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FOREWORD

The public provision of urban facilities and services often
takes the form of a few central supply points serving a large
number of spatially dispersed demand points: for example,
hospitals, schools, libraries, and emergency services such as
fire and police. A fundamental characteristic of such systems
is the spatial separation between suppliers and consumers. No
market signals exist to identify efficient and inefficient geo-
graphical arrangements, thus the location problem is one that.
arises in both East and West, in planned and in market economiles.

This problem is being studied at IIASA by the Public
Facility Location Task which started in 1979. The expected
results of this Task are a comprehensive state-of-the~art survey
of current theories and applications, an established network of
international contacts among scholars and institutions in dif-
ferent countries, a framework for comparison, unification, and
generalization of existing approaches, as well as the formula-
tion of new problems and approaches in the field of optimal
location theory.

This paper is an outcome of an interaction between the
Human Settlements and Services Area and the Systems and Decision
Sciences Area. Its main aim is to test several numerical pro-
cedures for solving a class of stochastic programming problems
using data on high school location in Turin, Italy. It is a
sequel to an earlier theoretical working paper (WP-80-176) on
the same subject.
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Although the test problem is highly simplified, the results
obtained encourage the development of further generalizations
that can better exploit the potential use of this stochastic
programming method.

A list of related IIASA publications appears at the end of
this paper.

Andrzej P. Wierzbicki Andrei Rogers
Chairman Chairman

System and Decision Human Settlements
Sciences Area and Services Area
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ABSTRACT

This paper explores the computational aspects of using the
stochastic guasi-gradient method (SQG) to solve some facility
location problems. The problems addressed belong to a general
class of resource allocation problems with random demand. An
algorithm is first developed for the simplest formulation, where
a convex objective function is minimized, and results are shown
for the location of high schools in Turin, Italy.

Fixed charges are then introduced in the objective function,
giving rise to a non-convex problem possessing many local minima,
and some numerical results for the same case study are reported.
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THE STOCHASTIC QUASI-GRADIENT
METHOD APPLIED TO A FACILITY
LOCATION PROBLEM

Y.M. Ermoliev, G. Leonardi,
and J. Vira

1. INTRODUCTION

The data on the location of high schools have already been
used as a test problem for some deterministic location techniques
(Erlenkotter and Leonardi, forthcoming; and Leonardi and
Bertuglia, 1981). However, it has been recognized in Ermoliev
and Leonardi (1980) that more realism is captured when random
features are introduced. Among the possible types of randomness
considered, uncertainty in the customers choice behavior is of
special interest. When assignment of customers to facilities is
not normatively predetermined, and freedom of choice is allowed,
then the number of customers attracted to each facility may be
subject to random fluctuations. The difficulty, therefore, is to
find those locations and sizes for facilities that in some sense

minimize the cost of such fluctuations.

This problem belongs to the following more general class of

stochastic programming problems:

min F(X) = E £(X,Q) (1)



subject to the constraints

Gi(X) = E{gi(X,Q)}z 0o , i=1,...,m (2)

where E denotes the mathematical expectation, X is a vector of
decision variables, § is a vector of random parameters and

f(xX,Q), gi(X,Q), i=1,...m are known functions.

In this paper the computational feasibility of the so-called
stochastic quasi-gradient method is discussed and applied to a
special, simple form problem (1)-(2). The procedure is based on
moving iteratively to the direction determined by an estimate of
the generalized gradient of the objective function. Under rather
general conditions the method has been proved to converge to the

solution of the stochastic programming problem.

First the computation procedure is described with emphasis
on its practical applicability. At this point some methods are
presented by which the computation time can often be significantly
reduced. Then some practical results are presented for a stochas-
tic test problem, which deals with optimal sizes of school
facilities. Real data from Turin, Italy, have been used in the
tests, and the results are compared to those obtained by other
methods. Finally some minimization results are reported from

tests where the objective function is not even continuous.

2. PROBLEM FORMULATION

A simple model of optimal resource allocation can be stated

as follows (Ermoliev and Leonardi, 1980):

Find a vector X = (X,,%X,,...,X_) that will minimize the
1772 n

function

n
F(X) = © E{f.(x.,wj} (3)



in the special case

F(X) =

M

L E{max[aj(xj— wj), Bj(wj - xj)]} "

i=1,...,n

subject to some constraints 0 < xj < Sj' Q is a random vector
and aj and Bj are given nonnegative parameters. If the probabil-
ity distribution function for wj is Hj(mj), the problem is then

to find the minimum of

X . %]
J
. . - w.) dH. (w. . . - X. (W £
1[OLJ J'o (xJ w]) Hj (wj) + 83 L (w:I xJ) dHJ (wj)] (5)
J

