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Abstract
Models of evolution by natural selection often make the simplifying assumption that
populations are infinitely large. In this infinite population limit, rare mutations that
are selected against always go extinct, whereas in finite populations they can persist
and even reach fixation. Nevertheless, for mutations of arbitrarily small phenotypic
effect, it is widely believed that in sufficiently large populations, if selection opposes
the invasion of rare mutants, then it also opposes their fixation. Here, we identify
circumstances under which infinite-population models do or do not accurately predict
evolutionary outcomes in large, finite populations.We show that there is no population
size abovewhich considering only invasion generally suffices: for any finite population
size, there are situations in which selection opposes the invasion of mutations of
arbitrarily small effect, but favours their fixation. This is not an unlikely limiting case;
it can occur when fitness is a smooth function of the evolving trait, and when the
selection process is biologically sensible. Nevertheless, there are circumstances under
which opposition of invasion does imply opposition of fixation: in fact, for the n-player
snowdrift game (a common model of cooperation) we identify sufficient conditions
under which selection against rare mutants of small effect precludes their fixation—
in sufficiently large populations—for any selection process. We also find conditions
under which—no matter how large the population—the trait that fixes depends on the
selection process, which is important because any particular selection process is only
an approximation of reality.
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1 Introduction

Adaptive dynamics is a widely used and extremely successful framework for investi-
gating the evolution of continuous traits by natural selection (Brännström et al. 2013).
In this framework, it is classically assumed that the population is infinite and well-
mixed, and that any single mutation has an infinitesimally small phenotypic effect.
One of its significant contributions is a simple method for identifying locally evolu-
tionarily stable strategies (local ESSs). If residents are playing a local ESS then rare
mutants playing a distinct but sufficiently similar strategy cannot invade the population
(Geritz et al. 1998; Brännström et al. 2013).

The simplicity of the notion of local ESS depends on themathematically convenient
simplifying assumption that the population is infinite. In a finite population of size
N , selection can oppose the invasion of a mutant strategy, yet favour its fixation (i.e.,
the offspring of a single mutant will replace the resident population with probability
greater than 1/N , the fixation probability for a neutral mutation arising in a single
individual). Thus, Nowak et al. (2004) proposed a refinement of the classical definition
of evolutionary stability, requiring in addition to selection opposing invasion, that
selection also oppose fixation of the mutant strategy; such a strategy is said to be
an ESSN to emphasize the finite population size. Importantly, fixation probabilities
depend on the selection process—which formalizes how fitness differences give rise
to changes in population-level frequencies of traits over time [e.g., Der et al. (2011),
Molina and Earn (2018)]—and hence the selection process can also affect whether or
not a strategy is an ESSN.

In contrast to the conditions for evolutionary stability in finite populations, the
adaptive dynamics condition for evolutionary stability does not explicitly address the
possible fixation of mutants. The reason is that in an infinite, well-mixed population,
a strategy that cannot invade will not fix: the effect of finitely many mutants on the
residents’ fitness is “infinitely diluted” and therefore negligible (mutants can affect the
residents’ fitness only if they constitute a non-negligible proportion of the population,
in which case there must be infinitely many mutants). Consequently, mutants that are
selected against when rare die out before they can affect residents (Metz et al. 1996).
Thus, the price of the convenience of assuming the population is infinite is that by
excluding the possibility of fixation of mutants that are selected against when rare, one
ignores the selection process, and disregards the possibility that frequency-dependent
selection can undermine the evolutionary stability of a strategy.

Since infinite-population models are so widely used, but are inherently limited in
their ability to account for the effects of the population size and the selection process
on evolutionary outcomes, it is important to understand under what conditions the pre-
dictions of such infinite-population models apply to more realistic, finite populations.
In particular, we are interested in whether or not, and when, infinite-populationmodels
correctly predict evolutionary outcomes in sufficiently large populations. To this end,
we focus on evolutionary stability of strategies in populations in which individuals’
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fitnesses are determined by their payoffs from an n-player snowdrift game (a common
model of cooperation).

A natural first step is to ask whether or not evolutionary outcomes in infinite popu-
lations correctly predict those in sufficiently large finite populations when mutations
have arbitrarily small effect. The evolutionary outcomes of interest are discrete (e.g.,
“stable” or “unstable”), so they cannot be approximated to some degree of accuracy;
predictions will either be right or wrong. Consequently, because infinite-population
models do not specify a selection process, they can predict evolutionary outcomes in
finite populations only if the outcomes in finite populations are independent of the
selection process. Thus we ask more precisely: for any given finite population size,
if selection opposes the invasion of mutants playing a strategy sufficiently similar to
the residents’, does it necessarily oppose their fixation? In Sects. 2 and 4, we show
that the answer to this question is “no”: for any population size N , no matter how
large, it is possible to construct well-behaved payoff functions (and a selection pro-
cess) such that there is a singular strategy at which selection opposes the invasion but
favours the fixation of mutations of arbitrarily small effect. Such a singular strategy is
evolutionarily stable according to adaptive dynamics, but is not an ESSN.

It is arguably reasonable to suppose that if infinite-population models are, indeed,
good approximations of sufficiently large finite populations, exactly how large is large
enough might depend on the game through which fitnesses are determined. Thus, as a
second step, we ask: given any specific game through which fitnesses are determined,
if the population is sufficiently large and selection opposes the invasion of mutants that
are sufficiently similar to residents, does it necessarily oppose their fixation? Sect. 5
addresses this question and shows that this is not true in general—even for a fixed game,
the selection process is important, no matter how large the population. However, we
identify a simple condition on n-player snowdrift games under which, if selection
opposes the invasion of sufficiently similar mutants, it generically also opposes their
fixation in sufficiently large populations, regardless of the selection process. When
this condition holds, it provides a justification for analyzing evolutionary stability in
finite populations using infinite-population models, and in particular, for ignoring the
selection process in this context.

Importantly, there is no simple rule of thumb determining how large is “large
enough”; this depends on the specifics of the selection process and the game that
determines fitness. That is, for any finite population, no matter how large, an analysis
based on a framework that ignores population size and the selection process is not
sufficient in general to determine evolutionary outcomes.

