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The paper combines grid-level data of eight emission types — CO2, N20, CH4, NH3, NOX, PM10, PM2.5, and
SO2 - with sub-national economic data to create a 1995-2015 balanced panel for NUTS 2 regions in EU
countries. Regions on average show decoupling of emissions from output but most of the emission reductions
are achieved before the 2008 financial crisis. Post 2008, very weak decoupling and even coupling can be
observed. Using OECD’s Environmental Policy Stringency (EPS) Index as an intervention variable, an event
study analysis shows that strong policies significantly reduce emissions, but there is considerable heterogeneity
in the response by emission types and regional income levels.

1. Introduction

The scale of economic activity of the past decades has caused serious
environmental concerns and has threatened the “safe operating space
for humanity” (Rockstrom et al., 2009; Steffen et al., 2015). This is not
surprising as exponential economic and population growth (Krausmann
et al., 2009), rising living standards (Stiglitz et al., 2018), and global-
ized markets have resulted in a manifold increase in emissions, material
extraction, and energy use (Krausmann et al.,, 2017; UNEP, 2019;
IPCC, 2021). To deal with these issues, several multi-lateral treaties
such as the Paris Climate Agreement, the Convention on Biological
Diversity, and the Sustainable Development Goals (SDGs) have been
introduced with the aim of understanding, measuring, and regulating
various environmental pressures that include, among others, emissions,
rising temperatures, biodiversity loss, warming of oceans, and land-use
change (Steffen et al., 2015; Raworth, 2017; IPCC, 2018).

Due to growing environmental concerns and better data availability,
the fields of ecological, environmental, and climate economics have
contributed significantly to help better understand the environment-
economy interactions (IPCC, 2018; Hickel and Kallis, 2020). In recent
years, debates on green growth, de-growth, and post-growth theo-
ries have gained traction (Victor, 2012; van den Bergh and Kallis,
2012; Jackson, 2018; Hickel and Kallis, 2020), and several high-income
countries, have started incorporating stronger environmental regula-
tions within their policy frameworks (IPCC, 2018; UNEP, 2019; EEA,
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2020a). At the heart of the above points is the premise that economic
activity needs to decouple from environmental pressures in order to
avoid crossing some irreversible thresholds that can negatively impact
socioeconomic systems (Peters et al., 2020; IPCC, 2021).

The topic of decoupling was initially brought to the forefront in
the seminal OECD (2002) report, that showcased trends of several
environmental indicators like emissions, material consumption, and
energy use in relation to economic growth. This report, together with
its numerous follow-ups (Peters et al.,, 2011; Haberl et al.,, 2020;
Wiedenhofer et al., 2020) show that many high-income countries have
achieved relative decoupling especially in direct emissions. Relative
decoupling occurs when the environmental indicators grow at a slower
pace than economic growth. Absolute decoupling, by contrast, occurs
when the environmental variables have a zero or negative growth while
the economic variable has a positive growth, and coupling implies
that environmental indicators are growing faster than output. From
an environmental standpoint, absolute decoupling would be neces-
sary to achieve climate targets especially under continued economic
growth (IPCC, 2021). The question whether wide-scale and consistent
absolute decoupling is even technologically possible and politically
feasible remains an on-going debate (IPCC, 2018; OECD, 2018; UNEP,
2019).

The decoupling literature, while providing an invaluable contribu-
tion, currently lacks two aspects. First, decoupling studies focus on
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countries, or a group of countries, as the unit of analysis. Regions within
countries are very heterogeneous with respect to both economic and en-
vironmental indicators especially emissions. As a result, national level
studies are likely to average out the underlying distributions resulting
in an “aggregation bias” (Kojima and Bacon, 2009; de Koning et al.,
2015). For example, investigating countries, sectors, and emissions
types in Europe, Naqvi and Zwickl (2017) find considerable variation
in decoupling across different dimensions with no clear trend towards
or away from more environmentally desirable decoupling outcomes.
In order to overcome this issue, data at the finest spatial resolution
available should be utilized. Second, CO2 remains the main environ-
mental indicator used for analysis (Wiedenhofer et al., 2020) although
other harmful emissions are also generated from economic activity, but
are not given sufficient attention (OECD, 2018; EEA, 2020a). These
emissions have their own negative impacts and might not necessarily
exhibit the same development trends as CO2 emissions.

In order to explore changes in emission and economic output at the
sub-national level, this paper constructs a unique dataset for European
Union (EU) countries for the NUTS 2 regions.! The economic data is
taken from ARDECO (2020), a homogenized NUTS 2-level database
for Europe that provides various indicators like output, income levels,
and economic sector shares. The emissions data is taken from the EU
Joint Research Commission’s (JRC) EDGAR v5 database (Crippa et al.,
2020a,b). EDGAR V5 provides information on different emission types
at a 0.1 x 0.1 degree grid-cell resolution. The grids are mapped on to
NUTS 2 boundaries and data for eight emission types — CO2, N20, CH4,
NH3, NOX, PM10, PM2.5, and SO2 - is extracted. The two datasets are
combined to form a NUTS 2-level panel for the years 1995-2015.

Descriptive results show evidence of relative decoupling of emis-
sions from output but there are large variations across NUTS 2 regions
and by emission types. Furthermore, if the data is split into two sub-
sample periods, 1995-2008 and 2008-2015, then one observes that
most of the decoupling took place before the 2008 financial crisis
while post-2008 several NUTS 2 regions exhibit very weak decoupling
or even coupling trends. In the next part, the OECD’s Environmental
Policy Stringency (EPS) Index (Botta and KoZluk, 2014; OECD, 2018)
is used as a treatment variable to explore the role it plays in reducing
emissions. This is analyzed using an event study design based on recent
methodological advances in difference-in-difference methods (Callaway
and Sant’Anna, 2020; Goodman-Bacon, 2021; Borusyak et al., 2021).
After controlling for GDP output, industry and agriculture sector shares,
and time fixed-effects, regression results shows that, on average, strong
EPS policies reduce all emission types. There is also considerable
heterogeneity across emission types where NH3, CO2, CH4, and N20
decline significantly in response to policies while NOX, PM10, PM2.5,
and SO2 show a weak response. Furthermore, if the regions are dif-
ferentiated by the top one-third and the bottom two-third percentiles
based on real output per capita, then the bottom regions show a much
stronger policy response across all emissions types. In contrast, top
regions show a strong policy response in N20 and NH3 only, while
CO2 and NOX respond weakly to policies. This paper contributes to the
decoupling literature by (a), highlighting the significance of regional
spatial-temporal variations in economic and emission indicators across
EU regions, and (b), showing variations in causal response to emission
policies by emission types and income levels across these regions.

