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Abstract
Aim: The need to forecast range shifts under future climate change has motivated an 
increasing interest in better understanding the role of biotic interactions in driving 
diversity patterns. The contribution of biotic interactions to shaping broad-scale spe-
cies distributions is, however, still debated, partly due to the difficulty of detecting 
their effects. We aim to test whether spatial exclusion between potentially compet-
ing species can be detected at the species range scale, and whether this pattern re-
lates to fine-scale mechanisms of coexistence.
Location: Western Palearctic.
Methods: We develop and evaluate a measure of geographic avoidance that uses 
outputs of species distribution models to quantify geographic exclusion patterns ex-
pected if interspecific competition affects broad-scale distributions. We apply the 
measure to 10 Palearctic bat species belonging to four morphologically similar cryptic 
groups in which competition is likely to occur. We compare outputs to null models 
based on pairs of virtual species and to expectations based on ecological similarity 
and fine-scale coexistence mechanisms. We project changes in range suitability under 
climate change taking into account effects of geographic avoidance.
Results: Values of geographic avoidance were above null expectations for two cryp-
tic species pairs, suggesting that interspecific competition could have contributed 
to shaping their broad-scale distributions. These two pairs showed highest levels of 
ecological similarity and no trophic or habitat partitioning. Considering the role of 
competition modified predictions of future range suitability.
Main conclusions: Our results support the role of interspecific competition in limiting 
the geographic ranges of morphologically similar species in the absence of fine-scale 
mechanisms of coexistence. This study highlights the importance of incorporating bi-
otic interactions into predictive models of range shifts under climate change, and the 
need for further integration of community ecology with species distribution models 
to understand the role of competition in ecology and biogeography.
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1  | INTRODUC TION

The need to forecast shifts in species distributions under global cli-
mate change is driving an emerging interest in understanding the 
factors that shape species ranges (Pacifici et al., 2015). The presence 
of a species in a given location, and thus the species’ range, depends 
on the abiotic environment (climate, topography and physical envi-
ronment), biotic interactions and movement factors that relate to 
species dispersal ability under constraints of its evolutionary history 
(Poggiato et al., 2021; Soberón & Peterson, 2005). The relative con-
tribution of these factors across spatial scales is, however, still not 
well understood. Climatic factors are commonly thought to shape 
the distribution of species at a broad spatial scale, whereas the im-
pact of biotic factors is thought to be more pronounced at the local 
scale (Willis & Whittaker, 2002). Hence, the role of biotic factors in 
shaping broad-scale patterns of species ranges remains controver-
sial (Early & Keith, 2019; Wiens, 2011; Wisz et al., 2013), for exam-
ple, see the Eltonian Noise hypothesis (Soberón & Nakamura, 2009). 
Among the different types of biotic interactions, interspecific com-
petition can result in competitive spatial exclusion (Gause,  1932). 
While the effect of competition on local-scale patterns such as en-
semble composition is broadly accepted and supported by studies 
(e.g. Fraterrigo et al., 2014), substantial evidence shows that compe-
tition effects on species presence can scale up and drive broad-scale 
assemblage patterns, as seen in avifauna in Denmark (e.g. Gotelli 
et  al.,  2010), and also can shape species broad-scale range limits. 
There are several documented examples of range patterns being 
shaped partially by competition (reviewed in Wisz et  al., 2013). In 
their review of the literature, Sexton et al. (2009) found that 39 out 
of 51 studies supported or partially supported the role of compe-
tition in shaping broad-scale species range limits. Our mechanistic 
understanding of the role of interspecific competition in shaping 
species ranges is, however, limited, in part because we still lack tools 
to identify such patterns. Yet recent theoretical studies suggest that 
the scaling-up of competitive exclusion depends on the develop-
ment of fine-scale coexistence mechanisms (Godsoe et al., 2015).

The ultimate consequence of interspecific competition in the 
absence of coexistence mechanisms, such as partitioning of the tro-
phic, spatial or temporal ecological niche, is spatial exclusion (Gause 
principle: Gause, 1932; Hardin, 1960). Consequently, if competitive 
exclusion scales up and has an effect on species’ geographic distribu-
tions, the predicted detectable signal on species’ occurrences would 
be a tendency to be absent from their environmentally suitable area 
where the competitor is present. Indeed, parapatric ranges between 
morphologically similar or phylogenetically related species were tra-
ditionally interpreted as the result of competitive interactions, espe-
cially in the absence of geographical barriers to dispersal and when 

sharp edges do not match clear environmental gradients (Bull, 1991). 
The main difficulty when aiming to infer competition effects using 
patterns of species presences is separating true avoidance resulting 
from competition from the effects of differential ecological prefer-
ences (Bar-Massada, 2015).

