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ISSUES IN MODEL VALIDATION

Andrzej Lewandowski

1. INTRODUCTION

It is commonly agreed between modeling methodologists that
model validation is one of the most important stages in the model
building process. Many papers addressing this subject have been
published and an SCS Technical Committee on Model Credibility has
been established in order to generalize and summarize the experi-
ences in this field (see Appendix). However, at the present
stage of research there are almost no suggestions concerning con-
crete methods of validation. Practically all authors only discuss
definition of validation - not methods. The number of papers
dealing with methods of model validation is also rather limited.

The reason for this gap between methodological consciousness
and the practice of model building seem to be obvious - the dis-
cussion stays at too high a level of abstraction. In general,
all authors consider "model" as a description of reality, and on
this level of concretization it is only possible to generate
rather general statements, frequently true but without operational
meaning. The author of this paper believes that, in order to ex-
amine validation methods, it is necessary to specify more precisely
the model under consideration, the properties of the model, the
modeling techniques, and, most importantly, the purpose of the
model.

The aim of this paper, therefore, is to present a classifi-
cation of models and an analysis of the modeling process from
the point of view of model validation. At this stage of the
investigation, however, it is not yet possible to design, nor to
analyze, methods of validation. Our goal is to design a frame-
work for model validation as a first and important step in
establishing a model validation methodology.



2. VALIDATION: DEFINITIONS

There are various definitions for model validation, but all
are very similar and have been summarized by SCS Technical
Committee on Model Credibility (1979). This set of modeling
methodology definitions and concepts is quite precise and clear.

..... (model validation is) substantiation that a com-
puterized model within its domain of applicability
possesses a satisfactory range of accuracy consistent
with the intended application of the model.

This definition also coincides very well with the definitions
given by, for example, Naylor (1972) and Mihram (1974). The
most interesting consideration of validation methodology,
however, can be found in Mankin et al. (1975), where a more
formal definition 1is given.

..... model is valid if its behaviour corresponds to
system behaviour under all conditions of interest.
A model is considered invalid if we can devise an
experiment in which the model outputs disagree with
system measurements within the specified area of -
interest...

Similar notions have also been investigated by Beck (1980): A
somewhat broader notion is that of usefulness "...a model is
useful if it accurately represents some of the system behavior
and useless if it does not." (Mankin et al.)

Model validity can be related to model reliability and
adequacy:

-— reliability is defined as the fraction of the model
outputs which correspond correctly to system outputs;

-- adequacy is the fraction of system outputs which can
be modeled correctly.

In the definitions formulated above, "model output" should be
understood in a rather general sense and by "output” is meant
the result of the modeling experiment.

Since the last two concepts have more definite operational
meaning and can be relatively easily measured and computed, they
can be treated as more practical tools for model testing and
choosing between alternative models. These more qualitative
model validity measures imply application possibilities of more
advanced techniques, for example, statistical hypothesis testing
(Greig 1979). Hence, there is now a good terminological back-
ground for model validation in the sense that we know generally
what model validation means. There remains open, however, the
problem of how to validate a given model.

3. MODEL ATTRIBUTES

A large number of model attributes can be listed, but only
three of them seem to be interesting for model validation pur-




poses. The first attribute can be called model background which
gives information on the natural and behavioral background of the
model. This attribute determines to what extent basic consideration
and natural laws have been applied when building the model. Hard
models with a natural background are built on the basis of well
established natural laws, for example, such precise and well-
defined concepts as mass or energy balances, variational mechanical
principles, etc. In other words, the validity of these models

can be judged on the basis of well-known and accepted theories.
This type of validity consideration can be called internal
validation, and consists of checking the preservation of the

basic laws which have been used when building the model. Models

of electrical circuits, technological processes, and selected
environmental problems (water quality) are examples of hard models
with natural backgrounds.