2 Model

Our analyses are presented in the context of a standard model for the evolution of
cooperation, the n-player snowdrift game (Doebeli et al. 2004; Cornforth et al. 2012;
Lion and van Baalen 2008; Killingback et al. 2010; Wakano and Iwasa 2012; Zhang
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et al. 2013; Chen et al. 2012; Zhong et al. 2008; Ito et al. 2015; Sasaki and Okada
2015; McNamara et al. 2008).

Payoffs: Members of a group of n individuals make costly contributions to a public
good, generating a benefit (available to all n group members) that depends on the total
contribution made by all group members. Denoting the cost of the focal individual’s
contribution x by C(x) and the benefit to a focal individual in a group in which the
total contribution is τ by B(τ ), the focal individual’s payoff is

B(τ ) − C(x). (1)

Group formation: Groups that play the snowdrift game are formed by sampling n
individuals uniformly and at random from the population without replacement. The
population is thus well-mixed in the sense that individuals are equally likely to be
sampled to play.

Fitness: Strategies are assumed to be inherited and therefore subject to selection.
For simplicity, we assume that individuals play many rounds of the game between
reproductive events (i.e., at each time step) and that their fitnesses are simply their
average payoffs (1) from these games.

Group and population sizes:Weassume that the group size n ≥ 2. (If therewere only
one individual in a “group” then its optimal strategywould not depend on the behaviour
of others and evolutionary game-theoretic considerations would be irrelevant.) The
population can be infinite (N = ∞); if it is finite, we assume that it is larger than the
group size, i.e., N > n; in particular, N ≥ 3. (If the entire population were to play the
game together, i.e., for n = N , individuals contributing the least would always have the
highest fitness, so populations would inevitably evolve to defection, i.e., contributing
nothing.)

Trait substitution: Mutations are assumed to be sufficiently rare that no more than
two strategies are present in the population at any time.

3 Strategy dynamics

3.1 Infinite populations

When the snowdrift gamedescribed above is played in an infinite population (N = ∞),
the evolution of strategies (i.e., contributions to the public good) is well-described by
the canonical equation of adaptive dynamics (Dieckmann and Law 1996). A strategy
X is evolutionarily stable if (Geritz et al. 1998; Brännström et al. 2013)

(1) it is singular, i.e., directional selection vanishes in its vicinity (or more precisely,
the local fitness gradient vanishes as it is approached),

B ′(nX) − C ′(X) = 0, (2a)

and
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(2) selection opposes invasionofmutants playing an arbitrarily similar strategy (which
is ensured by requiring that the fitness of an invading mutant as a function of the
mutant strategy is concave when mutants play the resident strategy)

B ′′(nX) − C ′′(X) < 0. (2b)

3.2 Finite populations

To find evolutionary outcomes of the n-player snowdrift game (Sect. 2) when played
in a finite population (N < ∞), we use a framework for analyzing evolutionary
stability in finite populations introduced in Molina (2016). We denote by δWε(x, X)

the difference inmean fitness of mutants (playing x) and residents (playing X ), where
ε is the proportion of the population playing the mutant strategy x (so ε takes one of
the values 0, 1

N , . . . , N−1
N , 1).

Similar to the infinite-population case, selection opposes invasion of a population
of residents playing X by mutants playing (an arbitrarily similar strategy) x if the
expected fitness of such mutants is lower than for residents, that is, δWε(x, X) attains
a local maximum as a function of x for x = X . This occurs if the following two
conditions hold.

(1) The resident strategy X is singular, i.e., directional selection vanishes in its
vicinity when mutants are rare, or more precisely, for ε = 1/N 1, the local fitness
difference gradient vanishes as it is approached, that is, ∂xδWε(x, X)

∣
∣
x=X = 0;

see Definition 4.3.5 in Molina (2016). For the snowdrift game, the condition for
a singular strategy can be written

(
N − n

N − 1

)

B ′(nX
) − C ′(X) = 0 (3a)

[cf. Equation (4.64) in Molina (2016)].
(2) Whenmutants are rare, thefitness of an invadingmutant as a function of themutant

strategy is concave when mutants play the resident strategy, i.e., for ε = 1/N ,
∂2x δWε(x, X)

∣
∣
x=X < 0. For the snowdrift game, this concavity condition can be

written

− C ′′(X) + N − n

N − 1
B ′′(nX) < 0 (3b)

[cf. Equations (4.64) and (4.71) in Molina (2016)].

Equation (3a) is a necessary condition for selection opposing invasion of mutants
playing strategies sufficiently similar to the residents: if (3a) does not hold, then the
fitness difference between the invading mutant and residents is either increasing or
decreasing as a function of the mutant’s strategy; in the increasing (resp. decreasing)

1 Note that as shown in Molina (2016) (p. 138), in well-mixed populations, the local fitness difference
gradient ∂x δWε(x, X)

∣
∣
x=X is independent of the proportion of mutants, ε.
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case, invadingmutants contributing slightlymore (less) than the residents obtain higher
fitness than the residents.2

In a finite population (N < ∞), the assumptions that define our model framework
(Sect. 2) do not completely determine the strategy dynamics that unfold following
the introduction of a mutant. In particular, fixation probabilities naturally depend on
how fitnesses are used to determine changes in the frequencies of the two traits that
are present in the population over time [e.g., the Moran or Wright–Fisher processes;
see Moran (1962), Ewens (2012) and Nowak (2006)]. In Molina and Earn (2018), we
formally define and analyze such selection processes, which are Markov processes
describing populations in which

(1) there are at most two types of individuals (cf. the trait substitution assumption
above);

(2) there are no mutations;
(3) the number of individuals of the type that has a higher mean fitness in a given

generation is expected to increase in the next generation.

Without specifying a particular selection process, it is in general impossible to identify
strategies that are ESSNs (i.e., evolutionarily stable in a population of size N ); whether
selection opposes the fixation of mutants playing a strategy sufficiently similar to the
residents depends on the selection process.

In the next two subsections, we introduce further notation related to themean fitness
difference, and a class of selection processes that we will use in later sections.

3.2.1 Curvatures of the mean fitness difference

We now introduce convenient notation to simplify the Taylor expansion of the mean
fitness difference δWε(x, X) in the mutant strategy x about a singular resident strategy
X .

