1	Global scenarios of household access to modern energy services under climate mitigation policy
2	
3 4	Miguel Poblete-Cazenave ^{1*} , Shonali Pachauri ¹ , Edward Byers ¹ , Alessio Mastrucci ¹ and Bas van Ruijven ¹
5	¹ International Institute for Applied Systems Analysis (IIASA)
6	* Corresponding author, poblete@iiasa.ac.at
7	
8	Abstract

9 Emission reduction scenarios to meet various climate change mitigation policy goals often do not 10 explore the differential impact of alternative pathways on access to energy for different economic 11 strata of society across countries. Here we show that even under optimistic socioeconomic growth 12 scenarios, inequalities in use of modern energy in homes could persist. We find that though access 13 improves in high growth scenarios, over 10% of populations in sub-Saharan Africa and South Asia could 14 lack access to energy services for thermal comfort, food preparation and conservation, and cleaning 15 in 2050. Ambitious climate mitigation scenarios do not significantly alter household access to energy 16 services in the Global South, and only affect gas consumption in high-income regions. Our work 17 suggests that efforts to meet climate policy goals are not at odds with progress towards universal 18 access to modern energy services in the Global South, however, directed policy will be needed to meet 19 access goals.

20

Main 21

22 Access to modern, reliable, and affordable energy services is a prerequisite for development and 23 providing a decent quality of life for all of humanity. The United Nations Sustainable Development 24 Goal (SDG) 7, explicitly targets universal access to modern energy services, including a connection to 25 electricity and modern cooking energy services by 2030. Several analyses of the existing status of 26 access to modern energy services and scenarios of extending access universally, either implicitly or 27 explicitly, to meet the SDG targets already exist¹⁻⁷. However, existing studies focus largely on 28 technologies and investments needed to achieve access goals and specific benefits that can ensue 29 from gaining access. Less is understood of how preferences for energy services shift and demands 30 change across diverse populations as modern forms of energy become more easily accessible and 31 affordable over time. Here, we present a highly granular bottom-up residential appliance choice and 32 energy demand model that we apply globally to assess how access to energy services in homes will 33 change under scenarios of socio-economic growth and under policy scenarios that meet climate 34 change mitigation goals.

35

36 As currently defined, achieving SDG7 does not imply regular use or access to all the services needed 37 for decent living. There are vast differences today in how much energy people use at home^{8,9}. While 38 many enjoy the benefits of a multitude of appliances that provide comfort and convenience and meet 39 a diverse set of service needs, others still lack access to even basic electric lighting and thermal comfort 40 in their homes^{10,11}. In many developing and emerging countries, much of the population even lacks access to reliable electricity and clean cooking services¹²⁻¹⁴. Understanding how household energy 41

42 service demands for diverse end-uses will grow is fundamental to planning efforts to meet climate 43 and other SDGs. Can fuel shifts and purchases of more efficient appliances dampen demand growth 44 from expanding services and number of appliances owned? How much will climate mitigation policies 45 affect access to and demands for home energy services and are rich and poor equally affected by 46 associated price changes? These are questions we shed light on here.

47

48 Recent research has focused on normatively defining services that need to be provided universally to 49 alleviate poverty and ensure decent living for all, and quantifying a minimum energy floor to fulfill 50 these^{15–17}. Other work has focused on developing low energy demand scenarios that focus on activity 51 levels and service demands also consistent with a normatively defined ceiling on affluent and wasteful 52 consumption, and subsequently quantifying associated energy requirements¹⁸. Beyond normatively 53 defining or assuming demands, existing literature is largely silent on using empirical data to estimate 54 bottom-up how access to energy services in homes will change as people are better able to afford 55 these. Literature focused on residential energy demand estimation and projection at a global scale is 56 rather aggregate^{4,14,15}. The focus is often on population and income as drivers of aggregate demand, 57 without differentiating between different end-uses or diverse consumers. The few studies that do 58 focus on service demands or incorporate consumer heterogeneity are almost always specific to

individual countries or regions or certain end-uses 21-24.

Here, we explore future shifts in access to key energy end-use services in homes by applying a highly 60 61 granular residential end-use services of energy (MESSAGE-Access-E-USE) model (see Methods). We 62 analyze appliance and energy demand using the model under three of the Shared Socio-economic 63 Pathways (SSP) narratives SSP1, SSP2 and SSP3 that we refer to as no new (climate) policy – NNP scenarios) ^{25,26}. We expand the scenario descriptions to also include explicit assumptions regarding 64 the diffusion of efficient appliances consistent with the harmonized quantitative elaborations of 65 population²⁷, urbanization²⁸, income growth²⁹ and distribution³⁰ projections (see Methods). We run 66 67 an additional two climate policy (CP) scenarios consistent with long-term mitigation targets limiting 68 warming to below 2°C (CP2C) and 1.5 °C (CP1.5C) by the end of the century³¹. Our highly granular 69 analysis of shifts in access to home energy services shows that, although access to modern energy 70 sources and services improves in scenarios with higher income growth and lower inequality, a vast 71 majority of the population in several regions of the world could still use little direct energy at home 72 by mid-century. Even in 2050, under optimistic socioeconomic growth scenarios, residential energy 73 demand could vary substantially by income group by as much as a factor of 10 and inequalities are 74 likely to persist between and within regions. A significant share of households in sub-Saharan Africa 75 and South Asia could continue to lack access to minimum energy services for thermal comfort, food 76 preparation and conservation, and cleaning without additional policies. Nevertheless, scenarios where 77 ambitious climate targets are achieved do not significantly alter the picture for the developing world, 78 only affecting consumption levels in high-income regions, without diminishing the levels of access to 79 different energy services for populations in these regions. Thus, we find that achieving climate 80 mitigation goals is not at odds with achieving universal access to modern energy services.

