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Critical infrastructures are increasingly reliant on information and communications
technology (ICT) for more efficient operations, which, at the same time, exposes them
to cyber threats. As the frequency and severity of cyberattacks are increasing, so are the
costs of critical infrastructure security. Efficient allocation of resources is thus a crucial
issue for cybersecurity. A common practice in managing cyber threats is to conduct a
qualitative analysis of individual attack scenarios through risk matrices, prioritizing the
scenarios according to their perceived urgency and addressing them in order until all the
resources available for cybersecurity are spent. Apart from methodological caveats, this
approach may lead to suboptimal resource allocations, given that potential synergies
between different attack scenarios and among available security measures are not taken
into consideration. To overcome this shortcoming, we propose a quantitative framework
that features: (1) a more holistic picture of the cybersecurity landscape, represented as
a Bayesian network (BN) that encompasses multiple attack scenarios and thus allows
for a better appreciation of vulnerabilities; and (2) a multiobjective optimization model
built on top of the said BN that explicitly represents multiple dimensions of the potential
impacts of successful cyberattacks. Our framework adopts a broader perspective than
the standard cost–benefit analysis and allows the formulation of more nuanced secu-
rity objectives. We also propose a computationally efficient algorithm that identifies
the set of Pareto–optimal portfolios of security measures that simultaneously minimize
various types of expected cyberattack impacts, while satisfying budgetary and other
constraints. We illustrate our framework with a case study of electric power grids.
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1 INTRODUCTION

Cyber-physical systems, consisting of physical installations
monitored and controlled by networks of electronic sensors
and computers, are increasingly employed in a wide range
of industries (Lee et al., 2015). A prominent example are
smart electric power grids, which increase the efficiency and
responsiveness of power systems, enabling a cheaper and
more reliable power supply. However, developing critical
infrastructures, such as power grids, into cyber-physical sys-
tems exposes them to threats of a digital nature (Smith &
Paté-Cornell, 2018).
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In recent years a dramatic increase has been seen in
the quantity, diversity, and sophistication of cyberattacks,
leading to significant economic losses (World Economic
Forum, 2020). Cyberattacks can disrupt production pro-
cesses: Notable examples include the 2010 Stuxnet attack
on several Iranian uranium enrichment facilities (Nourian &
Madnick, 2018) and the 2014 attack on the control systems
of a German steel mill (Lee et al., 2014). Cyberattacks can
cause financial losses, as was the case with the worldwide
wave of ransomware attacks on thousands of companies in
2017 (Yaqoob et al., 2017). Attacks on critical infrastruc-
ture are particularly disruptive and costly, as shown by the
2015 attack on over 50 substations of the Ukrainian power
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grid, which caused the loss of 130 MW of load and a power
outage of several hours for 225,000 users (Whitehead et al.,
2017). Recently, a ransomware attack forced the Continental
Pipeline to shut down its operations, resulting in substantial
fuel supply disruptions across the southeastern United States
(Sanger et al., 2021).

1.1 Review of Industry Practices and
Literature

The increase in cyber threats to critical infrastructures
prompted the development of industry guidelines, such as
National Institute of Standards and Technology (2018), which
aims to improve the security of these essential cyber-physical
systems. Cyber risks are typically assessed within the frame-
work proposed by Kaplan and Garrick (1981), which char-
acterizes risks in terms of triplets of undesired events, the
likelihood of their occurrence, and their impacts. For prior-
itization and management of cyber threats, the bulk of the
industry guidelines rely on risk matrices (see e.g., Electric
Power Research Institute, 2015a). In this simple and intuitive
method, threats are given pairs of ordinal ranks (e.g., low,
medium, or high), based on expert judgment of the likeli-
hood of their occurrence and of the severity of their impacts.
The likelihood and impact rankings are then collapsed into
a single priority ranking by assigning priority rankings to
combinations of likelihood and impact rankings, for example,
threats that have the highest ranking for likelihood and sever-
ity are considered as being top priority and the most urgent
to focus on. The subjectivity of this procedure may, how-
ever, lead to incorrect risk prioritization (Cox, 2008; Duijm,
2015), and the sequential choices of mitigating actions based
on it may result in a suboptimal portfolio of countermeasures
(Allodi & Massacci, 2017). The recognition of deficiencies
in standard practices has sparked active research on methods
of cybersecurity risk assessment and management (Cherdant-
seva et al., 2016), ranging from qualitative to quantitative.

A better way to assess cyber risks is to use an analytical
framework that reflects the nature of cyberattacks as mul-
tistage events. It is thus increasingly common to use attack
trees in cybersecurity assessments ((see, e.g., Electric Power
Research Institute, 2015b). An attack tree is a concise graph-
ical representation of multiple possible ways of carrying out
an attack, understood as sequences of an attacker’s exploits
leading to a breach in a cybersecurity system. Attack trees and
related graphical models are widely used in security model-
ing (Kordy et al., 2014). They are convenient tools for ana-
lyzing system vulnerabilities (Byres et al., 2004; Ten et al.,
2010) and in planning for deployment of countermeasures.
For instance, Roy et al. (2010) discuss methods based on
minimal cut sets in attack graphs and on minimization of
expected loss; Serra et al. (2015) and Shelar and Amin (2017)
use attack graphs to develop game-theoretic approaches to
finding optimal defence strategies; while Shameli-Sendi et al.
(2018) propose a method for dynamic deployment of the
countermeasures that are least disruptive to the operations of
the system.

As the complexity of cyberattacks increases, the quanti-
tative frameworks of assessment and management of cyber
risks shift from a score-based description of likelihoods to a
probabilistic one, as the latter allows for a meaningful com-
bination of the likelihoods of atomic exploits into the like-
lihood of a successful multistage attack. Attack trees and
attack graphs prove to be good foundations for probabilis-
tic risk assessment models. Wang et al. (2008) developed a
probabilistic metric for quantifying the likelihood of a multi-
step cyberattack, using attack graphs, whose nodes represent
single-step exploits, augmented with probabilities of single-
step exploits and the conditions required for those exploits to
occur. Liu and Man (2005) replaced these probabilities with
conditional probabilities of exploits represented by nodes,
given the states of upstream nodes, thus turning an attack
graph into a Bayesian network (BN). This allowed for the
likelihood of the system compromise to be calculated as the
attack unfolds by chaining conditional probabilities of single-
step exploits along the attack path. Peng Xie et al. (2010) dis-
cussed methods of turning attack graphs into BN, and argued
that such networks can be used for real-time monitoring of
system vulnerabilities.

BNs are also a sound basis for quantitative methods of
cyber risk management, particularly in the design of efficient
portfolios of risk-mitigating measures. Poolsappasit et al.
(2012) use a Bayesian attack graph (BAG) as a model for the
vulnerability to attacks of an ICT infrastructure and add to
it a set of security countermeasures, which, when deployed,
modify the conditional probabilities of successful attacks on
nodes of the BAG. They propose a genetic algorithm to find
a set of Pareto-optimal sequences of countermeasure deploy-
ments that offer the best available balance between the cost-
effectiveness of the security measures and the reduction of
expected losses in the event of an attack.