Using Eq. (3a) and the identity δWε(X , X) = 0 (neutral mutations do not confer
a fitness advantage), for any number of mutants i (1 ≤ i ≤ N − 1), as well as the
fact that the local fitness difference gradient ∂xδWε(x, X)

∣
∣
x=X is independent of the

proportion ofmutants, ε (see footnote 1 above)we canwrite themeanfitness difference

δWε=i/N (x, X) = 1

2
ωi�x2 + O(�x3), (4)

where �x = x − X , and

ωi := ∂2x δWε=i/N (x, X)

∣
∣
∣
x=X

, i = 1, . . . , N − 1, (5)

are the fitness difference curvatures. Note that ωi depends on the resident strategy X ,
but we make this dependence implicit for notational convenience.

2 Moreover, because ∂x δWε(x, X)
∣
∣
x=X is independent of the proportion of mutants in the population,

mutants that obtain a higher fitness when rare do so regardless of their frequency in the population, so by
Corollary 5.4 of Molina and Earn (2018), selection favours their fixation.
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Using Equations (4.64) and (4.71) of Molina (2016), the coefficient ωi is given by

ωi =
(

1 + 2(n − 1)
i − 1

N − 1
− (n − 1)

[

2(i − 1)(n − 2) + (N − 2)
]

(N − 1)(N − 2)

)

B′′(nX) − C ′′(X).

(6)

In particular,

ω1 = −C ′′(X) + N − n

N − 1
B ′′(nX), (7)

so setting

�ω := 2
(n − 1)(N − n)

(N − 1)(N − 2)
B ′′(nX), (8)

we have

ωi = ω1 + (i − 1)�ω. (9)

3.2.2 Symmetric birth-death processes

Some of our analysis involves identifying situations in which selection favours fixa-
tion. To that end, in Appendix A we define a class of biologically sensible selection
processes—which we call symmetric birth-death (or SBD) processes—for which
fixation probabilities can be conveniently expressed in terms of differences in mean
fitness. If there are i mutants in the population (with 1 ≤ i ≤ N −1), and if we denote
the mean fitness difference by

δi := δWε=i/N (x, X), (10)

then the inverse of the fixation probability is

1

pfix
= 1 +

N−1
∑

j=1

j
∏

i=1

[

1 − φ δi + O(δ2i )
]

, (11)

where φ > 0 is a parameter that depends on which SBD process is chosen. SBD
processes are used in Sect. 4 for analyses that depend only on Eq. (11) and in Sect. 6.2
for numerical simulations; the particulars of how SBD processes are defined (in
Appendix A) are not essential to understand the results. In Sect. 5 and Sect. 6.3,
we present more general results that are not specific to SBD processes.
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4 Selection can oppose invasion but favour fixation of arbitrarily
similar mutants

In this section, we demonstrate that for any given population size N and any group
size n < N , there are games for which selection opposes invasion but favours fixation
(of mutant strategies that can be arbitrarily close to a singular strategy played by
residents).

Consider the evolution of contributions to an n-player snowdrift game (as described
in Sect. 2) in a finite population of size N governed by an SBD selection process
(defined in Appendix A). In this situation, we show that it is possible to find benefit
and cost functions, B and C , and a resident strategy X , such that

mutants that play a strategy (x) that is different from—but sufficiently similar
to—the resident strategy (X ) obtain lower fitnesswhen rare, yet selection favours
the fixation of such mutants.

The conditions for this are stated precisely in Proposition 1, which we prove in
Appendix B.

Proposition 1 Consider an evolving population of finite size N, where fitnesses are
determined by playing the n-player snowdrift game as described in Sect. 2. If residents
play a singular strategy [i.e., a strategy X that satisfies Eq. (3a)], and in addition,

0 < B ′′(nX) <
N − 1

N − n
C ′′(X) <

(

1 + 2
n − 1

N

)

B ′′(nX), (12)

then for any sufficiently similar strategies x (i.e., for |x−X | sufficiently small), selection
opposes the invasion of mutants playing x, but favours their fixation under any SBD
selection process (Sect. 3.2.2 and Appendix A).

It is easy to find functions B and C that satisfy the conditions in Proposition 1.
In Sect. 6.2, we construct explicit examples of games that satisfy the hypotheses of
Proposition 1 and therefore exhibit fixation of strategies that are opposed by selection
when rare.

Remark 2 Maynard Smith and Price’s original definition (1973) of evolutionary sta-
bility, stated in the context of 2-player games, listed two situations in which a resident
strategy X is evolutionarily stable against a mutant strategy x :

1. residents obtain a higher payoff than mutants when playing against a resident;
2. residents and mutants obtain the same payoff when playing against a resident, but

residents obtain a higher payoff than mutants when playing against a mutant.

Thefirst condition ismotivated by situations inwhich amutantwill only ever encounter
residents and residents will almost always encounter other residents; then amutant that
obtains a lower payoff (and consequently a lower fitness) than residents will almost
surely die out. Implicitly, it is assumed that if selection opposes invasion, then it also
opposes fixation. The second condition is relevant when selection does not oppose
invasion, in which case the effect of mutants on the payoffs (and therefore fitnesses) of
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residents must be taken into account. Under this condition, while the initial mutant’s
payoff is equal to the residents’, if there come to be more than one mutant, then their
average payoff is less than that of residents due to the effect of interactions with other
mutants.

Proposition 1 shows that in afinite population, thefirst ofMaynardSmith andPrice’s
conditions is not sufficient to ensure evolutionary stability. This condition ensures only
that selection opposes themutant’s invasion, whereas frequency-dependent effects can
still cause selection to favour the fixation of the mutant strategy.

5 Evolutionary outcomes can depend on the selection process, even
in large populations

In Sect. 4 we fixed the population size N and found conditions guaranteeing that
selection opposes invasion but favours fixation; these conditions are satisfied by many
snowdrift games. In this section, we fix the game (a snowdrift game with specific
benefit and cost functions and a fixed group size3) but not the population size. We
consider situations in which the game has an ESS if played in an infinite population
and ask whether it also has an ESSN if played in a sufficiently large finite population.

