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ABSTRACT

Whilst used in all continents, the majority of soybean production takes place in specific
regions. This causes the supply chain to be highly vulnerable to local climate shocks.
With a changing climate, the impacts on crop productivity are expected to change as well.
Crop models are commonly used to address the relation between climate and agriculture,
simulating biophysical processes and estimating crop yields at a gridded location. However,
they underestimate the impacts of extreme climatic conditions. In this study, a process-based
crop model EPIC-ITASA is combined with a machine learning model to analyse the impact
of future extreme weather events on soybean yields under different climate scenarios. The
crop model outputs, such as simulated soybean yield, together with extreme climatic indices
during the soybean growing season are used as input into a machine learning model that
is trained on observed soybean yields. The coupling of crop model and machine learning
model leads to a hybrid model that improves the crop model’s ability to represent extreme
weather conditions and to translate these into yield anomalies and shocks. These events are
subsequently provided as input to GLOBIOM to analyse the socio-economic and market
impact of extreme climate events on soybean production. We show the hybrid model can
significantly improve the overall performance of the crop model, with an increased interannual
variability representation, especially for extreme climatic conditions. We find low precipitation
values to be responsible for low yields in the region. The global warming scenarios suggest
weather shocks will likely become more frequent and intense, especially for high-emission
scenarios and especially in the medium to long term. The socio-economic impacts demonstrate
a non-linear relationship to the bio-physical impacts, with metrics like price per ton of soybean
being significantly amplified.
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1 Introduction

Soybeans are the most common source of protein for livestock feed worldwide. They are also
the second most consumed type of vegetable oil, and are widely used for human consumption.
The global production of soybeans in 2019 was of 333 million tonnes, making it the 8th most
produced crop in the world [FAO, 2021]. While soybeans are consumed globally, 80% of their
production is concentrated in hotspot regions in the United States of America, Brazil and
Argentina. These circumstances render soybeans the most traded crop in value in the world,
and the soybean exports from Brazil and the US make the two countries the top exporters in
value per commodity, among all commodities and countries [FAO, 2021]. As a consequence,
the soybean trade entails a vast logistics network to connect production sites with consumers
around the world. Population growth trends, dietary changes and an increased globalised
world are all contributing factors to further extend the importance of the global soybean
distribution network.

The high dependency of the global soybean market on concentrated producing regions carry
a risk factor. The entire supply chain is vulnerable to disturbances in the local production
sites. As for every crop, extreme weather events can lead to short-term variability and shocks
to agricultural production [Zampieri et al., 2017, Zscheischler et al., 2017, Ben-Ari et al.,
2018], potentially impacting the entire food supply system and posing threats to market
stability and food security at a global level [Mitra and Josling, 2009, Gétz et al., 2013, Shama,
2011]. In addition, with a changing climate, the conditions necessary for yield failures to
happen are likely to change [IPCC, 2014], possibly intensifying the impacts on the whole
supply chain of soybeans.

In order to represent the relation between climate and crops, it is common practice
to use models, which can be physical or statistical. The first one, also known as crop
model, uses data on weather, soil and management information as input and replicates the
biophysical dynamics of real crops, ultimately generating crop-related output, such as yield
and biomass. Given physical models are composed of physical equations, the internal workings
and mechanisms of the physical models are explicitly modeled and, therefore, accessible. On
the other hand, they are complex to build and operate, and highly time consuming in terms
of computing processing. A specific case of crop models are the global gridded crop models
(GGCMs), that operate at a global scale. Advantages of using GGCMs is that virtually the
entire globe can be modelled for controlled and uniform time periods and forcing data sets,
in contrast to observed data, where the less developed parts of the world suffer from limited
data coverage or quality. The simulation periods of crop models tend to be more extensive
than available observed crop data, as trustworthy and precise registries of observed yields is
rather limited. Last of all, crop models are compatible with climate projections, rendering
them particularly useful for climate change studies. An disadvantage of using crop models
is that they underrepresent impacts from extreme climate conditions [Schewe et al., 2019].
It is argued that crop models simplify or have limited mechanisms to properly simulate the
biophysical processes under extreme conditions [Feng et al., 2019].

Statistical models are another option for linking climate with agriculture. They work
by establishing mathematical relationships between one or more variables and the output.
They tend to be simpler to build and run when compared to the physical models, perform
relatively close to process models [Ciscar et al., 2018] and are compatible with extreme climate



conditions (but limited to the calibration range of values). Yet, they do not follow physics
equations and are, thus, hard to understand or interpret.