Objective selection is a key decision for developers of
quantitative cyber risk management frameworks and a defin-
ing factor for optimal security policies. The scholarship with
regard to finding optimal responses to cyberattacks focuses
predominantly on tradeoffs between the expected losses
borne by the system’s operator in the event of cyberattack and
the costs of cybersecurity responses—see, for example, Pool-
sappasit et al. (2012) and Serra et al. (2015). Although other
objectives can also be considered, such as quality of service
(Shameli-Sendi et al., 2018), a cost–benefit analysis approach
is dominant in the literature.

1.2 Contributions and Focus of the Article

The literature on cybersecurity is abundant, yet its main focus
is on information and communicatinons technology (ICT)
security. As far as cyber-physical systems are concerned,
especially critical infrastructures such as electric power grids,
some aspects are not satisfactorily addressed. In this article,
we address the following gaps:

1. The shortcomings of existing industry guidelines rely-
ing on expert judgment and the degree of arbitrariness in
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scoring systems used for assessing and managing cyber
threats are well recognized. Yet, the development of intu-
itive and computationally efficient methods of quanti-
tative risk analysis that combine expert judgment and
statistical analysis of available data is still an open prob-
lem (Zio, 2009). BNs are considered to be a promis-
ing answer to this problem (Couce-Vieira et al., 2017).
Building an adequate graphical representation of the vul-
nerabilities of a cyber-physical system that defines the
structure of the BN may be difficult, however. Elicita-
tion of the probabilities of atomic exploits is another
difficulty that may limit the practical use of BNs in
cybersecurity assessments. The possibilities of using the
existing results of standard analyses, such as descrip-
tions of cyberattack scenarios and scores of their like-
lihoods and impacts, as a basis for graphical proba-
bilistic models are, in our opinion, both promising and
underexplored.

2. We observe that in the literature, scenarios of cyberat-
tacks tend to be analyzed separately, as if they were inde-
pendent. In reality, however, an ongoing attack of one
type may increase the chances of success of another kind
of attack. In other words, attack trees representing dif-
ferent attack scenarios may share nodes. Such synergies
between attack scenarios have nontrivial consequences for
the overall assessment of the state of the system’s secu-
rity. Moreover, countermeasures deployed to mitigate one
cyber threat may reinforce or interfere with the effects
of measures countering some other threat. Therefore, a
framework for cybersecurity assessment and management
should account for such synergies and propose an optimal
portfolio of countermeasures.

3. The majority of existing cyber risk management methods
tacitly assume the perspective of the operator of a sys-
tem and seek to minimize her potential financial losses
in the event of a successful attack, while at the same time
reducing the costs of maintaining the cybersecurity of the
system. However, such a narrow perspective is insuffi-
cient in the context of cyber threats to critically impor-
tant cyber-physical systems because a successful attack
may have multiple kinds of impacts on a variety of enti-
ties other than the system’s operator. For instance, the
impacts of a successful attack on a power grid may inflict
financial losses on the utility company, jeopardize the
safety of its workforce and installations, or even damage
the economy or public and environmental safety (Elec-
tric Power Research Institute, 2015a). In our view, the
impacts of such serious cyberattacks should not be sub-
jected to cost–benefit analysis or otherwise aggregated,
for example, measured as a sum of partial impact scores
for different types of impacts, as proposed in Electric
Power Research Institute (2015a). Instead, distinct impact
dimensions should be treated explicitly. The management
of cyber threats to critical infrastructure should be seen as
a multiobjective optimization problem aiming at simulta-
neous minimization of adverse impacts in each of these
dimensions.

To address these three gaps, we propose a framework for
quantitative cyber risk assessment and management that fea-
tures the following:

∙ a BN that can be composed of the attack trees of individual
cyber-threat scenarios, thus allowing a more holistic cyber-
security landscape to be mapped of a system that includes
possible synergies among the threats it faces;

∙ an additional layer of leaf nodes that explicitly represent
the distinct dimensions of impacts of cyber threats;

∙ an additional layer of root nodes that represent decisions
about the deployment of individual cybersecurity mea-
sures;

∙ a computationally efficient explicit enumeration algorithm
that finds the set of all Pareto-optimal portfolios of security
measures. The algorithm solves a multiobjective optimiza-
tion problem, namely, the simultaneous minimization of
expected impacts in all considered dimensions. This algo-
rithm allows for budget and technical constraints (such as
incompatibilities among different measures). It also allows
for probabilistic constraints that limit occurrence proba-
bilities for high-impact tail events, which, in our opinion,
satisfactorily addresses the well-recognized controversy of
focusing solely on expected values as the objectives in risk
management (Kaplan & Garrick, 1981).

The framework proposed in this article is pertinent to any
cyber-physical system for which a Bayesian graphical rep-
resentation of its vulnerabilities to cyberattacks can be built.
Yet, asking for a graphical model to be available that reflects
elements and operations of the system of interest, together
with estimates of the probabilities of successful attack for all
its nodes, is a tall order. Therefore, we begin with a discus-
sion on how a BN representing the cybersecurity landscape
of the system could be built with the help of existing security
assessments that follow standard industry guidelines. Exist-
ing reports on the cybersecurity of particular cyber-physical
systems are confidential and systems operators are reluctant
to share them with the research community. One of the few
exceptions to this general trend are the publicly available
assessments of cybersecurity of the U.S. electric power
grids, published by the Electric Power Research Institute
(EPRI) in the form of National Electric Sector Cybersecurity
Organisation Resource (NESCOR) reports. The availability
of these reports and the critical importance of electric power
grids make analysis of the security of these large-scale cyber-
physical systems a convenient and highly relevant illustrative
case example, to which we will be referring throughout
the article.

1.3 Structure of the Article

In Section 2, we briefly introduce the reader to the NESCOR
framework for assessing cyber threats to electric power grids,
which is based on attack scenario analysis employing detailed
attack trees. We observe that individual attack scenarios may
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not be independent. To illustrate this, we demonstrate that
attack trees representing different scenarios of attacks on
the advanced metering infrastructure (AMI) of a power grid
share nodes, which indicates synergies among these scenar-
ios. To capitalize on this observation, we demonstrate how
these attack trees can be merged into a larger integrated attack
graph that represents the overall exposure of the system to
cyberattacks better than a set of individual attack trees. In
Section 3, we discuss how the integrated attack graph can
be turned into a BN, which is the cornerstone of the quan-
titative cyber risk analysis and management framework pro-
posed in this article. We begin with the mathematical def-
inition of the BN and a short discussion of its properties.
Next, we address the practical question of eliciting condi-
tional probability tables (CPTs) for the BN-based model that
represents cyber threats to the system of interest. In Sec-
tion 4, we formulate the multiobjective optimization problem
of finding Pareto-optimal portfolios of mitigation measures
and discuss the implicit enumeration algorithm used to solve
it. We demonstrate this method using the case problem of
improving the cybersecurity of AMI. In addition, we propose
the core index as a useful tool for deciding on which of the
Pareto-optimal portfolio of measures to implement. Finally,
in Section 5 we discuss the strengths, weaknesses, and appli-
cations of the proposed method, as well as its possible exten-
sions, and present our conclusions in Section 6.