81 82

Total and average modern residential energy use

83 84 How might total and per capita residential energy demand for electricity and gas change across regions 85 in the future? We find a consistent rise in electricity use per capita till 2050 in all regions and scenarios, 86 with this rise occurring faster under scenarios with higher income growth and urbanization (SSP1) and 87 for regions in the Global South that start from a lower base level of use (see Fig 1a and 1b). Gas use, 88 in most regions and under all scenarios, by contrast, initially rises but then declines after 2030 even 89 though incomes continue to rise. This is in response to a sharper increase in gas prices relative to 90 changes in electricity prices (see Supplementary Data). While per capita electricity use in most regions 91 is not affected by price changes under stringent climate mitigation scenarios, we see the transition 92 away from fossil gas in all regions, but particularly in North America (NAM) and Western Europe (WEU), is more pronounced under climate policy scenarios (see Methods for details on regional aggregations). These differences can be explained by price dynamics of these two energy types under different scenarios as electricity prices in most regions do not increase significantly till mid-century even under stringent climate policy scenarios, while gas prices change more dynamically (see Supplementary Data).

98

99 Distribution of modern energy use across populations

100

101 These aggregate trends, however, hide significant differences in the distribution of modern energy 102 use among populations across and within regions. Despite significant income growth and urbanization 103 under future SSPs, stark inequalities in per capita residential final energy use persist till mid-century. 104 Most populations in the Global South could continue to use little modern energy in their homes even 105 by 2050 (see Fig 2). In sub-Saharan Africa (AFR), South Asia (SAS), Pacific Asia (PAS) and Latin America 106 (LAM), over two-thirds of the population could continue to use <5GJ/capita in 2050 even under SSP1, 107 with this share being as high as 85% in SSP3 (see Supplementary Figure S1 for density plots). Under 108 climate policy scenarios, there is not much shift in the distribution of energy use, but an additional 2% 109 of populations in these regions could use <5GJ/capita in 2050 even under SSP1.

110

111 In Western Europe (WEU) and North America (NAM), most of the population will use a factor 10 more, 112 in excess of 50GJ/capita in 2050 even in SSP3. However, even in these richer regions, 12% of the 113 population could continue to use less than 10GJ/capita in their homes even in SSP1 under no new 114 climate policies. As we find that the rate of appliance ownership between those who use less than 10 115 GJ/capita and those who use more is not widely different, the low modern energy use may reflect a 116 choice for more efficient use of energy at home. This is true except for appliances for water and space 117 heating. In the case of these appliances, we find populations using less than 10 GJ own a higher share 118 of oil-based appliances, which suggests the may experience some degree of energy poverty. This share 119 could increase significantly under climate scenarios to around 19% in the CP2C scenario and to 22% in 120 the CP1.5C. This significant increase in the share of populations using less than 10GJ/capita under 121 climate scenarios, for these highly gas dependent regions, suggests increasing affordability challenges 122 for these populations.

123

124 Access to key end-use services

125

126 The differences we observe in the amounts of energy used across populations, regions and scenarios 127 is also reflected in the extent to which populations benefit from access to services associated with 128 different end-uses in the home. We distinguish between end-uses related to thermal comfort (heating 129 and cooling), food preparation and conservation, entertainment, and cleaning services (see 130 Supplementary Table S2 for a description of appliances associated with each of these end-uses). Fig. 131 3 shows that while electricity used for entertainment services is more widely and democratically 132 distributed across regions and populations, the use of energy for services related to food preparation 133 and conservation, and cleaning could continue to be very unevenly distributed among populations in 134 SAS and AFR in 2030, and even in 2050. Our finding of a strong preference for entertainment services is consistent with findings in other studies on observed preferences of households^{32,33}. The ability of 135 136 populations to afford these services and their access to these is strongly driven by income and 137 urbanization, so a higher share of population gain access to these under SSP1 as compared to SSP3. 138 Climate policy has little impact on access to different end use services because, based on our empirical 139 analysis we find that the purchase of appliances is not very sensitive to changes in energy prices, 140 although there is some impact of price changes on the actual usage of appliances (see Supplementary 141 Figure S2 for a comparison of climate policy and NNP scenarios). Furthermore, electricity prices do not 142 change much across most regions during the first half of the century even under aggressive climate 143 mitigation policy scenarios (see Supplementary Data).