At the other end of the spectrum we have soft models with
behavioral background. They are formulated on the basis of more
inductive analysis of system behavior - without such a prior<
knowledge of natural laws governing the system under consideration.
In many important practical cases we must hypothesize when dealing
with system behavior, either because of the complexity of the
system, large numbers of factors, or because of an insufficient
level of basic knowledge dealing with the phenomena being modeled.
This situation frequently arises in the modeling of social,
environmental, or economic systems. Similar considerations have
been performed by Kalman (1979):

..... the usual procedure of making a model of a system
is obvious. A catalog of known facts  and data is com-
piled and equations are written down by taking into ac-
count all available quantitative information... An
absolutely essential assumption for this process to work
is that the "laws" governing physical phenomena are in-
dependent of the system context... Oversimplifying a bit,
no matter what system is built, who builds it, how it is
built, and why it is built, Ohm's law is immutable. The
essential feature of economics is that this is simply
not so... There are no "laws" in economics as this term
is understood in physics, because economics is a system-
determined science...

Similar concepts of hard and soft models have also been introduced
by Beck (1980), but his definition is a little bit broader.

The second model attribute relates to the logical type of
the model. One can consider two types of models - causal and
deseriptive. Causal models can be built if one can distinguish
between cause and effect and the input and output variables in
the system consideration. According to Zadeh's (1963) terminology,
these models should be called "oriented models." Descriptive
(or nonoriented) models are built on the basis of correlation
analysis, without distinguishing between inputs and outputs.
Correlation analysis makes it possible to test the dependence
between various variables, but cannot give conclusive evidence
about cause and effect. Independent information on natural laws
and logical relations governing the system under consideration
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is needed to establish a causal relationship. Most of the econo-
metric and regression-based models belong to this class. A
typical example is a model of dependence between the weight and
height of individuals in a population. There is a strong cor-
relation between these variables, but what is cause and effect,
what is input and output?

This second attribute is rather important from the point of
view of validation methodology: causal models can be subjected
to simulation experiments, while such experiments are not possible
in the case of descriptive models. 1In other words we can
experiment with modeling to answer what will happen with a spe-
cific input signal. This kind of experiment cannot be performed
for the model mentioned above. It is possible, however, to use
a formally obtained relationship between height and weight (usu-
ally in the form of a linear equation) but such an experiment is
not very sensible.

The third attribute, called the interpretative type of
model, is related to the way in which the modeling results are
interpreted. Here we can distinguish between probabilistic and
nonprobabilistic (or deterministic) approaches to model interpre-
taticn, although there are also other ways of including uncer-
tainty in model interpretation (e.g., the fuzzy approach). It
is necessary to stress here that:

-- the same model can be interpreted in both ways. For
example, we can use a linear model estimated on the
basis of least squares analysis, and interpret the
results in terms of a probabilistic analysis, or
compare only judgementally the numbers obtained from
measurements and from the model. Thus, the interpreta-
tive type of model depends on the methods of analysis
rather than on the form of the model.

-- the interpretative type of the model does not depend on
the nature of the real world. The assumptions about the
deterministic or indeterministic nature of the real
world is a purely philesophical hypothesis and has
nothing to do with the type of models we use: we can
describe a deterministic world using probabilistic models
and vice versa.

The interpretative type of models automatically determine
the possible tools for model validation. The only difficulty
relates to the necessity of specifying assumptions about the
model environment. In fact, when using probabilistic models it
is also necessary to build models of the environment of the
base model, for example, statistical properties of measurement
errors. It is then necessary to validate these additional models,
which, of course, causes further technical difficulties.

In the case of deterministic models, the situation is even
more difficult: there are no formal methods of model validity
analysis. The only possibilities here are sensitivity analysis
and heuristic methods (visual inspection of the results, Jjudge-
mental estimation, etc.). Model adequacy can then be tested only
in a qualitative way. We are now able to characterize the model
in terms of the attributes formulated above, and hopefully can



suggest tools for model validation connected with every attribute.
Possible situations are presented in Figure 1. Let us briefly
consider the existing combinations (eight possibilities). Some
of these combinations seem to be empty, for example, it does

not seem possible to build a natural and descriptive model, or

to build a descriptive and deterministic one. The suggestions
dealing with possible validation tools, however, can be formulated
rather automatically, on the basis of previous considerations.
These suggestions have been collected in Figure 2. It can be
seen, for example, that for a natural, causal, and deterministic
model one can use an internal validity approach based on a simu-
lation approach supported by sensitivity analysis and judgmental
evaluation. If the last attribute is "probabilistic" we can also
use internal validity based on simulation techniques but using
probabilistic methods to interpret the results (Klejinen 1974).