2 BUILDING A GRAPHICAL
REPRESENTATION OF CYBERSECURITY
LANDSCAPES FROM INDIVIDUAL
ATTACK TREES

Attack trees and similar concepts are popular tools in the
cybersecurity practice and literature. In this section, we
demonstrate how individual attack trees can be merged into
a larger attack graph that gives a broader perspective of vari-
ous, potentially synergistic cyber threats. As a case example
we use attack trees representing scenarios of cyberattacks on
the AMI of a power grid, which were analyzed in NESCOR
reports on the cybersecurity of electric power grids.

2.1 Overview of the NESCOR Practice

The NESCOR guidelines developed by Electric Power
Research Institute (2015a) describe over 120 cybersecurity
failure scenarios, understood as potential but realistic events
in which the failure to maintain confidentiality, integrity,
and/or availability of the system cyber assets creates a neg-
ative impact on the generation, transmission, and/or delivery
of power.

The NESCOR analysis (Electric Power Research Institute,
2015a) recognizes that the impacts of cybersecurity failures
on electric power grids are of a multifaceted nature and may
afflict a variety of entities. Thus, 15 impact criteria are pro-

posed, which can be understood as distinct risk dimensions.
table 3 lists these criteria, together with a severity scoring
system for each of them. The overall impact score, however,
is calculated as a sum of these partial impact scores, which
reflects neither the multidimensionality of impacts, nor the
potential tradeoffs between them.

The subsequent NESCOR report (Electric Power Research
Institute, 2015b) provides more detailed descriptions of
selected cybersecurity failure scenarios, as well as their
graphical representations in the form of attack trees, exam-
ples of which (further discussed in the next subsection) are
displayed in Figs. 1(a) and (b). Each attack tree represents
chains of conditions (marked as hexagonal nodes) or their
sequences (common subtrees, marked as hexagons with
thick borders), the logical combinations of which (solid and
dashed lines representing AND and OR operators, respec-
tively) lead to a failure (rectangular node) and subsequent
system responses and impacts (oval node).

A graphical representation of a cybersecurity failure sce-
nario provides insights into its mechanisms and allows for
better appraisal of the likelihood of its occurrence, which
NESCOR guidelines (Electric Power Research Institute,
2015a) propose to assess according to five criteria related to
the difficulty of creating and exploiting conditions leading to
a failure. The corresponding partial likelihood scores are cal-
culated according to the scoring systems presented in table 4
and then the overall likelihood score is calculated as a sum of
the partial scores. Such an overall likelihood does not follow
the arithmetic of probabilities, however. As a consequence,
likelihoods of distinct events cannot be meaningfully com-
bined and thus the dependencies or correlations between dif-
ferent failure scenarios cannot be quantified.

Nevertheless, we observe that some of the NESCOR
attack trees share nodes or common subtrees, which indicates
synergies between the failure scenarios they represent. For
instance, the attack trees presented in Figs. 1(a) and (b) share
the common subtree Threat agent obtains credentials for the
meter disconnect function, which means that if this condition
is satisfied for one of the two scenarios, the other failure sce-
nario is automatically more likely to materialize.

As already explained, the NESCOR framework for the
assessment and management of cyber risks does not allow
full advantage to be taken of this observation. Elements of
this framework, however, can be used to build a more holistic
picture of potentially interlinked cyber risks. First, by tak-
ing a union of attack trees (i.e., merging them according to
the shared nodes), we can better appraise the causal relation-
ships between the failure scenarios represented by these trees.
Second, adding a layer of leaf nodes representing different
impact dimensions allows us to gain a better understanding of
the consequences of synergistic failure scenarios, as the real-
ization of one scenario not only has immediate impacts but
also increases the likelihood of other failures with potential
impacts down the line. Finally, for each attack tree presented
in Electric Power Research Institute (2015b), a list of mitiga-
tion measures that reduce the likelihood of the occurrence of
specific conditions (nodes of the tree) is usefully supplied. We
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F I G U R E 1 Attack graphs for (a) invalid disconnect messages to meters impact customers and utility (AMI.9) and (b) reverse engineering of AMI
equipment allows unauthorized mass control (AMI.27)

Source: Electric Power Research Institute (2015b).
Source: Electric Power Research Institute (2015b).

can thus add a set of nodes representing mitigation measures
to our expanded attack graph. This gives us a better apprecia-
tion of how individual measures help in mitigating synergistic
failures and allows us to select efficient portfolios of mitiga-
tion measures.

2.2 Example Attack Graph for Security of
AMI Infrastructure

For an illustrative case example, we use information from
NESCOR studies (Electric Power Research Institute, 2015a,
2015b) to build an attack graph representing cyber threats
to the AMI of electric power grids. The AMI includes a
large number of smart power meters, which allow real-time
monitoring of customers’ power consumption. The AMI also
helps to manage the power system, for example, through
demand–response actions. However, the wide dispersion and
lack of physical protection of AMI devices raise many secu-
rity concerns, as they allow for two-way communication with
traditionally self-contained and centralized power supply
systems and thus open up the possibility of disruption to their
operations.

Electric Power Research Institute (2015b) provides a
detailed description of six AMI-related cybersecurity sce-
narios. To simplify our example, we focus on two of them:
invalid disconnect messages to meters impact customers and
utility (AMI.9) and reverse engineering of AMI equipment
allows unauthorised mass control (AMI.27). The attack
trees for these scenarios are depicted in Figs. 1(a) and (b),
respectively. To build an integrated attack graph for these two
scenarios, we merge their attack trees and the six common
subtrees they contain: threat agent obtains credentials for sys-
tem or function; threat agent uses social engineering; threat

agent gains access to network; threat agent exfiltrates data;
authorized employee brings malware into system or network;
and threat agent exploits firewall. The resulting attack graph
(represented as an influence diagram) is displayed in Fig. 2.
To distinguish it visually from traditional attack trees, we
have changed the shapes of its nodes. Oval nodes represent
the events of the scenarios being considered, 1 while directed
arcs indicate causal dependency between them. A layer of
seven diamond-shaped nodes at the bottom of the graph rep-
resents the relevant impact dimensions (criteria) for the sce-
narios in question. The rectangular nodes represent 22 miti-
gation actions, identified in Electric Power Research Institute
(2015b) and listed in tables 5– 10, that could be taken to
reduce risks related to the scenarios being studied. The
arrows pointing from each of these decision nodes indicate
which events in the considered scenarios are rendered less
likely by the deployment of the corresponding mitigation
measures. Fig. 2 shows synergies between the two failure
scenarios under consideration as shared uncertainty nodes
(e.g., Credentials for meter disconnect function) and indi-
cates that mitigation measures can be deployed strategically
to take advantage of these synergies.