The soybean shocks in yield due to weather variability are an intermediate step in
the soybean chain of events. The ultimate consequences are associated with the socio-
economic impacts, which includes shocks and anomalies on commodity prices, trade, exports,
consumption, and food security risk around the world. The interactions between biophysical
impacts and socio-economic impacts are neither linear nor uni-dimensional, with socio-
economic feedbacks due to crop yields variations having a larger impact than the direct
impacts of climate variability on crop yields [Calvin and Fisher-Vanden, 2017]. It is therefore
necessary to explicitly represent the interactions on the socio-economic domain, which is often
done through impact models. Together with the information on human and environmental
processes, climate change and the crop yield shocks are studied to evaluate the potential
socio-economic impacts of climate change feedback loops and uncertainties. It makes the
chain of climate-crop-impacts events, attribution and integrated assessment central to the
study of climate change [Moss et al., 2010].

The chain of climate-crop-impacts events has a particular drawback when dealing with
climate shocks. In cases where socio-economic models rely on crop models estimations to
assess impacts, the underestimation of biophysical impacts under extreme weather conditions
generates a cascading effect to the socio-economic impacts [Schewe et al., 2019]. It is
thus particularly relevant for socio-economic studies based on crop models to improve the
representation of biophysical impacts under climate extremes. Recently, there has been
a surge of studies based on hybrid models, which consists of combining physical models
with statistical models for different purposes, such as downscalling [Folberth et al., 2019]
and improving overall performance [Roberts et al., 2017, Ruane et al., 2017, Calvin and
Fisher-Vanden, 2017]. More specifically, hybrid models have been shown to improve the
representation of extreme climate, due to the addition of statistical mechanisms to crop
models [Feng et al., 2019]. However, to the best of our knowledge, there has been no expansion
on the use of hybrid models to integrate with socio-economic studies.

In this study, we couple a hybrid model to a socio-economic impact model to explore
the socio-economic impacts that extreme climate might pose to the soybean production and
distribution under global warming. More specifically, a process-based crop model EPIC-ITASA
is combined with a machine learning model to analyse the impact of future extreme weather
events on soybean yields under different climate scenarios and global climate models (GCMs).
The crop model outputs, such as soybean biomass and yields, together with observed climatic
variables during the soybean growing season, are used as input into a machine learning model
that is trained on observed soybean yields, the hybrid model. The statistical model improves
the crop model’s ability to represent extreme weather conditions and to translate these
into yield anomalies and shocks. The focus is put on low-probability high-impact extreme
events and the extent to which these are expected to exacerbate in the future. These events
are subsequently provided as input to a socio-economic impact model called GLOBIOM
to analyse the socio-economic and market impacts of extreme climate events on soybean
production. We adopt as case study the soybean production in Brazil, as it is the largest

soybean producer in the world and responsible for approximately 48% of the global exports
of soybeans [FAO, 2021].



2 Methods

The study structure is divided in two main blocks: The first block is the climate-crop
interaction (Figure 1). We designed statistical models linking climate information from
GCMs, simulated yields from GGCMs, extreme climate indices and observed soybean data.
Three models were developed, all based on the random forest (RF) algorithm: a RF trained
only on the crop model, a RF trained only on the extreme climate indices, and both crop
model and extreme climate indices combined, the hybrid model. The second block is the
socio-economic impacts estimation, which is dedicated at using the GLOBIOM model to
explore the possible socio-economic consequences of extreme events. For that, we combine
long-term trends of EPIC with the interannual variability of the hybrid model for better
estimation of weather shocks.

Climate-Crop interaction Socio-economic impacts
Climatic ‘ 1. Market-impact
varﬂﬂes (prices, trade)
EPIC —~
General o yearly N 2. Producer-impact
circulation o yield Ch. Hybrid ch (production,
models P?;’,',‘_" shock Yield model Yield* / GLOBIOM revenues)
GCMs) ~ Pre i
( ) shifter 3. Consumer-impact
Bias (Consumption, food
correction EPIC security)
gradual
climate
shifter Ch. Gradual yield

RCP 2.6, 8.5

Figure 1: Study workflow from weather shocks to socio-economic impacts.

2.1 Climate-crop interaction

To represent the interactions between climate and crop, we used the physical processing of
crop models, statistical relations of extreme climate indices, and the combination of them to
explore the biophysical impacts of extreme climate conditions on soybeans.

Supervised machine learning models require two types of input: the independent and
dependent variables. Independent variables are the ones that the model is trained on.
Dependent variables are the ones that the model uses for prediction and calibration. For
the independent variables, we considered the crop model outputs and the extreme climate
indices, depending on the model considered. For the dependent variables, all models had as
dependent variable a dataset of historical observed soybean yields.