These statements seem to be rather general and, of course,
do not constitute a solution to the problem, but provide instead
guidelines for the solution of a concrete problem. Moreover,
for some combinations of model attributes there are no existing
tools for model validation. Thus, on the basis of these investi-
gations, we can see what kind of methods should be used in future
and what classes of validation techniques are interesting from
the practical point of view. It is necessary to point out here
the model attributes listed above are incomplete. It is, of
course, possible to formulate many other attributes but they are
not so important from the point of view of model validation; how-
ever they do have influence on the validation process, and for
this reason we shall call them "secondary attributes." 1In this
way we obtain two model classification levels. It is also nec-
essary to point out that these attributes can be essential at the
early model building stage to determine possible technical tools
for the modeling. These secondary attributes consist of the
following:

-— linearity - nonlinearity

-- time constant - time dependent
--— continuous time - discrete time
-~ dynamic - static

4. SYSTEM ATTRIBUTES

The model is only the first component in the validation pro-
cess. The second component is the system or the real world.
Clearly, system attributes and their relationship to model attri-
butes will influence the validation methodology.

The first attribute we shall consider is the exzperimental
type of the system. This attribute determines which kind of ex-
periments can be performed with the system. Three possible situ-
ations may occur:

1. The system is a design abstraction, not yet existing in
the real world and there is no experimental basis for modeling.
This kind of situation arises very frequently in engineering
problems when determining new systems: modeling is then used to
test complicated projects. As the real system does not exist,
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there is no "reality" which can correspond to themodel. 1In every
realistic situation system being modeled, however, there is a
correspondence with reality; practically every new system under
construction consists of components already applied in other ex-
isting systems. This means that the model consists of submodels
which have previously been tested. A good example is chemical
engineering modeling where new technology connects a series of
apparatus (reactors, distillation columns, mixers, etc.). Models
of these apparatus are well known and in this case we are able to
extrapolate our knowledge. Models consisting of well-validated
submodels will probably be valid, and this kind of approach can
be called component validation.

2. The system exists in the real world, but it is not pos-
sible to make active experiments. This is the situation which
arises most frequently. It occurs in economic and social system
modeling, and environmental and technological problems. The
“reality" in this case is a data record which in most instances
is too short and of too low a quality. This situation makes
things rather difficult from the point of view of model valida-
tion. Because of a small data base, typical statistical methods
frequently cannot be applied. A possible solution is to apply
the extended model concept developed by Wierzbicki (1977). The
extended model is built starting with the basic model in question
and supplementing it by models of possible differences between
the basic model and reality from a priorz knowledge of system
properties and partially validated by existing measurements. The
extended model is then treated as the "real world" for evaluation
and verification of the simplified model. This concept has been
applied with success in the modeling of technological processes
(in chemical engineering, gas and water transmission systems).
The author also believes it is possible to apply this concept
to environmental systems modeling (e.g., water quality problems)
Oor even economic systems.

3. The system exists in the real world and it is possible
to make a series of active experiments. This is the best situ-
ation, of course, but it occurs very rarely. In this case we
have good support for model validation; it is possible to generate
as much data as necessary, to apply experiment design techniques,
and so on. Statistical methods can be applied as well as those
described in the literature (for examples of Turing test and
extensions, see Schruben, 1980; for hypothesis testing, see
Greig, 1979). Possible situations in the model validation pro-
cess are shown in Figure 3.

5. VALIDATION ATTRIBUTES

Let us now consider the validation process. It is obvious
that this process depends both on the model and system attributes
and that it is necessary to combine them; some combinations, how-
ever, limit the number of possible validation approaches. It is
not possible, for example, to use statistical methods for analyz-
ing the validity of a deterministic model. Model type, however,
is only one of the important attributes of the validation pro-
cedure. Two other important aspects are the model purpose and
the relationship between the model and the real world.
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Many authors point out that the model validation process
should be goal-oriented, however, it is not an easy task explain-
ing what this statement means. Let us consider possible situ-
ations:

Modeling for Understanding

In many instances, the only modeling goal is to understand
the system structure and its behavior better. The modeler can
perform simulation experiment, he can "play" with the model in
order to observe what will happen in certain situations. One of
the most important advantages of such experiments is the fact
that it is then possible to view the internal structure of the
model and see the processes "inside" the investigated phenomena.
This kind of investigation is especially popular in physics and
astrophysic research, and has also been utilized in ecological
research (Mankin, et al., 1975).