F(X) =
j

M3

5 j=1,...,n. In the special case where F (X} has
continuous derivatives, the minimization of F(X) by analytical

as 0 < xj < s

means would lead to the consideration of the partial derivatives

J
2
— F(X) = a, dH . ) - B. dH. (w. 6
sy T JJo 5 (03) BJL‘ 5 (w3) (6)
J
The solution would then require the determination of X = (x1,...xn),
such that
5
H. ) = — [1-H. (X. i = 1, 7
](xj) j[ j(X])] ’ J ’ n (7)

In general this equatioﬁ may not be solvable by anaytical means.
Usually, however, the solution can be easily approximated. 1In
particular, if aj = Bj’ then the problem becomes finding the
medians for the distribution functions. 1If, however, only
observations of the random vector  can be made available while

the distribution function itself is unknown, the solutions based



on equations (6)-(7) are not feasible.

The practical problem that leads to the minimization of an
equation (4) type function is common in operations research.
For example it can be understood as a facility allocation problem
or as a storage inventory control problem where some capacities
have to meet random demand and both surpluses and deficits cause
penalty costs. In this study the test problem consisted of
determining the optimal size of school facilities using data from
Turin, Italy. Under certain assumptions the objective function

can be stated in the form of equation (4).

3. STOCHASTIC MINIMIZATION

This experimental work concentrated on testing the practic-
ability of the stochastic quasi-gradient method applied to the
minimization problem outlined above. The algorithm can be

presented as follows (Ermoliev, 1976 and 1978):

(1) Choose an initial approximation XO.
(2) For s = 0,1... compute successively
Xs+1 - H[XS _ psHs] (8)

where HS is the estimate for the generalized gradient FX(XS) of
the function F(X) at x° such that

e{u® | x%,...,x5}) = §X(xs) (9)

and Il is the projection to the feasible set:pf are some step

multipliers.

In practice, after the initial values have been chosen, a
sequence 05 of random deviates is generated. Each random value
is then used to determine the current estimate for the generalized

gradient of the test problem. 1In our test problem the estimates



H™ are defined simply by (Ermoliev and Nurminski, 1980)

o if x% > w
s ] J ]
he = (10)
) -B if xS < wo
3 j- 7

The execution of the recursion loop should not pose any difficul-
ties nor use much computer time. However, as with the gradient
methods in deterministic nonlinear optimization problems, the
manner of choosing the step multipliers is crucial to the speed
of convergence. In principle, the convergence will be obtained
if the step multipliers pS(s = 0,1,...) are chosen so that

(Ermoliev, 1976)

(1) T 05 == (11a)
s=0

(2) 0° >0 as s » ® (11b)

(3) £ ()2 < (11c)
s=0

For the practical construction of the step-size control equations

({11a,b,c) are of small importance.

4. PRACTICAL COMPUTATIONS

4.1 Basic Computation Procedure

The methods of controlling the step size in stochastic
minimization are usually based on keeping the step multiplier
constant during a number of iterations and then reducing it
according to certain rules. In the course of the iterations a

succession of the function values FS = Zj fj(xi, w?) is observed.



Usually these values vary over a wide range. However, the

seqguence

k n
2 T f.(x

S
o ° s=0 j=1 J

A=

S

shows smoother behavior as can be seen in Figure 1. Indeed, Ek
could be expected to approach a stationary value. One rule of
controlling the step size is based on this fact. The method can

be summarized as follows:
(1) Choose the initial value po for the step multiplier

(2) Using pO for the step multiplier calculate the value of
Ek according to equation (12)

Function Value F, E |

0 5 10 15 20 25 30

Number of lterations, k

Figure 1. The behavior of the sequences {Fk} and {Ek}as a
function of the iteration number.



(3) When a stationary sequence {Ek} is observed, reduce

the step multiplier by one half

(4) Go back to step (2) until no improvement in the test

function Ek is observed.

There are some unanswered questions in the procedure outlined
above. First, how should the initial step multiplier be chosen?
If it is too large, both the sequence {Ek} and the iterates X°
will oscillate heavily and no decrease in the objective function
will be observed. If the initial step multiplier is too small,
the rate of decrease will be very small and perhaps hardly
noticeable. From the computational point of view the latter
situation is more harmful and should be avoided, while the
situation arising from too large a step multiplier is rapidly
recognized and hence can be corrected. as a rule of thumb the

initial step should be chosen to satisfy

h. = rx. 13
ph 3 (13)
where r € (0,1) and ij is the estimated value for the jth component

of the solution.