For the creation of the climate-crop models, we followed a two-step approach based on
Feng et al. [2019] to generate there climate-crop models. For the first one, we trained the
statistical model only on the crop model simulated soybean yields (referred to as RF:EPIC),
which worked as a bias correction mechanism. The other model was trained using the
extreme climate indices alone, and no physical processing was involved (RF:CLIM). The
third model, we fed the simulated yield output of the crop model (first step) into a random



forest model (second step) together with the extreme climate indices, generating the hybrid
model (RF:Hybrid).

The machine learning model used to train the clima-crop models is the random forest (RF)
model. Random forest [Breiman, 2001] is a non-linear and non-parametric statistical model
for classification and regression, being one of the most commonly used models in different
fields of science. It benefits from an ensemble structure, containing multiple independent
decision trees, which are each trained on random sub-samples of the data to provide different
predictions. All predictions are then combined to provide a unified output. RFs do not
have many parameters to be tuned, do not suffer from overfitting, and are known for high
performance [Breiman, 2001]. They rank among the best classifiers for real world problems
[Fernandez-Delgado et al., 2014], and in the field of agriculture ? and Wang et al. [2018]
found RF's to be superior to other machine learning techniques. Finally, RFs are compatible
with nonlinear relationship, which is considered relevant for extreme climate indicators that
have nonlinear behaviour [Schlenker and Roberts, 2009, Feng et al., 2019].

The first step to train a random forest model was the feature selection. The feature
selection consisted of two parts: First to define which individual months along the year should
be selected; second which variables to use for soybean prediction. The soybean growing
season encompasses multiple months, and it is necessary to select the extreme climate indices
during the most relevant months of the year. The experiment is spatially gridded across large
areas of Brazil, which implies a heterogeneity in seasons. Each grid cell has specific growing
season properties. We adopted a planting calendar to dynamically define which months to be
considered. The calendar is based on a dataset of planting windows for soybeans [Abrahao
and Costa, 2018].

Among the extreme climate indices generated, some variables are more relevant than
others for soybean growth, and because the indices are based on temperature and precipitation
values, high correlation between some of them is expected. Irrelevant variables and multiple
redundancy could add noise and decrease performance of the model. It is beneficial to the
training of the model to select the most important features without high levels of correlation.
We used the internal random forest feature selection module [Breiman, 2001] to select the most
important features for the entire region studied. At the end of this step, the most important
features for soybean growth were selected, with the temporal component dynamically defined
based on each grid cell specific crop calendar.

We used a cross-validation scheme to tune the RF’s hyper-parameters. We divided the
dataset in 10 splits, where on is left out for validation and the rest is used to train. The
process is repeated 10 times, and then 5 times more under different configurations of the
split. The selected configuration for the RF is shown in Table 1.

Parameter Description Value

n_estimators  Number of trees in the model 200

criterion Quality of split function Mean Squared Error
max_features Maximum features per split Square root of total features
max_depth Maximum tree depth 10

Table 1: Random forest model configuration of hyper-parameters.



We use the coefficient of determination (R?, Equation 1), mean absolute error (MAE,
Equation 2) and root-mean-square error (RMSE, Equation 3) regression loss functions to
evaluate and compare the different random forest models. R2 quantifies the amount of
variability explained by the model; MAE indicates the average error between the values
predicted by the model and the real corresponding values, and RMSE quantifies the standard
deviation of errors.
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2.2 Socio-economic exploration

Studies into the dependent demand and supply relationships in globalised systems require a
framework that can take stock of both the climate-induced deviations between expected and
observed prices and yields, and the impacts on the food commodity market. The GLOBIOM
model [Havlik et al., 2014] is used to analyze the effects for producers, consumers and market
stability of climate-induced yield shocks. We combine the yield data from the first part as
input to the model.

For this study, GLOBIOM is enhanced to be able to deal with extreme fluctuations
in yields. To allow for these extreme events, a “short run” response to yield shocks is
implemented by limiting the possible production response to the shock. These limitations to
the production responses include the restriction of land reallocation per sector for all land use
sectors to reflect short-term adjustments and the reduction of possibilities for substitution
between land and other inputs for crops. More specifically, GLOBIOM is adjusted to allow for
a short-run response in the years 2030, 2050 and 2070, when a production shock is modelled.
Up till these time-steps, GLOBIOM is run normally with the exogenous model parameters,
and land conversion and conversion of land use is set to reflect 10-year periods. Subsequently,
we run the year 2030, 2050 and 2070 again and adjust exogenous model parameters and land
conversion and conversion of land use in such a way that they reflect a yearly response. In
the case of GLOBIOM, exogenous model parameters include population, GDP, and income
elasticities. Land conversion and conversion of land use include coefficients for maximum and
minimum expansion and reduction of crops and livestock activities and management changes.
In the year of the shock, these coefficients are set to reflect yearly adjustments. The reasoning
behind these model adjustments is that the extreme events that are implemented are selected
to happen only once with this order of magnitude, and not 10-years in a row, which is
the normal time-step of GLOBIOM. At the same time, GLOBIOM is a linear optimization
model, meaning that, without setting certain bounds, the effect of introduced shocks may
lead to corner solutions that might overestimate the true magnitude of the climate-driven
land abandonment. It is therefore of importance to parameterize the cost of land conversion
correctly.



