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Abstract 
Tropical forests provide important ecosystem services through the storage of carbon in their biomass. 

Increasingly countries recognize this service as one of the solutions to meet the Paris climate goal. A 

driver of tropical deforestation is consumption of agri-commodities. Therefore to inform trade 

strategies, robust models to project future global land use change at high spatial resolution are 

needed that link drivers to impacts. Most of these models combine global-scale dynamic land use 

models with downscale approaches by finding relationships between drivers and observed sub-

national land use change patterns to project future land use change spatially-explicit. However 

explaining relationships between drivers and spatial land use change patterns was found to be more 

complex and challenging than initially thought, such as found for Argentina. Therefore this report 

aims to contribute to this body of research via developing understanding of how supply chain data 

and the trade-modelling approach of the Trase.earth programme, which is improving the 

transparency of existing supply chains at high-resolution, as well as local data, which are more 

accurate than global data, would change the spatial pattern of projected land use change from the 

GLOBIOM model. When compared to the default DownScale calibration, including TRASE- and local 

data lead to more concentration of the cropland expansion at the detriment of forest in few grid cells 

which were located in the northeast of the Chaco. We conclude that including spatially-explicit, local 

data can improve the understanding of where within a country land use change is likely to happen in 

future. This would allow to focus efforts to reduce detrimental environmental impacts to few 

geographies. However we describe how more research would be helpful to improve the robustness of 

these early findings. 
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Introduction 
In the last two decades, agricultural expansion driven by global demand for commodities has become 

a major driver of the destruction of natural ecosystems in tropical and subtropical regions releasing 

large amounts of greenhouse gas emissions into the atmosphere contributing to the acceleration of 

climate change and the loss of biodiversity (Harris et al., 2012). Especially the hunger of European 

countries and growing populations scarce in land resources like China for oils (palm oil), meat and other 

animal-based products for which animal feed such as soybeans need to be imported is driving 

detrimental land use change in producing countries such as Brazil, Indonesia and Argentina (Baumann 

et al., 2017). Therefore commitments have been established such as the Amsterdam Declaration in 

Europe or the UN New York Declaration on Forests that aim to halt deforestation linked to imported 

products. It is argued that to understand implications of future consumption and trade strategies on 

food security, biodiversity and climate mitigation, a systems-based approach is needed that links both 

the supply (i.e. production) and the demand side (i.e. consumption) (West et al 2014). As by now the 

places of production are often very distant from the places of consumption, a global scale approach is 

needed (Sun et al. 2017). However at the same time, land-based solutions to global sustainability 

challenges are highly localized and context-specific (depending on factors such as investment, 

infrastructure availability, agricultural productivity) while supply chains are very complex, improving the 

spatial resolution of consumption-to-production models would allow to prioritize which strategies would 

be most effective. 

 

Therefore to guide strategies about land-based solutions towards global sustainable development, 

models are needed which on the one hand have the global scale but also the fine resolution to take 

into account differences in local land characteristics. One example of a model which tries to achieve 

this is the dynamic partial equilibrium model ‘Global Biosphere Management Model’ (GLOBIOM) (Havlík 

et al., 2011) which depicts future land use patterns and trade pathways. To improve the robustness of 

these kind of models, the observed land use change needs to be calibrated with highly spatially refined 

data (Krisztin and Woegerer, 2021; Leclère et al., 2016). To test the benefit of including more spatially-

refined data for the calibration, we chose Argentina as a case study where sofar land use change was 

challenging to predict.  

 

Argentina has become an important global producer and exporter of products like soybeans, corn, 

sugarcane and cattle (FAOSTAT, 2021). Soybeans are the most valuable export product for Argentina 

and around 90% of Argentinean soybeans are exported worldwide (OECD, 2021), making it very 

dependent on world market prices. The production increases were possible through improvements in 

both yield and expansion of planted area (FAO, 2017). In recent years, a further increase of export 

taxes in 2008 seems to have negatively affected export volumes by hindering investment into 

agriculture (FAO, 2017). Giancola et al. (2009) reported that compared to its competitors Brazil and 

USA, Argentina has higher commercialization costs such as for transportation, storage and export taxes 

despite having a competitive advantage in terms of production. As global demand for agricultural 

commodities is increasing, driven by increases in population and wealth (Alexandratos and Bruinsma, 

2012), world market prices will increase. However it is not clear how changes in commercialization 

costs or increases in soybean demand will affect production and cropland expansion in future in 

Argentina.  

 

Deforestation accelerated in Argentina since the 2000s with a peak in 2008 (Vallejos et al., 2015) which 

was driven largely (46%) by pastures for cattle raising and to a lesser extent (33%) by soybean 

production (Pendrill et al., 2019). In 2014, deforestation contributed 14.5% to Argentina’s greenhouse 

gas emissions (FAO, 2019). Within Argentina, most deforestation takes place in the Chaco ecoregion 

which has become one of the frontier regions of cropland expansion in Latin America (Hansen et al., 
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2013). Within the Chaco, the provinces Salta and Santiago del Estero are two of the top 14 jurisdictions 

of high deforestation in Latin America directly driven by the conversion to soybean (Song et al., 2021). 

However since 2013 deforestation rates have decreased by 60% in Argentina (Hansen et al., 2013). 

This decline can be partly explained by a reduction of world market soybean prices by half between 

2012 and 2016 (Sly, 2017; see Figure 1), increases in export taxes of the Argentinean government and 

the introduction of a federal forest law introduced in 2007 (Nolte et al., 2017). However due to limited 

enforcement, the success of the Argentinean forest law to reduce deforestation is debated (Sly, 2017) 

and restricted to few jurisdictions (Nolte et al., 2017). As greenhouse gas emissions of land use change 

depend on the carbon-density of the converted natural land, especially for countries mostly covered by 

non-forest habitat like Argentina, a sub-national approach is needed accounting for heterogeneity of 

carbon-density of converted land within the producing country.  