The remainder of the paper is organized as follows. Section 2
provides a literature review of recent decoupling studies with a focus
on Europe. Section 3 describes the data and Section 4 shows descriptive
spatial-temporal decoupling trends. Section 5 conducts event study
analysis on the impact of policies on emissions while Section 6 presents
conclusions and discusses directions for future research.

1 NUTS stand for Nomenclature of Territorial Units for Statistics. Based on
2016 definitions, the EU consists of 283 NUTS 2 regions nested within country
boundaries.
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2. Literature review

The empirical literature that analyzes the development of economic
indicators in relation to environmental indicators has grown signifi-
cantly in the past years, and several papers provide a comprehensive
overview (Lenzen, 2016; Zhang et al., 2018; Wiedenhofer et al., 2020).
While the term “environment” encompasses various topics like raw
material extraction, energy use, land use change, and biodiversity
loss, the dominant focus of this literature remains on air emissions,
especially CO2, greenhouse gasses (GHGs) and pollutants. Since this
paper also focuses on emissions, the literature discussed below covers
only relevant studies.

The emissions-economy literature can be divided in two broad
topics; decoupling studies (Zhang et al., 2018; Lenzen, 2016; Haberl
et al.,, 2020), and estimations of the Environmental Kuznets Curve
(EKC) (Stern, 2004; Carson, 2010; Ozokcu and Ozdemir, 2017; Torras
and Boyce, 1998). The decoupling literature aims to empirically assess
the relative change in emissions in relation to economic output usually
measured by gross domestic product (GDP) or gross value added (GVA).
Here, emissions growing at a slower rate than output is relative decou-
pling, if emissions growth is zero or negative, while economic growth
is positive, it is absolute decoupling, and emissions growth faster than
output is coupling (OECD, 2002). Extensions of these broad definitions
have been explored elsewhere in the literature as well (Tapio, 2005;
Jackson, 2009; Naqvi and Zwickl, 2017). The EKC hypothesis states
that emissions initially grow with output, slow down, reach a turning
point, and eventually decline. In short, there is an inverted U-shape
relationship between emissions and growth that can be categorized as
going from coupling, relative decoupling, to absolute decoupling.

A recent review by Wiedenhofer et al. (2020) highlights some
interesting patterns in this literature. First, the topics of decoupling
and EKC have increasingly gained traction with journal publications
growing at 20% per anum in the past decade. Second, the geographical
focus of the studies remains mostly on the USA, Europe, OECD, Japan
and China, where there is both an interest in this topic, and there is
availability of longitudinal data. And third, papers predominantly focus
on direct or production-based emissions, which are easier to capture
and analyze. In contrast, analysis of indirect or consumption-based
emissions (Davis and Caldeira, 2010; Malik et al., 2019; Krausmann
et al., 2017; Zhang et al., 2018; Peters et al., 2020) require detailed
input-output or supply-use tables, which either have limited spatial-
temporal coverage, or the level of granularity is not sufficiently high
enough for a comprehensive analysis. Despite these limitations, studies
that deal with indirect emissions are also slowly growing (Peters, 2008;
Peters et al., 2011; Wiedmann and Lenzen, 2018; Haberl et al., 2019).

2.1. Evidence on decoupling trends in europe

Several papers estimate the EKC for emissions for European coun-
tries and find weak evidence of a turning point while flattening of
the EKC curve is observed in most cases (Stern, 2004; Bacon and
Bhattacharya, 2007; Li et al., 2007; Shuai et al., 2017; Le Quéré et al.,
2019). Lopez-Menéndez et al. (2014) shows evidence of an EKC turning
point for Cyprus, Greece, Slovenia, and Spain. Similarly, Shuai et al.
(2017), Simas et al. (2017), Fanning and O’Neill (2019) find evidence
of relative decoupling for production-based emissions in most European
countries, but also show that indirect emissions continue to rise. Large
country sample studies, which also include EU, come to the same
conclusions as well (Knight and Schor, 2014; Gupta, 2015; Sanchez
and Stern, 2016; Fernandez-Amador et al., 2017; Simas et al., 2017;
Bampatsou and Halkos, 2019; Hickel and Kallis, 2020).

In terms of country-specific papers, Baiocchi and Minx (2010) for
the UK, Faehn and Bruvoll (2009) for Norway, Palm et al. (2019) for
Sweden, find improvements in direct emissions but also find evidence
that consumption-based emissions have gone up. Other studies show
that in the former Soviet countries, emissions fell dramatically after the
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end of communism (Liobikiene et al., 2016), but recovery has resulted
in strong emissions growth (Streimikiené and Balezentis, 2016). Naqvi
and Zwickl (2017) conduct a sectoral analysis of decoupling trends
across EU countries and find evidence of relative decoupling, but also
highlight that there are strong variations across sectors both within
and across countries. Some studies provide additional insights about
the drivers of decoupling trends in the EU. For example, Robaina-
Alves et al. (2015), Cruz and Dias (2016), Gazheli et al. (2016),
Valadkhani et al. (2016), Beltran-Esteve and Picazo-Tadeo (2017) link
emissions decoupling with technology innovations, productivity gains,
limited access to natural resources, and research and development
(R&D) spending.

2.2. Gaps in the literature

In the decoupling literature, two gaps persist. First, most of the
studies tend to focus on countries, or group of countries, continents,
or the globe as a whole. With the exception of USA and China (Boyce
et al.,, 2016; Cohen et al., 2019), which account for most of the
sub-national studies, hardly any regional analysis exists at the Euro-
pean level (Haberl et al., 2020). The only exception that was found
at the time of writing this was Borozan (2018) which explored the
relationship between energy use and output at the NUTS 2 level.
Sub-national analysis can yield interesting insights since regions vary
significantly in their socioeconomic composition and the level and
type of emissions (Tapio, 2005; Akizu-Gardoki et al., 2018). Second,
CO2 is usually taken as the key indicator for analysis. Besides CO2,
various other harmful emissions, which could be either greenhouse
gases (GHGs) or pollutants, also need to be considered. Furthermore,
while the development of some emissions might be highly correlated
with CO2 and can be co-regulated (Zwickl et al., 2014), others might
develop completely different trends. A better understanding of these
two gaps can also help with emissions-related policy response.