145 We next present how the level of access to key end-use services varies across income groups within 146 each region under the NNP scenarios in Fig. 4. This figure shows results for only the regions in the 147 Global South as much of the population in the Global North already has access to these services today. 148 Even under the more optimistic SSP1 scenario, 10% of populations in AFR and SAS will earn less than 149 \$10PPP/capita/day and could remain unable to afford access to thermal comfort, cleaning, and food related services in 2050. In SSP3, most of the population in SAS and AFR will earn less than 150 \$10PPP/capita/day even in 2050 and most could lack access to essential end-use services in their 151 homes. This is particularly true for rural areas (Fig. 4a) as compared to urban ones (Fig 4b). The 152 153 proportion of population with access varies to some degree by end-use, too. Consistently, even in less 154 developed regions more people have access to energy for entertainment services, like radio and 155 television. By contrast, most populations in AFR and SAS could continue to lack access to energy 156 services related to cleaning such as washing machines (see Supplementary Figure S4 for results on 157 diffusion of specific appliances by scenario and region over time).

158

159 Effects of energy efficiency changes on end-use demands

160

161 Figure 5 shows the average energy use per year per appliance for different end uses (i.e. total energy 162 consumption of a household for a particular end-use divided by the total number of associated 163 appliances) by income group for different regions and scenarios in 2050 (see Supplementary Figure S3 164 for a similar figure depicting results under climate policy scenarios). We use this as a proxy indicator 165 of efficiency of energy use for different home end-uses. Therefore, this should not be considered a 166 measure of efficiency of the appliances themselves. (See Methods for how the indicator is derived and 167 its interpretation). We find that efficiency improvements could attenuate demand growth, particularly 168 in NAM and WEU, as average energy use per appliance is similar across income classes and does not 169 vary significantly across SSPs in these regions. There are significant differences though for distinct end-170 use services across regions. In most OECD regions, energy use for thermal comfort is significantly 171 higher than for other end-uses among all income classes. In the Global South, the energy use per 172 appliance in all end uses is higher for high income groups, suggesting that poorer populations use their 173 appliances more frugally. The opposite is observed in the Global North, where richer populations can 174 afford more efficient appliances. In transition regions (CPA-EEU-FSU), we find that there is a distinct 175 pattern of energy use for thermal comfort and food related services, wherein lower income 176 populations use more energy per appliance than higher income populations. This pattern is more 177 pronounced in SSP1 and is consistent with findings from other studies that suggest significant 178 potential for efficiency gains in these regions that have a legacy of inefficient heating and cooking devices and systems, particularly among low-income households^{22,34,35}. 179

180

181 To better understand to what extent and in which end-uses we see the biggest efficiency gains over 182 time, we undertake additional sensitivity runs for SSP1 and SSP2 excluding the assumptions on the 183 more rapid uptake of efficient appliances (see Methods for a description of these assumptions). Fig 6 184 compares the average energy use per appliance owned for our no change in efficiency SSP sensitivity 185 runs and those that assume a higher share of efficient appliances purchased in 2050. We see that, 186 especially in rural areas, efficiency improvements could lead to lower household energy use for food, 187 cleaning, and entertainment services, but higher energy use for thermal comfort, which is the most 188 fundamental, but also the most energy intensive end-use. We observe two effects that explain this 189 result of an overall high preference for thermal comfort. First, a rebound effect, wherein there is more-190 intensive use of higher efficiency thermal comfort appliances, and second a redistributive effect, 191 wherein the increase in efficiency of other end-uses leaves additional budget that is spent to increase 192 thermal comfort consumption. This may also reflect the high latent or unmet demand for thermal 193 comfort across these populations and regions and relatively lower sensitivity of demand for thermal 194 comfort. Evidence of high and growing unmet demand for cooling that may increase further due to 195 potential future climate impacts is discussed in previous research, as well^{11,20,21,36}.

196

197 Discussion and Conclusions

Energy demand will likely rise till mid-century in most regions despite very different levels of access 198 199 to basic services and appliances that provide comfort and convenience in homes across the globe 200 today. Despite a more rapid rise in demand in regions with currently low levels of demand, vast 201 inequalities in home energy use could persist till mid-century and beyond. Even in 2050, the richest 202 500 million people could consume about the same direct energy as the poorest 5 billion together. 203 While access to key end-use services relating to thermal comfort, entertainment, food preparation 204 and conservation, and cleaning will expand more rapidly under a more optimistic SSP1 future 205 compared to SSP2 and SSP3, even under SSP1, in regions of the Global South including AFR, SAS, PAS 206 and LAM, over two-thirds of the population could continue to use <5GJ/capita at home in 2050. This 207 is lower than the lowest estimates of direct energy needed to provide decent living services or that meet ambitious low energy demand assessments^{16,18,37}. Additionally, in AFR and SAS, 10% of 208 209 populations could earn less than \$10PPP/capita/day and lack the ability to afford access to thermal 210 comfort, cleaning and food related services and appliances in 2050 in SSP1.