 

 
Figure 1: Change in soybean world market prices (Source: indexmundi.com) 

  



 

 

 

3 

 

While at national level in Argentina, land use change is driven by global demand for commodities 

(Fehlenberg et al., 2017), other factors influence land use change within the country. Variables 

explaining cropland expansion of companies in the Gran Chaco were proximity to current investment 

and availability of cheap forest land; less strong was low deforestation regulations and low enforcement 

(Le Polain de Waroux et al., 2016). Here, positively correlated but not significant were high yields and 

land prices (De Waroux et al. 2016). The variable which was not significant in Le Polain de Waroux et 

al. (2016)’s study was transport costs. In the Amazon in Brazil, factors reducing deforestation rates 

were the enforcement of the Brazilian Forest Code, interventions in soybean and cattle supply chains, 

restrictions to access to credit, protected area expansion (Nepstad et al. 2014; Arima et al. 2014). Le 

Polain de Waroux et al. (2018) argued that frontier expansion depends on change in accessibility (e.g. 

road building), environmental conditions, technology, producer prices and/or demand, subsidies or 

other policies. 

 

Therefore, we were interested in the following research questions:  

1.) Will some new variables derived from the spatially explicit supply chain data from Trase.earth be 

significant in explaining observed land use change in Argentina? 

2.) How will these updated and new variables change the spatial patterns of the land use change 

projections? 

 

We re-calibrate the DownScale model used to downscale the global land use change projections from 

the global biosphere management (GLOBIOM) model, to test the effect of accounting for TRASE and 

local data. GLOBIOM is a global dynamic bottom-up partial equilibrium model projecting future land 

use change (Havlík et al., 2011) at the scale of 37 regions, one of them being Argentina as a country. 

Sofar the default DownScale model was based on variables explaining biophysical characteristics (e.g. 

mean temperature, altitude, soil characteristics) and socio-economic factors (e.g. distance to market, 

wood harvest cost, total population). However other possible factors explaining land use change such 

as distance to export market, crop-specific harvested area and local biophysical data were missing. In 

this approach, the allocation of future land use change within Argentina depends on the interplay 

between future agricultural demand and biophysical characteristics and distance to the first logistic hub 

in the supply chain and distance to ports. This allowed us through the re-calibration to explicitly account 

for the relationship between land use change and the spatial distribution of different end-market specific 

soybean supply chains in Argentina based on our model projections and the TRASE (Transparent Supply 

Chains For Sustainable Economies) dataset (Trase.earth) for market share by department and distance 

to logistic hub.  
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Methods 
DownScale model 

The potential to improve the allocation of land use change by including spatially-explicit supply chain 

information was explored using the DownScale model (Krisztin and Woegerer, 2021; Leclère et al., 

2016) which links to IIASA’s GLOBIOM model (Havlík et al., 2011; Valin et al., 2013). The DownScale 

model aims to allocate to a higher spatial resolution the land use change projected by GLOBIOM, 

using as much as possible observed high-resolution data (Krisztin and Woegerer, 2021). 

 

 
Figure 2: Description of how the land use change transitions projected from GLOBIOM are connected 

to the Downscale Model to generate high-resolution land use change (LUC) projections. 

 

The DownScale model consists of an econometric model assessing the competition between different 

land uses. The land use change projections were taken from GLOBIOM which resolves recursively 

global land use competition between different land use sectors (agriculture, forestry and bioenergy) 

in 10-year time steps starting in 2000 until 2050 depending on constraints in resources and 

technology. Changes between different land use types in each pixel are determined by maximizing 

the consumer and producer surpluses (Valin et al., 2013). 

 

The DownScale model is spatially-refined with grids of 5 x 5 arcminutes which results in 6488 pixels 

for Argentina which is equivalent to around 10 x 10 km at the equator (Leclère et al., 2016). Data 

were aggregated to the different major soybean producing biomes in Argentina: Chaco, Humid 

Pampas and Espinal (Figure 3).  

 

Prior Module variables setup  

The prior module was run with four different variable set-ups: default version (D), default together 

with the TRASE-variables (T), default together with SPIPA variables (S) as well as default variables 

combined together with both TRASE and SPIPA variables (C). 

 

Land use classes in GLOBIOM are cropland, grassland, managed forest, plantation forest, primary 

forest and natural land. However priors are only estimated for the following land use changes:  

205020202000

205020202000

DownScale

Projects future land use change 
(LUC) transitions (from land use 

class A to land use class B) at 
regional level

Regional LUC

Allocates future 
LUC to grid level

Gridded 
LUC



 

 

 

5 

• From unmanaged or managed forest to Grassland and Cropland 

• From Grassland to Cropland 

• From other natural land to Grassland and Cropland and the way back.  

 

The GLOBIOM output in terms of changes in different land cover classes is shown in Figure 4.  

 

As dependent variable the global land cover map from the ESA CCI (European Space Agency Climate 

Change Initiative) was used (Defourny, 2017). This dataset is available yearly between 1992 and 

2015 at a resolution of 300 x 300 m at the equator. 

 

For the modelling, we took the following assumptions:  

• Supply chain patterns will be constant over time.  

• Using only soybeans is representative for the observed spatial pattern of general cropland 
expansion as soybeans are one of the major drivers of cropland expansion in Argentina 

(Pendrill et al., 2019).  
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Table 1: Updated and new prior module variables which were all aggregated to Simulation Unit. Rows with variables from the default set-up in red, TRASE variables in yellow 
and SPIPA variables in green. 