3. Data

The data for analysis is compiled at the NUTS 2 level for European
Union (EU) countries. NUTS regions are homogenized administrative
units defined by the European Commission’s Statistical Agency, or Eu-
rostat. There are four NUTS levels. NUTS O represent countries, NUTS 1
represent major provinces, NUTS 2 are districts, and NUTS 3 are further
subdivisions representing municipalities or counties.? According to the
2016 NUTS definitions used in this paper, there are 283 NUTS 2 regions
in the EU.

3.1. Economics data

The economic data comes from the Annual Regional Database of the
European Commission or ARDECO, a dataset that was initially released
in 2019 and is periodically updated (ARDECO, 2020).> The ARDECO
database provides a unique and consistent NUTS 2 level information on
various economic indicators including real Gross Value Added (rGVA),
income levels, and industry sector shares.

ARDECO ranges from 1970-2019 and has two advantages over
similar data available from the Eurostat, the official statistical agency
for the EU. First, it standardizes the data to 2016 NUTS classifications,
while Eurostat provides information using the latest NUTS classifica-
tion. NUTS regions have been reclassified in 1995, 1999, 2003, 2006,

2 Definitions of administrative boundaries vary across countries. For more
information, see https://ec.europa.eu/eurostat/web/nuts/background.

3 This database is part of recent efforts by the European Commission
to homogenize regional indicators (https://ec.europa.eu/knowledge4policy/
territorial/ardeco-online_en) and was formerly hosted by Cambridge Econo-
metrics as the European Regional Database (ERD).
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2010, 2013, 2016, and more recently, in 2021. At each reclassification,
new regions are created, split, merged, or have their boundaries shifted.
This makes it very challenging to create a homogeneous panel dataset
at the regional level. Second, the ARDECO database provides sectoral
breakdown of economic indicators. The sectors are also homogenized
to NACE revision 2 classifications. NACE stands for “Statistical clas-
sification of economic activities in the European community” and is
used for mapping economic activity in Europe.* NACE codes have
been reclassified three times (NACE revision 1 in 1996, revision 1.1 in
2002, and revision 2 in 2007), where the correspondence across finer
NACE classifications remains a major challenge.” ARDECO provides
information for six NACE rev2 sectors — Agriculture (A), Industry (B-
E), Construction (F), Wholesale Retail and Trade (G-J), Finance and
Business (K-N), and Non-market Services (O-U). For this paper, the
sectors are collapsed into two groups that cause direct emissions; the
primary Agriculture (A) sector and the secondary Industrial (B-E, F)
sector. The residual tertiary or the Service sector is excluded from this
analysis since it is more relevant for studies dealing with indirect or
consumption-based emissions.

Fig. 3.1 shows the distribution of real GVA, and shares of agriculture
and industry in real GVA for 2015. Here one can observe the disparity
between central European and periphery regions, and rural and urban
NUTS regions. Periphery regions are more dependent on agriculture
and have lower output. Similarly, one can also observe industrial
clusters that tend to be on the eastern side.

3.2. Emissions data

Emissions data comes from the Emissions Database for Global Atmo-
spheric Research, or EDGAR v5, hosted at the European Commission’s
Joint Research Center (JRC) (Crippa et al., 2020a,b). The dataset pro-
vides 0.1 x 0.1 degree grid-level emissions from 1970-2015. Emissions
are categorized into Greenhouse Gasses (GHGs) and pollutants which
are individually discussed below.

3.2.1. Greenhouse gasses (ghgs)

GHGs are emissions that enter the upper atmosphere and prevent
radiation from escaping back into space, and as a result, cause global
warming. In 1994, the United Nations Framework Convention on Cli-
mate Change (UNFCCC) came into force with the aim of stabilizing
GHG concentrations in the atmosphere to prevent potential serious
future consequences for example global warming (IPCC, 2018). Updates
to the regulations and targets takes place through the Conference of
Parties or COPs. The COP in 1997 resulted in the Kyoto Protocol which
provided binding agreements to reduce emissions for two obligation
periods, 2008-2012 and 2012-2020 (Delbeke and Vis, 2016). Policies
after 2020 are determined by the Paris Agreement (COP 2015) that
also deals with the two-degree global warming target. For Europe, the
emission targets are monitored by the European Environmental Agency
(EEA) and the emission inventories are maintained by the JRC (EEA,
2020).

Three GHGs are selected for analysis for this paper, Carbon Dioxide
(C0O2), Methane (CH4), and Nitrogen Dioxide (N20). CO2 is produced
as a result of burning of fossil fuels and from chemical reactions
like manufacturing of construction material especially cement. It also
naturally emits from trees, biological materials, and waste. Methane
(CH4) is emitted during the production and transportation of fossil
fuels. It is also produced heavily in the agriculture sector, for exam-
ple, directly by livestock, through fertilization, and decay of organic
waste in landfills. N20 is produced through agriculture and industrial
activities, combustion of fossil fuels and solid waste, and treatment of
waste water.

4 For details, see https://ec.europa.eu/eurostat/statistics-explained/index.
php/Glossary:Statistical_classification_of economic_activities_in_the European_
Community_(NACE).

5 See the correspondence mapping from Rev. 1.1 to Rev. 2 here https:
//ec.europa.eu/eurostat/web/nace-rev2/correspondence_tables.
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Fig. 3.1. Spatial distribution of economic indicators for 2015.
Source: ARDECO (2020). K-mean clusters used for cut-offs.

3.2.2. Pollutants

The second type of emissions are pollutants that stay suspended
low in the air and can also travel via wind currents. They cause direct
harm to humans and animals (through inhalation), and plants (through
eutrophication). In 1979 the United Nations Economic Commission for
Europe (UNECE) established the Geneva Convention on Long-Range
Trans-boundary Air Pollution or LRTAP. The LRTAP was implemented
as the European Monitoring and Evaluation Program (EMEP) under the
UNECE. Since 1979, the EMEP program has been extended by eight dif-
ferent protocols. The last one, known as the Gothenburg Protocol, came
into effect in 2005 and introduced extensive monitoring of LRTAP. The
Gothenburg protocol also provided EU countries pollution reduction
targets and ceilings for emissions relative to 1990 levels (UNECE,
2020).