211 We find differences in socioeconomic conditions in the future will have a larger impact on access to 212 services and demand than shifts brought about by policies designed to mitigate climate change till 213 mid-century in most regions. This is because the price of electricity, the most preferred fuel of 214 households as their income rises, does not change significantly in most regions till mid-century even 215 under stringent climate policy. However, big shifts in gas prices that occur in climate policy scenarios 216 drive a phase out of gas use in homes across the globe, most pronouncedly in developed regions of 217 WEU and NAM, where gas use is currently high. We also find that in NAM and WEU particularly, 218 efficiency improvements can attenuate demand growth, particularly in energy-intensive heating and 219 thermal uses that continue to comprise the largest share of total home energy use in these regions. 220 In most regions of the Global South, we find that in rural areas efficiency improvements can lead to 221 lower household energy use for food, cleaning, and entertainment services. However, energy use for 222 thermal comfort will likely continue to rise, as latent demand for this end-use is high.

223 Our bottom-up, household level approach to model demand for energy services is based on microdata 224 and provides an opportunity for undertaking highly granular analysis but is naturally bounded by the 225 availability of data. Microdata from individual countries used in this analysis vary in the set of 226 appliances they include. We, therefore, harmonize at the level of key end-use services rather than 227 individual appliances across regions. This is consistent with our services-based focus, wherein 228 appliances are just instrumental to meeting certain end-use service demands. As the behavioral 229 parameters estimated to represent each region in our model are based on data for a selected group 230 of representative countries for each region, there are some regions that may not be completely 231 represented because adequate country data is lacking in these regions. Better availability of national 232 microdata in these regions in the future should allow for capturing the heterogeneity within them 233 more accurately. As our model is not calibrated but rather estimated, the behavioral parameters in 234 our simulated data mimick the empirical reality for a wide variety of variables and drivers jointly. This 235 is because our estimation approach allows for matching the entire data distribution rather than 236 individual points. As new appliances replace existing ones to meet specific and sometimes multiple 237 services (e.g., smart phones and tablets replacing televisions for entertainment), these transitions 238 have important implications for energy use in homes. Our model can capture these shifts only for 239 appliances captured in the surveys, however, new technologies are not explicitly represented, and the implications of the spread of these for energy demands can only be captured through assumptions onfuture appliance efficiencies and costs.

242 There are several policy lessons that emerge from our analysis. An important insight is that climate 243 policy scenarios may not significantly impact energy demand in homes, except in the richer regions of 244 the world. Given that these regions have the economic means to adjust to lower their energy 245 consumption without losing access to any of the most crucial end-use services, energy transformations 246 required to meet ambitious climate targets do not seem at odds with efforts to improve social welfare 247 and access to energy services in the Global South. For populations in NAM, WEU and EEU, efforts to 248 shield the poor from rising gas prices over the next couple of decades may be required to avoid heating 249 services becoming unaffordable. Efforts to improve efficiency also need to focus on technologies that 250 provide thermal comfort, for heating in the Global North and cooling in the Global South. As income 251 is a major determinant of appliances uptake and energy choices, low-income populations will remain 252 excluded from the benefits of modern energy services without additional support. In other words, 253 without subsidies, appliance rebates or easy access to credit, it is highly unlikely that households in 254 developing regions will be able to afford access to key energy services related to thermal comfort, 255 food preservation and preparation, and cleaning by mid-century. Besides the welfare increases that 256 access to modern energy services bring, there are health benefits associated with improving access to 257 modern energy alternatives for cooking and thermal comfort. Thermal needs, in particular, will be 258 severely affected if climate targets are not achieved³⁸. This suggests there are clear synergies between 259 efforts to meet climate goals and expand access to modern energy services globally.

260

261 Methods

262 Overview

263 We use the MESSAGE-Access-E-USE (end-use services of energy) model, which consists of two modules, for the analysis in this work.³⁹ Here we provide an overview of the model and details 264 relevant to the first global application. Supplementary Figure S5 shows a schematic overview of the 265 266 model, differentiating between external inputs (in orange) and the internal modules and outputs (in 267 blue). The estimation module, takes as input micro level data from nationally representative 268 household surveys covering different regions of the world to estimate behavioral preference 269 parameters that explain the choices of appliances and energy demands for different end-uses based 270 on household socio-economic and demographic characteristics. The simulation module, subsequently 271 uses the preference parameters estimated in the first module, plus additional external drivers that 272 present potential future pathways of socioeconomic growth and energy prices, to simulate future 273 appliances uptake and household energy demand under each scenario. We describe these two 274 modules in further detail below.

We follow the regional aggregation of the world into eleven broad regions as defined in the MESSAGE
model (see <u>https://iiasa.ac.at/web/home/research/resear</u>