One of the current methodological approaches that consider 
biotic interactions at macroecological scales is including the geo-
graphic range of a potential competitor as an additional predic-
tor layer in species distribution models (SDMs) (Anderson,  2017). 
Although this approach often improves model performance (e.g. 
Palacio & Girini,  2018), it cannot be used to separate biotic from 
environmental effects (Dormann et  al.,  2018). More recent meth-
odological developments aim to separate biotic from environmen-
tal effects at the local community level by using patterns of species 
co-occurrences (e.g. D’Amen et al., 2018). Among these approaches, 
joint species distribution models (JSDMs) (e.g. Harris, 2015; Pollock 
et al., 2014) model simultaneously species presences using environ-
mental variables and identify patterns of residual co-occurrences 
between species that are not explained by environmental predictors 
and therefore might reveal a signal of biotic interactions. However, 
the validity and the interpretation of co-occurrence patterns as in-
ferences on biotic interactions are unclear (see Blanchet et al., 2020; 
Dormann et al., 2018; Peterson et al., 2020; Poggiato et al., 2021; 
Zurell et al., 2018). Moreover, the assemblage data that these meth-
ods require reduce their applicability for understanding broad-scale 
species range patterns.

Despite the paucity of available methods to identify broad-scale 
effects of biotic interactions on species ranges, there is increasing 
awareness that considering the role of biotic interaction is important 
for better understanding how climate change will impact diversity 
patterns (Alexander et al., 2016). Biotic interactions can modify re-
sponses towards climate change, for example, through preventing 
species from being able to maintain or establish populations in pre-
dicted future suitable range due to increased overlap with competi-
tors either in existing range or in new suitable areas (HilleRisLambers 
et al., 2013).

We aim to test whether spatial exclusion between potentially 
competing species can be detected at the species’ range scale, and 
whether fine-scale mechanisms of coexistence affect broad-scale 
species distributions. To this end, we develop a measure of geo-
graphic avoidance between pairs of species that uses SDM outputs. 
We apply the measure to four sets of cryptic Palearctic bat species 
(10 bat species) that show different degrees of ecological similarity 
and range overlap. Cryptic species are morphologically similar but 
genetically distinct species and therefore are likely to show high 
ecological similarity and compete for the same resources, offer-
ing an excellent model system for testing competitive interactions 
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(Novella-Fernandez et al., 2020). We predict that broad-scale geo-
graphic avoidance can be detected in pairs of species with higher 
ecological similarity and in the absence of fine-scale coexistence 
mechanisms. We expect that species with high geographic avoid-
ance will be less likely to colonize their future suitable range in areas 
of overlap with their competitors, which will reduce the size of the 
suitable range available to them under climate change. Therefore, it 
is important to understand current patterns of geographic avoidance 
to be able to incorporate the effects of future range overlap with 
competitors in climate change vulnerability assessments.

2  | MATERIAL S AND METHODS

2.1 | Developing a measure of geographic avoidance

While SDMs model species' suitable geographic areas, this predicted 
environmentally suitable range (herein predicted range) is not entirely 
occupied by the species, which are restricted to a smaller portion of 
it (herein realised range). The difference between modelled species 
predicted and realised ranges can be attributed partially to processes 
not included in the correlative environmental SDM framework, such 
as biotic interactions or dispersal limitation (Guisan et al., 2017). A 
species whose range is negatively affected by the presence of an-
other is expected to realise less of its predicted suitable range in those 
areas where the competitor is present. Based on this, we present a 
measure of species geographic avoidance that uses SDM outputs for 
pairs of potential competitor species i and j with partially overlapping 
ranges. The measure establishes a relationship between the realised 
proportion of the range of species i and j in overlapping (sympatric) 
and non-overlapping (allopatric) areas. To convert this to a measure of 
avoidance, we take 1 − the ratio between these:

See Figure  1 for an overview of the implementation of this 
methodology.

•	 Pi (predicted range): (Pi): The binary geographic area that is envi-
ronmentally suitable for species i. Binary suitable areas are gen-
erated from SDM outputs using the thresholding method that 
minimizes the difference between sensitivity and specificity. This 
thresholding method has been shown to outperform other ap-
proaches (Liu et al., 2013).

•	 POij (predicted range overlap): The geographic overlap between 
the predicted ranges of species i and j. This is the expected geo-
graphic overlap between species according to their binary model 
outputs (Gutiérrez et al., 2014).