The main problem that arises with validation is the relation=-
ship between the structure of the process and the structure of
the model. According to the terminology introduced above, the
internal validity (or model testing "part-by-part") should be
performed in this case. One other factor can also be important:
that the model should pose a level of "internal stability" with
respect to data. Sensitivity analysis is then recommended for
checking this property. "Sensitivity" should be understood here
in a rather broad sense. During the modeling process we make a
number of assumptions dealing with the external world (system
neighborhood), model structure and model parameters, and one
of the goals should be the exploration of the influence that these
assumptions have on model behavior. It is necessary to mention
here that a single simulation run without more exact analysis is
of little practical value from the point of view of understanding
the system. The importance of sensitivity testing has been des-
cribed well by Quade (1968):

Ordinarily there is no unique, "best" set of assump-
tions in modeling, but a variety of possibilities,
each of which has some basis for support. A good
system study will include sensitivity tests on the
assumptions in order to find out which ones really
affect the outcome and to what extent. This enables
the analyst to determine where further investigation
of assumptions is needed and to call attention to
the decisionmaker to possible danger that might be
present...

Similar ideas are also considered in Quade and Findeisen (1980).
There are many formal tools for sensitivity analysis and basic
concepts have been considered by Tomovic (1970) and Wierzbicki
(1977) . Especially interesting is the general framework for
senstivity analysis developed by Wierzbicki and his concept of
basic and extended models. There are also a number of good ex-
amples of model sensitivity analysis, especially in ecosystem
modeling (see, for example, Rose and Harmsen 1978). A lot of
research in this direction has also been performed at IIASA:
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sensivity analysis for energy models (Konno and Srinivasan 1974;
Suzuki and Schrattenholzer 1974), for demographic models (Arthur
1980; Willekens 1976) as well as some more general investigations
(Stehfest 1975). There are, of course, many other excellent works
available in the literature (see, for example, Thornton, et al.,
1979) but because of lack of space these will not be considered

in detail here.

It is necessary to point out here, however, that the exist-
ing methods of sensitivity analysis are only local and parametric.
This means that it is rather difficult to investigate large devi-
ations of parameters and structural changes in the model. All
methods are also only applicable to models continuously depending
on parameters - there is no way to analyze sensitivity in a dis-
continuous case. In the non~differentiable case, for large
parameter variations,estimation of Lipschitz constant might be
a help; however, there are only a few theoretical papers on model
sensitivity that deal with this question and the theoretical basis
is as yet not fully advanced.

Modeling for Forecasting

This is one of the most frequent situations, and probably
the most difficult one from the point of view of validation ap-
proach. This particular situation has been considered by Beck
(1980) and Mankin et al. (1975). The main difficulty arises from
the fact that a well-validated model, in the sense that the
model responses correspond very well to the system outputs, does
not necessarily reflect the future behavior of the system well.
The reasons seem to be rather obvious in that there can be an
essential nonstationarity in the system environment, or that there
are some additional input variables which are not considered in
the model. In both cases the model is evidently inadequate al-
though it may happen that factors not considered in the model
manifest their presence only during the forecasting (model
utilization) period. Mankin et al. (1975) have therefore
introduced a concept of model useéfulness and model reliability.
According to their terminology, a vaqlid model has no behavior
which does not correspond to system behavior, and a useful
model predicts some system behavior correctly. It is of course
obvious, however, that although generally a valid model is useful
this may not always be the case. There still remains the problem,
however, of how to determine the usefulness of the model, and,
of course, it is not possible to do it a priort. In the case
of statistical model interpretation, validation of forecasting
models is understood better, and we can use these tools to
determine the model usefulness. Moreover, by applying the Bayes
approach it is possible to determine the confidence intervals
for predicted system behavior. Pioneering work has been performed
by Box and Jenkins (1970) and their methodology is a good example
of general modeling methodology. As a final test for the useful-
ness of the model they consider the statistical properties of
the prediction error. Another criterion for model validation
has been considered by Kashyap and Rao (1976) and in every case
they assume that the gquality of prediction is the main criteria
for model quality analysis. 1In this case, however, it is
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necessary to assume that prediction will be performed many times,
and only in this case can we apply probabilistic methods to
analyze the quality of the prediction; and consequently the
quality of the model.