The use of step (3) also needs further explanations. The
ideal way of controlling the procedure would be an on-line code,
where the program continuously plots the values of the sequence
{Ek} on the screen and where the iterations could be manually
interrupted to cut down the step multiplier. This is not always
possible and the iterations must be performed in small batches,
whereafter the values of Ek are plotted and possible adjustments
of the step multiplier can take place. A definite way to find
the stationary phase of the sequence is to rescale the coordinate
axes before plotting the values of a new batch. In this case the
stationary phase is in fact recognized as smooth oscillations

around a fixed value.



Figure 2 shows an example of the behavior of E,as a func-
tion of the iteration number k. The values for coefficients

are a. = B. = 1.00, J =1,...,23, po = 1.00, and the components

of the initial estimate and the solution are known to differ at
most by five units. Note that the rate of decrease of the
sequence {Ek} is fast during the first iteration batches but
becomes slower as the step size decreases. Hence a crude esti-
mate of the result is obtained after a rather small number of

iterations, but for greater accuracies the number of iterations

needed grows rapidly.

©
o
7

Manual Control

——— Simulated Manual
Control

(o]
o

Objective Function, Ek

70 + + + + + + + + + * + +
0 20 40 60 80 100 120
Number of Iterations, k

Figure 2. The convergence behavior of {Ek} in the manual control
and simulated manual control cases.



4.2 Speeding up the Convergence

If rigorously followed, the basic procedure for the step-
size control may lead to a slow solution algorithm. First the
manual step-size control with many I/0 operations requires
considerable effort from the person who calculates and usually
effects a slow computer code. This happens especially in a time-
sharing computer environment where the number of users is large
and the average response time is long. Second, the number of

iterations needed can be often significantly reduced.

To overcome the need of numerous manual I/0 operations a
simple automatic version of the manual step-size control was
designed. Given three parameters the procedure simulates the
behavior of the controlling person and reduces the step multiplier
as soon as it observes a stationary or an oscillatory sequence
{E,}. Let the three input parameters be NB, DIF1, and DIF2. The
first parameter NB fixes the batch size, i.e., the iterations will
be performed in batches of NB iterations. Let the step multiplier
used during the iteration batch be equal to p . A test indicator

is defined as:

_ Em-1)-nB ~ Emens

" r o°||u®|
sEM

d

' m=1,... (14)

The procedure then checks the two conditions

dm < DIf1 (15a)
and
5 A'E
S€M i > D1F2
max E_ - min E — (15b)

SEM S s€M



-10-

where

(16a)

M = {s|(m-1)*NB < s < m-NB} (16b)

In case either of these conditions holds the step multiplier is
reduced by one half. The first condition (15a) tests if the
decrease of the sequence proportioned to the step size used is
less than the given limit. The second condition (15b) then
checks if the sequence is oscillatory. This is done by consider-
_ing the ratio of the sum of positive jumps of the sequence {Ek}
to the maximum change in the sequence that takes place during the

iteration batch.

With DIF1 = 0.01 and DIF2 = 0.30 the procedure simulates the
manual control very closely (Figure 2). Depending on the starting

values used for x0 and po

sometimes a few more iterations were
performed than the manual control would have required, but the
total computing time still usually remained smaller than in the

case of manual control.

With the aforementioned values for DIF1 and DIF2 the auto-
matic step-size control normally guarantees that the solution is

0

eventually reached, independent of the initial values for x  and

po. Often the algorithm can be made faster by using a greater
value for DIF1. If for example, DIF1 = 1.00, the use of the
control would reduce the step multiplier as soon as the total
decrease of the objective function during a batch is less than the
total change of the components in that batch. If the solution can
be only roughly estimated initially, the number of iterations can
be kept moderate. This can be done by choosing an initial value
for p that will reach the solution region during a few iterations

and by cutting down the step size as soon as the rate of decrease
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of the objective function slows down. Using the test indicator

dm of equation (14) the program checks if

d_ < DIF1 (17a)
m—

or

d, < dpog (17Db)

Instead of E an average of a few neighboring values of E  can be
used to calculate the indicator dm' If any of conditions (17)
holds, the step multiplier is cut down by a factor r, which is

given as an input.

The effect of the accelerated procedure is seen in Figure 3
where the curves correspond to the accelerated step-size control.
The reduction coefficient r is 0.5 in both cases but in the first

case the batch size is 10, in the latter case, 5. DIF1 has now

90
X
[83]
c
.0
g
S 80t
w
)
2
8
)
®]
70 + —t 4 + + + + — 3
0 20 40 60 80 100 120

Number of Iterations, k

Figure 3. The convergence behavior of {Ek} in the accelerated
step-size control case.
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been set to 1.0. It is seen that some decrease in the number of
iterations have been obtained in both cases compared to the situa-
tion of Figure 2 but the difference is quite small. However, in
this example a good estimate of the solution is known in advance
and the number of iterations is rather small with any kind of
step-size control. Note that if the initial estimate for X is

far from the actual solution and a small initial value is used

for p, then the accelerated procedure may reduce the step too
rapidly, and an excessive number of iterations is needed to obtain
the solution. This danger can be normally eliminated by selecting
an initial po estimate that is too big rather than too small.