Proposition 3 below (proved in Appendix C) provides the answer, which is not as
simple to state as one might hope. The existence of an infinite-population singular
strategy X∗∞ generically implies the existence of a finite-population singular strategy
X∗
N when the same game is played in a finite population of sufficiently large size N ;

in fact, X∗
N → X∗∞ as N → ∞. We identify a condition [namely, condition (16)]

guaranteeing that for sufficiently large population size N , X∗
N is a (local) universal

ESSN (UESSN), that is, selection opposes the invasion and fixation of mutations of
arbitrarily small effect, regardless of the selection process. However, if condition (16)
does not hold, then the evolutionary stability of X∗∞ does not generally imply that X∗

N
is evolutionarily stable: we identify a condition under which, when residents play X∗

N ,
selection may either favour or oppose the fixation of mutations of arbitrarily small
effect, depending on the selection process. In Sect. 6.3, we also construct explicit
examples of snowdrift games that exhibit this behaviour.

Proposition 3 In a snowdrift game as defined in Sect. 2, suppose the benefit and cost
functions, B and C, and the group size n, are such that there is a strategy X∗∞ > 0
satisfying the adaptive dynamics condition for evolutionary stability (2), and at which

nB ′′(nX∗∞) − C ′′(X∗∞) �= 0 (13)

3 By a fixed group size we mean that the size of the interacting group (n) is independent of the population
size (N ). For example, the typical size of groups travelling in cars that are obstructed by snowdrifts would
be the same in small and large cities.
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(which holds generically4). If this same game is played in a finite population of suffi-
ciently large size N, then for each such N there is a singular strategy X∗

N , and

X∗
N → X∗∞ as N → ∞. (14)

If, in addition, the fitness difference curvatureωN−1 [Eq. (5)] is negative for sufficiently
large N, i.e., if there exists a population size N such that

N ≥ N 	⇒ ωN−1 < 0, (15)

then there exists N∗ ≥ N such that for any N ≥ N∗, X∗
N is a UESSN. A sufficient

condition for such an N to exist is that

lim
N→∞ ωN−1 < 0. (16)

Conversely, if there exists N such that

N ≥ N 	⇒ ωN−1 > 0, (17)

then there exists N∗ ≥ N such that for all N ≥ N∗, for mutations of arbitrarily small
effect, selection favours fixation for some selection processes, but opposes fixation for
other selection processes; a sufficient condition for such an N to exist is that

lim
N→∞ ωN−1 > 0. (18)

Conditions (16) and (18) are easy to check because the limit can be expressed
directly in terms of the benefit and cost functions: Eqs. (8) and (9) give

ωN−1 = (2n − 1)
N − n

N − 1
B ′′ (nX∗

N

) − C ′′ (X∗
N

)

. (19)

Since, in addition, X∗
N → X∗∞ as N → ∞ (14), we have

lim
N→∞ ωN−1 = (2n − 1)B ′′ (nX∗∞

) − C ′′ (X∗∞
)

. (20)

Note that condition (15) [condition (17)] is more general than condition (16) [con-
dition (18)]: the sign of limN→∞ ωN−1 being negative (positive) is not necessary for
the existence of N

(

N
)

, because it is possible that ωN−1 < 0 (> 0) for all sufficiently
large N , but that limN→∞ ωN−1 = 0. However, Eq. (20) implies that limN→∞ ωN−1
exists and vanishes iff (2n − 1)B ′′ (nX∗∞

) − C ′′ (X∗∞
) = 0, which generically is not

satisfied. In other words, generically, either condition (16) or condition (18) holds.
In the unlikely situation that neither condition (15) nor (17) holds (which can only

happen if limN→∞ ωN−1 = 0), there are two possibilities:

4 In particular, in the biologically sensible case of accelerating costs and decelerating benefits, condition (13)
always holds.
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• There are increasing, unbounded sequences
{

Ni
}

i∈N and {Ni }i∈N such that
ωNi−1 < 0 and ωNi−1 > 0 for all i ∈ N: in this case, corollary 5.4 and lemma
4.6 in Molina and Earn (2018) (respectively) imply that X∗

Ni
is a UESSN and X∗

Ni

is not a UESSN for all i ∈ N. For any N ∈ {Ni }i∈N, if residents play X∗
N , some

selection processes favour fixation of mutations of arbitrarily small effect, while
other selection processes oppose their fixation.

• The fitness difference curvature ωN−1 vanishes for all sufficiently large N (i.e.,
there exists N0 such that ωN−1 = 0 for all N > N0): in this case, it is possible
that x = X∗

N is a minimum, maximum or inflection point of δW(N−1)/N
(

x, X∗
N

)

for all sufficiently large N . Consequently, if ω1 < 0 it is still possible that X∗
N is

a UESSN; but, it is also possible that some selection processes favour fixation of
mutations of arbitrarily small effect, while other selection processes oppose their
fixation.

6 Examples

In this section, we illustrate the predictions of Propositions 1 and 3 with examples,
using a subclass of snowdrift games thatwe define in Sect. 6.1. The particular examples
are then described in Sects. 6.2 and 6.3.

6.1 A class of quadratic snowdrift games

Consider a snowdrift game (Sect. 2) with quadratic benefit and cost functions [similar
to Doebeli et al. (2004)],

Bν,ξ (τ ) = b2τ
2 + b1τ, (21a)

Cν,ξ (x) = c2x
2 + c1x, (21b)

where the coefficients are

b1 = 0, (22a)

b2 = 1, (22b)

c1 = 2, (22c)

c2 = ξ − n

ξ − 1

(

1 + ν
n − 1

ξ

)

, ξ > n, 2 > ν ≥ 1. (22d)

We denote such a game for particular ν and ξ as Gn (ν, ξ), and the family of all such
games for fixed group size n as

Fn = {Gn (ν, ξ) | 1 ≤ ν < 2 and ξ > n} . (23)

Note that games in this class differ only in their cost functions.
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6.1.1 Singular strategies

When snowdrift games with quadratic benefit and cost functions [Eq. (21)] are played
in an infinite population, solving Eq. (2a) gives the unique singular strategy

X∗∞ = c1 − b1
2 (nb2 − c2)

, (24a)

whereas when they are played in a finite population of size N > n, Eq. (3a) gives the
singular strategy,

X∗
N = c1 − N−n

N−1b1

2
(
N−n
N−1nb2 − c2

) . (24b)

Note, however, that for some choices of the coefficients (b1, b2, c1, c2), X∗∞ and X∗
N

can be negative (and therefore biologically irrelevant). For the specific benefit and cost
coefficients given by Eq. (22), i.e., for all games in the class Fn , Eqs. (24a) and (24b)
become

X∗∞ = 1

/ [

n − ξ − n

ξ − 1

(

1 + ν
n − 1

ξ

)]

, (25a)

X∗
N = 1

/ [
N − n

N − 1
n − ξ − n

ξ − 1

(

1 + ν
n − 1

ξ

)]

, (25b)

It is straightforward to show that X∗
N > X∗∞ > 0 for any ξ > n and ν ∈ [1, 2).