A different situation arises frequently in the case of eco-
nomic forecasting where we have a very short data series and a
prediction is only made once. This is complicated and only a
few rather heuristic methods have been developed. Introductory
work on this subject has been made by Waszkiewicz (1976) where
some new validation criteria for forecasting methods have been
formulated and analyzed.

Modeling for Scenario Analysis

Scenario analysis model simulate the future behavior of a
system on the basis of a judgementally chosen set of assumptions
called scenarios and where the time horizon here may be rather
long, say, 100 years. The World Global Models and the IIASA
Energy Models are good examples of this type of model, and in
this case there is no accepted methodology for model validation.

An additional difficulty connected with scenarios is the
fact that they are also models, models of the neighborhood of
the system being modeled, and these models should also be validated.
As yet, there are only a few works dealing with this problem,
and much more research in this direction is needed. A critical
analysis of the existing modeling approaches for scenario-
analysis has recently been made by Kalman (1979) where he
analyzes the world models of Forrester and Meadows from a system
theorist point of view. In his opinion:

..... the model consists of a system of nonlinear dif-
ference equations which are analyzed by simulation.

It is a well-known fact that in such a system almost
anything can happen... Unless there is an "organizing
principle" for writing down these equations and thereby
a priori controlling their properties, rather compli-
cated and erratic behavior may be expected on general
theoretical grounds. Such an organizing principle is
not available from theoretical economics and the naive
faith that the equations (might) "represent" reality
is certainly not good enough...

Kalman also stresses the role of sensitivity analysis as a vali-
dation tool in scenario model analysis:

..... (they observed) that small variations in the
assumed parameters and initial conditions result

in gross changes in observed behavior. Since these
parameter variations of the order of 2 - 10 percent
are much smaller than the reasonable uncertainties
in their wvalues on economic grounds (of the order of
30 - 100 percent), the value. of the Meadow exercise
is utterly destroyed. Any general conclusion from
the model must be rejected because the behavior of
the model is just not robust enough under parameter
uncertainty...
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A critique of the existing methodology of scenario analysis has
also been performed by Scolnik (1978), and Dubovsky and Pirogov
(1979). Practically, sensitivity analysis is the only method
for validating these models. 1In a case mentioned by Kalman,
this analysis has shown nonadequacy of the model. However,
there are a number of other works available where sensitivity
analysis applied to scenario models does not give such a pessi-
mistic conclusion (for example, Konno and Srinivasen 1974,
Suzuki and Schrattenholzer 1974, and Schroeder et al., 1970).

Despite these efforts and the understanding partially given
by them, we must conclude that the methodology for validation of
scenario models does, as yet, not exist.

Optimization Models

There are three basic types of model where optimization
methods can be applied, and in every case the role of optimiza-
tion is quite different; thus, different methods for model vali-
dation should be applied.

The firet situation occurs when the phenomena being modeled
can be described in terms of variational principle -~ where
minimization (or maximization) of something is a basic principle
of system behavior. A typical example is the minimization of
energy in mechanical or electrical system; every system operates
in such a way as to minimize the total energy accumulated. In
this situation instead of writing down all the equations and then
solving them, we can formulate the function by describing the
total energy which depends on the system variables. Then,
minimization of this functional solves the problem and we obtain
the variables at the point of equilibrium. This approach has
been investigated by many authors (for example, Kurman 1975).

The role of optimization is evident: it is only a tool for solving
the model, while the model itself belongs to one of the previously
mentioned classes.