Type Variable Description Source  

Transportation Mean time to Market  Gridded travel time for goods to closest market Uchida and Nelson (2008) 

Transportation Travel distance to first logistic hub OR port 

(km)  

Travel distance to first port in supply chain 

(km) 

Gridded travel distance of soy producing municipalities to 

hub in supply chain [km] 

Trase.earth internal data; 

originally from: Open Street Map  

Transportation d_rutas_2014 

d_local2000_2010_pais 

Distance to routes in 2014 

Distance to village? 

SPIPA 

Lant rent Forest yield 

Wood harvest cost 

Pasture yield 

Harvested wood yield (tons) 

Wood harvest cost (USD) 

Harvested grass yield (tons) 

G4M (Spatialy explicit forest 

management model) at IIASA 

Land rent Soybean yield  

Market Share 

Gridded soybean yield in 2017 (tons) 

Gridded Marketshare for each GLOBIOM region (US Dollar) 

Trase.earth  

Trase.earth (originally customs 

data) 

Land-use Harvested Soybean area in 2001, 2010 and 

2020 

Soybean harvested area share in grid cell Trase.earth (original from Song et 

al. 2021) 

Biophysical Mean temperature, Mean Precipitation, 

Altitude, Slope, Soil parameters 

Mean within pixel of temperature, precipitation, altitude (m) 

and slope (in degrees) as well as dominant soil type 

Skalsky et al. (2008) 

Biophysical APP, Bal_hid,  

d_riosyarroyos 

dem250m_f4 

 

Distance to rivers and ponds 

Dem(digital elevation model) 

SPIPA 
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Evapotranspiration, OTBN, annual 

precipitation, ProfEfec, Prov_pais 

Socio-

economic 

Total population, Rural population   
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Figure 3 Map of harvested soybean area in brown; names of provinces with high deforestation rates, red stars 

are locations of the majority of ports (98% of soybean export); in blue locations of crushing facilities 

 

Data sources and processing 

To update existing explanatory variables or test improvement of variables, we used multiple different 

data sources (Table 2, Figure 3). 

 

Table 2: Overview of data sources 

Data sources Resolution Time period Source  

Soybean yield  Department 2016-2018 Trase.earth (from national statistics) 

Soybean harvested 

area  

30 x 30 m 2001, 2010, 

2020 

Song et al. (2021) 

Price  Shipment 2016-2018 Trase.earth (freight on board from 

customs data) 

Flow of soybeans 

to importing 

country 

Department 2016-2018 Spatially explicit model on Production 

to Consumption (Godar et al. 2015); 

data on Trase.earth 

Distance to port Department 2016-2018 Internal Trase calculations 

 

  

Chaco

Humid Pampas

Espinal

Ports

Logistic Hubs

Soy harvested area in 2010
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Soybean harvested area 

We derived Argentinean data on harvested soybean area in 2001, 2020 and 2020 using the dataset of 

the Global Land Analysis and Discovery (GLAD) laboratory (Song et al., 2021). While the GLAD 

dataset is available yearly at 30 x 30 m resolution, we aggregated these to the simulation grid unit as 

percentage of harvested soybean area as this is the finest shared resolution at which the variables for 

the model of land use change are available here.  

 

Soybean yield 

Yearly average soybean yield data for each department were used from Trase.earth. To generate 

these data, Trase.eaerth mainly used the data available from the Ministry of Agroindustry Argentina 
(MoA, 2020). As for some departments the data were missing, yields were approximated using 

department-specific soybean production data from MoA (2020) together with Song et al. (2021)’s 
harvested area maps (TRASE, 2020). This dataset was aggregated as yield [ton/ha] to the simulation 

grid unit.  
 

Soybean price 

Prices of exported soybean were derived from the Freight on Board (FOB) financial values on 

Trase.earth which are based on customs data and specific for each export market (TRASE, 2020). As 

this dataset did not include prices for the domestic market, we took the price of 274.75 US Dollar per 

ton soybean for 2017 from (TESEO, 2021). 

 

Distance to Logistic Hub  

We estimated distances between soybean producing department and first logistic hub in the supply 

chain (i.e. silo or crushing facility in the case of crushed soybeans and port in the case of uncrushed 

soybeans) using intermediate outputs calculated for Trase.earth [not freely available]. Trase.earth 

estimated these distances by minimizing the distance between supply node (i.e. producing 

department) and demand node (i.e. logistic hub or domestic consumption hub) using the road 

network available by OpenStreetMap.org. It has to be noted that this dataset included only distances 

from the middle of the producing department to the middle of the logistic hub department, not 

accounting for distances within these departments. As each department supplies more than one 

logistic hub, in this study we have calculated a weighted average distance depending on percentage 

soybean tonnage flowing through each logistic hub for each exporting market. For departments which 

are not yet producing soybeans, we have calculated the distance as distance to the closest trade hub 

of which each market is already sourcing from. For departments which are already producing 

soybeans but not yet for a certain export market, we have included as distance a high value (i.e. 

1000 kilometer) to artificially decrease the likelihood of sourcing from this department as we assumed 

a static supply chain in this study. This dataset was aggregated as distance [km] to the simulation 

grid unit for each export market.  

 

Distance to Port 

To test sensitivity to a different choice of distance in the supply chain, we have additionally calculated 

the distance to port. Distances between soybean producing department and exporting port were 

calculated using intermediate outputs calculated for Trase.earth [internal data]. Trase.earth linked 

ports specific for each export market with producing departments based on a variety of sources such 

as national trading, customs data, optimizing by travel distance if better information was unavailable 

following the methodology of the Spatially Explicit Information on Production to Consumption 

Systems (SEI PCS) model published in (Godar et al., 2015) available on Trase.earth (see TRASE, 2020 

for more details). We took the distance between each producing department to department of port 

from internal data which were based on the shortest distance of the trade network from 

OpenStreetMap.org. Again, it has to be noted that this dataset included only distances from the 

middle of the producing department to the middle of the port department, not accounting for the 
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specific location of the port within these departments. As some departments supply more than one 

port, in this study we have calculated a weighted average distance depending on percentage soybean 

tonnage flowing through each port for each exporting market. For departments which are not yet 

producing soybeans, we have calculated the distance as distance to the closest port of which each 

export market is already sourcing from. This dataset was aggregated as distance [km] to the 

simulation grid unit for each export market.  