For this paper, five pollutants are selected. Sulfur Oxide (SOX),
which is produced through extraction of minerals and burning or sulfur-
rich fossil fuels (for example, during wine production). Nitrous Oxide
(NOX) which is emitted through internal combustion of car engines.
Ammonia (NH3), a key ingredient in the agriculture sector where
almost 90% of NH3 is used in fertilizers, pesticides, dyes, and cleaning
products. Particulate Matter (PM10 and PM2.5) are micro-particles
that stay suspended in air. Most of industrial economic activity causes
PM emissions. The number represents the size of PM measured in
micrometers (pm). PM below 10 pm can be easily inhaled and enter the
bloodstream and is highly detrimental to human health (WHO, 2014).

Fig. 3.2 shows grid-level maps for the European region for four
different emission types (CO2, PM10, N20, and NH3) extracted from
the EDGAR v5. The figure highlights the spatial variations both within
and across countries. The emission grids are mapped on to NUTS 2
administrative boundaries and aggregated using a spatial overlay (see
Appendix A for details). Fig. 3.3 shows the distribution of four emis-
sions at the NUTS 2 level for the year 2015. The maps of the remaining
emissions are given in Fig. B.1 in the Appendix.

The economic and emission datasets are merged to form a balanced
panel from 1995-2015. 1995 is selected as the starting year since
it maximizes the number of NUTS 2 regions in the EU as most of
the EU enlargement took place before 1995. Additionally, mechanisms
to monitor the emissions and the implementation of environmental
policies mostly took place around 1990-1995. Therefore, the quality
of the data is also of higher for both the datasets after 1995.

3.3. Oecd’s environmental policy stringency (eps) indicator

Climate policies in the EU are formulated at the highest EU-level
with national member states adapting these regulations based on their
own circumstances. As Delbeke and Vis (2016) neatly summarize,
the EU’s climate policies are one of the most comprehensive in the
world, that have slowly evolved based on climate targets, impact on
key economics sectors, in relation to other key regulations, and in
consultation with member countries. Emissions specifically need a pan-
EU response since they cannot be restricted within national borders.
As a result, EU as a whole, commits to emission reduction targets.
Member countries can develop further strategies on top of baseline EU
regulations. This also aligns with various other EU-wide policy areas
like decarbonization, reducing dependence on imported fossil fuels,
and scaling-up green technologies, within the Single Market frame-
work (Delbeke and Vis, 2016). Even though policies can be attributed
to EU and country-level decisions, the aim of this paper is to explore
their impact on heterogeneous regions within countries.

In order to evaluate the impact of environmental policies on emis-
sions, the OECD Environmental Policy Stringency (EPS) Index (Brunel
and Levinson, 2013; Botta and KoZluk, 2014; OECD, 2018) is used.
EPS is a homogenized composite index comprising of market and non-
market based policies covering 27 OECD countries and six non-OECD
countries for the time period 1990 till 2015.

As shown in Fig. 3.4, market-based policies include taxes on various
emissions, trading schemes, and feed-in-tariffs (FITs) for wind and solar
energy. Non-market based policies include policy-determined standards
and limits for emissions and public R&D subsidies. The overall EPS
index is a weighted average of each category. The index is normalized
to the 0-6 range where higher values indicate higher stringency.®

This index has been selected for two reasons. First, it is the only
homogenized indicator available that allows one to compare climate
policies across the sample EU countries over time. Second, even though,
the index is labeled as “environmental” policy stringency, which im-
plies a broad spectrum of climate topics, the index itself mostly focuses
on emissions, as can be observed in Fig. 3.4. All of the individual

¢ The OECD EPS data is available at https://stats.oecd.org/Index.aspx?
DataSetCode=EPS and the documentation is available here.
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Fig. 3.2. Sample EDGAR v5 emission grids.
Source: EDGAR v5 (Crippa et al.,, 2020a).

Emissions given in tons.

components either have a direct impact on emissions reduction or indi-
rectly target emission reductions via scaling-up of green technologies.
As Botta and Kozluk (2014) explain in the documentation, emissions-
related policies are one of the few environmental indicators that can be
homogenized and compared across countries due to data availability.

Even though the data for individual index components is available,
the aggregate EPS is utilized as the policy intervention variable. A main
reason for this is that it is not clear to which extent individual index
component directly or indirectly impact various emissions. For example
standards for limiting sulfur in diesel indirectly reduces other emissions
especially CO2. Or R&D subsidies, a large component of the index,
are probably very important in developing green technologies. Addi-
tionally, the combination of market and non-market policies, work in
tandem to induce private firms to shift to new technologies (Acemoglu
et al., 2012). Therefore, the overall EPS index, allows us to jointly test
the impact of several policies on emissions.

Fig. 3.5 plots the trends of the overall EPS index of the EU countries.
The figure shows how the policy stringency increased after 1995 but
after the 2008 financial crisis, declined slightly before increasing again.
Variations in policies stringency are also visible. For most of the EU
countries, the EPS data only exists till 2012, which marks the end of
the first commitment period of the Kyoto Protocol (EEA, 2020a). In
order to make this indicator useful for the data time range, a cut-off of
EPS > 2.5 is taken as strong policy measure or the treatment variable.
The value of 2.5 is also used in Botta and Kozluk (2014) to differentiate
strong versus weak policy countries. For the paper, we assume that once
a country crosses the strong policy threshold, it stays in the treatment

group. This is also based on the assumption that policies, especially
in European countries, once implemented, are not easily reversed, and
generally tend to stay in place. This assumption also allows us to
extrapolate the policy-related treatment status for countries that do not
have data after 2012.

4. Descriptive statistics

The final dataset is a perfectly balanced panel for NUTS 2 regions for
the time period 1995-2015. The variables used in the paper are summa-
rized in Table 4.1. The first entry in the table, real Gross Value Added
(rGVA), shows the variation in the output of regions after accounting
for purchasing power standards (PPS). In terms of per capita rGVA, the
average income is around EUR 23,000 for all the data points. But on
the extreme ends, regions can have a GDP per capita as low as EUR
4,387 (PL72: Swietokrzyskie, Poland in 1995) to as high as Eur 181,173
(UKI3: Inner London West, UK in 2015). Other indicators highlight the
trends as well. For example agriculture share in rGVA ranges from 0-
21%s while industry ranges from 4%-59%. Similar variations can also
be observed in the emissions across the NUTS regions. Fig. B.2 in the
Appendix shows the correlation across various variables in a matrix
plot.