6.1.2 Sufficient condition for evolutionary stability in an infinite population

To guarantee that the singular strategy X∗∞ given by Eq. (25a) is evolutionarily stable
when played in an infinite population, a sufficient condition is that

ξ > 2n and ν >
ξ

ξ − n
. (26)

To see this, we verify that condition (26) implies that condition (2b) is satisfied: With
quadratic benefit and cost functions, condition (2b) yields c2 > b2, and inserting Eq.
(22) gives

ξ − n

ξ − 1

(

1 + ν
n − 1

ξ

)

> 1, (27)

which simplifies to

(ξ − n)ν > ξ. (28)

This is equivalent to condition (26) if ξ > 2n.
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Fig. 1 Selection opposing invasion but favouring fixation in a quadratic snowdrift game (Sect. 6.1; ν = 3/2,
ξ = 200) with group size n = 5 and total population size N = 200. The finite-population singular
strategy (X∗

N = 0.2571) is shown with a thick vertical grey line. The associated infinite-population ESS
(X∗∞ = 0.2506) is shownwith a thin dashed vertical grey line. The fixation probability of a neutral mutation
(1/N = 0.005) is shown with a horizontal grey line. The red dots show the fixation probability of mutants
when residents play the ESSN, based on 107 simulations for each mutant strategy, under a symmetric
birth-death (SBD) selection process with transition probability ratio R(δi ) = e−δi (so φ = 1 in Eq. (11);
see Eq. (41) in Appendix A) (color figure online)

6.2 Evolutionary games with different outcomes in finite populations and infinite
populations

Given a finite population size N , we now consider the subclass of games Gn (ν, ξ) for
which ξ = N , i.e., {Gn (N , ν) ∈ Fn|2 > ν ≥ 1}. Although Gn (N , ν) is parameterized
using the given N , note that the games in this subclass can also be played in an infinite
population.

When a game in Gn (N , ν) is played in a finite population of size N , Proposition 1
applies. Thus, under an SBD selection process (Appendix A), if residents play the
singular strategy X∗

N , selection favours fixation ofmutations of arbitrarily small effect,
so X∗

N is not an ESSN. Since cooperative strategies (X > 0) that are not singular
cannot be ESSNs, a game Gn (N , ν) does not have a cooperative ESSN when played in
a population of size N under any SBDprocess. By contrast, if the same gameGn (N , ν)

is played in an infinite population, then X∗∞ [given below in Eq. (29a)] is an ESS for
any ξ = N > 2n (see Sect. 6.1.2). We corroborate the prediction of evolutionary
instability for finite N using individual-based simulations in Fig. 1.

To verify that Proposition 1 holds for any game Gn (N , ν) (with 2 > ν ≥ 1), note
first that when ξ = N , Eq. (25a) reduces to

X∗∞ = 1

/ [

(n − 1)
N − n

N − 1

(
N

N − n
− ν

N

)]

> 0, (29a)
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and Eq. (25b) becomes

X∗
N = 1

/ [

(n − 1)
N − n

N − 1

(

1 − ν

N

)]

, (29b)

which is positive for any N ≥ 2 because 2 > ν > 0. Next, substituting Eq. (21) into
condition (12) gives

0 < b2 <
N − 1

N − n
c2 <

(

1 + 2
n − 1

N

)

b2. (30)

For the specific coefficients of the benefit and cost functions given by Eq. (22), con-
dition (30) becomes

0 < 1 <
N − 1

N − n

(N − n

N − 1

)(

1 + ν
n − 1

N

)

<

(

1 + 2
n − 1

N

)

, (31)

which manifestly holds for ν ∈ [1, 2).

6.3 Games for which evolutionary outcomes differ between infinite and
arbitrarily large but finite populations

We now apply Proposition 3 to identify games in the class Fn that have an ESS when
played in an infinite population but—depending on the selection process—either have,
or do not have, an ESSN when played in arbitrarily large finite populations.5

To do this, we must find games Gn (ν, ξ) ∈ Fn that (i) have an infinite population
ESS X∗∞, (ii) satisfy condition (13), and (iii) have the property that there is a population
size N such that condition (17) is satisfied.

First, to ensure that there is always an infinite population ESS, we assume ν and ξ

satisfy condition (26).
Second, we note that for games in Fn , condition (13) simplifies to

ξ2 + νξ + nν �= 0, (32)

which holds because ν, ξ and n are all positive. Hence condition (32) [and therefore
condition (13)] holds for any ν ∈ [1, 2).

5 For sufficiently large populations, condition (12) does not hold for quadratic snowdrift games, so Propo-
sition 1 does not apply to these games. For such games, the second derivatives of the benefit and cost
functions are independent of the resident strategy. Consequently, as the population size N is increased in
condition (12), the rightmost expression approaches the second from the left expression (which is inde-
pendent of N ). The second from the right expression increases with N , so condition (12) must be violated
for N large enough. Thus, we cannot say whether or not an ESSN exists when such games are played in
arbitrarily large but finite populations under SBD selection processes.
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Finally, we find that with N := �ξ
, condition (17) is satisfied: Inserting Eq. (22)
in Eq. (19), we have

ωN−1 = (2n − 1)
N − n

N − 1
− ξ − n

ξ − 1

[

1 + ν
n − 1

ξ

]

. (33)

Substituting ξ = N in Eq. (33) gives

ωN−1
∣
∣
N=ξ

= N − n

N − 1
(n − 1)

[

2 − ν

N

]

, (34)

which is positive because N ≥ 2 and 2 > ν > 0. Since (N − n)/(N − 1) increases
with N , so does ωN−1, and hence

ωN−1 ≥ ωN−1
∣
∣
N=ξ

> 0 for all N ≥ ξ. (35)

7 Conclusion

Evolutionary game theory has been developed primarily under the approximation of
an infinite background population (Lehmann 2012; Geritz et al. 1998; Doebeli et al.
2004; Zheng et al. 2007; Brown and Vincent 2008; Brännström et al. 2010; Deng
and Chu 2011). In this setting, the notion of evolutionary stability can be formalized
simply as “selection opposes invasion” and the details of the selection process are
irrelevant. In finite populations, evolutionary stability requires the additional condition
that “selection opposes fixation”, and which strategies are stable [ESSNs; see Nowak
et al. (2004)] depends, in general, on the selection process (Molina and Earn 2018).