(The instructions for the user of the computer code SQG are given

in Appendix A.)

5. A CASE STUDY

A simple example of a resource allocation problem that
minimizes costs to meet uncertain demand will be discussed in this
section. The problem is high school location in Turin, Italy.

The physical setting and the data for this problem are described

in Leonardi and Bertuglia (1981). For the purpose of the analysis,
Turin is divided into 23 districts, each district being both a
demand source and a possible high school facility location.
Customers are assumed to behave according to a gravity-type model,
For simplicity, travel time is assumed as the only explanatory
variable for the choice behavior (some theoretical underpinnings

for such models are described in Leonardi, 1980a and 1980b).

However, unlike in the standard use, the gravity model will
be given a stochastic interpretation here, as suggested in
Ermoliev and Leonardi (1980) (an earlier interpretation of the
gravity model as a stochastic process is found in Bertuglia and
Leonardi, 1979). That is, the relative distribution of students
among facilities is looked at as a discrete multinomial
Bernoulli distribution, rather than as a set of deterministic

fractions. This is put in mathematical terms in the following.
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Let Ssv i=1,...,n, be the total number of students at
point i. The problem is to determine the size xj of the facil-
ities at points j, j = 1,...,n, when it is known that the stu-

dents at point i choose the facility at point j with probability

(18)

where A is a constant and cij are empirical coefficients that
depend on the distance between i and j (in the example: travel
times in minutes). The use of (18) for the probabilities has
theoretical and empirical justifications. Model (18) is a simpli-
fied form of the logit model discussed in McFadden (1973, and 1974)
for example. If the flow of students between i and j is denoted

¢ij’ the stochastic demand at point j is then

d)ij (19)

n
s. = T ¢, (20)

The numbers s; are now deterministic and given as an input. If
the unit cost of capacity surplus is o and that of deficit is B
and no other costs are considered, then our cost minimization

problem is of the equation (4) type, aj = a, Bj =R, j=1,...n.

The ability to generate random realizations, ws, of the
demand vector w is essential for the guasi-gradient method that is
being discussed. The direct determination of the distribution of
wj is practically impossible in this case. Instead, random vectors

can be generated by simulating individual choices of the students
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according to the probabilities pij in (18). This still may lead
to a time-consuming procedure if the total number of students,

S at points i is large. 1In this case the S; number should be

il
first scaled down by a factor n common to all the components
i=1,...,n (i.e., ns1,nsz,...,nsn). The final solution is then

obtained by rescaling the solution of the smaller problem by 1/n.

Table 1 shows the solutions obtained for o« = 8 = 1.0. 1In

this case the solution Xj = Zisi-pij of a deterministic problem
that is based on an entropy approach. The first column in Table
1 contains the labels of each district, numbered from 1-23. The
second column of Table 1 gives the vector S = (s1,...,s23) of
total demands in each district; S was also used as the initial
estimate for the iteration. Here the original data from Turin
have been multiplied by 1/100. The next three columns show the
results originatina from the use of different starting values for
the iteration. The last column shows the solution based on the
deterministic model, In general, a good agreement exists between
all the solutions; they are usually within two digits of each
other. There are, however, some significant discrepancies.

These can be partly explained by the stochastic nature of the
convergence and by the flatness of the objective function near
the solution. They associate somewhat with the slow convergence
of the algorithm as the number of iterations increases. Then,
while the scaling of the number of students saves computational
effort that is required for the generation of the random
realizations, the need for accuracy mav soon counteract this

benefit.

The discrepancies between the solutions in Table 1 can be
associated with the shape of the probability densities underlying
the probabilities of (18). The values that are used for the
coefficients cij are listed in Appendix B, the value of the
constant A is 0.15. Probability densities can be numerically
approximated from this data. Densities for several of the com-
pénents are drawn in Figure 4., The densities are mostly symmetric
and strongly peaked. 1In these cases the stochastic minimization

solution, which corresponds to the median of this distribution,
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p8(w8)

pg(wg)

Probability Density, pJ (w )vj

p1(w1)

RandonxVaHabm,uﬁ'