 

Soybean tonnage flow  

We used the flows of soybean tonnage produced in each department and exported to each 

consuming market from (TRASE, 2020); methodology is published in Godar et al. (2015). While the 

Argentinean Trase dataset is available yearly between 2016 and 2018 for more than 90 different 

countries, we have aggregated these to the 30 different countries included in the GLOBIOM model as 

this is the smallest geographic unit the model works in. As the publicly available data from 

Trase.earth did not include domestic consumption within Argentina, we have used a TRASE-internal 

dataset which was developed as part of the SEI PCS model.  

 

Soybean harvested area 

We derived Argentinean data on harvested soybean area in 2001, 2010 and 2020 using the dataset of 

the Global Land Analysis and Discovery (GLAD) laboratory (Song et al., 2021). While the GLAD 

dataset is available yearly at 30 x 30 m resolution, we aggregated these to the simulation grid unit as 

percentage of harvested soybean area as this is the finest shared resolution at which the variables for 

the model of land use change are available here.  

 

Scenarios for future projections 

To explore the potential consequences of future changes in demand for food and feed as well as 

trade on land use change in Argentina, we used a scenario based on the Shared Socioeconomic 

Pathway (SSP): SSP3 ‘Regional Rivalry’ (Popp et al., 2017). SSP3 would be described by hardly 

regulated land use change, reduced trade flows and a reduction in crop yield increases (Popp et al., 

2017). In the GLOBIOM model, the SSP3 scenario translates into a 51% increase in Argentinean 

population between 2000 and 2050, and a 68% increase in the yield of oil crops over the same 

period. This scenario corresponded to historical climate mitigation efforts (“Reference” Representative 

Concentration Pathways and SPA0 (Shared Climate Policy Assumptions, see Kriegler et al., 2014). 

 

Net total land cover change for each land cover category at the scale of Argentina projected from 

2010 to 2050 is the following: cropland increases by 2.6 million hectares (Mha), grassland by 0.7 

Mha, plantation forest by 1.5 Mha, managed forest by 0.01 Mha and primary forest decreases by 4.6 

Mha and Natural land decreases by 0.1 Mha (Figure 4) [Calculations based on GLOBIOM output 

shared by David Leclere].  

 

Whereas for some land cover categories net land cover change is small, there can be large changes 

in their gross land cover change. For example for natural land, over the same time period from 2010 

to 2050 there is a loss of 4.6 Mha (of this 4.2 Mha are converted to grassland and 0.4 Mha to 

plantation forest) but at the same time an increase of 4.5 Mha (of this 4.4. Mha stem from 

abandoned grassland and 0.1 Mha from abandoned cropland) leading to a ‘net’ decrease of 0.1 Mha. 

Another example of large gross changes is in the land cover category grassland: 7.1 Mha are lost 

during the period 2010 to 2050 (2.2 Mha to cropland, 0.5 Mha to plantation forest and 4.4 Mha to 

natural land) while there is also an increase of grassland by 7.9 Mha (3.7 Mha from primary forest 

and 4.2 Mha from natural land) [Calculations based on GLOBIOM output shared by David Leclere].  
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Figure 4: Overview of absolute land use change transitions projected by GLOBIOM at national Argentinian level 
between 2010 and 2050 from land cover class to another. For example, the last row indicates the gains in 
cropland (over primary forest and grassland), which differs from net change in cropland cover as some cropland 
is abandoned (leading to an increase in natural land) and some other converted to forest plantations. Listed land 
cover classes refer to Primary Forest (PriFor), Plantation Forest (PltFor), Natural Land (NatLnd), Managed Forest 
(MngFor), GrsLnd (Grassland) and Cropland (CrpLnd)  
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Results 
Prior model results to explain land cover change 

Across all prior model setups, significant correlation was obtained for each variable for at least one 

land cover change transition with cropping input systems (except for irrigated area, HI_MEAN, 

LI_MEAN and SS_MEAN), distance to water (d_cuerposaguas), soy harvested area in 2010 as well as 

some export-market specific market shares, distances to port and distance to trade hub (In the 

default variable set-up the model picked up as significant the coverage of cropland, grassland and 

natural land at the beginning of the period, mean time to market, total population, altitude and slope. 

• Adding to the default variables additionally the ‘TRASE’-variables (T in Table 3) lead from the 

TRASE variables only soy yield being picked-up as significant. However from the default variable 

data-set only one variable got dropped: cropland coverage at the beginning of the period; 

whereas the model picked up as new compared to only the default variable dataset (D) grass 

yield. 

• Adding to the default variables additionally the SPIPA variables (S), lead the model to pick-up 

as significant only two variables from the SPIPA dataset, namely distance to cities 

(d_local2000_2010_pais) and annual precipitation. Dropped compared to the default variable 

combination were coverage with cropland and natural land at the beginning of the period, 

altitude, slope; whereas still significant were grassland coverage at the beginning of the period, 

mean time to market and total population.  

