. 

There is evidence, of course, that it is not possible -to 
develop all validation methodologies at IIASA (all in the sense 
of all possible combinations of model attributes, system attri- 
butes etc.). It is possible, however, to propose some directions 
for the research to take which can be interesting from IIASA's 
point of view and these should be extensively developed. 

The first research direction deals with validation methodol- 
ogy of models for scenario analysis. There are a number of models 
developed at IIASA for scenario analysis - energy models, economic 
models - and some introductory work in sensitivity analysis has 
been performed already (Konnon and Srinivesan 1974, Suzuki and 
Schrattenholzer 1974), but alarger effort in this direction 
should be made. New methods for sensitivity analysis especially 
should be developed, or existing methods should be adapted for 
this purpose. The main difficulties arise because of the large 
complexity of these models and the large number of uncertain 
parameters, and for these reasons the standard methods cannot be 
applied in a straightforward way. 

The second research direction deals with validation meth- 
odology of economic forecasting models. A good example of this 
type of modeling are the models developed in the Fbod and Agri- 
culture Program. The especially interesting problems in this 
field deal with the influence of data quality on the modeling 
results, parameter estimation on the basis of very short data 
series, stationarity of the model parameters, etc. 

The third research direction deals with the decision and 
control models. Further development of the Wierzbicki approach to 
multiobjective optimization and sensitivity analysis seems to 
be very promising. There are also a number of areas for possible 
application of thse methods, for example, sensitivity analysis 
of optimal control economic models. The role of the decision- 
maker (or expert) in decision and control models should also be 
investigated. 

The fourth and last direction deals with the ecological 
models. In this case application of an extended model concept 
also seems to be very promising, especially for the analysis and 
simplification of distributed-parameter models. 
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APPENDIX B: TERMINOLOGY FOR MODEL CREDIBILITY 

The SCS (Simulation Council) Technical Committee on Model 
Credibility recently published the standard set of terminology 
dealing with modeling problems. For reader convenience we insert 
here the complete text of the report published in Simulation 
March, 1979. 

I ?STRODUCT I OH ~ D E L  QUALIFICAION Determination of adequacy 

Since the cornerstone for establishing the credibility of the CO!lCE?TJAL t:@D2:. to 

of a computer simulation is effcstive conmunicarion provide an acceptab:~ LEVEL 

bctvccn thc builder of a simulation model and its . OF ACfiED72:IT fo r  t h e  WYAit: 

potential user, the SCS Tcchnlcal Comittce on bbdcl OF INTENDED AP?LICATICtl 

Credibility has dcvelopcd a standard set of terminol- 
ogy to facil~tatc such comunicat~on. 

To provide a proper framework to review the crcdibil- 
ity of a simulation, it is convenient to dividc the 
simulation cnvironncnt into thrce basic elcmcnts as 
dcpictcd in the following Figt~rc. The inncr arrows 
dcscribc the processes which relate thc clenents to 
cach othcr. and thc outcr arrows refer to the 
proccdures which evaluate the credibility of these 
processes. 

qualification 

Analysis 
I 
I 
I 
I 

Proqraminq Mode 1 
va 1 ida t ion I 

I 

M o d e l  
verificatlcn 

COMPUTERIZED MOCEL An operational cmputer pro- 
graa which implcmcnts a 
CCNCEPTUAL XODEL 

MODEL VERIFIG\T ION Substantiation that a CON- 
PUTERIZE2 E:ODEL represcr.:s 
a CCIICEPTUAL PiODEi within 
specified limits of accuracy 

0 0 : U I N  OF APPLICAaILITY Prescribed conditisns for 
(OF COWUTERIZED HODEL) wllich the CCX4PUTERIZED MODZL 

has been tested. compared 
aqainst REALITY to the extent 
,possible, and judged suitable 
for use (b-j MODEL VALJDATION, 
as described below1 

RAYCE O F  ACCURACY Demonstrated aqrcement be- 
(OF COMPUTERIZED MODEL) tween the COWUTEAIZED W S E L  

and REALITY within a stipu- 
lated DOMAIN OF APPLICABILITY 

MODEL VALIDATION Substantiation that a con- 
PUTERIZED MODEL within its 
COMAIN OF A P P L I C A B I L I n  
pssesses a satisfactory 
RAt:GE OF ACNR4CY consiscent 
with the intended application 
of c h e  m o d e l  



Each of the  b a s i c  clernents and t h e i r  i n t e r r e l a t i o n s h i p s  C"mlFICATCON 

are  d e a l t  with in t h e  f o l l o v i n g  s e t  o f  C c f i n i t i c n s .  DOCU.\'EKPATION 