Because the socio-economic analysis required both long-term trends of climate change
and interannual variability, we combined the climate-induced yield impact of gradual change
produced by EPIC-IIASA with the yield impact induced by weather variability produce
by the Hybrid model, and both are implemented in GLOBIOM. For the historical baseline
(1986-2015) and each 30-year time-slice for decades between 2000 and 2070 a growth rate is
computed for each crop at the half degree resolution for Brazil and the 2 degree resolution for
the rest of the world. This growth rate captures the yield changes that are due to the gradual
change in climate. Extreme yield losses are implemented around the year 2030, 2050 and
2070. For each of the 30-year time slices we compare the difference between the annual yield
and the mean yield level of that time slice. As the focus is on the extremes and inter-annual
variability, we select from every GCM-RCP-CO2 combination, and for each time slice, the
year which represents the largest negative deviation between the yield weighted by area of
soy bean of that year and the weighted average yield of that time slice.

Among the outputs that GLOBIOM has available, we considered four metrics to assess
the global market dynamics and food security: the national production of soybeans in Brazil
(Prod), the net exports (NETT), the soybean prices per ton (XPRP) and the daily calories
available per capita (CALO). With these, we compared both the impacts of the weather
shocks, but also the capacity of the socio-economic feedback loops to mitigate, propagate or
amplify the bio-physical impacts.



3 Data

For the development of the models to represent the climate-crop interaction, three datasets
were adopted: yearly values of simulated soybean yields by EPIC-ITASA (input); extreme
climate indices at a monthly resolution (input), and yearly values of historical observed
soybean yields (the dependent variable or output).

The adopted crop model is the global gridded crop model (GGCM) EPIC-ITASA [Balkovi¢
et al., 2014], based on the Environmental Policy Integrated Climate [EPIC; Williams et al.,
1995] field-scale crop model. It reproduces biophysical processes in the soil-plant-atmosphere
system and provides crop-related outputs at a resolution of 0.5° x 0.5° based on climatic-related
inputs. The simulations of EPIC-ITASA belong to the phase 3a of the Intersectoral Impact
Model Intercomparison Project (ISIMIP; see https://isimip.org for details and protocols)
and the Global Gridded Crop Model Intercomparison (GGCMI) initiative. To account for
scenario uncertainty, EPIC-IIASA is available for multiple global climate models (GCMs),
representative concentration pathways (RCPs) and different CO? fertilization scenarios. For
the training and validation of the models, we used the reanalysis version of EPIC-ITASA,
based on the GSWP3-W5E5 dataset, a combination of the GSWP3 (Global Soil Wetness
Project phase 3) dataset [Dirmeyer et al., 2006] with the W5E5 dataset [Lange, 2019], which
ranges from 1901 to 2016. For the global warming exploration, we used three different GCMs,
UKESM1-0-LL, GFDL-ESM4 and IPSL-CM6A-LR, two RCPs, 2.6 and 8.5, and two setups
for CO2 fertilization: Static CO? based on 2015 levels, and dynamic CO? levels, all of which
range from 2015 to 2100. More details of the EPIC-ITASA model’s performance can be seen
in Miiller et al. [2017].

We generated indices of climate extremes based on daily values of precipitation, maximum
and minimum temperature from the same climatic datasets used for each EPIC-IIASA
scenario considered in this work. The indices are monthly statistics and can be seen in table
2. The R package used to generate the indices is called Climpact [Alexander and Herold,
2015].

As dependent variable for the training of the statistical models, we used observed soybean
yields for the models to be calibrated on. We used data from the Brazilian Institute of
Geography and Statistics (IBGE) to build a 1 km? resolution soybean yield dataset from 1981
to 2016 for Brazil. It provides census data at the municipality level for the entire country,
but we postprocessed the data to remove municipalities that had less than 1% of soybean
harvest area.

