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Decline of GPP and transpiration with decreasing soil moisture

Short term decline of V..« With soil moisture
and subsequent recovery

Linear relationship between logit(c; /c,) and log(D) with a slope of
—0.76 £ 0.15

Stomatal closure before substantial xylem embolism

Global convergence towards low hydraulic safety margins

Differential (trait-dependent) response of different species to soil
moisture (Isohydric — Anisohydric spectrum)



Based on Choat et al (2018)
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Proposed theory of water limited photosynthesis

Principles (building upon Prentice et al (2014)
and Wang et al (2017)):

b

. K, Ys—AY i
1. Water balance: Water supply from - ;’IVH ] P(W)dy = 1.6g,D  P(y)) = 0.5<¢50>
stem equals atmospheric demand from T Ty,
leaves
2. Photosynthetic coordination: yo G - _ bl 1 s — I'™*
cmax . |, r . Wo0labs "
Carboxylation capacity (Vmax) and ¢+ K . (4¢01abs)2 ¢+ 2I
electron transport (/;,ax) Capacity are Jmax

coordinated

3. Profit Maximization: Plants optimize
Jmax and Ay such that the net

assimilation is maximized

A — Jmax — YAYP? = max



Testing the model

Meta-analysis of published drydown experiments

e Data from 18 species spanning diverse plant functional types

* Gymnosperms 2
* Malacophyll angiosperms 3
* Schlerophyll angiosperms 9
* Shrubs 2
* Herbs 2

* Progressive soil drydown under otherwise natural conditions (in
glasshouses)

* Data:
* Triplets of Assimilation rate, stomatal conductance, predawn leaf water potential: {4,

Js, Yst.

» Leaf water potentials for some species



Drought response of two Eucalyptus species

Eucalyptus pilularis

Widespread and often
dominant, in wet
sclerophyll or grassy
coastal forest
(PlantNET)

= Native

= Native

Eucalyptus populnea

Widespread, often
dominant, in grassy
semi arid climates

Ethel Aardvark
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https://en.wikipedia.org/wiki/User:Ethel_Aardvark

Drought response of two Eucalyptus species
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Predictions vs observations for all 18 species

A  Assimilation rate, B  Stomatal conductance,
A (umol m2?s™) gs (molm2s™)
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Responses to

environmen

tal variables
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* We use the optimality framework to develop a unified model of plant
photosynthesis and hydraulics

* The model requires hydraulic traits and two parameters to predict
photosynthetic responses to the environment at multiple timescales

* The model accurately predicts responses of assimilation, ci, Vcmax,
Jmax, gs, and leaf water potential under a wide range of atmospheric

conditions



Predicting hydraulic adaptations with an
eco-evolutionary vegetation model
(Proof of concept analysis)
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Trait-height-patch structured vegetation model

Photosynthesis, growth,
response to water stress

(P-Hydro Model; Joshi et al. preprint)

Competition for light and water,

mortality and seed production

Patch structure, succession,
disturbance; Adapted communities

(Plant-FATE Model based on Falster et al. 2011, 2017)

Hyd’rl.i 7 -
" adaptations Py

(Leaf Ps0)
! Height-structured

light competition
n|

/‘\ Soil moisture stress

Days - Months

O

Years - Decades

Image Credits: Muffet, Huw Williams, Falster et al. (2017)

Centuries - Millenia



https://www.biorxiv.org/content/10.1101/2020.12.17.423132v1

Proof of Concept: Modelling the evolution of
leat hydraulic capacity

* Species defined by Leaf-1 ¢, (related to turgor loss point)

* Costs and benefits of Yz,
* Benefits: High 15y = ability to keep stomata open during drier soil conditions

* Costs: High ¥y = Added costs of leaf construction and maintenance
* Effects of Y5, in the Plant-FATE model:

« Additional term ~1Z, in leaf respiration to account for costs
* P-Hydro accounts for 1 5o-dependent stomatal responses

* Model inputs
* Soil water potential Y¢,4 set at -1.75 MPa
e T=25°C, VPD =1 kPa, PPFD = 1000 umol m-s
e Other traits: LMA =0.18 kg m?, K=1e-16 m



W< adapts to prevailing soil moisture regime

* Species with Yo =Y, i
* has greatest fitness (seed production rate) in single-species stands
* Outcompetes all others in a multispecies forest

— Single-species stands
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Summary and next steps

 Summary: We showed how a multispecies eco-evolutionary
vegetation model can be used to predict adaptations of Leaf ¢, to
prevailing moisture regimes

* Next steps
* Use adaptive dynamics to predict evolved trait mixtures
* Allow LMA and ¢, to coevolve

* Model plant mortality from xylem cavitation to predict evolution of xylem-
Y<o and hydraulic safety margins



Thank you!