Fig. 4.1 highlights aggregate EU-wide trends of economic and emis-
sion variables. All indicators are indexed to their respective 1995 levels.
The main economic indicator, real Gross Value Added (rGVA) shows
a constant increase relative to 1995 index with the dip in 2008, at
the time of the financial crisis, followed by the recovery period. The
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Fig. 3.3. Spatial distribution of emissions for 2015.
Source: EDGAR v5 (Crippa et al., 2020a). Emissions
are given in thousand tons. K-mean clusters used to

determine groups.

industry sector follows a similar trend but exhibits a widening gap
from total rGVA. Agriculture shows significant fluctuations in output
across the years with some stability after the 2008 crisis. Emissions
decline relative to 1995 but there are huge variations. CO2 and NH3
stay relatively close to their 1995 level with CO2 showing a decline
mostly after 2010. PM10, PM2.5 and N20O start declining immediately
after 1995 but their levels stay relatively stable after 2003. The last two
emissions, NOX and SO2, show a constant decline relative to 1995.
While the trends in Fig. 4.1 are averages for the sample regions,
Fig. 4.2 plots the trends for real GVA and CO2 emissions for individual

NUTS 2 regions. The average trends, shown as solid lines, are exactly
the same as in Fig. 4.1. The bands show the range of values of all the
NUTS 2 regions which are indexed to their own 1995 values. As seen
in the figure, even though average real GVA has increased over time,
the spread indicates that some regions are performing worse than their
1995 level while some have grown significantly. Similarly, the band for
CO2 shows that emissions have increased in several regions relative to
1995. These variations highlight how average trends can result in an
aggregation bias.
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In order to explore the relationship between environmental and
economics variables, the OECD’s Decoupling Factor (DF) (OECD, 2002)
is introduced here:

where Emm represents emission type. The economic indicator is
represented by rGVA. Time is indexed by ¢ and the baseline reference
period is sub-scripted with 0. The ratio Emm,/rGVA, is the emissions
intensity at the time 7 > 0 relative to emissions intensity at the baseline
Emm,/rGVA,. The DF is bounded above at one where one is absolute
decoupling. The range 0 < DF < 1 shows the intensity of relative
decoupling. The indicator is not bound in the negative range and values

Emm, /rGVA,

Emm, /rGVA, m

DF,:1—<

less than zero indicate the extent of coupling, where emissions grow at
a higher rate than rGVA.

According to the OECD formula, the baseline reference period de-
termines whether a region is decoupling or not. Just by changing the
baseline, different DF values can be obtained. This is important to
highlight because most studies show decoupling of emissions from
output over a long time horizon. Such analyses are very likely to
show relative decoupling since longer time spans are also likely to
include technological improvements and introduction of new policies
that reduce emissions (Peters et al., 2011) and therefore, are likely to
have a “temporal bias”.

In order to elaborate the above point, the time range of 1995-2015
is broken down into two sub-periods; 1995-2008, and 2008-2015. The
first sub-period 1995-2008 reflects the initial phases of implementing
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Table 4.1

Summary Statistics (1995-2015).

Source: Economic variables: ARDECO (2020). Environmental variables Crippa et al. (2020a). Environmental Policy Stringency (EPS) (OECD, 2018).

Mean SD Min Max Obs.

Economic variables

GVA (Mil. Eur PPS) 37,664.37 42,932.32 435.61 558,356.88 5,439
GVA - Agriculture (Mil. Eur PPS) 735.59 812.95 0.97 10,142.94 5,292
GVA - Industry (Mil. Eur PPS) 10,041.81 10,249.10 60.96 94,607.54 5,291
Agriculture share in GVA (%) 3.00 2.90 0.00 21.39 5,292
Industry share in GVA (%) 28.11 8.60 3.72 59.20 5,291
Environmental variables

CH4 (000 tons) 91.03 81.90 0.00 1,354.62 5,943
CO2 (°000,000 tons) 12.46 12.79 0.00 105.56 5,439
N20 (’000 tons) 3.40 3.63 0.00 64.86 5,943
NH3 (’000 tons) 19.16 18.77 0.00 126.53 5,943
NOX (’000 tons) 36.55 27.43 0.02 178.99 5,943
PM25 (000 tons) 5.01 4.49 0.00 42.10 5,943
PM10 (000 tons) 7.82 7.16 0.00 61.84 5,943
SO2 (’000 tons) 24.39 39.12 0.01 628.30 5,943
EPS Index (0-6) 2.20 0.86 0.52 4.13 5,439
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Fig. 4.1. EU-wide trends in economic and environmental variables, 1995-2015.
Source: Own calculations from Crippa et al. (2020a) and ARDECO (2020).

climate policies in the EU (Delbeke and Vis, 2016). The second period,
2008-2015 represents the post-2008 global financial crisis phase which
saw a decline in the global economy where most of the policies focused
on getting growth back on track (Burns et al., 2020). Fig. 4.3 shows
the boxplots of DF across NUTS 2 regions for the eight emission types
relative to rGVA by different time periods.

The DF for the full 1995-2015 data range is shown in red in
Fig. 4.3. Here the DF is calculated for 2015 values relative to 1995 as
the baseline. Over this time period, one can observe high decoupling
where the median values for all the emissions are above 0.5. SO2
shows the strongest decoupling while N20 and NH3 have the lowest
median decline in emissions. CO2, NH3, and N20 have a large set of
outliers with some NUTS regions even in the negative range indicating
coupling.

The two sub-periods show how the intensity of decoupling changes
across different time periods. For the first sub-period from 1995-2008,
where emission intensity in 2008 is given relative to 1995 (blue box),
one can observe that the median decoupling across all emissions is
slightly below the full sample. Furthermore, the number of outliers for
this time range also go up indicating higher decoupling variation. For
the second sub-period 2008-2015 (gray box), where 2015 is relative to
2008, several NUTS 2 regions show coupling, and the median DF values
are also closer to zero. PM10, PM2.5, N20, CH4, and NH3, exhibit a

large gap between the first and the second sub-period implying that
most of the decoupling was achieved before 2008. This is contrast to
CO2, which shows that decoupling gains were relatively evenly split
between the two time periods. This figure underscores the temporal
bias where long time periods hide the underlying developments in
decoupling trends. For policy purposes, shorter time spans might be
more relevant since they provide a more accurate picture of recent
developments.