The datasets presented incompatibilities between one another and therefore required
a step of regularisation before they could be processed together. While the EPIC-ITASA
outputs and the extreme climate indices have resolution of 0.5° x 0.5°, the spatial resolution of
the observed soybean dataset is below 0.001°. Therefore, we upscaled the spatial resolution of
the observed soybean dataset to the same as the input data, at 0.5° x 0.5°. On the other hand,
the crop model and extreme climate indices cover the entire country, including regions where
soybeans are not grown. We masked the growing regions based on the observed yield dataset,
so all three datasets covered the same amount of territory. Figure 2 shows the resulting
regions of the country considered for this study. Finally, all datasets had temporal trends.
The observed yield dataset has management and technology included implicitly; the simulated
crop model considers atmospheric CO2 concentration levels in the biomass growth calculation,



Index Description Units

FD Days when minimum temperature is below 0°C days
TNIt2 Days when minimum temperature is below 2°C days
TNIltm2 Days when minimum temperature is below -2°C days
TNItm20 Days when minimum temperature is below -20°C days
ID Days when maximum temperature is below 0°C days
SU Days when maximum temperature exceeds 25°C days
TR Days when minimum temperature exceeds 20°C days
TXx Hottest day °C
TNn Coldest night °C
TXgt50p Fraction of days with above average temperature %
TMgeb Days when average temperature is at least 5°C days
TMItH Days when average temperature is below 5°C days
TMgel0 Days when average temperature is at least 10°C days
TMIt10 Days when average temperature is below 10°C days
R20mm Days when rainfall is at least 20mm days
PRCPTOT Total wet-day rainfall mm
DTR Average range of maximum and minimum temperature °C
TNx Hottest night °C
TXn Coldest day °C
TMm Average daily temperature °C
TXm Average daily maximum temperature °C
TNm Average daily minimum temperature °C
TX10p Fraction of days with cool day time temperatures %
TX90p Fraction of days with hot day time temperatures %
TN10p Fraction of days with cold night time temperatures %
TN90p Fraction of days with warm night time temperatures %
R10mm Days when rainfall is at least 10mm days
R95p Amount of rainfall from very wet days mm
R99p Amount of rainfall from extremely wet days mm
Rx1day Maximum amount of rain that falls in one day mm
Rxbday Maximum amount of rain that falls in five consecutive days mm

Table 2: Extreme climate indices at monthly resolution, their plain language descriptions
and the corresponding units.



a process called CO2 fertilisation [Deryng et al., 2016, Toreti et al., 2020]; The extreme
climate indicators vary according to the rising global temperature levels due to climate
change. We detrended all datasets following a polynomial regression, removing influences of
technology, management, global warming and CO? concentration levels. Therefore, only the
interannual variability is present on the historical time series.
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1.50

Figure 2: Mean observed soybean yields from 1980 to 2016.

For the socio-economic analysis, we adoptes the GLOBIOM [Havlik et al., 2011, 2014]
model. It is a partial equilibrium model that covers the agricultural and forestry sectors,
including the bioenergy sector. Commodity markets and international trade are represented
at the level of up to 58 economic regions. The spatial resolution of the supply side relies on the
concept of Simulation Units (SimU), which are aggregates of 5 to 30 arcmin pixels belonging
to the same altitude, slope, and soil class, and also the same country (Skalsky et al. 2008).
For crops, grass, and forest products, Leontief production functions covering alternative
production systems are parameterized using biophysical models like EPIC [Williams et al.,
1995], G4M [Kindermann et al., 2008, Gusti, 2010], or RUMINANT [Herrero et al., 2013].
The biophysical models allow a precise calculation of agricultural GHG emissions (N20 and
CH4). For this study, Brazil was singled-out as a separate GLOBIOM region and run at the
half-degree resolution, whereas the other regions were run at a 2 degree resolution.



4 Results

In this section, we present the selection of features (Section 4.1) and the performance of
the three random forest models (Section 4.2). Then we show the projections for different
scenarios of global warming with and without shocks (Section 4.3). Finally, in Section 4.4 we
demonstrate the socio-economic impacts.

4.1 Feature selection

Following the methods section, the first step in building the random forest models is the
feature selection of the extreme climate indices. Along the soybean growing season, we
dynamically select the three months following the latest planting dates at each grid cell
(based on photoperiod) provided by the dataset of planting windows for soybeans by Abrahao
and Costa [2018]. Each extreme climate indicator is therefore divided in three subsequent
monthly values. Figure 3 shows the last planting date for each cell grid in the region studied,
used as reference for the calculation of the subsequent three months. Selecting the months of
extreme climate indices dynamically shows an increase of 0.1 R? with respect to the usual
static approach.
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Figure 3: Last planting dates in months for the region studied. Months above 12 belong to
the following year.

Using the internal feature selection module of the random forest model, the most important
features according to the feature selection methods are summarised in Table 3. According
to the feature selection, the soybean yields in the region studied are mostly dependent on
precipitation-related indices. The only temperature related indices that obtained a high
classification was diurnal temperature range.