1 For our scenarios, the set of oval nodes is a union of nodes of AMI.9 and AMI.27
attack trees and their common subtrees. They include both conditions and impacts,
though with shortened names. Note that the event Threat agent obtains credentials for
the meter disconnect function is shared between both AMI.9 and AMI.27 scenarios and
is thus represented by a single node named Credentials for meter disconnect function.
In addition, the events Threat agent has headend credentials and initiates disconnect(s)
at headend and Threat agent has business system credentials and initiates disconnect(s)
at business system in Fig. 1(a) are not considered in the integrated attack graph because
it is sufficient for the threat agent to gain access to the network hosting the meter discon-
nect function and obtain the credentials necessary to cause possible voltage/frequency
fluctuations with disconnected customers.
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F I G U R E 2 Attack graph (influence diagram) encompassing attack trees (and their common subtrees) for scenarios of cyberattack on the advanced
metering infrastructure (AMI) of an electric power system: invalid disconnect messages to meters impact customers and utility (AMI.9) and reverse
engineering of AMI equipment allows unauthorized mass control (AMI.27). The oval nodes represent individual exploits of the attacker, while rectangular
nodes indicate mitigation measures that can reduce the success probabilities of exploits. The relevant impact dimensions are represented by hexagonal nodes

3 A BN MODEL FOR ANALYSIS AND
MANAGEMENT OF CYBER RISKS

In the previous section we demonstrated how attack trees,
commonly used in the standard framework of cyber risk
analysis, can be combined into an attack graph, like the one
in Fig. 2, to help uncover potential synergies between attack
scenarios. The standard framework does not offer ways of
quantitatively describing these synergies, however, since the
likelihood scores of considered scenarios cannot be mean-
ingfully combined (as explained in Section 2.1). Therefore,
to allow for quantitative risk analysis that makes use of the
attack graph we need to turn it into a graphical probabilistic
model of BN.

3.1 Definition of the BN

A BN consists of (1) a set of nodes arranged into a directed
acyclic graph (DAG), whose edges represent causal links
between the nodes; and (2) a probability distribution defined

over this set of nodes. BNs considered in this work have the
following three types of nodes:

BNs considered in this work have the following three types
of nodes:

∙ Uncertainty nodes (drawn as circles), which represent
stage events of attack scenarios and correspond to respec-
tive condition nodes in attack trees. We label them by inte-
gers from 1 to the number of uncertainty nodes N. To each
i ∈ {1, … ,N} a discrete random variable Xi is assigned,
which takes values from a finite set 𝕊i of possible states
of the node i, including one representing no occurrence.
The distribution of Xi is dependent on the values of its par-
ent nodes pa(Xi), that is, nodes with an edge pointing to Xi
and represented by a CPT.

∙ Decision nodes (drawn as rectangles), which represent
decisions on the deployment of available mitigation mea-
sures a1, … , aM . For each j ∈ {1, … ,M} the value zj of j-th
decision node is either 1 for deployment of aj or 0 for no
deployment. zj is always known and is a parameter of the
probability distribution over each of the child nodes of aj,
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F I G U R E 3 Example of a Bayesian network with decision nodes with
states z1 and z2 representing states of deployment of measures a1 and a2,
uncertainty nodes j, k, l whose states are represented by discrete random
variables Xj,Xk,Xl and value node V1

that is, nodes being pointed to by an edge starting from aj.
The binary vector z = (z1, … , zM) represents the states of
all decision nodes in the network and is conveniently inter-
preted as a portfolio of deployed mitigation measures.

∙ Value nodes (drawn as hexagons), which represent the
impacts of failure scenarios in the K dimensions con-
sidered (corresponding to impact criteria). For each k ∈
{1, … ,K}, the state of the k-th value node Vk = vk(pa(Vk)),
where vkis a real-valued deterministic function of states
of the parent nodes pa(Vk) of Vk and represents the k-th
impact criterion (with value 0 for no impact).

In this article, we are concerned with designing a portfolio
of static mitigation measures that reduce the likelihood of
success of potential cyberattacks (not in dynamic response
to ongoing attacks). BNs appropriate for this type of prob-
lem have the following structure: (1) All decision nodes are
root nodes (i.e., ones that have no parents) and thus do not
depend on any uncertainty nodes; (2) Uncertainty nodes are
arranged in several layers, some being root nodes, some hav-
ing multiple parents; (3) All leaf nodes (i.e., ones having no
child nodes) are value nodes, and no value node can have a
child node. An example network of this structure is displayed
in Fig. 3. BNs of this type are also called influence diagrams
(Jensen, 2001).

As the states of decision nodes are known a priori and the
states of value nodes are deterministic functions of the states
of their parent uncertainty nodes, the probability distribution
over the whole DAG is determined by the probability distri-
bution over the set of its uncertainty nodes. More precisely,
given the portfolio of measures z, the joint probability dis-
tribution of (X1, … ,XN) is composed of their corresponding
CPTs according to the chain rule:

P(X1, … ,XN |z) =
N∏

i=1

P(Xi|Xi, z),

where Xi = pa(Xi) ∩ (X1, … ,XN) is the set of all uncertainty
nodes that are parents of Xi and P(Xi|Xi, z) is given by the
CPT of Xi.

Let Δi be the set of all possible states of Xi, that is, Δi =⨂
j:Xj∈Xi

𝕊j, where
⨂

denotes the Cartesian product. Then,

for any state s ∈ 𝕊i

P(Xi = s|z) =
∑
𝛿∈Δi

P(Xi = s|Xi = 𝛿, z)P(Xi = 𝛿|z). (1)

By the d-separation property of BNs (Jensen, 2001), the joint
probability P(Xi = 𝛿|z) can be factorized as

P(Xi = 𝛿|z) =
|𝛿|∏
j=1

P(X(j)
i = 𝛿(j)|z), (2)

where |𝛿| is the number of elements of 𝛿, while X(j)
i and 𝛿(j)

stand for j-th elements of Xi and 𝛿, respectively. Thus, with
use of (1) and (2) we can calculate P(Xi = s|z) from CPTs of
the nodes upstream of Xi.