• Adding to the default variables additionally both TRASE and SPIPA variables combined lead the 

model to drop from the default variables compared to running the model only with default 

variables (D) cropland and grassland coverage at the beginning of the period, altitude and 

slope. Though still significant compared to the default variable version (D) were natural land 

coverage at the beginning of the period, mean time to market and total population. The model 

picked up as newly significant compared to the default only (D) version forest coverage at the 

beginning of the period. From the TRASE variables the only variable which got picked up as 

significant was soybean yield which was already significant in the default plus Trase (T) variable 

combination. From the SPIPA-variables the same variables appeared significant compared to 

running the model only with the default plus SPIPA variables: distance to cities 

(d_local_2000_2010_pais) and annual precipitation.  
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Table 3). Instead, the model showed significant effects for biophysical variables (e.g. temperature, 

precipitation, slope, altitude, soil parameters), economic variables (e.g. wood harvest cost, mean time 

to market, grass yield, soybean yield), share of existing land cover at the beginning of the period (e.g. 

forest, natural land, grassland) and country-specific supply chain variables (e.g. distance to trade hub, 

distance to port, market shares).  

 

Across all prior model setups, the significance of variables depended on the type of land conversion 

and the variable setup considered. The land conversion from grassland to cropland had only six 

significant variables across all model setups. In contrast across all model setups conversion from 

primary forest to cropland had 16 significant variables; from primary forest to grassland had 22 

significant variables; grassland to natural land had 21 significant variables; cropland to grassland had 

12 significant variables and cropland to natural land had eight significant variables.  

 

Explanatory variables varied across land cover transitions: 

1) In the case of the conversion of primary forest to cropland:  

• In the default (D in Table 3) variable set-up the model picked up as significant the share of 

existing cropland, forest as well as natural land at the beginning of the period, wood harvest 

tonnage, total population, rural population and slope.  

• Adding to the default variables additionally the ‘TRASE’-variables (T in Table 3) lead to 

additionally pick-up as significant soy yield, soy harvested area in 2001 and 2020; Marketshare 

of EU Central East and Distance to Tradehub of EU Central East. However running the prior 

model with both default and Trase variables also led to default-variables being dropped, 

namely share of forest cover at the beginning of the period, wood harvest and rural population.  

• Adding to the default variable set-up additionally local data variables (SPIPA S in Table 3), 

lead to the model picking-up as significant from the SPIPA-variables distance to rivers 

(d_riosarroyos), evapotranspiration and annual precipitation. However now the model dropped 

all default variables except cropland coverage at the beginning of the period.  

• Adding to the default variables additionally both TRASE and SPIPA variables combined (C in 

Table 3) lead the model now only to pick-up from the default variables cropland coverage at 

the beginning of the period, wood harvest cost and total population; from the TRASE-variables 

only soybean harvested area in 2001 but from the SPIPA variables still distance to rivers, 

evapotranspiration and annual precipitation got picked up. However the model dropped 

compared to the default variable set-up slope; compared to default plus TRASE, soy yield, 

soybean harvested area in 2020 as well as both Marketshare EU Central and Trade Hub 

Distance EU central got dropped. Though compared to default plus SPIPA, the model did not 

drop any of the ‘SPIPA’ variables. 

 

2) For the conversion of primary forest to grassland:  

• In the default variable set-up the model picked up as significant the share of existing cropland, 

forest and natural land at the beginning of the period, wood harvest tonnage, wood harvest 

cost, grass yield, total population, altitude, slope and soil parameters.  

• Adding to the default variables additionally the ‘TRASE’-variables (T in Table 3) lead to no 

variables from the ‘TRASE’ dataset being picked-up as significant. The only two variables which 

got dropped from the default set-up was forest coverage at the beginning of the period and 

total population.  

• Adding to the default variable set-up additionally local data variables (SPIPA), lead to the model 

picking-up as significant from the SPIPA-variables, distance to cities (d_local2000_2010_pais), 

distance to rivers, altitude (dem_250m_f4), OTBN, annual precipitation (Precip_anual) and 

effective depth (ProfEfec). However now the model dropped from the default variables both 
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forest and natural land coverage at the beginning of the period, wood harvest cost, grass yield, 

altitude and soil parameters.  

• Adding to the default variables additionally both TRASE and SPIPA variables combined lead the 

model to pick-up from the default variables, cropland and natural coverage at the beginning of 

the period, mean temperature, soil parameters and irrigation area  (dropped compared to the 

default only were forest coverage at the beginning of the time period, wood harvest tonnage, 

wood harvest cost, grass yield, total population, altitude, and slope). In this combined (C) 

variable-set, from the TRASE-variables as significant were being picked up only the 

marketshare of China which was actually not picked up as significant in any of the other variable 

combinations. From the SPIPA-variables, picked up as significant which were already significant 

in the default plus SPIPA (S) version were d_local2000_2010_pais, elevation (dem250m_f4), 

native forest and managed by law (OTBN), annual precipitation and effective depth (ProfEfec). 

New variables being picked up which were not already being picked-up with the default plus 

SPIPA set-up were National parks (APP) and distance to roads (d_rutaas2014). Dropped was 

only the variable distance to rivers (d_riosyarroyos) compared to default plus SPIPA. 

 

3) In the case of the conversion of grassland to cropland:  

• In the default variable set-up the model picked up as significant only the variables coverage of 

natural land at the beginning of the period and total population.  

• Adding to the default variables additionally the ‘TRASE’-variables (T in Table 3) lead to only the 

variable Marketshare China being picked up as significant from the Trase variables whereas 

from the default variables, only the variable total population got dropped.  

• Adding to the default variable set-up additionally local data variables (SPIPA), lead the model 

picking-up not a single variable as significant from the SPIPA variables, but lead to drop from 

the default variables the coverage of natural land at the beginning of the period. 