The second situation occurs when we want to make some experi-
ments with the model to determine the possible model responses.
In many situations,optimization methods are good tools with
which to perform this task. Usually we can formulate an objec-
tive function (sometimes also called the performance index).
While using appropriate parameterization and optimization proce-
dures it is possible to investigate system responses. It is
necessary to point out however, that very often a single objective
function has no economic or other practical meaning and should
be considered more as a technical tool for diminishing the
number of investigated parameters. Clearly, it is more convenient
to operate with low numbers of objective function parameters than
with a large number of model solutions or trajectories. In this
situation, a more straightforward approach is to specify many
objective functions with good economic, or other practical, in-
terpretations and apply one of the existing multiple-objective
optimization methods. As reference point, an optimization
method developed by Wierzbicki (1977) is a very useful tool for
analyzing possible solutions to optimization models with many
objective functions. This approach has recently been applied
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to several IIASA models, see, for example, the investigation of
the Finnish forest and wood industry sectors (Kallio 1980). 1In
this case, the use of the optimization approach also does not re-~
flect directly on validation methodology because optimization is
only used here as a tool for model analysis.

The third situation is essentially different from the pre-
vious ones in that a model is used to determine an optimal system
operation and the resulting decisions are then applied to the
real system. These kind of models are called decision and control
models. It is necessary to stress from the beginning one
important fact which very often is only implicitly understood:
in the case of decision and control models, we deal, in fact,
with two models - the model of the system being optimized and
the objective function model. This distinction is important
as it 1s related to the following observations:

-~ solutions obtained in a decision and control model are
often very sensitive to the form of the objective func-
tions; practically, the objective function determines
the solution of the problem.

~- the objective function model is only an approximation
of the real costs in many cases (especially in social
sciences and ecology) and it is not possible to express
all the aspects of the system operation in the same
(monetary) units. :

It is also necessary, therefore, to validate the objective func-
tion model. Essential methodological difficulties arise when
considering the relationship between a decision and control model
and a real system. Practically, the first goal of decision and
control modeling is to improve the system operation, that is, to
optimize the value of the real objective function, measured on
the real system. This causes several problems, one of them being
that it is not always possible to measure real values of objec-
tive functions. A second, and important, problem is that the
properties of the pair - model - real system -~ depend on the stru-
tural properties of the connection between the model and the
system, and on the method of applying computed decisions to the
real system.

one of the possible ways of validating decision and control
models is to utilize the knowledge of an experienced system op-~
erator (a manager, a dispatcher, or a similar expert familiar
with system behavior). 1In practice, this knowledge is quite
substantial and such experts usually have no difficulty in evalu-
ating computed solutions. There are also more formal approaches
of taking expert opinion into account, i.e., multiobjective
methods, developed, for example, by Raiffa and Keeney (1976) and
the methods proposed by Eremin and Mazurov (1978) among others.
A valid decision model can be defined in this case as a model
whose solutions do not contradict with the expert's opinions.
An extensive analysis of the relationship between the "model -
real system” pair can be found in Wierzbicki (1977) but so far
his results have only been applied to control engineering
problems. However his methodology is universal and could also
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be applied in other fields. The fundamental concept in this
methodology is the distinction between basic land extended models,
mentioned earlier, and supplemented with a rather extensive sen-
sitivity analysis.

6. VALIDATION PROCESS

Validation is not a single act, it is a process. It fol-
lows from the fact that model building is an iterative procedure.
It is possible, however, to separate this process into stages,
connected strictly with the stages of model building. 1In the
first stage of model building it is necessary to determine the
model type, what its basic attributes are and what its relation
to the system being modeled is. This stage of modeling and con-
sequently the detail analysis of the assumptions made (which can
be called "initial verification" or "hypothesis verification")
is especially important as any mistakes are costly and time con-
suming. For example, at this stage important aspects such as
the possible application of the discrete time model to the con-
tinuous time system, static models for dynamic system, etc., are
discussed. In any case, however, the initial assumption should
be very carefully analyzed taking into account the purpose and
possible future applications of the model being developed.