Figure 4. The probability densities for random demand w. at
location j = 1.8, or 9. J

and the deterministic solution, which corresponds to the expected
value, should be close to each other. This is in fact demonstra-
ted, for instance, by the facility sizes in districts 8 and 9,
where the discrepancies are small. However, for district 1 the
density is flat and skew, and the median and expected values are
not equal. On the other hand, in the solutions for X, the
discrepancies are large. The flatness of the density also
explains the large discrepancies between the different solutions

obtained from the stochastic minimization procedure.
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Table 2. Optimal location of Turin high schools. Solutions
obtained for different values of penalty costs a

and B.
a = 1.00 a = 1.00 a = 1.50 a = 2.00
District B = 1.50 B8 = 2,00 B = 1.00 B = 1.00
1 16.9 20.7 12.9 10.9
2 13.9 15.0 11.5 10.8
3 19.7 21.1 17.0 16.0
4 19.6 20.7 17.1 16.0
5 17.5 18.0 15.2 14,7
6 14.6 15.0 13.0 12.0
1 11.2 12.0 10.0 9.4
8 11.1 11.9 9.8 9.1
9 13.6 14.2 12.0 11.0
10 20.4 21.4 18.4 17.6
11 27.4 28.4 25.0 23.2
12 21.9 22.6 19.1 17.2
13 16.7 18.0 14.3 13.9
14 16.0 16.6 14.1 13.4
15 15.0 15.0 14.0 12.5
16 13.8 14.8 12.3 12.0
17 13.2 14.0 12.2 12.0
18 16.7 16.8 14.8 13.9
19 9.9 10.9 9.6 8.8
20 10.9 12.0 9.0 9.0
21 5.0 5.0 5.0 5.0
22 10.9 12.9 8.9 8.5
23 17.4 18.1 15.4 14,3

In Table 2 solutions are presented for cases where a and B
differ from each other. As one could expect, the increase in the
relative cost of deficit compared to the cost of surplus leads to
larger values in the solution vector. If however, the probability
density of the corresponding component of wj is very peaked, as in

the case of w the change in the relative costs does not have

217
any significant influence on the solution.
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6., A NON-CONVEX OBJECTIVE FUNCTION

The problem discussed so far lacks some of the main features
that are usually considered typical for optimal location problems.
For instance, economies of scale, usually considered as that
which makes location problems non-trivial, are absent in our
earlier formulation. In deterministic models, economies of
scale are usually introduced by means of fixed charges, to be
paid when a facility is established, no matter what the number of
attracted customers. This formulation is typical of the well
known plant-location problems of Operations Research. Its exten-
sion to a gravity~type demand model has been developed in
Erlenkotter and Leonardi (forthcoming). Related ways to introduce
scale effects are by means of suitable constraints, as on the
total number of facilities (the so-called "p median" problem (see
ReVelle and Swain, 1970), or on the minimum feasible size for

facilities (as in Leonardi and Bertuglia, 1981).

Here the first formulation will be explored. Let a fixed
cost y be defined, to be paid when a facility is established.
For simplicity, the same value of y for all districts will be
assumed (as in Erlenkotter and Lecnardi, forthcoming). Then the
minimization of the expected cost calls for finding the minimum

of the function.

n
lyé(xj) + E{jil max[a(xj—wj), B(wj—xj)]} (21)

G(X) =

3

j

where § (x) is the unit step function at zero. It is easy to

see that with non-negative Xj’ G(X) is not convex and usually

has several local minima. The problems of this form are normally
treated with mixed integer programming methods. Here we attempt

to apply the general idea of stochastic quasi-gradients to find-

ing the global minimum. Approximating the step function by a



logarithmic function, the estimate

a if x? < w?

hs = I+ (22)
X, +e . S s
-8 1f x. > w’
] j =%

J

with € a small positive constant, is used for the generalized
gradient at X = x®. Otherwise the procedure in equation (8),

remains as before.

In general, the procedure rapidly finds a minimum which is
at least local. After that, however, some difficulties arise
with the control of the iteration process. 1In principle, the

approximation

k n
I I max [a(x5-03),8(wS-x5)] (23)
s=0 j=1 J ] J ]

N3
Al

.
Gk(X) =Y

§(x.) +
3 J

1

can be used again to follow the course of iterations. Now,
however, after a number of iterations the function G;(Xk) may
achieve a minimum. On the other hand, some components of the
estimate for the generalized gradient as calculated from eguation
(22) may still show a trend toward the origin, where another (at
least) local minimum would be found. Note that with a small ¢
the origin becomes a fixed point for the iteration: if XsO =0
0’ then X° = 0 for all SO> Sqe To overcome these
difficulties, the initial value X should be large enough and the

for one s

initial step multiplier p should be chosen such that the step
size is a small fraction of Xj' In this way a fallacious con-
vergence towards zero during the first iterations can be excluded.
To assess the behavior of the function G(X) at the various minima,

a test function

k n
T I max [a(x?—ws),B(ws—Xs)](Zu)
0 x. 520 §o1 33 373

+
Al
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could be used. In this case m is a small integer, the choice of

which slightly depends on the relative magnitude of «, B, and y.