• Adding to the default variables additionally both TRASE and SPIPA variables combined lead the 

model to pick-up from the default variables only rural population (was not significant in any of 

the other variable combinations for this land transition) as well as the coverage of natural land 

at the beginning of the period which already got picked up as significant from the default and 

the default plus TRASE (T) but not the default plus SPIPA (S) variable set. From the TRASE 

variables, only the Marketshare of USA got picked-up as significant which was not significant 

in any of the other variable combinations for this land use transition. From the SPIPA variables 

only the variable distance to rivers got picked up as significant which was not significant in any 

of the other variable combinations for this land use transition. 

 

4) For conversion of cropland to grassland:  

• In the default variable set-up the model picked up as significant the coverage of cropland, 

grassland and natural land at the beginning of the period, mean time to market, total 

population, altitude and slope. 

• Adding to the default variables additionally the ‘TRASE’-variables (T in Table 3) lead from the 

TRASE variables only soy yield being picked-up as significant. However from the default variable 

data-set only one variable got dropped: cropland coverage at the beginning of the period; 

whereas the model picked up as new compared to only the default variable dataset (D) grass 

yield. 

• Adding to the default variables additionally the SPIPA variables (S), lead the model to pick-up 

as significant only two variables from the SPIPA dataset, namely distance to cities 

(d_local2000_2010_pais) and annual precipitation. Dropped compared to the default variable 

combination were coverage with cropland and natural land at the beginning of the period, 

altitude, slope; whereas still significant were grassland coverage at the beginning of the period, 

mean time to market and total population.  
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• Adding to the default variables additionally both TRASE and SPIPA variables combined lead the 

model to drop from the default variables compared to running the model only with default 

variables (D) cropland and grassland coverage at the beginning of the period, altitude and 

slope. Though still significant compared to the default variable version (D) were natural land 

coverage at the beginning of the period, mean time to market and total population. The model 

picked up as newly significant compared to the default only (D) version forest coverage at the 

beginning of the period. From the TRASE variables the only variable which got picked up as 

significant was soybean yield which was already significant in the default plus Trase (T) variable 

combination. From the SPIPA-variables the same variables appeared significant compared to 

running the model only with the default plus SPIPA variables: distance to cities 

(d_local_2000_2010_pais) and annual precipitation.  
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Table 3: Overview of significant variables showing positive (+) and negative (-) correlation to ESA CCI land cover changes from 2000 to 2010; estimated with quantile 
analyses. Tested variable sets were in each column default-DownScale variables (D); Default together with TRASE-derived variables (T); Default together with SPIPA-derived 
variables (S) and Default combined with both TRASE and SPIPA-derived variables (C). Rows with variables from the default set-up (red), TRASE (yellow) and SPIPA (green).  

Variable PriFor to 

CrpLnd 

PriFor to 

GrsLnd 

GrsLnd to 

CrpLnd 

GrsLnd to 

NatLnd 

CrpLnd to 

GrsLnd 

 CrpLnd to 

NatLnd 

Variable-sets D T S C D T S C D T S C D T S C D T S C D T S C 

Cropland + + + + + + + +  
 

   
 

  - 
 

  - 
 

-  

Grassland      
 

+   
 

   
 

  + + +  - 
 

  

Forest +    - 
 

   
 

   + + +  
 

 -  
 

  

Natural Land - -   - -  - - -  -  
 

  - -  -  
 

  

Mean Temperature        +        +         

Mean Precipitation      
 

   
 

  - - - -  
 

   
 

  

Wood harvest, tons +    - - -   
 

  - - - -  
 

   
 

  

Wood harvest cost, USD  +  + + +    
 

  + + + +  
 

  + 
 

  

Grass yield, tons     - -    
 

  - 
 

-   -   + +  + 

Mean Time to Market      
 

   
 

   
 

  - - - -  
 

  

Total Population - -  - - 
 

-  - 
 

-   
 

  - - - - - 
 

  

Rural Population +           +             

Altitude     - -    
 

   +   - -    
 

  

Slope - -   - - +   
 

   
 

  + -    
 

  

Soil parameters     + 2  +4  
 

  - all 4 -4  
 

  - 3  -3 

Irrigated area in ha      - - -  
 

   
 

   
 

   
 

  

Yield_Ton per Ha  +    
 

   
 

   
 

   -  -  
 

  

Soy Harvested Area (2001)  -  -  
 

   
 

   
 

   
 

   
 

  

Soy Harvested Area (2020)  +    
 

   
 

   
 

   
 

   
 

  

Mshare China      
 

 -  -    
 

   
 

   
 

  

Mshare USA      
 

   
 

 -  -    
 

   
 

  

MShare EU Central East  -    
 

   
 

   
 

   
 

   
 

  

MShare.WestAfrSSA      
 

   
 

   
 

 -  
 

   -   

Distance to Port EU North      
 

   
 

   +  +  
 

   
 

  

Distance to TH 
EUCentralEast 

 -    
 

   
 

   -  -  
 

   
 

  

Distance to TH 

MiddleEastNAfr 

     
 

   
 

   +    
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Variable PriFor to 
CrpLnd 

PriFor to 
GrsLnd 

GrsLnd to 
CrpLnd 

GrsLnd to 
NatLnd 

CrpLnd to 
GrsLnd 

 CrpLnd to 
NatLnd 

Variable-sets D T S C D T S C D T S C D T S C D T S C D T S C 

APP (National Parks)        -       - -         

Bal_hid (Hydric Balance)               +         - 

d_local2000_2010_pais (Distance 

to cities) 

      + +       +    + +     

d_riosyarroyos (distance to rivers)   + +   +     -    -         

d_rutas2014 (distance to roads)        +       - -         

dem250m_f4 (altitude)       - -                 

Evapot (evapotranspiration)   + +                     

OTBN (native forest and managed 
law) 

      - -       - +         

Precip_anual (annual precipitation)   - -   - -           - -     

ProfEfec (effective depth)       - -       - -         

Prov_pais (provinces)               - -        - 
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Impact on land use change projections to 2050  

 

We estimate the effect of including further explanatory variable-sets on the spatial distribution of 

projected land cover change by comparing the outcome of the DownScale model if including Trase-

variables and SPIPA-variables compared to the default-version (Figure 5). As explained in the 

methodological section, the prior model setups do not affect the absolute amount of land cover 

change (determined by GLOBIOM), but only it’s allocation.  