Similarly, we can calculate the probability distribution at
impact node Vk. Let Xk = pa(Vk) be the vector of parent
uncertainty nodes for Vk and let ΔK =

⨂
j:Xj∈XK

𝕊j be the set

of all possible states of Xk. Recall that Vk = vk(Xk), where vk
is a deterministic function. Then for any 𝛿 ∈ Δk

P(Vk = v|Xk = 𝛿, z) = 𝟙(vk(𝛿) = v),

where 𝟙(A) is an indicator function taking value 1 if the
expression A is true and 0 otherwise. Plugging this into (1)
we get the following distribution:

P(Vk = v|z) =
∑
𝛿∈ΔK

𝟙(vk(𝛿) = v)P(Xk = 𝛿|z). (3)

3.2 Developing Attack Graphs Into BNs

A BN may be a potent tool for monitoring and managing
the cyber risks of a system but building one that appropri-
ately represents the security challenges of the system often
proves not be an easy task. First, a DAG representing sys-
tem vulnerabilities must be specified. Methods of automated
generation of attack trees, like the one developed by John-
son et al. (2017) for ICT systems, may make this process
more manageable, but it usually requires substantial amounts
of work and expert knowledge. In the context of the cyber-
security of electric grids, graphical representation of system
vulnerabilities like the exemplary DAG in Fig. 2 can read-
ily be built from the NESCOR attack trees (Electric Power
Research Institute, 2015b), as discussed in Section 2.2. Gen-
erally, building an appropriate DAG underlaying the BN
model, although tedious, is technically feasible, and in this
section we assume that such DAG is given.

To turn a DAG into a BN, one needs to specify CPTs
for its uncertainty nodes and impact functions for its value
nodes. Probability distributions for nodes representing ini-
tial exploits opening attacks (i.e., uncertainty nodes Xi with
Xi = ∅) can be estimated based on data (e.g., system logs),
or, in the absence of reliable data, based on more subjective
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TA B L E 1 Conditional Probability Table Based on Binary States

Threat Agent Performs

Threat Agent Reverse Threat Agent Threat Agent Gains Mass Disconnects

Engineers AMI Equipment Obtains Credentials Control of Devices Occurrence No Occurrence

Occurrence Occurrence Occurrence 1 0

No occurrence 0 1

No occurrence Occurrence 1 0

No occurrence 0 1

No occurrence Occurrence Occurrence 1 0

No occurrence 0 1

No occurrence Occurrence 0 1

No occurrence 0 1

expert knowledge. The effects of the deployment of mitiga-
tion measures on the probability distributions of the uncer-
tainty nodes that represent the vulnerabilities addressed by
these measures can be estimated in a similar way. Specifying
CPTs for downstream uncertainty nodes is more challenging,
as it involves determining the values of multiple parameters
of distribution for all combinations of states of parent nodes.
The number of these parameters may run into the thousands
for large networks, making it unfeasible to elicit their values
from experts, while lack of reliable data often hinders their
estimation. What could be reliably specified by the experts,
however, are the logical relationships between the conditions
that open the ways for further exploits. Such logical struc-
tures, like the combinations of AND and OR operators repre-
sented by the NESCOR attack trees, make the derivation of
CPTs a more straightforward task.

Continuing the example from Section 2.2, Table 1 displays
a CPT representing logical combinations of upstream condi-
tions leading to the event Threat agent performs mass dis-
connects (Fig. 1(b)). Other examples of this approach can
be found in the literature. For instance, in a similar fash-
ion, Bobbio et al. (2001) represent combinations of AND and
OR operators as CPTs in order to develop fault trees into
BNs. They also introduce noisy-ANDs and noisy-ORs (and
their CPT representations), which are randomized versions of
their classical counterparts. Khakzad et al. (2013) adapt this
approach to the computation of CPTs for mapping bow-tie
failure models into BNs, while Peng Xie et al. (2010) apply
it in the context of modeling cybersecurity. Noisy-ANDs and
noisy-ORs are particularly useful for modeling the escalation
of cyberattacks whose consecutive stages are not automati-
cally achieved or may fail even if the necessary conditions
for them have occurred.

As an alternative, Frigault et al. (2008), Peng Xie et al.
(2010), Poolsappasit et al. (2012), and Zhang et al. (2015)
propose methods of deriving the success probabilities of
exploits from the Common Vulnerability Scoring System
(CVSS), used widely in security assessments of cyber-
physical systems. Exploit probabilities derived in this way
can be employed in our framework. Estimates of exploit prob-

abilities based on CVSS may, however, be unreliable due to
the arbitrariness and ambiguity of the scoring system (Allodi
& Massacci, 2014; Spring et al., 2018). The use of CVSS
assessments should therefore be considered only if there is
no other practical basis for estimating the success probabili-
ties of exploits.

In the literature on BN models of system security and
reliability, the focus is mainly on the networks with binary
uncertainty nodes, that is, ones that only have states of occur-
rence or no occurrence. For a more realistic representation
of the possible courses of an attack, it may be advantageous
to allow for uncertainty nodes having more than two states.
For instance, conditions Threat agent reverse engineers AMI
equipment and Threat agent obtains credentials considered
in Table 1 are binary in nature, but Threat agent gains control
of devices may have multiple states representing the scale
of the attacker’s exploit. The exemplary CPT in Table 2 is
a modification of the CPT in Table 1 where we allow the
threat agent to gain control of no devices, a few, a moderate
number, or a high number of devices, resulting in different
scales of disconnects, ranging from zero to over 100 MW loss
of load. Importantly, the values in Table 2 are not meant to be
representative of any particular electric system and were cho-
sen for demonstration purposes. Combinations of nonbinary
conditions can also be represented as CPTs, for instance,
using the noisy-MAX operator proposed in Bobbio et al.
(2001).

The final component of a BN model is the set of func-
tions vk, k = 1, …K representing the severity of impacts of
a cybersecurity failure in each of the K impact dimensions.
Existing impact-scoring systems, like the one developed by
NESCOR (see Table S1), are a convenient basis for specify-
ing these functions. For instance, continuing with our exam-
ple from Section 2.2, the uncertainty node representing the
event Threat agent performs mass disconnects may have the
states no occurrence, (0, 50] MW, (50, 100] MW, or > 100
MW, which can be mapped to the Restoration costs score of
0, 1, 3, or 9, respectively (cf. Fig. 4).

As discussed above, a broad range of methods of develop-
ing attack graphs into BNs is available in the literature, which
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TA B L E 2 Conditional Probability Table Based on Multiple States

Threat Agent Threat Agent Threat Agent

Reverse Engineers Obtains Gains Control Threat Agent Performs Mass Disconnects [MW]

AMI Equipment Credentials of Devices No Occurrence (0 50] (50 100] > 100

Occurrence Occurrence None 1 0 0 0

Few 0.6 0.4 0 0

Moderate 0.4 0.2 0.4 0

High 0.3 0.1 0.2 0.4

No occurrence None 1 0 0 0

Few 0.6 0.4 0 0

Moderate 0.4 0.2 0.4 0

High 0.3 0.1 0.2 0.4

No occurrence Occurrence None 1 0 0 0

Few 0.6 0.4 0 0

Moderate 0.4 0.2 0.4 0

High 0.3 0.1 0.2 0.4

No occurrence None 1 0 0 0

Few 1 0 0 0

Moderate 1 0 0 0

High 1 0 0 0

F I G U R E 4 Illustrative impact scores for “Restoration costs”

makes it feasible to build a BN representation of the cyber-
security landscape for the given cyber-physical system. This,
however, requires considerable effort and an intimate knowl-
edge of the system of interest, which is usually available
only to its operators. We will return to the practical aspects
of real-world applications of the proposed framework in the
“Discussion” section. For now, we assume that a BN model
of the system’s vulnerabilities is available, and, in the next
section, we turn our attention to the problem of strategically
deploying a portfolio of measures that efficiently mitigate
cyber threats to the system of interest.