- 281
- 282 Data Sources

283 We use microdata from nationally representative household surveys of 25 countries that cover 284 different socioeconomic realities, as well as different climatic zones within each region, in order to 285 achieve global representation (Supplementary Table S1 provides a description of the countries and 286 datasets used). Due to data limitations, the sets of household characteristics as well as the set of 287 appliances that are available in each region differs (see Supplementary Table S2 for the variables and 288 appliances considered in each region). However, appliances representing all end-uses that are 289 analyzed in this study can be found in all regions. In addition, to account for the climatic factors that 290 are especially relevant for the estimation of the demand for thermal comfort appliances, we used 0.5° 291 spatial climate model data to define climate zones that are assigned to the different regions accounted 292 for in the micro datasets. Climate zones were developed according to the American Society of Heating, 293 Refrigerating and Air-Conditioning Engineers (ASHRAE) specification (see Supplementary Figure S6 for 294 a World Map of the different climate zones). The standard defines approximately 20 zones based on 295 the thermal climate (i.e. for heating and cooling degree days) and the moisture levels (dry, humid or 296 marine). The climate zones dataset was developed using the EWEMBI dataset⁴⁰, which combines leading climate reanalysis datasets including ERA-Interim, WATCH, eartH2Observe and the 297 298 NASA/GEWEX Surface Radiation Budget, to produce bias-corrected and downscaled data at 0.5° 299 spatial resolution and daily timestep. In particular, we used daily data for the period 1980-2009 for 300 the precipitation and surface air temperature variables⁴¹. Finally, given that, in many cases, the 301 boundaries of some of the regions as presented in the micro datasets crossed more than one climatic 302 zone, we ascribed the climatic zone that occupied the largest area of the region to all the households 303 that can be traced to it.

304

305 Estimation Module

306 We develop a simulated structural econometrics model to estimate behavioral parameters that 307 represent household decisions regarding energy consumption and appliance ownership. A fully 308 detailed description of the methodology can be found in ⁴². In brief, the model starts by creating a 309 synthetic dataset of simulated households that mimics the empirical data in terms of joint 310 distributions of urbanization, income, and a wide array of household characteristics relevant to the 311 energy choice decision. The simulated households, based on their characteristics, optimally choose a 312 set of appliances, and amounts of energy consumed for different energy services according to their 313 preferences. In this way, we model two channels by which household characteristics, and in particular 314 income, affect the demand for energy: indirectly through the choice of appliances, and directly, 315 through the final energy used to run the appliances that the household had acquired.

Specifically, the demand for appliances is modeled using discrete choice methods considering the plausible alternatives for a single end-use given in the data (e.g., the choice of an electric, gas or biomass space heating appliance), as well as possible linkages between the appliances (e.g., the ownership of a washing machine when modeling the ownership of a dryer). Posteriorly, by solving an indirect utilization maximization problem, the consumption of electricity is calculated to be:

321

322
$$x_1 = \Phi_0 + \sum \delta_j \Phi_j + \left[\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 w + \lambda_4 \left(y - \rho \sum K_j \delta_j\right)\right]$$

323

where p_1 and p_2 are the prices of electricity and alternative fuels, respectively, w is a set of household characteristics, y is household income, ρ is the household's discount rate and K_i is the cost of buying the appliance *j*, which is obtained from a distribution that links the prices of the appliances in the region to the income level of the buyers, while the λs are the unobserved preference "weights" that households assign to the corresponding factors. Special attention should be given to the terms $\delta_j \Phi_{j}$, which represent average energy consumption (Φ_j) due to the ownership (δ_j) of the appliance *j* and Φ_{∂} , which represents the average base electricity consumption of households, or better put, the average amount of electricity consumed that cannot be specifically assigned to any of the appliances included in the model

in the model.

333 Conversely, the consumption of alternative energy sources is:

334

335
$$x_2 = (\lambda_2 / \lambda_4) (\alpha - 1) + (\alpha / \lambda_4) (\Phi_0 + \lambda_1 / \lambda_4 + \lambda_3 w) / p_2 + \alpha (\lambda_1 / \lambda_4) (p_1 / p_2)$$

$$+ (\alpha / p_2) \left[y - \rho \sum K_j \delta_j + \sum \delta_j \Phi_j / \lambda_4 \right]$$

337

Finally, the specific energy use EU due to the ownership of the electric appliance k in a particular household *i* is backed up from the total electricity consumption of the household using the following equation:

341

$$EU_{k,i} = X_{1,i} \,\delta_{k,i} \,\Phi_k / \left(\Phi_0 + \sum \delta_{j,i} \,\Phi_j \right)$$

An analog equation is used to back out gas consumption of the household.

In this sense, the energy use that can be attributed to an appliance also reflects the effect of the remaining household characteristics that are used as controls. For example, the energy use for a thermal appliance may include the effect of household size, number of rooms, climate and other factors that can be obtained from the empirical data. However, more specific technical factors, such as, hours of use, set temperatures, capacity or efficiency of the appliances are not included in the model, as they are not available in the type of household datasets that were used for this study.

350 The behavioral preference parameters that determine the choices (namely the Φ s, λ s, α and ρ), 351 although unobserved, are backed out from observed outcomes in empirical data using a simulation-352 based estimation technique⁴³ and a non-derivative optimization algorithm to minimize the distance 353 between a set of relevant moments calculated both in the empirical and the simulated data. The 354 estimation of these behavioral parameters is performed independently for each MESSAGEix⁴⁴ region 355 to try to account for local idiosyncratic factors (hence the "structural" nature of the estimation model). Besides the main parameter estimates that are used in the study, a large set of additional 500 356 357 bootstrap estimates is obtained in order to calculate confidence intervals for the parameters, as well 358 as to allow for the estimation of model uncertainty. Main point estimates and confidence intervals 359 for the parameters obtained for each region and the estimated fit of the model in terms of moments 360 matched for each of the model regions are available in the Supplementary Data File, whereas 361 Supplementary Figure S7 display the fits in just two of the many dimensions in which the estimation 362 is performed, namely, energy consumption and income, to give a visual sense of the fitting process.