Figure 5 shows the behavior of the functions Gll(Xk and

)
Gi(xk) with increasing k for « = B = 0.5, vy = 5.0, m = 6. It is
seen that Gi(Xk) is monotonically decreasing toward the global
minimum ;hile G;(Xk) has two local maxima. Table 3 shows the

vector X at k = 180, which corresponds to one local minimum of

G;(Xk), and at the end of the iteration (k = 280). It cannot be
proved that the solution obtained is the exact solution of the
optimization problem. Indeed, the deterministic counterparts
shown in Erlenkotter and Leonardi (forthcoming), are gquite
different. On the other hand, the computational effort that is
needed for an estimation by the stochastic quasi-gradient method
is also relatively small when compared to some integer program-

ming methods, for instance.

2,.k
2(x%)

250 1

x5y, o

1
k

200 1

150+

Objective Function, G

0 20 40 60 80 100120 140160 180 200220 240 260

Number of Iterations, k

Figure 5. The behavior of Gi(Xk) and Gi(Xk) as a function of k.
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Table 3. Optimal location of Turin high schools. Solutions
obtained after 180 and 280 iterations with penalty
costs a = 8 = 0.5 and fixed charge y = 5.0,

District k = 180 k = 280
1 -
2 - -
3 4.4 -
g 8.7 -
2 8_3 :
7 - -
8 - -~
9 - -
10 16.7 16. 1
1 23.2 22.5
12 14.0 13.0
13 7.3 -
14 9.1 -
15 -
16 _
17 2.
18 807 -
19 -
20 - -
21 - -
22 - :
23 11.5 10. 1

The solutions obtained depend mostly on the relative magni-

tudes of o, B, Y. With increasing fixed costs, y, more facilities

are likely to remain closed.
are more penalized and thus more facilities remain open.

When the B8 are increased the deficits
Table

4 shows results from a sensitivity analysis on the values of a and

8. The aim of the analysis is to find which values of a and 8

will cause the smallest facility (district 21) to disappear from
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Results of a

sensitivity analvsis for changing values of penalty
The fixed charge is fixed and equal

Optimal location of Turin high schools.

costs o and BR.

Table 4.
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the solution. This will happen almost certainly when B is less

than 1.5. However, for a large range of values of x between

’
zero and five, the objective function remains almostzéonstant.
Hence, with these parameter values, opening‘or closing that
facility does not have great influence on the value of the objec-
tive function. Table 5 shows the results of a sensitivity analysis
on the fixed charge y. The aim of this analysis is to find the

least value of vy leading to a solution with a single facility open.

Table 5. Optimal location of Turin high schools. Results of a
sensitivity analysis for changing values of fixed
change y., The penalty costs are fixed and equal to
o= B8 = 1.5.

District Y = 10.0 Y = 15.0 Y = 20.0
1 - - -
2 - - -
3 13.9 - -
4 4.7 12.3 -
5 12.5 - -
6 9.9 - -
7 - - -
8 - - -
9 8.7 - -

10 16.2 14.4 -
1M 24.5 23.7 19.1
12 18.6 16.0 -
13 14.3 11.2 -
14 13.9 - -
15 11.8 - -
16 11.8 - -
17 11.5 - -
18 13.1 - -
19 - - -
20 - - -
21 - - -
22 - - -
23 4.1 5.7 -




. YT

A few comments are appropriate here on the comparison
between the deterministic solutions, as determined in Erlenkotter
and Leonardi (forthcoming) or Leonardi and Bertuglia (1981), and
the solutions obtained with the stochastic quasi-gradient method.
Some general tendencies are shared in common amonag all solutions,
such as the low ranking of district 21 and the high ranking of
district 11. The general clusters of open locations show also
som= similarity. A cluster of central districts (between 1-6),
one of first-ring districts (between 9-18) and a few peripheral
districts (usually district 23 only) appear in deterministic
solutions as well. However, when one looks at the detailed
composition of these clusters, no two of them are the same.
Sometimes very striking differences are found, such as the closing
or opening of district 1 (the downtown district)} which would be
difficult to justify to a public authority. The main cause for
such lack of robustness of stochastic methods is the existence of
many local minima and many near optimal solutions, with values of
the objective function lying within a very narrow range. Of
course a deterministic algorithm of an ennumerative nature can
still detect small differences, even though it may take a long
time. In a stochastic formulation, random fluctuations might well
be of the same order of magnitude of the range of the objective

function values. This seems to be the case in our examples.