4 THE MULTIOBJECTIVE
OPTIMIZATION MODEL FOR SELECTING
PORTFOLIOS OF SECURITY MEASURES

Our aim is to select efficient portfolios of security measures
that, when deployed, minimize the expected impacts of cyber-
security failures and, at the same time, keep the probability of
catastrophic impacts within limits deemed acceptable. For a
portfolio z, the expected impact in the k-th impact category
can be computed with the use of formulas (2) and (3) as

E(Vk)(z) =
∑
𝛿∈Δk

vk(𝛿)P(Xk = 𝛿|z) =
∑
𝛿∈Δk

vk(𝛿)
|𝛿|∏
j=1

P(X(j)
k = 𝛿(j)|z),

where P(X(j)
k = 𝛿(j)|z) can be computed from CPTs using for-

mulas (1) and (2).

4.1 Including Probabilistic, Technical, and
Budget Constraints

Focusing on the minimization of expected impacts in risk
management has some well-recognized pitfalls (Kaplan &
Garrick, 1981), as it may lead to the selection of measures
that reduce the more likely but less severe impacts, while not
protecting against rare but potentially catastrophic ones. To
counter this unwanted effect, probabilistic constraints may be
imposed by stipulating that the deployment of measures must
keep the occurrence likelihood of certain critical events below
a selected threshold. Continuing our AMI example from
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F I G U R E 5 Illustrative probability distribution for mass disconnects

Section 2.2, we may demand, for instance, that disconnects
of 50 MW or greater can occur with a probability of at most
0.5% (see Fig. 5).

More formally, for each uncertainty node Xi we may spec-
ify a set of critical states 𝕊̃i ⊂ 𝕊i and a threshold probabil-
ity 𝛼i and demand that portfolio z satisfies the probabilistic
constraint

∑
s∈𝕊̃i

P(Xi = s|z) ≤ 𝛼i. (4)

Importantly, probabilistic constraints can also cap the
severity of impacts at levels desired by system operators, with
a probability deemed by them to be sufficiently high. Indeed,
as the states of each value node representing certain impact
dimensions are determined by the states of its parent uncer-
tainty nodes, it is straightforward to select probabilistic con-
straints for parent nodes that, jointly, keep the probability of
catastrophic impacts below the desired level.

There may also be technical constraints limiting the set
of feasible portfolios of mitigation measures. For example,
measures ai and aj may be incompatible and could not be
deployed together. Portfolios not containing both of these
measures at the same time must satisfy the inequality

zi + zj ≤ 1.

Similarly, measures ai and aj may be effective only if
deployed together. Such a constraint is formally represented
as

zi − zj = 0.

Last but not least, in most applications, the budget B avail-
able for maintenance of the system’s security is limited, and
the cost of feasible portfolios of measures must not exceed it.

The budget constraint may be expressed as

M∑
j=1

zjcj ≤ B,

where c1, … , cM are the costs of deployment of the available
mitigation measures a1, … , aM .

Notice that technical and budget constraints are linear in
z, which makes them very tractable. On the other hand,
probabilistic constraints (4) are, in general, nonlinear, which
may add significant difficulty to the multiobjective optimiza-
tion problem. Observe, however, that if at most one measure
from the set 𝔸i of all measures applicable to the node Xi is
deployed, then we can write

P(Xi = s|z) =
∑

j|aj∈𝔸i

zjP(Xi = s|z)

as zj = 1 for at most one j such that aj ∈ 𝔸i and all the rest is
zero. Hence, the probabilistic constraint (4) becomes linear in
z if𝔸i contains only mutually exclusive measures—which we
will assume without any loss of generality, as a combination
of measures can be regarded as a new measure.

4.2 Optimization Algorithm for Identifying
Pareto Nondominated Portfolios

The constraints shaping the set of feasible portfolios ZF usu-
ally do not allow for maximal possible reductions of all types
of impacts at the same time, and compromises have to be
made. It is therefore rational to focus only on the most effi-
cient attainable tradeoffs, represented by the Pareto nondom-
inated portfolios. Formally, a portfolio z dominates a portfo-
lio z′, denoted as z ⪰ z′, if and only if E(Vk)(z) ≤ E(Vk)(z′)
for all criteria k = 1, … ,K and E(Vk0

)(z) < E(Vk0
)(z′) for at

least one criterion k0 ∈ 1, … ,K. Portfolio z is then a rational
choice over z′ since it is better in reducing at least one type
of impact while performing at least as well as z′, according
to all the other impact criteria. A portfolio z∗ ∈ ZF is called
Pareto nondominated, or Pareto-optimal, if there is no other
z ∈ ZF such that z ⪰ z∗. The set ZND of all Pareto-optimal
portfolios is called a Pareto front.

To summarize, our problem of designing portfolios of mea-
sures that minimize the expected risks from cyberattacks can
be formulated as the following multiobjective optimization
problem. We aim to find portfolios belonging to the Pareto
front ZND given: (1) the BN representing the cybersecurity
vulnerabilities of the system and options of measures to mit-
igate them; (2) the potential impacts of cyberattacks; (3) the
costs of available security measures; and (4) the budget, tech-
nical, and probabilistic constraints shaping the set ZF of fea-
sible portfolios of measures.

The Pareto front for this problem can be computed by
adapting the explicit enumeration algorithm, developed by
(Liesiö et al., 2008) and extended by Mancuso et al. (2017) to
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design portfolios of safety measures for nuclear power plants.
Given a list of M possible mitigation measures, the algorithm
executes an efficient search over 2M possible portfolios. It
starts with an empty portfolio and adds consecutive measures
from the list, updating the list of portfolios that are nondom-
inated by any of the ones already explored. If the current
portfolio becomes unfeasible after a new measure is added,
the whole branch of portfolios containing the current one is
excluded from the search space, and the measure is removed.
Then the search continues as attempts are made to add the
next measure from the list.2

During the search, the explicit enumeration algorithm
excludes large parts of the search space that will certainly
not contain feasible solutions. This makes it computationally
efficient. A standard laptop can perform searches over a space
of portfolios containing up to 40 measures, which is a realis-
tic problem size for many applications. For larger problems,
a viable alternative to computing the whole Pareto front with
explicit enumeration is to approximate it using genetic algo-
rithms at a lower computational time (Coello et al., 2007).