•	 Ri (realised range): The area of the predicted range where species 
i is present. A low proportion of predicted range realised suggests 

that processes not included in the abiotic model, such as the ef-
fects of biotic interactions and/or dispersal limitations (Soberón 
& Peterson, 2005), are preventing the species from occupying its 
entire environmentally suitable range. The realised range is esti-
mated by clipping the predicted range of the species by its known 
range limits (e.g. Marcer et al., 2013). This can be based on de-
tailed occurrence records, when such information is available, or 
expert-generated distribution maps, such as those available from 
the IUCN Red List (https://www.iucnr​edlist.org). The reliability of 
the measure depends on accurately measuring species realised 
ranges, and therefore, it should not be applied to data-deficient 
species or cryptic species that have not been recently assessed if 
using IUCN red list range maps.

•	 ROij (realised range overlap): The geographic overlap between 
the realised ranges of species i and j. It represents the overlap 
between the two species that occurs at the model resolution (cell 
size). High values denote species coexistence.

Inserting these parameters into Equation 1 and rearranging 
gets:

Values of GAij = 0 indicate that for a given pair of species i and 
j, an equal proportion of predicted range is realised in overlapping 
areas and in non-overlapping areas. Values of GAij < 0 indicate that a 
higher proportion of predicted range is realised in overlapping areas. 
Finally, values of GAij > 0 indicate a lower proportion of predicted 
range is realised in overlapping areas, as expected if they occupy less 
of their suitable range in the presence of a competitor. The maximum 
value of GAij will tend to 1 in the extreme case where species i and j 
do not realise any of their predicted range in their overlapping areas. 
Because the measure is based on ratios, values based on very small 
proportion of realised range overlap (around less than 0.5%) are 
prone to high variability and are not reliable, and therefore, the mea-
sure is not suitable under these circumstances. Code to implement 
this measure in R is provided in dryad: https://doi.org/10.5061/
dryad.rbnzs​7hbq.

2.2 | Testing geographic avoidance with an 
empirical dataset of cryptic bat species

2.2.1 | Study system

Bats offer good case studies for assessing the role of interspecific 
competition in shaping species ranges to due their high number of 
cryptic species (e.g. Ibáñez et al., 2006). To test the performance of 
the measure with an empirical dataset, we used four sets of poten-
tially competing cryptic bat species (10 species in total): Eptesicus 
serotinus, Eptesicus isabellinus, Myotis crypticus, Myotis escalerai, 
Plecotus auritus, Plecotus austriacus, Plecotus macrobullaris, Plecotus 

(1)

GAij=

1−
proportionof rangerealised inoverlappingareasbetween i and j

proportionof rangerealised innon−overlappingareasbetween i and j

(2)GAij = 1 −

ROij(Pi + Pj − 2(POij))

POij(Ri + Rj − 2
(

ROij

)

)

https://www.iucnredlist.org
https://doi.org/10.5061/dryad.rbnzs7hbq
https://doi.org/10.5061/dryad.rbnzs7hbq
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kolombatovici, Rhinolophus euryale and Rhinolophus mehelyi. All spe-
cies within each genus share a very similar morphology but have dif-
ferent degrees of geographic and ecological overlap. Consequently, 
we expect different levels of potential competition among them. 
See Table 1 for an outline of geographic, morphological and ecologi-
cal overlap among these cryptic bat species and Tables S1.1–S1.3 
for a more detailed overview of species ecological similarity. In ad-
dition to these four sets of potentially competitor cryptic groups, 
we included seven other bat species (Myotis cappaccini, Myotis 
daubentonii, Myotis emarginatus, Myotis myotis, Myotis naterereri, 
Miniopterus schreibersii, Rhinolophus ferrumequinum) to compare 
the GAij measure outcome between potential competitors to non-
competitors. The study area included the western Palearctic and 
North Africa, extending up to a longitude of 34.5°E. This represents 
the full range of E. isabellinus, M. escalerai, M. crypticus, P. austriacus 
and P. kolombatovici and the majority of the range of the remaining 
potential competitor species.