Fig. 4.4 shows the spatial distribution of the DF for three emissions,
CO2, NH3, and PM10, for the whole sample period, and the two
sub-periods. The maps for the remaining emissions are provided in
Figs. B.3 and B.4. The intensity of blue shows the extent of decoupling
(positive values), while the intensity of red shows the extent of coupling
(negative values). Gray areas show almost no or very little change in
emissions relative to growth. All the maps have some general patterns.
Most of the decoupling has taken place in central and northern Euro-
pean countries while the southern and eastern countries tend to show
lower levels of relative decoupling or even coupling. Coupling is also
clearly visible after 2008.
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5. Regressions

Fig. 5.1 shows a local polynomial fit of the log of emissions versus
the log of rGVA for all the data points. This represents estimates of
the EKC where the inverted U-shape is clearly visible for NH3, CH4,
and N20. Individual data points for each emission type together with
quadratic fits are provided in Fig. B.5. Since lower rGVA regions have
higher shares of agriculture and industry sectors (see Fig. 3.1), they
also emit more, and are also likely to be more targeted with policies
to reduce direct emissions. This potentially explains the decline in the
change in emissions in the mid rGVA ranges. As regions continue to
become richer, emission levels flatten out or even decline. Potential
reasons for this include emission peaking in the mid rGVA range, better
enforcement of emissions-related policies, or regions transition to the
services sector resulting in a decline in direct emissions.

In order to explain the EKC curves in Fig. 5.1, the role of emission-
related policies are explored below. Here the EPS index of greater than
2.5 is defined as a strong policy “treatment” variable. Since EPS is
a composite index of several policies, where some policies might be
stronger than other in some countries, the argument here is that an
overall increase in stringency sends a strong signal to sectors as a whole,
and collectively reduces various emissions. Therefore, here we test the
joint impact of a set of policies on emission reductions without having
to worry about isolating the actual impact of individual policies on
individual emissions.

The regression strategy used in this paper to explore the impact of
EPS is an event-study design. Event studies are a quasi-experimental
method that split the average impact of a treatment on the treated
(ATT) across different time periods. This allows us to see how policy
interventions evolve over time in a dynamic setting. Recent advance-
ments in event studies stem from newer estimation techniques in



A. Nagvi

Full sample
1995 - 2015

CO2

S5EEREs

(sl | ]}
ZLooooo00
BLis

NH3

e

z
H

PM10

First sub-period
1995 - 2008

Journal of Cleaner Production 323 (2021) 129130

Second sub-period
2008 - 2015

SB35

LESS!
S5k
£E58neslE

B

LossS00S
EEES
bfaoEass

SERsas

=

LEs5SSOS
Salsh
SEgeneas

Fig. 4.4. Decoupling of emissions and real GVA by time periods.

difference-in-difference (DiD) methods, that have seen a methodolog-
ical resurgence in the past year (Schmidheiny and Siegloch, 2019;
de Chaisemartin and D’Haultfeeuille, 2020; Sant’Anna and Zhao, 2020;
Callaway and Sant’Anna, 2020; Abraham and Sun, 2020; Borusyak
et al., 2021; Cunningham, 2021; Roth and Sant’Anna, 2021). This new
literature starts of by criticizing the canonical DiD model which has
two time periods (pre and post), two groups (one control and one
treatment), and the outcome is the change in treatment group over
time compared less the change in the control group over time. Due
to time and unit controls, the classical DiD is also referred to as a
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Two-way Fixed Effects (TWFE) model. The 2 x 2 TWFE model can
also be extended to multiple time periods and units where some units
get a treatment. Two key assumptions for the TWFE model to work is
that, (a) in the baseline pre-treatment period, the treatment and control
groups should exhibits parallel trends to make them comparable, and
(b), the intervention across all the units should takes place at the same
point in time. Both of these assumptions are unlikely to hold in real
world applications. Different unit-specific covariates can also impact
trends and real-world interventions are rarely simultaneously rolled
out across the treatment units. While there has been innovations in
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literature on correcting for the parallel trends, for example by using
inverse probability weights and imputation methods (Abadie, 2005),
methodological innovations dealing with differential timings are very
recent and are still evolving.

Several papers, most of which came out in the late 2020 and early
2021, have shown that TWFE estimators in the case of differential
treatment timings are biased often resulting in negative weights that
can influence the magnitude and even the direction of the coeffi-
cients of interest (de Chaisemartin and D’Haultfceuille, 2020; Goodman-
Bacon, 2021; Sant’Anna and Zhao, 2020; Gardner, 2021). To under-
stand these biases, Goodman-Bacon (2021) proposes a Bacon Decom-
position method that derives weights of different treatment “timing
cohorts”. The timing cohorts are determined by the time of the first
intervention across different units. Since treatment across different
units roll out over time, the treated unit in a time cohort are com-
pared to combinations of “never-treated” and “already-treated” units.
Therefore, for each time cohort, a 2 x 2 DiD estimator is calculated and
the coefficients are recovered together with the weight of each cohort
based on the cohort’s size and duration. These weights determine the
influence of each time cohort on the overall TWFE estimates and can
be used to recover the “correct” average treatment effect on the treated
(ATD).

Since the early version of the Goodman-Bacon (2021) paper, several
innovations have been proposed to correct for the biases arising from
negative weights. These include stacking treatments by re-centering
the panel on the year of the first treatment (Dube, 2019; Cengiz
et al., 2019), generating influence functions and utilizing probability
weights (Sant’Anna and Zhao, 2020; Callaway and Sant’Anna, 2020),
estimating bootstrapped confidence intervals after correcting for time
cohort weights (de Chaisemartin and D’HaultfCEuille, 2018; de Chaise-
martin and D’Haultfeeuille, 2020), and utilizing synthetic controls and
multiple imputations (Liu et al., 2020; Borusyak et al., 2021). Since
these methods are very recent, applications are also extremely limited
especially in the environmental economics literature. The only excep-
tions found were Hsiang and Jina (2014), Hsiang (2016) and Berlemann
and Wenzel (2018) that analyze climate shocks but rely on the classic
TWFE model.

For this paper, the method developed in Borusyak et al. (2021),
and applied in von Bismarck-Osten et al. (2021) is utilized. Two main
reasons to use this estimator is that it specially focuses on event study
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design and allows for time varying controls. Furthermore, it also cor-
rects for parallel trends in the pre-treatment groups using imputation
methods, a novel innovation that makes DiD estimates highly robust.