364 Scenario Design and Simulation Module

363

365 We design several scenarios representing different combinations of socioeconomic and climate 366 futures. The socioeconomic scenarios are based on the Shared Socioeconomic Pathways (SSP). We 367 focus on three baseline SSP scenarios that describe varying degrees of challenge in meeting adaptation and mitigation goals^{27–30}. The SSP1 scenario presents a world moving on a sustainable development 368 369 path. This scenario has higher economic growth, lower inequality, higher urbanization rates and 370 moderate demographic growth compared to the other scenarios. SSP2 describes a continuation of 371 current trends without major shifts in either direction. At the other end of the spectrum, the SSP3 372 scenario, represents a future with low economic growth, high population growth, increasing inequality 373 and lower urbanization rates than the other two scenarios.

374 Following the narrative of the SSPs, we enhance these by including assumptions on the uptake of 375 efficient appliances. These assumptions are based on an econometric analysis of the uptake of 376 efficient appliances in the largest countries in terms of population from the three income categories 377 that have (statistically) significant proportions of energy efficient appliances data, namely, the United 378 States (high income), China (upper middle income) and India (lower middle income). This analysis 379 provides a statistical relationship between the probability of buying efficient appliances and a set of 380 household characteristics related to socioeconomics and demographics correlates. We then make the 381 following adjustments to these probabilities in line with the alternative futures that are represented 382 by the SSP narratives. We make the following specific assumptions regarding the diffusion of efficient 383 appliances. In SSP1, we assume a gradual increase (by 2050) in the likelihood of buying efficient 384 appliances, up to three times that expected by simply following the current statistical relationships. In 385 SSP2, we adjust the probabilities of buying efficient appliances in line with current statistical 386 relationships following the projected increases in income and population. Finally in SSP3, we assume 387 no changes in the probabilities of buying efficient appliances.

388 In a second step, we combine these scenarios with different climate mitigation futures⁴⁵: We consider 389 a stringent scenario where countries take measures to keep the increase of global temperatures below 390 1.5°C by the end of the century, and a more moderate scenario, targeting temperature rise to below 391 2°C by the end of the century. These scenarios have associated different fuel prices that affect the 392 purchasing options of households. The combination of three SSP scenarios and climate scenarios are 393 assessed to understand how appliance and electricity demand evolve over time. However, the most 394 stringent climate scenario (<1.5°C degrees) is not achievable under SSP3, making this combination not 395 available for analysis.

396 For each of these scenarios, we create simulated future datasets for each region that represent the 397 expected evolution of the distribution of households' characteristics for that specific region over time. 398 This process involves several steps, starting from stepwise, linking the income, population, and 399 urbanization distributions, with the probabilities of having certain characteristics (e.g., the probability 400 of being within a certain climate zone depends on income and urbanization, the probability of having 401 a solid house depends on climate, income and urbanization, the probability of owning a certain 402 thermal cooling appliance depends on having a solid house, climate, income and urbanization, etc.). 403 The individual households in the simulated datasets then choose their set of appliances and energy 404 consumption based on these characteristics and the structural preference parameters estimated in 405 module 1, as described in the previous section.

Finally, confidence intervals for all the scenario analyses presented in the study are obtained using the set of bootstrap estimates of the parameters referenced. These estimates can be found in the Supplementary Data file.

409

410 Figures

411

412

Figure 1: Residential final energy consumption of modern energy by region and scenario between 2010 and 2050. (a) Total; (b) Average per capita. Three baseline scenarios are presented SSP1, SSP2 and SSP3. In addition to these baselinescenarios that include no specific climate policies (NNP); two scenarios with policies aimed at limiting global warming to below 2°C (CP2C) and 1.5 °C (CP1.5C) are presented. Regional disaggregation is in line with MESSAGE model regions (see Methods Section for additional information) and includes Sub-Saharn Africa (AFR), South Asia (SAS), Middle East and North Africa (MEA), Latin America and the Caribbean (LAM), Other Pacific Asia (PAS), Centrally Planned Asia

and China (CPA), Former Soviet Union (FSU), North America (NAM), Central and Eastern Europe (EEU)

and Western Europe (WEU).

Figure 2: Distribution of modern final household energy use per capita across populations in each region by scenario in 2050 (a) Absolute values; (b) Shares of total population

Figure 3: Share of population with access to key end-use services in the home by scenario and region in (a) 2030; (b) 2050. Access percentages for four categories of energy services including thermal comfort, food preparation and conservation, entertainment, and cleaning services is depicted for each region. In 2030, large percentages of populations in AFR, SAS, CPA and LAM still lack access to energy services related to thermal comfort food preparation and conservation, and cleaning services. By 2050, populations in AFR and SAS still lack access to services related to thermal comfort, food preparation and conservation, and cleaning services.