7. CONCLUDING REMARKS

i

The purpose of this study has been to consider the stochastic
quasi-gradient method for solving a resource allocation problem.
The main advantages of the method are undoubtedly its computational
simplicity and the small amount of information required - explicit
probability distributions are not needed, random observations from

a Monte Carlo simulation process will do.

The computational procedure for the basic recursion equation
can be written by using only a few program statements and the
storage requirements of the method are minimal. The generation of

the random observations, however, may be time-consuming and hence
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the need for an optimized algorithm exists. The standard step-

size control is based on the interactive use of the computer and
normally guarantees that the solution is found after a moderate

number of iterations. In this paper some methods are presented

that do not necessarily require continuous control from the

person who calculates and that often reduce the computation time.

Tests are also made for a case where the objective function
is non-convex. In the deterministic formulation, problems of this
type lead to integer programming methods that are often slow,
unless for some special assumptions (like linearity) concerning
the objective function and constraints. Here the solution is
based on the same iteration algorithm as in the convex case. The
existence of several local minima may cause some difficulties with
the control of the iteration process, but the experience shows
that with regard to its simplicity and speed the method can be
efficiently applied to obtain good estimates for the solutions of

these difficult problems.

The practical results for the problem of determining the size
of school facilities in Turin were generally seen to be in agree-
ment with the solutions derived by other means although differences
in details are found. It is true that, given the special proba-
bility structure of equation (18), some simple deterministic
algorithms are available (Erlenkotter and Leonardi, forthcoming),
However, these algorithms do not apply to more general cases,

where the stochastic procedure might be advantageous.



APPENDIX A

THE USE OF COMPUTER CODE SQG

For practical computations a FORTRAN program SQG was designed
and implemented on a PDP 11/70 computer. The code has been meant
for interactive use, but for some parts of the input a few files
must be prepared in advance. This appendix describes the program
to the extent necessary for its use.

INPUT

The input that is required for a successful computation with
SQG consists of:

a. the problem specification
b. the control of the iteration process

i
Problem Specification

Prior to the execution of SQG three input files must be
specified. These are referred to with the following device
numbers:

2 the numbers of the customers (the first rows with format
1015)

the upper capacity bounds (the last rows with format 10i5)
the initial approximation (10i5)

the coefficients c¢,. of the exponentials, see equation (18)
(23£3.0) *

= W

-27-
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The program asks for the rest of the input via the terminal.
What remains to define the problem is the values of the coeffi-
cients a, B, v, and c. These are required as

- INPUT alfa beta gamma c (4£f6.2)

Control of the Iteration Process

- NORMAL = O AVERAGE = N (1i1)

Every iteration batch can start from the previous estimate
for the solution. 1If desired, the program can also utilize the
average of the last NB/N estimates, where NB is the number of
iterations in one batch. Therefore, type '0O' for normal batch
startup, N, where N is an integer, if average is desired.

- DRAW ONLY = 2 ? (i1)

The program plots the objective function values (Ek or Gk)
on the terminal screen (rotated 90%. The objective
function values as well as the random function values will also
be printed unless '2' is typed at this point.

- STEP SIZE CONTROL ? (i1)

The step multiplier can be controlled in the three wavs
presented earlier in this report. Type

'1'" for manual control (default)
'2' for simulated manual control
'3" for the rate-of-decrease based control

If '1' is Typed

- INPUT rho nbm (£f6.4,2i3)

where
rho = p
nb number of the iterations in one batch (default 10)
m see equation (24)

(If no fixed cost is included, m can be disregarded.)
After NB iterations the following question is asked:

- WHAT NEXT rho XX.XX change xx.XX obj xX.XX

L
where 'change' is the sum Zjlxj - xj| ; x5 and xy are the values

of the jth component of the result estimate in the beginning of
the batch and at the end of the batch, respectively. The current
value for the objective function is 'obj'. Type an integer as
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follows:

negative step iterations
zZero continue without adjustment of
positive continue after adjustment of
In the last case the next value for p will be questioned.

If '2' is Typed

- INPUT rho nb dif1 dif2 m (f6.4,i3,2£f5.2,i3)

where
rho = p
nb the number of iterations in one batch (default 10)
dif1
see equations (15a,b)
dif2
m see equation (24)

If '3' is typed

- INPUT rho nb dif1 red m (f6.4,13,2f5.2,13)

where
rho = p
nb number of iterations in one batch (default 10)
dif1 see equation (17a)
red reduction coefficient r
m see equation (24)

In the last two cases the only question asked after this is
- TERMINAL CONDITION °?