2.2.2 | Occurrence and environmental data

In total, we gathered 13,408 species occurrence records. Of these, 
6,976 came from five online databases: GBIF (www.gbif.org), BioGIS 
(www.biogis.huji.ac.il), NBN (nbn.org.uk), Eurobats (www.eurob​ats.
org/) and Laji.fi (laji.fi); 1,892 from 64 publications (see Appendix S2) 
and 4,540 were unpublished records provided by seven bat research-
ers. Only records with validated species identification were used. In 
areas where ranges of similar species overlap, we used records that 
were confirmed genetically or morphologically by bat experts, con-
sidering identification year relative to when the species were split 
taxonomically. When original published records consisted only of a 
locality descriptor, geographic coordinates were obtained manually 
whenever possible (<1% of records). Spatial quality of records was 
checked, removing low-quality records in terms of spatial resolution 
and confirmed identification. We accounted for uneven sampling 
across the study area by removing clustered records in intensively 

F I G U R E  1   Flow chart representing the implementation of the approach to measure geographic patterns of species avoidance expected 
from macroecological effects of competition. 1—For a given pair of potentially competitor species, occurrence records and species 
environmental drivers are used to model species’ predicted ranges. 2—Binary predicted ranges are cropped by species realised range limits 
to obtain species’ realised ranges. 3—Ranges of both species are combined to estimate extent of overlap in predicted and realised ranges. 4—
The measure of Geographic Avoidance (GAij) is applied. In this example, arrows describe a larger decrease from predicted to realised range 
in areas that overlap with the competitor (large arrows) than in non-overlapping areas (small arrows). Or, equivalently, a lower proportion 
of realised range occurs in overlapping areas compared to non-overlapping areas. This pattern is described by GAij with a value >0 [Colour 
figure can be viewed at wileyonlinelibrary.com]

http://www.gbif.org
http://www.biogis.huji.ac.il
http://nbn.org.uk
http://www.eurobats.org/
http://www.eurobats.org/
http://laji.fi/
www.wileyonlinelibrary.com
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sampled areas (Kramer-Schadt et al., 2013), using the ArcGIS tool-
box “SDMtools” (Brown, 2014) with unclustering distances between 
20 and 60  km based on species' degree of cluttering and range 
size. Most records used in the models (>95%) had a spatial preci-
sion <2 km. We included records with lower precision (up to 10 km) 
only in regions with very low sampling intensity (Eastern Europe and 
North Africa). This accounted for <5% of records.

To model the predicted range of each species, we considered 
36 environmental variables recognized as ecologically important for 
bats (16 climatic, six geographic, 13 habitat and three human distur-
bance variables; Table S3.1). All raster layers were set at a resolution 
of 30 arc-seconds (~1 km). We tested for correlation among variables 
using enmtools v1.3 (Warren et al., 2010) and selected the most eco-
logically relevant variable or the variable with the stronger effect 
on model performance on its own among highly correlated variables 
(|r| > 0.75). Additionally, we discarded variables that did not contrib-
ute to model gain. Whenever possible, we aimed to select the same 
variables for species in the same cryptic group (Tables S3.2–S3.5 for 
final variables included in each model).

2.2.3 | Obtaining predicted and realised 
species ranges

Ensemble SDMs were generated using the r package biomod2 
(Thuiller et  al.,  2009), including five models (maxent v3.4, general-
ized boosting model, classification tree analysis, random forests and 

flexible discriminant analysis). For each model, we selected 10,000 
random background points and 1,000 maximum iterations. Maxent 
model parameters (number of features and regularization value) 
were selected based on Akaike information criterion (AIC) scores 
using enmtools v1.3 (Table S3.6 for final model features). To assess 
model performance, we used tenfold cross-validations, with 75% 
of records used for training and 25% for model testing. The abil-
ity of the models to discriminate between presence locations and 
background pseudo-absences was evaluated with area under the 
curve (AUC) of the receiver operator characteristics (ROC) and True 
Skill Statistic (TSS). The 10 model replicates were combined to ob-
tain a final predictive map for each of the five modelling methods. 
Ensemble models were obtained by using AUC values to proportion-
ally weight each method according to its predictive power, exclud-
ing models with AUC < 0.75. Binary presence–absence maps were 
generated based on the thresholding criteria that minimizes the dif-
ference between sensitivity and specificity because these criteria 
has been shown to outperform others (Liu et  al., 2013). However, 
we analysed whether using other four commonly used thresholding 
criteria resulted in changes in the measure. It is important to note 
that measures of accuracy of thresholded maps in general assume 
presence–absence data, while our models were generated using 
presence-only data and background points.