In the second stage of model building, when the model is
being forumulated and computerized, it is necessary to validate
the "model itself," that is, without taking into account the
modeling purpose. One of the questions at this stage is the
relationship between the computerized model and the conceptual
model obtained in the first stage. In other words, the corres-
pondence between the model, the initial knowledge of the modeled
phenomena and the expected model behavior should be checked.
According to Hermann terminology this stage of model verification
can be called "face validity" "...face validity is a surface or
initial impression .of a simulation or game's realism" (Hermann
1967). From the methodological point of view, however, this is
not really validation: this stage should rather be called a
test of reascnable credibility of the model. 1In many cases, in-
formation can be obtained from experts (or managers) that could
judge whether the model is reasonable. In other cases more for-
mal methods can also be used.

The third stage of validation depends strictly on the pur-
pose of modeling, and for this reason this stage can be called
"essential validation." Possible questions arising from this
stage have already been considered in a previous section and will
not be repeated here. It is useful, however, to stress the dif-
ference between "face validity"” and "essential validity." Con-
sider for example, a model for predicting future system outputs.
Face validation is concerned with the correspondence of model
outputs to past historical data, where essential validation is
concerned with the quality of prediction. It is obvious that we
cannot expect good predictions from a model which has been rejec-
ted at the face validation stage; however, a positive face vali-
dation cannot guarantee good quality predictions. Face valida-
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tion can be interpreted as a sieve for the selection of models
before further, more complicated stages of validation are per-
formed.

7. CONCLUSIONS

In this work, a framework for model validations has been pro-
posed. The main conclusion is that the problem of model valida-
tion can be more strictly defined by analyzing in more detail
the model itself and the purpose of modeling. On the basis of
this analysis it is possible, in many specific cases, to propose
appropriate tools for model validation. The problem still remains,
however, of putting these tools to the best use. Moreover, in
many important cases such tools do not exist, or are insufficiently
developed. 1In the author's opinion, a more detailed analysis of
possible situations, appropriate tools, and their use is an in-
teresting and important direction to take in model validation re-
search.

There is evidence, of course, that it is not possible <+to
develop all validation methodologies at IIASA (all in the sense
of all possible combinations of model attributes, system attri-
butes etc.). It is possible, however, to propose some directions
for the research to take which can be interesting from IIASA's
point of view and these should be extensively developed.

The first research direction deals with validation methodol-
ogy of models for scenario analysis. There are a number of models
developed at IIASA for scenario analysis - energy models, economic
models - and some introductory work in sensitivity analysis has
been performed already (Konnon and Srinivesan 1974, Suzuki and
Schrattenholzer 1974), but alarger effort in this direction
should be made. New methods for sensitivity analysis especially
should be developed, or existing methods should be adapted for
this purpose. The main difficulties arise because of the large
complexity of these models and the large number of uncertain
parameters, and for these reasons the standard methods cannot be
applied in a straightforward way.

The second research direction deals with validation meth-
odology of economic forecasting models. A good example of this
type of modeling are the models developed in the Food and Agri-
culture Program. The especially interesting problems in this
field deal with the influence of data quality on the modeling
results, parameter estimation on the basis of very short data
series, stationarity of the model parameters, etc.

The third research direction deals with the decision and
control models. Further development of the Wierzbicki approach to
multiobjective optimization and sensitivity analysis seems to
be very promising. There are also a number of areas for possible
application of thse methods, for example, sensitivity analysis
of optimal control economic models. The role of the decision-
maker (or expert) in decision and control models should also be
investigated.

The fourth and last direction deals with the ecological
models. In this case application of an extended model concept
also seems to be very promising, especially for the analysis and
simplification of distributed-parameter models.
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APPENDIX B: TERMINOLOGY FOR MODEL CREDIBILITY

The SCS (Simulation Council) Technical Committee on Model
Credibility recently published the standard set of terminology
dealing with modeling problems. For reader convenience we insert
here the complete text of the report published in Simulation

March, 1979.

INTRODUCT ION

Since the cornerstone for establishing the credibility
of a computer simulation is effective communication
between the builder of a simulation model and its
potential user, the SCS Technical Committee on Model
Credibility has developed a standard set of terminol-
ogy to facilitate such communication.