4.3 Core Index as a Guide for Selection of
Pareto-Optimal Portfolios of Mitigation
Measures

The Pareto front ZND usually consists of a large number of
nondominated portfolios, which makes it difficult to decide
which one to select. A decision support tool, like the one
in Couce-Vieira et al. (2017), can aid in the selection of the
most desirable portfolio. Yet, it still requires preferences to
be elicited from system operators. This task can be made eas-
ier by reducing the number of options to be considered. A
useful guide for such a reduction is the core index CI(a) of a
measure a (Liesiö et al., 2008), defined as

CI(a) =
|{z∗ ∈ ZND|z∗a = 1}|

|ZND| .

A value of CI(a) close to 1 means that the measure a is
included in the majority of nondominated portfolios and can
be regarded as belonging to the core of measures shared by
the bulk of portfolios on the Pareto front. One may thus focus
on nondominated portfolios containing measures with high
CI(a) values and, by so doing, reduce the problem of select-
ing the most desirable portfolio to a deliberation over the
inclusion of measures with lower CI. Moreover, when con-
straints shaping the Pareto front ZND, like the available bud-
get, change, portfolios may be preferred that include the mea-
sures for which CI is stable.

2 The algorithm was implemented in the C++ programming language and linked to
GeNIe Modeler, a development environment for reasoning in graphical probabilistic
models, developed by BayesFusion LCC and available at http://www.bayesfusion.com/.

4.4 Example of Optimizing a Portfolio of
Measures That Reduces Cyber Risks to the
AMI

We conclude this section with a demonstration of the poten-
tial of the Bayesian framework introduced above by apply-
ing it to the problem of improving the cybersecurity AMI
system, used as an illustration throughout this article (see
Section 2.2). The graphical representation of this problem is
the DAG displayed in Fig. 2. The probability distributions
over the uncertainty nodes of this DAG have been set accord-
ingly in line with the information provided in NESCOR docu-
ments (Electric Power Research Institute, 2015a, 2015b) and
using the NESCOR likelihood scoring system (see Table S2)
as a guide. NESCOR documents, however, do not provide
sufficient information to fully specify CPTs for the uncer-
tainty nodes. We have therefore assumed illustrative values
that yield a consistent probability distribution over the DAG
but are not representative of any existing AMI system. Sim-
ilarly, we use NESCOR impact scores shown in Table S1 to
define the impact functions determining the states of value
nodes (see the illustrative example of Restoration costs scores
at the end of Section 3.2). Finally, decision nodes represent
the list of 22 mitigation measures proposed in NESCOR stud-
ies, which are shown in Tables S3–S8, together with assumed
illustrative costs for their deployment.

The search space for this problem contains 222 possible
combinations of measures, but the set of feasible portfolios is
constrained by our requirement that

P(Threat agent performs mass disconnects > 50MW) ≤ 0.005.

Under this probabilistic constraint, we run the explicit enu-
meration algorithm to find sets of nondominated portfo-
lios ZND(B) for different budget levels B. This allows us
to identify a sufficient level of investment yielding satis-
factory improvements in the cybersecurity of our exem-
plary AMI system. Let EV∗

k (B) be the lowest expected
impact in the k-th impact dimension that could be achieved
by a Pareto-optimal portfolio affordable under budget B,
that is, EV∗

k (B) ≤ E(Vk)(z) for all z ∈ ZND(B) with there
being at least one z∗k (B) ∈ ZND(B) in existence, such that
EV∗

k (B) = E(Vk)(z∗k (B)). Notice that there may be no fea-
sible portfolio in ZND(B) that can achieve the minimal
expected impacts given budget B for all types of impacts
simultaneously.

Fig. 6 displays EV∗
k (B) as functions of B for impact dimen-

sions k that are relevant to our example. It indicates that
increasing the budget leads to more effective portfolios of
mitigation measures and that, for each impact category, a
minimal attainable expected impact can be achieved at 400
k$. However, a closer inspection of the values of the core
indices of the considered measures plotted in Fig. 7 reveals
that, for budgets close to 400 k$, tradeoffs in prioritizing
impacts need to be made. For instance, all Pareto-optimal
portfolios affordable for a budget of 500 k$ contain measures

http://www.bayesfusion.com/
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F I G U R E 6 Expected impact of each impact
criterion for different budget levels

F I G U R E 7 Core index map of mitigation actions for different budget levels

a1 − a3, a10, a11, a13 − a15, a21, and a22, but each of the mea-
sures a5, a6, and a16 belongs only to about 50% of portfolios.
It is then up to the operators of our hypothetical system to
decide between two options: (1) to limit the number of indi-
viduals with privileged access to the network (measure a16),
which decreases the probability of Mass disconnects; or (2)
to improve the firewall (measures a5 and a6), making it more
difficult for the threat agent to obtain Credentials for meter
disconnect function, and thus reducing the likelihood not only
of Mass disconnects but also of Drastic rise in electricity
usage and Self-test failure messages. Finally, increasing the
budget to 900 k$ eliminates the need for these tradeoffs, as
all three measures can now be afforded.

5 DISCUSSION

In this article, we proposed a method for developing a BN
model for cyber risk assessment and management using
elements of qualitative assessment frameworks that are based
on expert judgment and scoring systems. It is important to
point out that although our quantitative approach improves
on certain of the limitations of qualitative methods, it nev-
ertheless inherits, to a certain degree, the weaknesses of the
underlying scoring systems.

The case problem of improving the cybersecurity of the
AMI infrastructure, used as an illustration throughout this
article, is based on the NESCOR studies (Electric Power
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Research Institute, 2015a, 2015b), which envisioned the use
of partial impact scores (cf. Table S1), expressed on the com-
mon dimensionless scale with values of 0, 1, 3, or 9. The pur-
pose of this scale was to facilitate the aggregation of partial
impact scores into an overall impact score. When the scale
is used to define states of the value nodes in the BN, how-
ever, it may have a strong influence on the shape of the Pareto
front. The choice of different impact scales may lead to differ-
ent conclusions (Hämäläinen & Lahtinen, 2016). To improve
the realism of the analysis, we advise the quantification of
impacts using their natural scales, for example, to express
actual costs in monetary terms for the criterion Restoration
costs.

Similarly, the results of our analysis are influenced by the
assignment of occurrence probabilities to the events consti-
tuting attack scenarios, which could be a troublesome task.
Analysis of data on successful and unsuccessful attacks could
provide estimates of occurrence probabilities for events of a
repetitive nature. Historical data, however, provide no infor-
mation on the probabilities of potential but as yet unobserved
exploits of cybersecurity vulnerabilities (Paté-Cornell et al.,
2017). Nevertheless, based on expert knowledge or predictive
modeling, subjective and imprecise assignments can be made
of the occurrence probabilities of rare or unique events, and
these can be meaningfully combined with frequency-based
probability estimates within a Bayesian framework (Flage
et al., 2016). Moreover, this framework allows estimates of
occurrence probabilities to be updated as and when evidence
of new attempted exploits become available (Jensen, 2001).
The BN may also facilitate the modeling of unknown cyber-
security risks, and may make it possible to model a zero-day
threat as a type of attack action that may trigger any asset
compromise. Furthermore, BN-based models of cybersecu-
rity can be extended to represent both human-induced and
natural hazards (e.g., severe weather conditions), which may
aggravate the vulnerabilities of a cyber-physical system, for
example, a power grid (Ciapessoni et al., 2016).