Species’ realised ranges were calculated by clipping the SDM 
output binary maps using a convex hull polygon drawn around oc-
currence records (r package concaveman, Gombin et al., 2017) and 
adding a buffer of 30 km. This distance considers a species’ home 

TA B L E  1   The four cryptic bat species groups included in the study with information on their overlap in distribution, morphology 
and ecology (see Tables S1.1–S1.3 for overview on species ecological similarity). Information taken from Dietz and Kiefer (2016); Juste 
et al. (2019); Juste et al. (2004); Spitzenberger et al. (2006)

Group Species Distribution Morphology Ecological similarity

Eptesicus Parapatric – overlap in a narrow contact zone 
in Iberia

Highly similar Very High

Eptesicus serotinus Broad Palearctic distribution

Eptesicus isabellinus Restricted to southern Iberia and North Africa

Myotisa  Overlap in northern Iberia Highly similar Medium-High

Myotis crypticus Italy, southern France, and northern Iberia

Myotis escalerai Restricted to Iberia and French Pyrenees

Plecotus Some overlap Similar Variable (Medium to 
Medium-High)

Plecotus auritus Broad Palearctic distribution, more northern 
distribution

Plecotus austriacus Mediterranean and temperate parts of Europe

Plecotus macrobullaris Mountain ranges across the Palearctic

Plecotus kolombatovici Balkans

Rhinolophus High overlap Minor differences High, but lower 
when sympatric

Rhinolophus euryale Circa-Mediterranean

Rhinolophus mehelyi Circa-Mediterranean

aAnother member of the Myotis cryptic group, the more northern European Myotis nattereri, was excluded from the study due to uncertainty 
regarding the extent of its range overlap with M. crypticus at the south-western part of its range.
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range (3–10  km depending on species; Boye & Dietz,  2005), and 
seasonal or reproductive movements that typically occur outside 
species home range (e.g. Robinson & Stebbings, 1997). Before using 
these maps to calculate the measure of GAij, they were projected to 
the Gall-Peters equal-area projection to allow for area calculations.

2.2.4 | Assessing the performance of the measure

We calculated the measure of GAij for the pairs of potentially com-
petitor species and tested whether observed values were higher 
than distributions of null values obtained for pairs of virtual species. 
For that we created for each species 15–30 sets of virtual ranges (r 
package virtualspecies, Leroy et  al., 2015) that follow environmen-
tal gradients, using the PCA method. We selected from the result-
ing virtual species ranges, the areas with highest suitability scores 
totalling the equivalent size of the realised range of the real spe-
cies. We distributed within that area the same number of random 
occurrence records as used in the models of the real species. With 
this procedure, for each species we obtained different sets of oc-
currence records with the same number of records and covering the 
same area as the real species, but following different, though eco-
logically meaningful, environmental gradients and having different 
spatial distributions. We used these randomly generated sets of oc-
currence record to model virtual species' predicted ranges, and we 
clipped them to obtain their realised ranges, following the same pro-
cedures outlined above for the empirical dataset. Finally, we calcu-
lated, for each pair of potentially competitor species in the empirical 
dataset, values of GAij between all pair combinations of equivalent 
virtual ranges. These distributions constitute the null expectation of 
GAij values between virtual species with the same number of oc-
currence records and coverage extent, but arbitrary environmental 
preferences and different spatial distribution from the real species. 
We only used pairs of sets of virtual ranges whose realised range 
overlapped by more than 0.5% to reduce inaccuracies due to the cal-
culation of ratios with very small values. We compared for each pair 
of potentially competing bat species, the observed value of GAij with 
at least 100 null values. Observed values of GAij higher than 95% of 
null values were considered as significantly higher than null expecta-
tions. We also compared GAij values of potential competitor pairs 
with GAij between all combination of non-competitor pairs (115), 
which includes species pairs from different cryptic groups as well as 
pairs formed with the additional seven species. GAij values between 
potential competitor pairs higher than 95% of the values between 
non-competitor pairs were considered as significantly higher.

We analysed whether the measure was robust to missing data and 
spatial sampling biases. For each species, we randomly removed 10, 
20 and 30% of the occurrence records across the entire study area. 
In addition, we divided species’ range extents to nine equal quad-
rats; we randomly selected five and removed from these 10%–30% 
of the occurrence records to simulate spatial bias in the data. Both 
thinning processes were repeated 10 times at each of the three data 
removal percentages. We used these sets of thinned records and the 

original complete set of records to run SDMs (Table  S3.7). We as-
sessed whether GAij values obtained using the full datasets fell within 
95% confidence intervals of GAij values from thinned datasets.