DESCRIPTION CI: TER~II:;OLOCY 

REALITY An e n t i t y ,  s i t u a t i o n ,  o r  
system whlch has  been 
s e l e c t e d  f o r  a n a l y s i s  

CONCEPTUAL E:OCEL Verbai d e s c r i ? t i o n ,  equa- 
t i o n s .  goverainq r e l a t i c n -  
s h i p s ,  o r  " n a t u r a l  laws" 
t h a t  . pu rpor t  t o  d e s c r i b e  
REALITY 

C@>tAIN OF INTEhDED P r e s c r i b e d  conditions f o r  
APPLiCXTION which t h e  CONCETTUAL HOCZL 
(OF CONCEPTUAL HODEL) is intended t o  match REALITY 

LEVEL OF ACREE>IEl.;T Expected agreement between 
(OF COXCEPTUAL HCDEL) t h e  CONCEFTUAL K.:OCEL and 

= I n ,  c o n s i s t e n t  wi th  
t h e  DOEAIN OF IhTESCED 
APPLICATION and t h e  purpose 
f o r  vh ich  t h e  aode l  was 
b u i l t  

?:23Ei CERTIFICATION Acc~.';"ance by t h e  m d e l  s s c r  
oc cne CEhTIFICXTION DOCL'YZN- 
TATION a s  adequate  ovider.ze 
t h ~  t the  CCZIF'JTERIZED FICDLL 
can be e f f e c t i v e l y  u t l l i z e d  
f o r  a  s p e c i f i c  a p p l i c a t a o n  

CGYPUTER S  IMULATICN Exerc i se  of a  t e s t e d  and 
c e r i i f i c d  CCMPUTERIZED llCDEL 
t o  ga in  l n s i g h t  a b u t  XALITi '  

Th i s  terminology uas  devclopcd by t h c  committee, 
vhich i s  composed o f  members from d i v c r s c  d i s c i p l i n e s  
and backgrounds,  w ~ t h  rhc  in t cn r  t h a t  ~t could bc 
cnploycd i n  a l l  t y p c s  of  s imulat ion a p p l i c a t i o n s .  
Crcat  cn rc  was taLcn t o  develop d e f i n i t i o n s  which 
vould bc e q u a l l y  applicable t o  s imula t ions  o f  phys ica l  

s!.stcns ( c n b o 2 y 1 n ~  r c n d i l  y mcasurablc phc~romc~ia) and 
s o c i a l  and b i o l o g i c a l  s y s t c n s  ( f o r  wl~iclr d a t a  may be 
i l l  - J c f i n d )  . AJlrcrcncc t o  t h i s  tcrl ; l inology, and t h e  

d i s c i p l  i n c  i n p l  i cd  t l r c rc in ,  w i l l  g r e a t l y  f u c i l  i t n t e  
communication brtwecn v a r i o u s  s i n ~ u l a t i o ~ r  dcvc lopc r s  
a s  tic11 I S  bc:ucccr dcvc lopc r s  and u s e r s .  ' f l le rcforc .  

t h c  committec rccomncnds t h a t  C J C ~  mcmber usc  t h i s  
tcrminolosy i n  t l l  docuncnta t ion and p u b l i c s t i o ~ l s  
uhish  pertain t o  t h c  c r e d i b i l i t y  o f  s imula t ions .  

Docunentat ion t o  Communicate 
lnforrrution :oncerniag a 
n o d e l ' s  c r e d i b l l i t v  aad 
a g p l i c a b i l l t y ,  con ta in ing ,  
a s  a  mininum. t h e  fo l lowing 
bas i c  e lements :  

(1) S t a t e n e n t  of purpose 
f o r  which t h e  m d e l  has  
been b u i l t  

( 2 )  Vcrbal and/or a n a l y t i c a l  
d e s c r i p t i o n  of  :he CC!I- 
CEPTUXL MODEL and COn- 
PUTERIZED MODEL 

( 3 )  S p e c i f i c a t i o n  of  t h e  
DOMAIN OF APPLICABILITY 
and W C E  OF ACCURAC'f 
r e l a t e d  t o  t h e  purpose 
f o r  which t h e  model is 
intended 

( 4 )  Descr ip t ion  of t e s t s  
used f o r  NODEL VERIFICA- 
TION and NODEL VAI.IDATIOti 
and a  d i s c u s s i o n  of t h c i :  
adequacy 
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