10



Position  Feature
1 prceptot_2
prceptot_3
r10mm_2
preptot_1
r10mm_3
dtr_1
r10mm-_1
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Table 3: Most important features in the internal feature selection module of the Random
Forest model.

The use of partial dependence plots allows a examination of the interaction between each
of the input variables with the output variable. In this case, as seen in Figure 4, high values
of diurnal temperature range in the first month after the planting date are correlated with
lower yields. Precipitation values are positively correlated with soybean yields, with a special
case of less than 200 mm/month of water during the second month after planting leading
to extremely low levels of soybean yield. Absolute levels of temperature seem to be less
influential on yields, with maximum night temperatures being inversely proportional to the
yields.

4.2 Models evaluation and comparison

The three random forest models developed in this study, RF:EPIC, RF:CLIM, RF:Hybrid, are
evaluated and compared to evaluate the added value of the physical crop model information
and of the extreme climate indicators. As shown in Table 4, the three models are analysed
out of sample (no leakage of data) according to three different scores: the coefficient of
determination (R?), mean absolute error (MAE) and root-mean-square error (RMSE). The
model based only on soybean yields of EPIC-ITASA, RF:EPIC, shows significantly lower
scores than the other two models. While roughly similar, the RF:Hybrid model shows a
subtle improvement with respect to the RF:CLIM, demonstrating the highest scores in all
criteria. Therefore, the addition of extreme climate indicators to the crop model is shown to
highly increase the the overall performance of the climate-crop interaction.

Score RF:EPIC RF:CLIM RF:Hybrid

R2 0.14 0.67 0.69
MAE 0.359 0.221 0.217
RMSE 0.470 0.296 0.291

Table 4: Out of sample performance scores on the coefficient of determination (R?), mean
absolute error (MAE) and root-mean-square error (RMSE) for the three random fores models.

The simulations of each model for the entire historical period (1980-20015) is shown in
Figure 5 (not out of sample). Using the historical observed soybean series as reference, we
demonstrate the increase in performance that the addition of the extreme climate indices
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Figure 4: Partial dependence plots between individual extreme climate indices and the

observed soybean yields. Numbers 1, 2, 3 indicate the relative months after the last planting
month for each grid cell.

bring to the crop model. This is highlighted in years of extreme low yield, such as 1986, 1991,
2005 and 2012, in which the RF:Hybrid and RF:CLIM are capable of replicating the deep
falls in soybean yields seen in the observed dataset.

In addition to the overall performance of the models, we compare their behaviour under
extreme climate conditions. Based on the previous figure, two years are selected: 2005 and
2012. Figure 6 suggests that EPIC-ITASA outputs can be improved under extreme conditions
when they are fed to a random forest model calibrated on observed yields, working similarly
to a bias correction technique. Yet, the spatially explicit errors observed in the figure suggest
an even greater improvement when EPIC-ITASA is combined with extreme climate indices,
generating hybrid model.

The addition of extreme climate indices to the simulated yields of EPIC-ITASA is shown
to be beneficial for the overall performance, with all score metrics improving significantly, and
an increased interannual vairability. More specifically, for extreme years in which the original
EPIC-ITASA model underestimates the impacts, the complement of extreme climate indices
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Figure 5: Weighted time series of soybean yields in the region studied for the observed
soybean data as reference, and the simulated soybean yields for the RF model trained solely
on the EPIC-ITASA output (RF:EPIC), the RF model trained on the extreme climate indices
(RF:CLIM), and the hybrid model (RF:Hybrid).

approximates the yield losses to similar levels of the historical observed dataset. The hybrid
model shows a slight improvement with respect to the model trained on extreme climate
indicators, but both models have overall similar performances. Therefore, we consider the
creation of the hybrid model to be a success case of improved performance, with added value
for extreme conditions representation.

4.3 Future projections

For the assessment of socio-economic impacts, we combine the long-term projections of
EPIC-ITIASA yields at a decadal resolution with the interannual variability produced by the
hybrid model. For this study, the scenarios are built on three GCM models: UKESM1-0-LL,
GFDL-ESM4 and IPSL-CM6A-LR and two RCP levels: 2.6 and 8.5. These GCMs and RCPs
are selected to ensure maximum spread of possible results (Figure 7). The CO2 scenario
adopted is the static levels of 2015 CO? concentration in the atmosphere.