2.2.5 | Comparing measure outputs to patterns of 
ecologically similarity

Ecological similarity of potential competitor bat pairs was ranked 
from 1 (minimum) to 5 (maximum) in terms of foraging habitat, diet 
and roosting ecology by five bat researchers based on the literature 
and expert opinion (Appendix S1). Evidence of fine-scale resource 
partitioning between each pair was determined based on the litera-
ture. Values of GAij between pairs of cryptic bat species were com-
pared to these values of ranked ecological similarity and evidence of 
resource partitioning.

2.2.6 | Predicting future range losses considering 
current geographic avoidance

In order to assess whether competition between pairs of species 
may modify future suitable range predictions, we modelled changes 
in range suitability for species under climate change projections for 
2070. We used the worst-case emission scenario (RCP 8.5) and three 
different European Global Circulation Models (GCMs: HadGEM2-ES, 
IPSL-CM5A-LR and MPI-ESM-LR; obtained from www.world​clim.
com). We included in the models the same climatic variables as in the 
main models (Tables S3.2–S3.5), excluding habitat variables because 
of high uncertainty in land cover change projections, and altitude 
due to collinearity with climate. We combined the outputs from the 
three GCMs and considered future suitable areas if identified by two 
or more GCMs. We estimated range losses through comparing the 
future models to models generated for present conditions using the 
same variables. Then, we calculated predicted future geographic 
overlap between pairs of cryptic bat species within a 500 km buffer 
around their current range. This distance was selected to represent 
the maximum distance that these bats are likely to be able to dis-
perse in response to climate change by the end of the century. As 
none of the studied species are long-distance migrants, they are 
not likely to reach all suitable future areas projected by the models. 
Species pairs with high geographic avoidance and an increased fu-
ture geographic overlap may not realise their future range change 
predictions due to the effects of competition.

3  | RESULTS

3.1 | Geographic avoidance between cryptic bat 
species

Ensemble SDMs had good discrimination ability (AUCtest range: 
0.92–0.99, TSS: 0.65–0.93; Table S3.8). Models predicted different 

http://www.worldclim.com
http://www.worldclim.com
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suitable ranges for members of the same cryptic group, but with 
some extent of suitable range overlap. P. auritus and E. serotinus were 
predicted to have a more northern European distribution, P. austria-
cus, M. escalerai and M. crypticus a southern European distribution, 
while Rhinolophus spp. and E.  isabellinus a circa-Mediterranean dis-
tribution. The percentage of unrealised range was particularly high 
(>40%) for P. kolombatovici, M. escalerai, M. crypticus and P. macrob-
ullaris, intermediate (15%–30%) for E.  isabellinus, R. euryale, P. aus-
triacus and R. mehelyi and low (<10%) for P. auritus and E. serotinus 
(Figure 2; Figure S3.1).

The extent of geographic avoidance (GAij) was lowest (<0) in the 
pairs P.  auritus–P.  austriacus, and P.  macrobullaris–P.  kolombatovici. 
Intermediate in R. euryale–R. mehelyi (0.31), M. escalerai–M. crypticus 
(0.35), P. auritus–P. macrobullaris (0.53) and P. austriacus–P. macrob-
ullaris (0.57) and highest in P. austriacus–P. kolombatovoci (0.83) and 
E.  serotinus–E.  isabellinus (0.85). Only in the latter two pairs, GAij 
values were higher than 95% of values of 100 null models (Table 2; 
Figure  3) and also higher than 95% of GAij values between non-
competitor species (Figure S3.2). These two pairs with significantly 
higher GAij values than null expectations and non-competitors were 
also the ones with highest levels of ecological similarity and no 
known mechanisms of resource partitioning (Table 2).

Measure outputs based on other binary thresholding criteria re-
sulted in very similar values (Figure S3.3). Similarly, thinned sets of 
occurrence records did not produce different GAij values compared 
to the full datasets for four out of the nine bat species pairs under all 
the thinning methods and all removal percentages. For the other five 
species, thinned sets tended to produce slightly higher GAij values, 
especially at larger percentage of thinning, but not depending on 
thinning method. Nevertheless, in all cases values were very close 
and had the same ranking relative to other species pairs, showing 
that the measure is robust to missing data and geographically biased 
sampling (Figure S3.4).