To estimate the impact of environmental policies, the following DiD
specification is used:

Ln(Emm), = a; + 0;, + Year, + y,EPS;, + 0, + ¢ 2)

where Ln(Emm);, are the log of emissions for a NUTS 2 region i at
time 7. The intercept «; represents NUTS 2-specific trends. Unit specific
controls are represented by 6;, which include log of rtGVA (Ln(rGV A);,),
share of industry (si?) and share of agriculture (s/*") sectors in rGVA.
The broad controls are selected for two reasons. First, emissions are
driven by real output as also shown in Fig. 5.1. Second, higher shares of
agriculture and industry are primarily responsible for direct emissions
and as Fig. B.2 shows, these shares are not highly correlated with
output levels. Year fixed effects, Year,, control for time-varying trends
including changes in emissions caused by the 2008 financial crisis. The
third coefficient y;, is the coefficient of interest on the intervention
variable EPS;,. This treatment variable equals one if EP.S > 2.5 and
0 otherwise. Here we assume that once a unit cross the threshold of
EPS > 2.5, it is labeled as treated and stays treated.” Here a key
assumption of DiD models is that once the treatment takes place, it is
not rolled back. We indeed see this from Fig. 3.5 as well. Furthermore,
since EPS policies are at the country level, the standard errors are also
clustered at the country level.

The above DiD model recovers ATT in the y;, parameter, which is
essentially a weighed sum of treated versus not-yet-treated and already-
treated groups for different time cohorts. Therefore, an event study
design, or a dynamic specification of Eq. (2), of the following form can
be recovered:

-1 6
Ln(Emm);, = a; + 0;, + Year, + 2 i EPS; + 2 YiEPS; + €
=—4 =0

3

Due to the limited data range, four leads and six lags are esti-
mated. Here the parameter y;, is the year when the treatment was

7 Variations of DiD models where units can move in and out of treatments
and are subjected to varying degrees of treatment levels are currently being
developed to correctly capture the ATT. The only exception is de Chaisemartin
and D’Haultfceuille (2020).
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first introduced, and is used as a reference period for pre and post
treatment impacts. The pre-treatment years, or leads, should ideally be
insignificant or clustered around zero, and the post-treatment years,
or lags, should ideally be significant and negative to show that the
policies work. If the leads are significantly different from zero, then
they violate the parallel trend assumption implying that other factors,
not captured by the specification in Eq. (2), might be influencing
the changes in emissions. Regardless, it is still interesting to observe
significant changes in the slopes among the leads and lags.

Fig. 5.2 presents the event study results where the y-axis show the
change in the log of emissions and therefore capture reduction in levels
resulting from policies after controlling for unit and time fixed effects
and other covariates. The leads are mostly clustered around zero with
some emissions like CH4 and NH3 exhibiting some evidence of pre-
existing trends. Post intervention (¢ > 0), all emission levels go down
implying that strong policies work. According to Fig. 5.2, NOX, PM10
and PM2.5 show the strongest decline. CO2 and N20 decline three to
four years after strong policies are implemented. The weakest decline is
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in SO2 with policy impacts only visible after five to six years. Since SO2
has already seen a large decline since 1995 (Fig. 4.1), environmental
policies probably have little direct impact.

Fig. 5.2 can also be summarized in terms of cumulative impacts
where the coefficients from the regressions are recovered as follows:

T
re=3r “
=1
Eq. (4) represents a linear combination of the y coefficients and
standard errors. Cumulative impacts are shown in Table 5.1. CH4, N20,
and NH3 respond strongly to policies and decline continuously across
the regions. In contrast, CO2, NOX, PM10, PM2.5 show a decline two
years after policies are implemented while SO2 shows the weakest
response.
As discussed earlier, regions vary significantly by rGVA and agricul-
ture and industrial shares. In order to explore these variations, the data
is split into high and low income regions using rGVA per capita. Regions
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away from no-impact zero line. If the error bars or bands are fully below or above zero, then the impact is highly significant. Significance levels for overall policy-related emission
reductions are given in Table 5.1.

Table 5.1
Cumulative impact of EPS on emissions.
m ) 3 “@ 5) 6) @ ®)
CH4 Cco2 N20 NH3 NOX PM25 PM10 SO2
1 year after -0.240™ -0.133 -0.231"" -0.278™ —-0.132 —-0.082 —-0.083 -0.077
(0.077) (0.082) (0.081) (0.108) (0.073) (0.078) (0.075) (0.082)
2 years after -0.289™" —-0.240™" —-0.294"" —-0.389"" -0.195" -0.167" -0.164" -0.150
(0.085) (0.079) (0.086) (0.107) (0.076) (0.073) (0.069) (0.081)
4 years after -0.432"" -0.281" -0.383™ -0.526" -0.277"" -0.228™ -0.225™ -0.169
(0.116) (0.118) (0.122) (0.165) (0.100) (0.087) (0.084) (0.099)
6 years after -0.537""" —-0.403™ -0.453™" —-0.642""" -0.335™ -0.336"" -0.324™" -0.268"
(0.139) (0.128) (0.127) (0.176) (0.103) (0.099) (0.093) (0.131)

Note: Cumulative impact of EPS on emissions after controlling for region and year fixed effects, rGVA, and agriculture and industry shares. Standard errors are clustered at the
country level. *** p<0.001, ** p<0.01, * p<0.1.

are distinguished between the NUTS 2 in the top one-third percentile Fig. 5.3 shows the results of the event study by top and bottom
income groups. There is a clear split across the two income categories.
versus the bottom two-third using 2015 observations. For the top one-third regions by income, strong declines are visible
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Fig. A.1. Splitting grids across boundaries. Note: Overlap of emission grids and NUTS 2 boundaries. The numbers reflect the percentage share of the area that is split by the

administrative boundaries.

for N20 and NH3, while CO2 and NOX show a weak policy response.
This could be driven by the fact that these regions have low levels of
direct emissions to begin with, or they have achieved some stability
in emission reductions where further reductions are most likely not
easily achievable. Further exploration is needed to better understand
these patterns. For the bottom two-third income regions, policies play
a major role, resulting in strong a decline across all emissions within
one to two years of policy implementation. The large standard error
bars also indicate significant variations in regional response.

In order to conduct robustness checks, Fig. C.1 conducts a Bacon
Decomposition on the impact of EPS on emissions using the basic TWFE
model. The figure clearly show that different treatment cohorts result
in negative weights that can result in biased estimates. To see these
biases, Fig. C.2 compares the DiD events study plots from Borusyak
et al. (2021) with the standard TWFE results. Here we can see that the
TWEFE grossly underestimate the impact of the policies, showing that
they have no effect at all on emissions reduction.