The traditional justification for the infinite population approximation is that suf-
ficiently large finite populations behave as if they were infinite (Metz et al. 1996,
Sect. 2.1). Here, we have challenged this conventional wisdom by demonstrating two
mechanisms by which inferences drawn from evolutionary games played in an infinite
population can turn out to be incorrect for more realistic, finite populations. First, we
have shown that for any finite population size, there are biologically sensible situations
in which selection favours the fixation of mutants, even though selection opposes their
invasion (Proposition 1; example in Sect. 6.2). Second, we have identified conditions
on n-player snowdrift games such that an infinite-population cooperative ESS exists,
yet in a finite population—no matter how large—the existence of a cooperative ESSN
depends on the selection process, i.e., a cooperative ESSN exists under some selection
processes but not others (Proposition 3; example in Sect. 6.3).

Thus, while the infinite population approximation is convenient mathematically
and leads to simpler predictions, those predictions can be misleading in finite pop-
ulations (no matter how large). Infinite-population models should, therefore, be
applied carefully and cautiously. To that end, we have also identified conditions
under which the infinite population approximation does correctly predict evolution-
ary outcomes in sufficiently large finite populations. More precisely, Proposition 3
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specifies conditions—on n-player snowdrift games—that guarantee that if an infinite-
population ESS exists then in sufficiently large (but finite) populations there is a
strategy that is universally evolutionarily stable (i.e., is an ESSN for any selection pro-
cess). Under these conditions, the adaptive dynamics framework is useful and correctly
predicts evolutionary outcomes in sufficiently large (finite) populations.
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Appendices

A Symmetric birth-death selection processes

Let Mp(t) be the number of mutant individuals at time t ; since individuals are either
mutants or residents, Mp(t) completely specifies the population state at time t . If
Mp(t) = i for 1 ≤ i ≤ N − 1 then both mutants and residents are present so we refer
to a mixed population state.

We define a discrete-time birth-death process that—based on the fitness difference
betweenmutants and residents—changes the composition of the population over time;
for convenience, we use P to denote both this process, and the transition matrix that
defines it. Specifically, we set

Pi, j = 0, 0 ≤ j < i − 1 or i + 1 < j ≤ N , (36a)

Pi,i−1

Pi,i+1
= Ri

(

δWε=i/N (x, X)
)

, 1 ≤ i ≤ N − 1, (36b)

Pi,i = 1 − Pi,i+1 − Pi,i−1, 1 ≤ i ≤ N − 1, (36c)

P0,0 = PN ,N = 1, (36d)

where the dependence of the transition probability ratios Ri (i = 1, . . . , N−1) on the
mean fitness differences δWε(x, X) (Sect. 3.2) will be specified shortly. The following
two conditions must be satisfied for Eq. (36b) to make biological and mathematical
sense:

(a) The right hand side of Eq. (36b) must be non-negative for any fitness differ-
ence δWε=i/N (x, X) (otherwise some transition probabilities will be negative).
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Moreover, if Ri
(

δWε=i/N (x, X)
) = 0 for some i then mutants cannot go extinct

(fixation of the mutants is certain) so we assume Ri (·) > 0. [The consistency
condition (b) stated stated next also independently excludes the possibility that
Ri

(

δWε=i/N (x, X)
) = 0.]

(b) The transition probability ratios Ri must satisfy a consistency condition. If a pop-
ulation consists of i and N − i individuals of types A and B, respectively, then
the ratio of the probabilities that the number of individuals of type A increases,
and decreases, must be independent of whether type A is labelled as the mutant
or resident. Mathematically, if mutants and residents are interchanged, state i
becomes state N − i , and the mean fitness difference δWε=i/N (x, X) becomes
−δWε=(N−i)/N (x, X). Thus, writing δi = δWε=i/N (x, X) as in Eq. (10), we
require that

Ri (δi ) = 1

RN−i (−δi )
. (37)

(c) The transition probability ratios Ri must be decreasing functions of the fitness
difference. This assumption is motivated by the biologically sensible intuition that
if themutants have a fitness advantage over the residents, increasing this advantage
should increase the probability that the number ofmutants increases (and lower the
probability that the number ofmutants decreases). Conversely, if the residents have
a fitness advantage over themutants (i.e., δWε=i/N (x, X) < 0) then increasing this
advantage should decrease the probability that the number of mutants increases.

For simplicity, we assume that the ratios of probabilities of mutants increasing and
decreasing (Pi,i−1/Pi,i+1) depend on the mean fitness difference δWε=i/N (x, X), but
not on the population state i , so that, with minor abuse of notation, only one transition
probability ratio function is needed, Ri = R for all i = 1, . . . , N − 1, and

Pi,i−1

Pi,i+1
= R

(

δWε=i/N (x, X)
)

, 0 < i < N . (38)

Condition (37) then becomes R(δi )R(−δi ) = 1. Since R > 0, this is equivalent to

log R(δi ) = − log R(−δi ), (39)

so r(δi ) := log R(δi ) is an odd function. It follows that the transition probability ratio
must be of the form

R(δi ) = er(δi ), (40)

where r : R → R is odd. Since R is decreasing, r must also be decreasing.
We assume henceforth that r is analytic in a neighbourhood of δi = 0. Because r

is odd, r (n)(0) = 0 for any non-negative even integer n, and letting φ = −r ′(0) > 0,
we have

r(δi ) = −φδi + O(δ3i ). (41)