3.2 | Future range losses and overlap

Present projections with only climatic variables were very similar in 
extent to the ones including habitat variables and mostly differed 
in the fine-grained suitability values. When projected to the future, 
models predicted losses in climatic range suitability for E. serotinus, 
M. escalerai, M. crypticus, P. auritus and P. macrobullaris under future 
climate change. In contrast, the suitable climatic ranges of E. isabel-
linus, P.  austriacus, P.  kolombatovici, R.  euryale and R.  mehelyi were 
predicted to increase by the end of the century (Table S3.9). Under 
future climate change, range overlap was predicted to decrease in the 
pairs E. serotinus–E. isabellinus, M. escalerai–M. crypticus and P. auri-
tus–P. macrobullaris. While range overlap in P. auritus–P. kolombatovici, 

P. macrobullaris–P. kolombatovici and R. euryale–R. mehelyi was pre-
dicted to increase. For the pairs with high values of GAij, range over-
lap between E. serotinus and E. isabellinus was predicted to decrease 

F I G U R E  2   Predicted ranges of the four sets of cryptic bat 
species partitioned into portions that are realised (green) and 
unrealised (orange). Eptesicus group: (a,b), Myotis group (c,d), 
Plecotus group (e–h) and Rhinolophus group (i,j)
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(−27.42%), while overlap between P. austriacus and P. kolombatovici 
was predicted to increase substantially (42.27%) (Table  3). Adding 
the effects of these competitive interactions into projections of fu-
ture range suitability shows that a large proportion of future climati-
cally suitable areas for P. kolombatovici may not be realised due to the 
presence of P. austriacus (Figure 4).

4  | DISCUSSION

Our study suggests, using a new approach based on SDM outputs 
and empirical data from sets of cryptic Palearctic bat species, that 
interspecific competition can limit the geographic ranges of mor-
phologically similar species in the absence of fine-scale mecha-
nisms of coexistence. This study provides additional evidence 
for the potential of competition to shape species’ geographic 
ranges (e.g. Gotelli et  al.,  2010; Sexton et  al.,  2009; Staniczenko 
et al., 2018). Moreover, it supports predictions made by mathemati-
cal models that competitive exclusion scales up and impacts spe-
cies ranges only when coexistence mechanisms, such as trophic 
or habitat partitioning, are not developed at finer spatial scales 
(Godsoe et  al.,  2015). Biotic interactions, and in particular inter-
specific competition, can slow down climate tracking and prevent 
species from colonizing new habitats (HilleRisLambers et al., 2013). 
Yet despite the urgent need to better understand the effect of bi-
otic interactions on species vulnerability to climate change, there is 
currently no adequate methodology to infer competitive effects at 
the regional or continental spatial scale.

4.1 | The link between broad-scale geographic 
avoidance and fine-scale mechanisms of coexistence

Biotic interactions are primarily thought to play a role in driving local 
assemblages, which are, as a result, often composed of morphologi-
cally and functionally different species (Bocher et al., 2014; Codron 
et  al.,  2015). However, there is increasing evidence that biotic in-
teractions can affect broader-scale biogeographic patterns (Sexton 
et al., 2009). Our results suggest that local-scale coexistence mecha-
nisms are key processes preventing biotic interactions from scaling-
up and having broader-scale consequences. The two pairs of species 
found to have higher values of geographic avoidance than expected 
by chance are the most ecologically similar pairs of species that lack 
fine-scale mechanisms of resource partitioning. E. serotinus and E. is-
abelinus are similar in their habitat use, being both open air foragers, 
have very similar diets composed mostly by Coleoptera and share 
similar roosting preferences (Tables S1.1–S1.3). Interspecific compe-
tition has been previously suggested to affect these species’ ranges 
(Santos et  al.,  2014). P.  austriacus and P.  kolombatovici use similar 
semi-open habitats, feed mostly on Lepidoptera and roost in anthro-
pogenic structures or caves (Tables S1.1–S1.3). In contrast, pairs of 
species with lowest levels of geographic avoidance, including P. auri-
tus–P. austriacus and R. euryale–R. mehelyi, are known examples of bat TA
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species with similar morphology and broad-scale range overlap that 
coexist through fine-scale habitat partitioning (Tables S1.1–S1.3).

Broad-scale biogeographic patterns in bats are mainly driven 
by temperature and water availability (McCain,  2006; Ulrich 
et al., 2007) especially in areas where access to water can be lim-
iting (Razgour et al., 2018). However, several studies point to biotic 
interactions and in particular interspecific competition as important 
processes in the group (see Salinas-Ramos et al., 2020). Competition 
has been suggested to limit morphological similarity among rhinol-
ophid bats in Malaysia (Kingston et al., 2000) and bat assemblages 
in southern Africa, where patterns of body size are regularly spaced 
(Schoeman & Jacobs, 2008). Studies using exclusion experiments 
in both tropical (Kalka et  al.,  2008) and temperate forests (Böhm 
et al., 2011) show that bats can control arthropod abundance, sug-
gesting that exploitative competition may occur between bats due 
to prey depletion. Competition among bats can also occur through 
interference when species are attaining prey resources. Large ag-
gregations of bats are thought to forage less effectively as a conse-
quence of echolocation interference (Amichai et al., 2015), and bats 
can actively use jamming calls to disrupt competitors and make them 

miss targets (Corcoran & Conner,  2014). Our study suggests that 
competition among bats can also scale up to affect their broad-scale 
geographic distributions in the absence of fine-scale mechanisms of 
resource partitioning.