444
 445 Figure 4 Access to end-use services by income group for baseline SSP scenarios in Global South regions
 446 in 2050 (a) Rural; (b) Urban

449
 450 Figure 5: Average energy use per appliance owned for key end-uses by region in 2050 for SSP scenarios
 451

453 454 Figure 6: Deviations in average energy use per appliance by region for higher efficiency and no 455 efficiency change sensitivities in 2050

457 Data Availability

458

Links to the micro datasets that were used in the analysis are included in the Supplementary Information File when available. Given that some of these datasets are not publicly available due to required pre-registrations or confidentiality aggreements (see Supplementary Table S1 in the Supplementary Information), the data used for the estimation module is only available from the corresponding author on reasonable request. The simulated datasets generated during the current study are also available from the corresponding author on reasonable request. Estimation and simulation results presented in the study are included in the Supplementary Data File.

466

467 Code Availability

468

The codes used during the current study are available from the corresponding author on reasonablerequest.

471

472 Acknowledgments

473

All authors received funding from the European Union's Horizon 2020 research and innovation
programme under grant agreements no. 821124 (NAVIGATE).

477 Author Contributions

- 479 MPC and SP conceived the initial framework. MPC, SP and BvR designed the research. MPC, AM and
- 480 EB prepared the data. MPC performed the modelling, wrote the codes and carried out the analysis.
- 481 MPC and SP led the writing of the manuscript, with all other authors contributing.
- 482

483 Competing interests

484 The authors declare no competing interests.

485	Re	fer	en	ces
-----	----	-----	----	-----

- 486
- Bazilian, M. *et al.* Energy access scenarios to 2030 for the power sector in sub-Saharan Africa.
 Util. Policy 20, (2012).
- 4892.Dalla Longa, F. & van der Zwaan, B. Heart of light: an assessment of enhanced electricity490access in Africa. *Renew. Sustain. Energy Rev.* **136**, 110399 (2021).
- 4913.Dagnachew, A. G. *et al.* The role of decentralized systems in providing universal electricity492access in Sub-Saharan Africa A model-based approach. *Energy* **139**, 184–195 (2017).
- 493 4. Pachauri, S. *et al.* Pathways to achieve universal household access to modern energy by 2030.
 494 *Environ. Res. Lett.* 8, (2013).
- 4955.Pachauri, S., Alstone, P., Rao, N. D. & Cameron, C. Outlook for modern cooking energy access496in Central America. *PLoS One* (2018) doi:10.1371/journal.pone.0197974.
- 497 6. Panos, E., Densing, M. & Volkart, K. Access to electricity in the World Energy Council's global
 498 energy scenarios: An outlook for developing regions until 2030. *Energy Strateg. Rev.* 9, 28–49
 499 (2016).
- 5007.Van de Ven, D.-J. *et al.* Integrated policy assessment and optimisation over multiple501sustainable development goals in Eastern Africa. *Environ. Res. Lett.* 14, 094001 (2019).
- 5028.Kartha, S., Kemp-Benedict, E., Ghosh, E., Nazareth, A. & Gore, T. The Carbon Inequality Era:503An assessment of the global distribution of consumption emissions among individuals from5041990 to 2015 and beyond. (2020).
- 9. Oswald, Y., Owen, A. & Steinberger, J. K. Large inequality in international and intranational
 energy footprints between income groups and across consumption categories. *Nat. Energy* 5,
 231–239 (2020).
- Falchetta, G., Pachauri, S., Byers, E., Danylo, O. & Parkinson, S. C. Satellite Observations
 Reveal Inequalities in the Progress and Effectiveness of Recent Electrification in Sub-Saharan
 Africa. One Earth 2, 364–379 (2020).
- Mastrucci, A., Byers, E., Pachauri, S. & Rao, N. D. Improving the SDG energy poverty targets:
 Residential cooling needs in the Global South. *Energy Build*. (2019)
 doi:10.1016/j.enbuild.2019.01.015.
- 514 12. Tracking SDG 7 | Progress Towards Sustainable Energy.
- 51513.Venkata Ramana, P., Michael, T., Sumi, M. & Kammila, S. The State of the Global Clean and516Improved Cooking Sector. ESMAP and GACC
- 517 https://openknowledge.worldbank.org/bitstream/handle/10986/21878/96499.pdf (2015).
- 518 14. Ayaburi, J., Bazilian, M., Kincer, J. & Moss, T. Measuring "Reasonably Reliable" access to
 519 electricity services. *Electr. J.* 33, 106828 (2020).
- 52015.Rao, N. D., Min, J. & Mastrucci, A. Energy requirements for decent living in India, Brazil and521South Africa. Nat. Energy 4, 1025–1032 (2019).
- 52216.Millward-Hopkins, J., Steinberger, J. K., Rao, N. D. & Oswald, Y. Providing decent living with523minimum energy: A global scenario. *Glob. Environ. Chang.* 65, (2020).
- 524 17. Chakravarty, S. & Tavoni, M. Energy poverty alleviation and climate change mitigation: Is
 525 there a trade off? *Energy Econ.* 40, S67–S73 (2013).
- 526 18. Grubler, A. *et al.* A low energy demand scenario for meeting the 1.5 °c target and sustainable