In this article, we addressed the problem of finding opti-
mal portfolios of “static” measures that reduce the expected
impacts of cyberattacks. Yet, empirical studies (Holm, 2014)
and BN-based cybersecurity models (Zhang et al., 2015)
both indicate that the expected time to system compromise
decreases with the number of intrusions, eventually render-
ing any standing cybersecurity arrangement obsolete. This is
because threat agents eventually gain experience at exploit-
ing vulnerabilities they are aware of and discover new ones.
Frigault et al. (2008) recognize that the security of a system
depends not only on its current state, but also on the history
of past intrusions. They also demonstrate how dynamic BNs
can model the evolving cybersecurity condition of a system.

Dynamic management of cybersecurity conditions poses
further challenges to the system operators in addition to set-
ting up a “static” portfolio of security measures. System oper-
ators need to detect intrusions, accurately monitor the state
of system security in real time, and optimally respond to
the developing situation in case of an attack. The Bayesian
framework discussed in this article can be used to address

these challenges. Modelo-Howard et al. (2008) propose a
BN-based method for optimally deploying intrusion detec-
tors, while Peng Xie et al. (2010) discuss the use of BNs
to infer in real time the actual state of system cybersecurity
based on evidence and monitoring. Optimal response to an
ongoing attack was discussed by Poolsappasit et al. (2012),
who used a BAG with binary uncertainty nodes to model
consecutive stages of attacks. They also proposed a genetic
algorithm to approximate the set of Pareto-optimal actions
that counter the attack efficiently. Our BN model (Section 3)
offers a more fine-grained representation of system states, as
it allows for uncertainty nodes having more than two states.
Additionally, the implicit enumeration algorithm proposed in
Section 4 allows the set of Pareto-optimal response strate-
gies to be computed (not just approximated). Moreover, this
algorithm can readily be adapted to the dynamic BN setting.
Mancuso et al. (2019) demonstrated its usefulness for optimal
dynamic handling of contingencies in industrial processes.

Indeed, our next step will be to develop a dynamic BN-
based counterpart to the “static” model discussed in this arti-
cle. Dynamic BN models of system cybersecurity with an
explicit temporal dimension can be further extended. One
direction is to represent the defender’s beliefs about the
attacker’s actions and intentions to allow for an adversarial
risk analysis (Banks et al., 2015; Insua et al., 2021). Another
important direction is the modeling of cyber resilience (Gis-
ladottir et al., 2016), understood as the system’s ability
to deliver its intended outcome despite adverse cybersecu-
rity incidents.

We conclude this section with some remarks on how our
framework could be operationalized in real-world applica-
tions. As with other formal and quantitative risk analysis and
management frameworks, taking advantage of the full poten-
tial of our approach would require considerable gestation
time and efforts to adequately tailor it to the actual system
under consideration. For example, an organization in charge
of protecting a large-scale cyber-physical system, such as an
electric power grid, may require a dedicated project of sev-
eral person-months, involving consultations with cybersecu-
rity experts and systems operators to implement our frame-
work. Typically, the process of developing a quantitative
model starts with a high-level risk assessment that focuses
on a series of 1,0-20 cybersecurity risks and a similar num-
ber of potential cybersecurity measures for a few critical sub-
systems responsible for specific functions (e.g., AMI system
in case of power grids). Then, a more in-depth analysis of
identified risks based on attack trees would follow. To better
understand the mechanisms of these threats, it is often helpful
to use attack trees with three types of nodes: (1) attack actions
(e.g., launch of Denial of Service attack); (2) the conse-
quences of the attacks on the ICT assets (e.g., server unavail-
able, data leaked); and (3) the consequences of (1) and (2)
for physical, human, or business assets (e.g., disconnection,
safety event, monetary loss). Completion of such a high-level
assessment is a good starting point for using our framework.
Once the high-level implementation of our model is consoli-
dated, it could then be tested, improved, and expanded in the
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subsequent iterations of the analysis. The modularity of BN
models comes in handy for this process, as updates after
adding new nodes or changes to individual CPTs are straight-
forward (thanks to the chain rule).

6 CONCLUSIONS

In this article, we addressed the problem of designing a com-
prehensive and quantitative model to (1) assess the cyberse-
curity risk of cyber-physical systems such as smart electric
power grids, and (2) optimize the selection of security mea-
sures that minimize the expected impacts. The cornerstone
of our approach to this problem is a holistic representation
of the cybersecurity landscape of a system as a BN derived
from attack trees. This model provides an intuitive proba-
bilistic representation of dependencies between stage events
of cyberattacks corresponding to exploits of specific vulner-
abilities of the system. It allows for the calculation of prob-
abilities of successful cyberattacks, represented by cascading
events, as well as the evaluation of their expected impacts
according to a set of distinct criteria. We use this Bayesian
model to compute expected reductions in those impacts that
are achieved by deploying different security portfolios, iden-
tified as ones that are Pareto-optimal. We aimed to overcome
three existing gaps that may result in suboptimal cybersecu-
rity resource allocation. These gaps are salient in the most
prevalent risk analysis methods used in management of secu-
rity of cyber-physical systems. One gap is the poor suitabil-
ity of frameworks that are based on scores and risk matri-
ces to deal with the increasing complexity of cyber threats.
Another drawback is that the occurrence of multiple, poten-
tially synergistic attacks is not modeled in most of the popular
approaches. A third caveat is the narrow perspective of com-
monly used cost–benefit analysis. The usefulness of attack
trees and BNs in modeling the cybersecurity of various kinds
of systems has been widely acknowledged in the literature.
In this article, we demonstrated how this well-established
tool of quantitative modeling could be built to represent an
integrated picture of cyber threats to cyber-physical systems,
based on the attack trees of individual cyberattack scenarios,
like those developed by NESCOR for electric systems. Next,
we framed the task of finding optimal portfolios of security
measures as a problem of simultaneous minimization of mul-
tiple expected impacts under budget, technical, and proba-
bilistic constraints. We also proposed an explicit enumeration
algorithm as an efficient way of solving this multiobjective
optimization problem and of computing the set of Pareto-
optimal portfolios of security measures. Finally, we discussed
the usefulness of the core index as a guideline for selecting
a robust portfolio from a possibly large set of Pareto-optimal
ones. We concluded this article with a discussion of the appli-
cability of our method. We demonstrated its usefulness for
modeling the cybersecurity of electric power grids. However,
we noted that the whole framework or its elements can be

readily adapted to security problems of other cyber-physical
and ICT systems, or to the reliability problems of industrial
systems in general.
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