 

Only considering the three land cover classes for which most land cover change is projected, namely 

cropland, grassland and primary forest, we find that adding either TRASE-variables or SPIPA variables 

increase the amount of cropland expansion in middle-northern Argentina compared to the output 

using only default-variables (Figure 5). However besides this observation there are only few other 

differences visually observable from the national raster maps.  

 

 
Figure 5: Raster map of Argentina showing the continuous color code depending on the percentage of the 
dominant land cover class in each grid cell: the more red it is, the higher the percentage of cropland in this grid 
cell; the more green it is the higher the percentage of unmanaged forest in this grid cell; the more blue it is, the 
higher the percentage of grassland in this grid cell. Thefore violet is a mix of the colour blue (grassland) and red 
(cropland). Black means here that it is not dominated by any of the three key land covers here (i.e. cropland, 
unmanaged forest or grassland.  
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Figure 6 shows the pattern of projected net land conversion at pixel level for four different land cover 

types: cropland, grassland, primary forest and natural land. Compared to the default-version, 

including TRASE- and SPIPA variables leads to more ‘hotspots’ of land cover change rather than 

distributing it more equally across Argentinian existing agricultural land. For example cropland 

increases in the TRASE and SPIPA variable combinations by around 20% per grid cell whereas this 

stark increase cannot be observed for the default version. Similarly, for grassland including TRASE- 

and SPIPA variables leads to more increases in grassland in western Humid Pampas and Chaco 

biomes (see Figure 3). In the case of primary forest, including TRASE and SPIPA variables leads to 

primary forest loss of up to 40% in some grid cells.  

 

The areas of highest cropland expansion are in the province Chaco and to a smaller extent in the 

province Santiago del Estero; mainly in the departments General Belgrano, Chacabuco, Doce de 

Octubre and Fray Justo Santa Mario de Oro.  

 

 

 

Figure 6: Percentage of change of total land from 2010 to 2050 for cropland (a), grassland (b), primary forest 
(c) and natural land (d) in each simulation unit. Comparison of output using either the default downscale version 
only or together with either SPIPA or TRASE variables.  

  

Cropland Change Grassland Change

Default Default + TRASE Default + SPIPA Default Default + TRASE Default + SPIPA

a) b) 
2010-2050 (Scenario: RCP6 SSP3 SPA3)

Primary Forest Change

Default + SPIPADefault + TRASEDefault Default + SPIPADefault + TRASEDefault

d) 

Other

c) 
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Land cover change projections within Argentina are not equally distributed among the biomes. Using 

the default variable combination, cropland is projected to expand by 2.5 Mha between 2010 and 2050 

according to the RCPRef SPA0 SSP3 scenario with the biggest increase within the Chaco biome: 1.5 

Mha of new cropland will likely appear within the Chaco compared to only 0.6 Mha in the Espinal and 

even a likely decrease of 0.04 Mha in the Humid Pampas (Figure 7). Similarly, with the default 

variable combinations of projected 4.6 Mha of primary forest loss across Argentina, the majority will 

be in the Chaco with 2.2 Mha for the default variable combination compared to a loss of only 0.7 Mha 

in the Humid Pampas and 0.4 Mha in the Espinal. In contrast, the majority of the loss of natural land 

will be in the Humid Pampas with 0.6 Mha and in the Espinal with 0.02 Mha (using the default 

variable combination).  

 

Differences between the three variable combinations (default, default and TRASE, default and SPIPA) 

are biggest for primary forest, grassland and abandoned grassland (Figure 7). Including TRASE-

variables compared to the default setup leads within the Chaco to a conversion of 0.5 Mha more 

primary forest but an increase of grassland by almost 0.5 Mha from 2010 to 2050 compared to the 

default variable-set. In contrast, including TRASE variables compared to only the default variables 

leads to less conversion of primary forest in the Humid Pampas (0.4 Mha) and the Espinal (0.3 Mha). 

Including SPIPA variables compared to the default variable-set leads to around 0.2 Mha more 

expansion of grassland in the Humid Pampas, but 0.2 Mha less grassland conversion in the Espinal.  

 

 
Figure 7: Net land use change of different land cover classes between 2010 and 2050 across different biomes in 
Argentina. Please note the different values on x-axis.  
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Discussion 
This study aimed to identify additional relevant variables explaining historical land cover change at 

sub-national level within Argentina using the DownScale model with the ultimate aim to improve the 

accuracy of spatial explicit land cover change projections. For this purpose we have incorporated into 

the prior model of DownScale spatially explicit supply chain data from the Trase.earth platform as 

well as spatially explicit biophysical data from ‘SPIPA’. This report showed that at least some of these 

additional variables are significant in explaining historical land cover change.. We found that including 

either SPIPA or Trase variables lead to primary forest loss being much more restricted to few 

departments (namely General Belgrano, Chacabuco, Doce de Octubre and Fray Justo Santa Mario de 

Oro) within the Chaco rather than more equally distributed using default-variables (Figure 5).  

 

The limited differences in the spatial distribution of projected land cover change by 2050 between the 

three different variable combinations could be possibly explained by the fact that we did not include 

variables which might have strongly influenced land cover change in the analyzed time period 

between 2000 and 2010. Agricultural production in Argentina is known to be affected by export taxes 

on soybeans as 90% of Argentinian soybeans are produced for export (Nolte et al., 2017), but also 

drought evens are affecting farmer’s income and therefore financial capacity to expand production 

(Thomasz et al. 2018).  