To provide a proper framework to review the credibil-
ity of a simulation, it iIs convenient to divide the
simulation cnvironment into threce basic eclements as
depicted in the following figure. The inner arrows
describe the processes which relate the elements to
cach other, and the outcer arrows refer to the
procedures which evaluate the credibility of these
processes.

Mocdel
qualification

~
Computer CONCEPTUAL
simulation MODEL
t
!
| -
Model : Programming
td
validation : -~
1
[

r d

COMPUTERIZED
MODEL

Model
verificaticn

-22-

MODEL QUALIFICATION

COMPUTERIZED MOLCEL

MODEL VERIFICATION

DOMAIN OF APPLICABILITY
(OF COMPUTERIZED MODEL)

RANGE OF ACCURACY
(OF COMPUTERIZED MODEL)

MODEL VALIDATION

Determination of adeguacy
of the CONCEPTUAL MODEL to
provide an acceptatle LEVEL
OF AGREEMENT for the DCMAIN
OF INTENDED APPLICATICN

An operational computer pro-
gram which implements a
CONCEPTUAL MODEL

Substantiation that a CcOM-
PUTERIZED MODEL represents
a CCHCEPTUAL MODEL within
specified limits of accuracy

Prescribed conditions for
which the COMPUTERIZED MODZL
has been tested, compared
against REALITY to the extent
possible, and judged suitable
for use (by MODEL VALIDATION,
as described below)

Demonstrated agreement be-
tween the COMPUTERIZED MCDEL
and REALITY within a stipu-
lated DOMAIN OF APPLICABILITY

Substantiation that a COM-
PUTERIZED MODEL within its
COMAIN OF APPLICABILITY
possesses a satisfactory
RANGE OF ACCURACY consistent
with the intended application
of the model
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CERTIFICATION

Each of the basic elements and their interrelationships
DOCUMENTATION

are dealt with in the following set of definiticns.

DESCRIPTION CF TERMINOLOGY

REALITY An entity, situation, or
system which has been
selected for analysis

Verbal description, equa-
tions, governing relaticn-
ships, or "natural laws"
that purport to describe
REALITY

CONCEPTUAL MOCEL

Prescribed conditions for
which the CONCEPTUAL MGCEL
is intended to match REALITY

DOMAIN OF INTENDED
APPLICATION
(OF CONCEPTUAL MODEL)

Expected agreement between
the CONCEPTUAL MODEL and
REALITY, consistent with
the DOMAIN OF INTENCED
APPLICATION and the purpcse
for which the model was
built

LEVEL OF AGREEMENT
(OF CONCEPTUAL MCDEL)

TATION as adequate cvidence
that the CCMFUTERIZED MCDEL
can be effectively utilized
for a specific applicatzion

CCMPUTER SIMULATICN Exercise of a tested and

certified CCMPUTERIZED !CDEL
to gain insight about REALITY

RECOMMENDATION

This terminology was developed by the committee,
which is composed of members from diverse disciplines
and backgrounds, with the intent that it could be
cnployed in all types of simulation applications.
Crcat vare was taken to develop definitions which

would be equally applicable to simulations of physical

systems (embodving readily mcasurablc}phcnomcna) and
social and biological systems (for wh}ch data may be
ill-definad). Adhcrence to tbis tcrmxnology! §nd the
discipline implicd therein, will grcaFly fusxlxtase
communication between various simulation dﬁ\elopc1s
as well as between developers and users. ]hcrcfgrc,
the committec recommends that cach mcmbervusc.thls
terminology in 2ll documentation and publxc?tlons
which pertain to the credibility of simulations.

Accuitance by the model user
of «he CERTIFICATION DOCUMEN~-

Docunentation to communicate
information concerning a
rnodel's credibility and
applicability, containing,
2s a minimum, the following
basic elements:

(1) Statement of purpose
for which the model has
been buile

(2

~

Verbal and/or analytical
description of the CCH~
CEPTUAL MODEL and COM-
PUTERIZED MODEL

(3) Specification of the
DOMAIN OF APPLICABILITY
and RANGE OF ACCURACTY
related to the purpose
for which the model is
intended

(4) Description of tests
used for MODEL VERIFICA-
TION and MODEL VALIDATION
and a discussion of thei:
adequacy
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