Consequently, for i = 1, . . . , N − 1, Eq. (36b) gives

Pi,i−1

Pi,i+1
= er(δi ) = 1 − φδi + O(δ2i ). (42)
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Equation (36) leaves some freedom in that we do not specify how likely it is for
the population to remain at the same state (i.e., that Mp(t + 1) = Mp(t)); this affects
the speed of evolution, but not the fixation probabilities. For concreteness, we can set
Pi,i = 0 for all i = 1, . . . , N − 1, in which case Eqs. (36b) and (36c) can be solved
explicitly to obtain

Pi,i+1 = 1

1 + R (δi )
, (43a)

Pi,i−1 = R (δi )

1 + R (δi )
. (43b)

We have thus constructed a class of birth-death processes, determined by the choice
of the logarithm r of the transition probability ratio R, which must be a decreasing
odd function (taking r(δi ) = −δi yields the simplest such process). These processes
P are well-behaved in the sense that for any resident and mutant strategies:

(I) at any time t the number of individuals of the type with higher fitness is expected
to increase in the next time step,

(II) no newmutations are introduced, so thatmonomorphic populations are absorbing
states of P , and

(III) starting from any mixed population state it is possible for the mutation to either
fixate or become extinct, that is, the probabilities of these outcomes happening
at some future time are nonzero.

Consequently, P is indeed a selection process as defined in Molina and Earn (2018).
Moreover, P satisfies the consistency condition (37) by construction and, for smooth
r , depends smoothly on the mean fitness difference δWε=i/N (x, X).

If initially one mutant individual playing x enters the population (Mp(0) = 1), the
probability that themutation fixes can be calculated exactly (because P is a birth-death
process) and is given by

pfix = 1

1 + ∑N−1
k=1

∏k
j=1

Pj, j−1
Pj, j+1

(44)

[see, for example, Appendix C ofMolina and Earn (2018) for a detailed proof]. Insert-
ing Eq. (42), we obtain Eq. (11).

B Proof of Proposition 1

Let X be a singular strategy [Eq. (3a)] for which condition (3b) holds, so that selection
opposes invasion of a population of residents playing X by mutants playing x suffi-
ciently close to X .We aim tofind additional conditions on the benefit and cost functions
(B and C) such that, for SBD processes (Sect. 3.2.2), selection favours the fixation of
x sufficiently near X , even though it opposes invasion of x when rare. Denoting the
fixation probability of the mutant strategy when one mutant individual initially enters
the population by pfix we wish to find conditions under which pfix > 1/N .
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First, observe that from Eq. (4), if ωi < 0, then δWε=i/N (x, X) < 0 for
all x sufficiently close to but different from X , and conversely, if ωi > 0, then
δWε=i/N (x, X) > 0 for such mutants. Thus, if ωi < 0 for all i = 1, . . . , N − 1,
then δWε=i/N (x, X) < 0 for all x sufficiently close to but different from X , so Corol-
lary 5.4 in Molina and Earn (2018) implies that selection opposes fixation of such
mutants regardless of the selection process. Thus, in order for selection to favour the
fixation of mutants playing x close to X , there must be some number of mutants i
(1 ≤ i ≤ N − 1) for which ωi > 0.

The definition of the fitness difference curvaturesωi [Eq. (5)] implies that condition
(3b) is equivalent to ω1 < 0. Therefore, to stack the odds in favour of the mutants
fixing, we will require

ωi > 0 for all i = 2, . . . , N − 1. (45)

Because ωi is linear in i [Eq. (9)], this is achieved if

0 < −ω1 < �ω. (46)

Using Eqs. (7) and (8), this is equivalent to

N − n

N − 1
B ′′(nX) < C ′′(X) <

(
N − n

N − 1
+ 2

(n − 1)(N − n)

(N − 1)(N − 2)

)

B ′′(nX)

= N + 2n − 4

N − 2
· N − n

N − 1
B ′′(nX). (47)

Henceforth, we assume that condition (46) [or equivalently, condition (47)] holds.
Then, �ω > 0, so the curvatures ωi increase with i . Thus, we can bound fixation
probabilities for invading mutants under an SBD process (Sect. 3.2.2) by substituting
Eq. (4) into Eq. (11) to get

1

pfix
= 1 +

N−1
∑

k=1

k
∏

j=1

(

1 − 1

2
φ ω j�x2 + O(�x3)

)

≤ 1 +
(

1 − 1

2
φ ω1�x2 + O(�x3)

)

⎡

⎣1 +
N−1
∑

k=2

k
∏

j=2

(

1 − 1

2
φ ω2�x2 + O(�x3)

)

⎤

⎦ , (48)

where we have used φ > 0 [Eq. (41)] and 0 < ω2 ≤ ω3 ≤ · · · ≤ ωN−1 to obtain
inequality (48). Simplifying the term in square brackets gives

1 +
N−1
∑

k=2

k
∏

j=2

(

1 − 1

2
φ ω2�x2 + O(�x3)

)

= 1 +
N−1
∑

k=2

(

1 − 1

2
φ ω2�x2 + O(�x3)

)k−1

=
N−2
∑

k=0

(

1 − 1

2
φ ω2�x2 + O(�x3)

)k
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=
N−2
∑

k=0

k
∑

j=0

(
k

j

)(

− 1

2
φ ω2�x2 + O(�x3)

) j

=
N−2
∑

k=0

[

1 + k
(

− 1

2
φ ω2�x2 + O(�x3)

)

+ O(�x4)

]

= N − 1 − (N − 1)(N − 2)

2

1

2
φ ω2�x2 + O(�x3), (49)

and hence

1

pfix
≤ 1 +

(

1 − 1

2
φ ω1�x2 + O(�x3)

) (

N − 1 − (N − 1)(N − 2)

2

1

2
φ ω2�x2 + O(�x3)

)

= N − (N − 1)
1

2
φ

(

ω1 + N − 2

2
ω2

)

�x2 + O(�x3). (50)

It follows that if �x is sufficiently small then 1
pfix

< N (so pfix > 1
N as desired)

provided that the coefficient of �x2 in Eq. (50) is negative, i.e., provided that