 

Another challenge in explaining historical land cover change in Argentina could be the differences in 

available land cover maps and their land cover classifications. For this study we chose the global-

scale ESA CCI land cover maps. It is possible that a national land cover map might be better in 

distinguishing native natural vegetation such as savannah-type land covers or pasture from grassland. 

In a recent global study of historical cropland expansion between 1992 and 2015 by Eigenbrod et al. 

(2020), these authors also used the ESA CCI land cover map though to avoid error, they excluded the 

land cover classes 30 and 40 (mosaic of cropland) whereas in this study the ESA land cover classes 

30 and 40 were included in ‘cropland’ (see Krisztin and Woegerer, 2021). Eigenbrod et al. (2020) 

considered land cover classes 30 and 40 to be smallholder agriculture. As deforestation in Argentina 

is not driven by smallholder agriculture, including classes 30 and 40 as ‘cropland’ might overestimate 

deforestation. Perey-Hoyos et al. (2017) found that the ESA CCI land cover maps overestimate 

cropland globally. To which extent this is the case in Argentina is unknown.  

 

Several simple assumptions had to be made which may limit the validity of the findings. Firstly, we 

assumed that supply chain patterns are static over time. It is likely that some supply chain variables 

such as distances to ports are more static over time than distance to logistic hub (e.g. silos or 

crushing facility) as over time it is likely that additional silos get built or traders using those silos 

change. Furthermore as we estimated many supply chain variables specific to consumer markets, it is 

likely that some consumer market’s supply chain configuration is more static (e.g. Europe) than 

others whose population and meat consumption is increasing such as China or other Asian countries. 

It is also possible that political factors such as the China-USA tradewar could re-shape sourcing 

decisions and therefore proportionally increase demand from some biomes within Argentina much 

more than from others. A consequence from the US-tradewar could be that China would buy more 

soybeans from Argentina likely increasing the demand in their existing sourcing region in the Humid 

Pampas rather than Chaco in the north of Argentina.  
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Areas for Future Research 

As this was only an explorative study with limited time available to analyze the benefits of including 

spatially-explicit supply chain data from Trase.earth, there are many areas future research could 

focus on. One limitation of the study was that supply chains were assumed to be static. This 

limitation could be overcome by for example including information about the establishment of 

crushing facilities which would be available yearly from CIARA (http://ciaracec.com.ar/ciara). Possibly 

with this dataset a relationship could be established between the year of crushing facility 

establishment, soy processing volume of the crushing facility and localized land use change. Another 

limitation of this study is that we used explanatory variables from the time period of 2016-2018 to 

explain land cover change observed between 2000 and 2010. Therefore for consuming markets which 

changed their supply chain between that period, it would be unlikely that these variables would be 

significant.  

 

Additionally, this study focused on adding variables explaining cropland expansion. However 

Trase.earth also has data available to improve pasture expansion such as livestock density or egg 

production per department (Trase, 2020). Furthermore as the land cover maps and their 

classifications vary for Argentina, it would be interesting if the projected land cover changes would be 

different with a national land cover dataset likely better to differentiate local natural habitat and 

natural grassland from human-used pastures.  

 

Furthermore future research could try to include the variables in a different way. In this study we 

included up to 150 different variables all at the same time together to explain land use change. 

However some variables especially of the SPIPA dataset are very similar to the variables from the 

default dataset (e.g. yearly temperature). Therefore some of the default dataset variables could be 

replaced with some from the Trase or SPIPA dataset to test whether this might improve the 

explanatory power? 

 

Finally, for simplicity we did not change the national level amounts of land use change which came 

out of the GLOBIOM model but only the spatial pattern of land use change within Argentina. However 

it would be interesting to test whether Trase could help to improve the dynamic aspects of GLOBIOM 

as well. Trase data include the yearly changes of export flows per export market which could help 

here. Possibly for this purpose it might be better to use Brazilian Trase data which are available 

yearly from 2004 to 2018.  

 

Conclusions 
This study showed many of the supply chain variables as well as local national variables were found 

to be significant in explaining observed land use change, so worth including. However it was very 

much depending on the land cover transition which variables were significantly explaining the land 

transition. Additionally this study showed that including additional spatially-explicit variables from the 

Trase and Spipa-datasets increases conversion of forests to grassland and cropland to fewer smaller 

regions. This would make it easier for governments and private sector actors to focus their efforts 

onto few forest frontiers. However more research is needed to verify these initial findings.  

  

http://ciaracec.com.ar/ciara
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Appendix 
In the following the equations used to calculate each variable are described. 

 

Market share for each producing Department j and Export market i is calculated as follows: 

𝑀𝑎𝑟𝑘𝑒𝑡𝑠ℎ𝑎𝑟𝑒𝑗  = % 𝑡𝑜𝑛𝑛𝑎𝑔𝑒 𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑑 𝑡𝑜 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑖  × 𝑆𝑜𝑦 𝑝𝑟𝑖𝑐𝑒 [
𝑈𝑆𝐷

𝑇𝑜𝑛
]

× 𝑇𝑜𝑡𝑎𝑙 𝑠𝑜𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 [𝑇𝑜𝑛] 

 

Distance from producing Department j to first Logistic Hub l in the supply chain for each Export 

market i (weighted average depending on soy tonnage) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 = ∑ % 𝑡𝑜𝑛𝑛𝑎𝑔𝑒 𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑑 𝑣𝑖𝑎 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝐻𝑢𝑏 𝑙,𝑗  𝑥  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 ℎ𝑢𝑏𝑙,𝑗 
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