The iteration will be terminated as soon as the condition

p < 10—IER holds, IER is given here as an answer (default 5).

OUTPUT
The output consists of two parts

1. the information that is necessary for the control of the
iteration
2. the results

1. The objective function values (Ey or Gy) are plotted batch-
wise on the screen as a function of the number of iterations
performed. The axes, however, have been rotated 90° clockwise.
After every batch of NB iterations the objective function value
is also printed together with information on the change of
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the result estimates during the iteration batch.

2. The current estimate for the solution as well as for the

objective function is printed for every batch of NB iteration
in the file specified with device number 9. If all objective
function values (and the random function values) are desired,
'2' should bhe answered to the appropriate question.

Note: The program is currently dimensioned for a demand vector
of 23 locations. For other problem dimensions, change the first
executable statement (nd = 23) and the dimensions of the tables
in DIMENSION statements.
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APPENDIX B

ROBABILITIES . .
i3 FOR PROBA plj

THE COEFFICIENTS c..

q ¢t h9 8h 65 6E 29 £S 0S5 hwh LE 82z 8L 8L 0z 2h Gf Lk 9€ Leg 92 Lz of €2
0t G hG Sh LS LE 6h 06 Gh gt 9€ €€ €2 LIl L1 ne €€ GE Lt 92 22 €1 €2 22
89 66 ¢ 96 SL 69 €L SL LL L9 1L €L 89 09 €9 oOn 25 09 €9 99 hS €6 €6 L2
LS 8h 8G S S€ 8L wE Lk 6E Lh hwS S5 0S5 Lh 9% 92 8L oh 2h 8h 9€ Lf 2¢ 02
€9 09 HlL #E § 8L S¢€ Oh wh Lw 26 LS n& 85 8S GE LE oOh Lh 9n on 6K Gf 61l
ch 6¢ LG LI Ll ¢ 8L 92 t2 G6f LE hwh wE 6€ 8€ gL 02 g2 I 2¢ he 62 hi 8l
9SG LS 1L EE€ 9¢ gL ¢ LE 62 6f£ 8n 26 Lh 2% 1S hE y€ g €h 2h hE £ 1€ Ll
¢s 26 €L 6 LE nwe gz ¢ 6L 0t L& o0f 9€ 8w 8h On LE €€ LE 6f 1 2h 2t 9l
LG 8t 0L 6&€ th he 62 gL ¢ L€ Lh Sk wh Lh 9% ow 8E 1€ LE ®E 2£ gf gz Gl
9h &h w9 8K SK €€ 2Zh 82 62 G 82 62 £t Ew Ik Lk SE 21 22 G2 12 €f e il
8¢ LE L9 6% ¢9 8E @n 2f€ QE 62 & 02 02 ¢€ 1€ On 9E 62 HwL Ol LL 62 L2 €1
L wt €L 66 LS hwh €6 2h 8% Oh 02 ¢ ] 0¢ 2¢ 06 €th GE 22 91 €2 ¢6f z¢ 2l
€L €2 w9 9n €9 hE Lw 6€ Lt wE o2 L S 6 le oh €€ 0f €2 H1 HwlL Gz o2 Ll
8L 91 85 9n 8S 6E 26 LS gh €h 2 o0z 6 q SL Lk wE 6€£ HKE G2 He 61 Q2 01
6L 2L 29 9w LS 8E€E LS 9k Sk In LE 62 6L SI & oh €€ Kt O0€ 12 02 61 L2 6
ch w€ LE w2 wE L1 €€ on 8E LE Ly 9§ 6f 6 LE G 02 0f 2¢& 8f 92 62 e¢ 8
Gt €€ 6 Sl hE 8L HE 6E 9f 2f 8 6F €f 2t LE g ¢ G2 92 <2¢ 61 €2 91 L
En LE 96 6E 6 L2 €€ 0f gz 6 €C 1€ 0 on GE 2¢ 92 ¢ SL 02 8L Lz Ll 9
Le et 1S gt 9n 0f en GE wE g2 GI 22 2z 2f O0f €€ Gz 9L G 8 oL 22 Lt q
L2 92 19 mh hwh 1€ Oh HE O0f €2 6 hi €L 22 lg 6 1€ g2z 1 S nL G2 12 h
le 02 1S 0E 6¢€ 22z 1€ 62 82 lz 8L 02 2L €z QL Sz LL LiL 6 EL g ¢l 8 £
B €1 09 9¢ 8hW 82 Lh Iw 9€ 2€ LE€ 2€ w2 lz 8L 62 he 92 Lz G2 L g bl 2
mt 82 06 08 2€ €1 82 0€ L2 92 92 2f 22 OfF 62 €2 LI 61 6L te €L LL ¢ L
T
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