0 < ω1 + N − 2

2
ω2

= ω1 + N − 2

2
(ω1 + �ω) = N

2
ω1 + N − 2

2
�ω

= N

2

(

−C ′′(X) + N − n

N − 1
B ′′(nX)

)

+ N − 2

2

(

2
(n − 1)(N − n)

(N − 1)(N − 2)
B ′′(nX)

)

= N

2

(

−C ′′(X) + N − n

N − 1
B ′′(nX)

)

+ (n − 1)(N − n)

N − 1
B ′′(nX)

= N

2

[

−C ′′(X) + N + 2(n − 1)

N
· N − n

N − 1
B ′′(nX)

]

. (51)

Thus, pfix > 1
N if

C ′′(X) <
N + 2(n − 1)

N

N − n

N − 1
B ′′(nX). (52)

Now recall that in order to ensure that selection opposes invasion of similarmutants,
but that themean fitness of mutants is higher than that of residents when the population
contains two or more mutants, condition (47) must hold. Therefore, all that remains is
to determine under what circumstances conditions (47) and (52) both hold. Because
N > n ≥ 2, we have

N + 2(n − 1)

N
<

N + 2n − 4

N − 2
. (53)

Furthermore, condition (47) also implies

B ′′(nX) > 0, (54)
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so we have

N + 2(n − 1)

N
· N − n

N − 1
B ′′(nX) <

N + 2n − 4

N − 2
· N − n

N − 1
B ′′(nX), (55)

that is, the right hand side of Eq. (52) is smaller than that of condition (47). Hence,
both conditions (47) and (52) are satisfied if

B ′′(nX) <
N − 1

N − n
C ′′(X) <

(

1 + 2
n − 1

N

)

B ′′(nX), (56)

in which case both ω1 < 0 and pfix > 1
N , as desired.

6 ��

Proof of Proposition 3

It can be shown that if the population size N is sufficiently large, there is a finite-
population singular strategy X∗

N [i.e., a solution of Eq. (3a)], and that the sequence
of these singular strategies approaches X∗∞ as N → ∞ (see Lemma 4 in Appendix
D). Henceforth, assume without loss of generality that N is sufficiently large that the
singular strategy X∗

N exists. Taking the limit N → ∞ in Eq. (7) we find

lim
N→∞ ω1 = B ′′ (nX∗∞

) − C ′′ (X∗∞
)

, (57)

which is negative because we assume that Eq. (2) is satisfied. Consequently, for N
large enough, ω1 < 0.

Now, suppose that ωN−1 < 0 for all N > N . Then, there exists N∗ ≥ N such
that if N ≥ N∗ then both ω1 and ωN−1 are negative. Since ωi is linear in i [Eq. (9)],
this implies that ωi < 0 for all i = 1, . . . , N − 1. Hence, from Eq. (4), we have
δWε(x, X∗

N ) < 0 for x sufficiently close to but different from X∗
N . In other words,

if residents play X∗
N , mutants playing a strategy that is sufficiently similar to the

residents’ obtain a lower fitness than residents, regardless of the number of mutants
(i.e., for all i = 1, . . . , N − 1). Thus, selection opposes both invasion and fixation
of such mutants regardless of the selection process (Molina and Earn 2018, Corollary
5.4), so X∗

N is a UESSN.
Similarly, if ωN−1 > 0 for all N > N , then there exists N∗ ≥ N such that ω1 < 0

and ωN−1 > 0, so ωi changes sign as a function of i . Consequently, for all N ≥ N∗,
when mutants play strategies that are arbitrarily similar to the residents, the mean
fitness difference δWi/N is positive for some numbers of mutants and negative for
others. Consequently, from Lemma 4.6 in Molina and Earn (2018), it follows that
selection favours fixation of such mutants for some selection processes, and selection
opposes their fixation for other selection processes. ��
6 Because N+2(n−1)

N > 1, the right hand side of condition (56) is greater than the left whenever
B′′(nX) > 0, so condition (56) cannot be satisfied if the benefit function is concave.
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D Existence and convergence of finite-population singular strategies

Lemma 4 below shows that the existence of a singular strategy when a game is played
in an infinite population generically implies the existence of a corresponding singular
strategy when it is played in a sufficiently large finite population.

Lemma 4 (Existence of singular strategies in sufficiently large populations) Consider
an evolving population of finite size N in which fitness is determined by payoffs
from an n-player snowdrift game (Sect. 2) for which the second derivatives of
the benefit (B) and cost (C) functions exist. Suppose that a singular strategy X∗∞
exists when the same snowdrift game is played in an infinite population, and that
nB ′′(nX∗∞) − C ′′(X∗∞) �= 0 (which holds generically). Then, if the population size
N is sufficiently large, a corresponding singular strategy X∗

N exists. Furthermore, the
sequence of finite-population singular strategies X∗

N that result from playing this game
in finite populations of different (sufficiently large) size approaches X∗∞ as N → ∞.

Proof Letting
f (X , ρ) := ρB ′(nX) − C ′(X), (58)

we have f (X∗∞, 1) = 0, because X∗∞ is singular in an infinite population, and so
satisfies Eq. (2a). Noting that ∂X f (X , ρ)|(X ,ρ)=(X∗∞,1) = nB ′′(nX∗∞) −C ′′(X∗∞), the
hypothesis that nB ′′(nX∗∞) − C ′′(X∗∞) �= 0 implies that

∂X f (X , ρ)|(X ,ρ)=(X∗∞,1) �= 0. (59)

Therefore, from the implicit function theorem (e.g., Thomson et al. 2008, Theo-
rem 12.40), there is a differentiable function X(ρ) defined in a neighbourhood of
ρ = 1, such that

f
(

X(ρ), ρ
) = ρB ′(nX(ρ)

) − C ′(X(ρ)
) = 0. (60)

Now define
ρN := (N − n)/(N − 1). (61)

SinceρN → 1, it follows that for sufficiently large population size N , f
(

X(ρN ),ρ
)= 0

can be solved implicitly to yield X∗
N = X(ρN ). These solutions X∗

N are singular [i.e.,

solve Eq. (3a)]. Moreover, X∗
N

N→∞−−−−→ X∗∞ because X(ρ) is continuous.
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