6. Discussion, gaps, and steps for future research

Economic activity results in increased environmental pressures in-
cluding generating various types of emissions. In recent years, a grow-
ing body of literature has explored whether there is evidence of decou-
pling of emissions from economic output. The consensus in literature is
that direct production or territorial-based emissions usually show rela-
tive decoupling while absolute decoupling has been an elusive target so
far. Two broad gaps exist in this literature. First, the focus on assessing
outcomes is usually at a country or a multi-country level where sub-
national regional variations are not discussed. Second, on the emissions
side, the focus remains on CO2 even though other harmful emissions
also need a careful evaluation. In order to address these points, this
paper constructs a unique dataset at the sub-national NUTS 2 level
for countries in the EU. The economic data is taken from ARDECO
(2020) that provides a host of homogenized economic indicators at
the NUTS 2 level. Data for eight emission types; CO2, N20, CH4, NH3,
NOX, PM10, PM2.5, and SO2, is extracted from EDGAR v5 grid-level
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database (Crippa et al., 2020a). Both datasets are combined to form a
fully balanced panel from 1995-2015.

Descriptive results show that there are significant variations in
decoupling trends both within and across NUTS 2 regions. Further-
more, trends show that most of the decline in emissions occurred
before the 2008 financial crisis. Post-2008, there is a significant slow
down in emission reductions where some regions show very weak
decoupling or even coupling. Therefore, if economic recovery is given
precedence over emission reductions, then events like COVID-19 could
also potentially undermine emission targets.

The next part of the analysis looks at how the Environmental Policy
Stringency (EPS) (OECD, 2018), a composite index of emissions-related
market and non-market policies, impacts the development of various
emissions after controlling for real output, agriculture and industry
sector shares, and time fixed effects. By using an event study design,
the analysis shows that most of the emissions react to strong policies
although the speed of response and the extent of the decline varies
by emission type. For example, CH4 and N20 decline sharply while
CO2, PM10 and PM2.5 are slower to respond. If the NUTS 2 are split
between top one-third and bottom two-third income per capita regions,
then one can also observe that the bottom regions react strongly and
immediately to policies across all emission types. The high-income
regions only show a small decline in NH3, N20 with a weak response
from CH4 and CO2. This outcome is also corroborated from the regional
Environmental Kuznets Curves (EKCs) which show that emission levels
are positively correlated with lower income regions but flatten out at
higher income levels, and only a few emissions show a turning point.
A potential reason is higher dependence on agriculture and industry
activity in lower income regions resulting in an increase in emissions.
Thus these regions are also likely to respond strongly to stringent emis-
sion policies. At higher income levels, regions are likely to transition
towards service sectors and therefore environmental policies might
have little impact. These explanations need further investigation.

While the results show that emission policies in European regions
work, additional analysis can be easily conducted using the ARDECO
and EDGAR datasets. For example, the analysis can be extended to a
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Fig. B.1. Emission trends for 2015.
Source: EDGAR v5 (Crippa et al,
2020a). Emissions are given in thou-
sand tons. K-mean clusters used to
determine groups.
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Fig. B.2. Matrix plot of various variables.

more detailed look at sector-specific activities that cause direct emis-
sions. The EDGAR database also contains grid-level information on
different air emission sectors that can be mapped on to various sector-
specific economic activities for a more nuanced analysis. Additionally,
the impact of environmental policies on socioeconomic variables can
also be explored in detail. For example, one can go much deeper
in understanding the impact of environmental policies on investment
levels, labor market developments, demographic changes, and other
well-being indicators. Most of these variables are easily accessible at
the NUTS 2 level from ARDECO and the Eurostat. The EDGAR data
can be utilized to identify how emissions and pollutants co-evolve
spatially and temporally to help calculate the co-benefits of reducing
key emissions (Zwickl et al., 2014; Boyce et al., 2016). Last, since these
datasets are now regularly updated, the impact of more recent events
like the COVID-19 and the impact of newer policies, like the Green New
Deal, can be analyzed using the methods proposed in this paper.
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The analysis presented in this paper also raises several new ques-
tions for future research. First, while the paper shows that environ-
mental policies work, a discussion of the channels that cause these
emissions to decline needs further evaluation. Regional analysis of
environmental policies and emissions can also take a deeper look at
institutional structures, changes in technologies, and shifts in sectoral
compositions, and spillovers. For example, the role of European re-
gional development funds, especially Cohesion Funds and Objective 1
funding (Becker et al., 2010, 2018), can be explored since they specify
both the conditions for reducing emissions and simultaneously motivate
large physical infrastructure investments that result in emissions (Del-
beke and Vis, 2016). Second, the role of the geographic distribution
of large emitters needs to be evaluated in terms of understanding the
trade-offs between emissions reduction policies and economic devel-
opment indicators like growth, employment, and investment levels.
This might be more relevant for regions with a few high-polluting
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employers. And last, emission policies in one place can also affect other
regions via value chains. Within EU regional spillovers can be ana-
lyzed using recently compiled regional input-output datasets (Lecca, P.,
Barbero, J., Christensen et al., 2018). Similarly impacts on upstream
or downstream global values chains can be evaluated using recently
available multi-region input-output (MRIO) tables (Maus et al., 2020).
Such an analysis can also help identify carbon leakages, where strong
environmental policies can force high-polluting firms to relocate, or
outsource production, to regions with fewer regulations (Chitnis et al.,
2014). Lastly, further decoupling analyses can benefit from fine-grained
datasets and well-identified causal mechanisms that can better help
inform policies for the heterogeneous EU regions.
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Appendix A. Emission grids to NUTS 2 mapping

In order to combine the economic and the emission layers, EDGAR
grids are overlaid with NUTS 2 boundaries, and the map projections
of both layers are homogenized. For this study, the standard European
ETRS 1989 LAEA coordinate system is used.

As shown in Fig. A.1, NUTS 2 administrative boundaries cut across
the grids. Grids that split across two or more regions are split up based
on the percentage share of the area that falls within NUTS 2 adminis-
trative boundaries. Since all the emission grids overlay perfectly, this
exercise needs to be only done once to generate a grid-to-NUTS 2
crosswalk to allow the two datasets to merge. Using this crosswalk, the
grid-level emissions data is aggregated to NUTS 2 regions as shown in
Fig. 3.3.

Appendix B. Additional figures

See Figs. B.1-B.5.

Appendix C. DiD versus TWFE estimates

See Figs. C.1 and C.2.
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Fig. C.1. Bacon decomposition. Note: The y-axis shows the value of each timing cohort, and treated versus never treated groups in relation to the overall ATT effect. The x-axis
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shows the weight of each estimate. The higher the weight, the higher it will impact overall ATT estimates.
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