Long-term trends of the projections are based on the original values of EPIC-ITASA. They
indicate the decadal trends of soybean yields simulated by the crop model. Among the three
GCMs tested, the lower emission scenario indicates an average increase in the productivity of
soybeans for Brazil until the end of the century (Figure 8 left). The higher emission scenario,
however, is expected to stabilise the yields around 2030 and to slightly suffer a decrease in
the second half of the century. When separating the projections by GCM to account for
model uncertainty (Figure 8 right), the GFDL model shows the highest increase in soybean
yields for the future. IPSL shows a stabilisation in yields from 2050. UKESM is the GCM
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with lowest yields values, stabilising around 3.25 ton/ha from 2040 until 2060, to slightly
decay afterwards.
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Figure 8: Long-term trends based on EPIC-ITASA. Left: projections grouped by RCPs (2.6
and 8.5); Right: Projections grouped by GCM (IPSL, UKESM, GFDL).

With the training of the random forest models on historical settings, it is possible to
explore the interannual variability of future projections of soybean yields under different
scenarios of climate change. A scenario with higher emissions (RCP 8.5) indicates that,
across all GCMs, the mean yield outputs are expected to be lower when compared with a
lower emission scenario (RCP 2.6), as shown by Figure 9. The intensity of the shocks is also
expected to increase with the intensity of the emissions. Last, there is a temporal pattern
only seen for RCP 8.5, where shocks become more intense and frequent closer to the end of
the century (Figure 9).

The socio-economic analysis uses a combination of the long-term trends of EPIC-ITASA
with the interannual variability of the hybrid model. More specifically, we select the lowest
yields for periods of 30 years and add them to the long-term trends, effectively measuring the
impacts of shocks on global markets and food security. The yield shocks are presented in
Figure 10. As a consequence of a higher natural variability in RCP 8.5, the shocks in this
scenario are more intense than the ones in RCP 2.6, reaching up to -30% of the soybean yields
in Brazil (Figure 10 upper left). Among the GCMs, there are also differences, with TPSL
having the least extreme shocks, UKESM the most extreme shocks, and GFDL around -15%
of the yearly soybean yields (Figure 10 upper right). Finally, comparing the time blocks, there
are different dynamics for each RCP. For RCP 2.6, the magnitude of the shocks decreases
with time (Figure 10 lower left). On the other hand, for RCP 8.5, the shocks increase for the
2050 time block, but decrease for the last time block (Figure 10 lower right).
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Figure 9: Hybrid model estimated projections of soybean yields for three GCMs (IPSL,
UKESM, GFDL) and divided between the RCPs 2.6 and 8.5.

4.4 Socio-economic analysis

For a full analysis of the climate shocks on the soybean global market, we include a socio-
economic analysis. Among the socio-economic components, we consider four metrics: the
national production of soybeans in Brazil (Prod), the net exports (NETT), the soybean prices
per ton (XPRP) and the daily calories available per capita (CALO).

The total production of soybeans has shown negative impacts for all RCP scenarios and
blocks of time. The percentage changes for production in RCP 2.6 show a decrease in intensity,
as seen for the yield metric above. For the RCP 8.5, the shocks do not seem to change
in time, with percentage changes around -15%. The net exports of Brazil follow a similar
behaviour, however in RCP 8.5, a slight increase in the percentage change is observed. The
soybean prices follow a volatile behaviour, with prices increasing around 130% after shocks
in the early century, but reaching up to 300% in RCP 8.5 late century. Calories deficits are
observed for every scenario at similar levels, except for the late century, where RCP8.5 shows
a much higher drop in calories per capita compared to RCP2.6.

The socio-economic metrics evaluated here indicate a non-linearity component. While
the total national production of soybeans is highly correlated to the soybean yields, showing
similar behaviour for the same shocks, as there are no changes in area or management in
time for the shocks, other metrics show larger differences. Net exports have similar dynamics
to the production, which can be partially explained to the fact that soybeans are mostly used
for exports. The prices per ton of soybean show less similarities to the yield shocks. The
prices have a higher sensitivity to the fluctuations in yields, and amplify the effects of the
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Figure 10: Shock impacts on soybean yields for different RCPs (2.6, 8.5, upper left), GCMs
(IPSL, UKESM, GFDL, upper right) and time periods (2031, 2051, 2071, lower panels).

shock significantly. Calories, on the contrary, show similar variation with respect to the yield
shocks. The market effects augment the shocks whereas the effects on the consumption and
calories are proportional to the shock. This is probably due to the rather inelastic nature of
food demand.
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Figure 11: Socio-economic impacts of climate shocks on four different socio-economic
metrics: the national production of soybeans in Brazil (Prod, upper left), the net exports
(NETT, upper right), the soybean prices per ton (XPRP, lower left) and the daily calories
available per capta (CALO, lower right). Hashed indicates the shock corresponds to the RCP
8.5 and confidence interval (black vertical lines) represents the difference between GCMs.