527		development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).
528	19.	Daioglou, V., van Ruijven, B. J. & van Vuuren, D. P. Model projections for household energy
529		use in developing countries. <i>Energy</i> 37 , 601–615 (2012).
530	20.	Isaac, M. & van Vuuren, D. P. Modeling global residential sector energy demand for heating
531		and air conditioning in the context of climate change. <i>Energy Policy</i> 37 , 507–521 (2009).
532	21.	Waite, M. et al. Global trends in urban electricity demands for cooling and heating. Energy
533		127 , 786–802 (2017).
534	22.	Serrano, S., Ürge-Vorsatz, D., Barreneche, C., Palacios, A. & Cabeza, L. F. Heating and cooling
535		energy trends and drivers in Europe. <i>Energy</i> 119 , 425–434 (2017).
536	23.	Ürge-Vorsatz, D., Cabeza, L. F., Serrano, S., Barreneche, C. & Petrichenko, K. Heating and
537		cooling energy trends and drivers in buildings. Renewable and Sustainable Energy Reviews
538		vol. 41 85–98 (2015).
539	24.	Cao, X., Dai, X. & Liu, J. Building energy-consumption status worldwide and the state-of-the-
540		art technologies for zero-energy buildings during the past decade. <i>Energy Build</i> . 128 , 198–213
541	~-	
542	25.	O'Neill, B. C. <i>et al.</i> The roads ahead: Narratives for shared socioeconomic pathways
543		describing world futures in the 21st century. <i>Glob. Environ. Chang.</i> 42 , 169–180 (2017).
544	26.	Riahi, K. <i>et al.</i> The Shared Socioeconomic Pathways and their energy, land use, and
545		greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 42, 153–168
546	27	(2017).
547	27.	KC, S. & Lutz, W. The numan core of the shared socioeconomic pathways: Population
548		scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Chang.
549	20	42 , 181–192 (2017).
550	28.	Jiang, L. & O Neili, B. C. Global urbanization projections for the Shared Socioeconomic
551	20	Pathways. Glob. Environ. Chung. 42, 193–199 (2017).
	29.	bumph capital dynamics. Clob. Environ. Chang. 42 , 226, 226 (2017)
555	20	Page N. D. Sauer, D. Gidden M. & Piabi, K. Income inequality prejections for the Shared
555	50.	Socioeconomic Pathways (SSPs) Eutures 105 , 27–29 (2019)
556	31	$M_{\rm C}$ M_{\rm
557	51.	achieving the Sustainable Development Goals Nat Energy 3 589–599 (2018)
558	32	Cabeza L E Lirge-Vorsatz D McNeil M A Barreneche C & Serrano S Investigating
559	52.	greenhouse challenge from growing trends of electricity consumption through home
560		annliances in huildings <i>Renewable and Sustainable Energy Reviews</i> vol. 36 188–193 (2014)
561	33	Rao N D & Ummel K White goods for white people? Drivers of electric appliance growth in
562	55.	emerging economies Energy Res Soc Sci 27 106–116 (2017)
563	34.	Mainali, B., Pachauri, S. & Nagai, Y. Analyzing cooking fuel and stove choices in China till 2030.
564	•	<i>J. Renew. Sustain. Energy</i> 4 . (2012).
565	35.	Thomas, S. & Rosenow, J. Drivers of increasing energy consumption in Europe and policy
566		implications. Energy Policy 137 , 111108 (2020).
567	36.	Khosla, R. <i>et al.</i> Cooling for sustainable development. <i>Nat. Sustain</i> , 1–8 (2020)
568		doi:10.1038/s41893-020-00627-w.
569	37.	Rao, N. D., Min, J. & Mastrucci, A. Energy requirements for decent living in India, Brazil and
570		South Africa. <i>Nat. Energy</i> 4 , 1025–1032 (2019).
571	38.	van Ruijven, B. J., De Cian, E. & Sue Wing, I. Amplification of future energy demand growth
572		due to climate change. Nat. Commun. 10, 2762 (2019).
573	39.	Poblete-Cazenave, M. & Pachauri, S. A model of energy poverty and access: Estimating
574		household electricity demand and appliance ownership. <i>Energy Econ.</i> 98 , 105266 (2021).
575	40.	Lange, S. EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP
576		(EWEMBI). GFZ Data Services. (2016).
577	41.	American National Standards Institute (ANSI). Energy-efficient design of low-rise residential

- 578 buildings. ASHRAE Standard (2004).
- 579 42. Poblete-Cazenave, M. & Pachauri, S. A simulation-based estimation model of household
 580 electricity demand and appliance ownership. (2020).
- 581 43. Gourieroux, C., Monfort, A. & Renault, E. Indirect inference. *J. Appl. Econom.* 8, S85–S118
 582 (1993).
- Huppmann, D. *et al.* The MESSAGEix Integrated Assessment Model and the ix modeling
 platform (ixmp): An open framework for integrated and cross-cutting analysis of energy,
 climate, the environment, and sustainable development. *Environ. Model. Softw.* 112, 143–
 156 (2019).
- 45. McCollum, D. L. *et al.* Energy investment needs for fulfilling the Paris Agreement and
 achieving the Sustainable Development Goals. *Nat. Energy* 3, (2018).
- 589