5 Discussion

While useful for the estimation of long-term trends in climate change studies, process-based
crop models have shown to underperform under extreme climatic conditions [Schewe et al.,
2019, Feng et al., 2019]. We argue that the creation of a hybrid model can improve the
reproduction of the interannual variability of soybean yields. The addition of extreme climate
indices to the simulated yields of a crop model combined in a statistical model shows an
increase in overall performance and reduction of errors. The hybrid model is particularly
skilled at representing extreme low yields, a known limitation of crop models [Schewe et al.,
2019, Feng et al., 2019]. Our results are in line with previous works that have shown the
utility of combining different models into a hybrid to improve performance [Roberts et al.,
2017, Feng et al., 2019].

The hybrid model is based on the machine learning model Random Forest, as previous
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works have shown RF's are among the best machine learning models for agricultural studies
Feng et al. [2018], Wang et al. [2018]. To determine the most relevant extreme climate
indices, we use the internal feature selection of the Random Forest model. The set of selected
extreme climate indices suggest precipitation-related indices are the most relevant for soybean
production in the region analysed. The indices are relatively assigned based on the last
planting date for each grid cell, following a dynamic calendar. We note that the inclusion of
dynamic planting dates has improved the model performance with respect to static planting
dates.

Among the multiple global warming scenarios tested, we find differences between the
RCPs and GCMs tested. Early in the century, the differences are dominated by the GCMs.
The emissions scenarios become more influential on soybean yields later in the century, but
early in the century they do not seem to affect significantly. These results are in agreement
with recent findings [Miiller et al., 2021]. We claim interannual variability is also relevant
for this type of analysis. The long-term trends of soybean yields tend to increase with time
according to the projections. However, the shocks are also posed to increase with time,
especially under higher emission scenarios, and they could lead to large setbacks in soybean
production.

By explicitly comparing the long-term trends with individual shocks on a socio-economic
impact model, we are able to measure the significance of shocks in the global supply chain
of soybeans due to weather variability at the local production sites. Shocks due to weather
variations can carry non-linear consequences to different socio-economic metrics. The prices
of soybean are amplified by market dynamics, reaching up to 20 times the percentage change
of the yield shock. On the other hand, the caloric deficit per capta shows a similar variability
with respect to the yield shocks. So, following a chain of events where the production affects
the prices and then the consumption, prices react in a very elastic way (high price response),
but caloric deficit reacts in a very inelastic way because of the primary nature of the good.

This work is limited to the analysis of extreme climate indices at a monthly resolution,
and does not consider irrigation practices, sub-surface conditions, nor CO2 fertilisation, which
are relevant components for impact assessment [Schlenker and Roberts, 2009, Deryng et al.,
2016, Toreti et al., 2020]. We also limit the analysis to Brazil, which is the main producer and
exporter of soybeans. However, for a more thorough investigation into the global soybean
markets, it would be an interesting addition to have Argentina and the United States included
in tha analysis. We recommend also looking further down the supply chain into the bilateral
trade of soybeans and the effects on the market for meats.
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6 Conclusion

Soybeans are highly significant for the modern world, being crucial for multiple industries,
such as cattle, vegetable oil and human consumption. Its global consumption requires a
complex supply chain for soybean to be distributed and consumed. Yet, the majority of
its production is concentrated in a few hotspots. This imbalance means disturbances in
the producing sites could lead to impacts at a planetary scale, and a common source of
disturbances in the agriculture field is weather variability. In this work, we explore the
vulnerability of the entire supply chain of soybeans on extreme weather events at the local
production sites. The chain of events linking weather events to soybean production and to
global markets is complex and involves many steps. The framework adopted in this work
consists of combining bio-physical and socio-economic analyses. For the bio-physical part,
we generate a hybrid model, which considers process-based crop yields and extreme climate
information for a better representation of interannual variability and extreme low yields. For
the socio-economic analysis, we feed the hybrid model outputs under different climate change
scenarios into a socio-economic impact model.

The combination of the crop model with extreme climate information is shown to
significantly improve the overall performance of the model, with an increased interannual
variability representation. For extreme low yield years, the hybrid models is better at capturing
the impacts of extreme climatic conditions. We find that low yields in the region analysed are
mainly driven by low precipitation values. The global warming projections suggest weather
shocks are likely to become more frequent and intense, especially for high-emission scenarios.

The socio-economic impacts demonstrate a non-linear relationship to the bio-physical
impacts. Market-related impacts, such as soybean prices, show an exacerbation of the shocks,
possibly due to the market dynamics. Food security impacts, such as calorific deficit, on the
other hand, show less variation, which could be a consequence of its main purpose being
rather inelastic in terms of consumption.
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