4.2 | Performance of the measure of 
geographic avoidance

No currently available methodology enables direct inference of com-
petitive interactions from analysing co-occurrence patterns at broad 
spatial scales given the commonly available density of occurrence data. 
Our measure of geographic avoidance quantifies the expected geo-
graphic patterns resulting from broad-scale competitive exclusion and 
produces inferences consistent with predictions based on ecological 
information and evidence of coexistence mechanisms. Previous stud-
ies using SDM ś outputs to identify patterns of geographic exclusion 
resulting from competitive interactions measured an uneven propor-
tion of occurrence records in the predicted overlapping range or a mis-
match in species identity (Anderson et al., 2002; Gutiérrez et al., 2014). 

F I G U R E  3   Geographic avoidance 
(GAij) values for each pair of cryptic bat 
species (orange large dots) relative to null 
distributions of values (boxplots). Boxes 
represent first and third data quartiles. 
Whiskers represent 95 percentiles. 
(Eser: E. serotinus, Eisa: E. isabellinus. 
Mesc: M. escalerai. Mcry: M. crypticus. 
Paur: P. auritus. Paus: P. austriacus. Pkol: 
P. kolombatovici. Pmac: P. macrobullaris. 
Reur: R. euryale. Rmeh: R. mehelyi) [Colour 
figure can be viewed at wileyonlinelibrary.
com]

Species pairs Present POij (%)
Future 
POij (%)

Change in 
POij (%)

E. serotinus–E. isabellinus 1.08 0.79 −27.42

M. escalerai–M. crypticus 19.54 15.07 −22.84

P. auritus–P. austriacus 25.40 15.71 −38.14

P. auritus–P. macrobullaris 12.16 8.41 −30.87

P. austriacus–P. macrobullaris 12.11 8.03 −33.70

P. auritus–P. kolombatovici 2.53 1.78 −29.91

P. austriacus–P. kolombatovici 9.59 13.65 42.27

P. macrobullaris–P. kolombatovici 8.14 9.89 21.45

R. euryale–R. mehelyi 45.13 45.23 0.21

TA B L E  3   Comparison between present 
predicted overlap between pairs of cryptic 
bat species and future predicted overlap 
in 2070 under RCP 8.5 emissions scenario. 
Differences in POij compared to Table 2 
are because these models did not include 
land cover variables

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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The applicability of these methods is however limited by their assump-
tions of identical environmental preferences, sampling effort and 
detectability for both species in the potential predicted overlapping 
area. The method of including a competitor's realised range in SDMs 
is thought to primarily suit simple systems (Anderson, 2017) and cor-
relations between environment and competitors make difficult to dis-
tinguish the effect of competition from environmental effects (Godsoe 
et al., 2017). While JSDM approaches directly incorporate biotic inter-
actions into the models, they are most suitable for spatially-discrete 
community level studies, and the common lack of available representa-
tive community data across large spatial extents limits their application 
in broad-scale studies. The use of JSDMs with insufficient sampling in-
tensity would result in a large amount of false absences that the model 
may interpret as negative residual correlations.

The approach presented here is based on the assumption that 
SDMs are able to estimate representatively the predicted and real-
ised ranges of the species, which, equally to any other study based 
on SDMs, is a function of the quality of the occurrence data used 
and the inclusion of all the relevant environmental variables in the 
models (Guisan et al., 2017). While we show that the measure is con-
siderably robust to missing data and spatially biased data, the occur-
rence data used should offer a good representation of the realised 
range of both species. The realised ranges for our case study species 
have been extensively studied by the authors and therefore are best 
represented by our data. However, whether using either own data 
or IUCN range maps, uncertainties in realised range and extent of 
realised overlap among species should always be carefully taken into 
account. Hence, this approach is not suitable for data-deficient spe-
cies with under-studied range extents.

Lower ratio of realised range in overlapping areas relative to non-
overlapping areas could occur for other reasons than competitive 
effects, such as dispersal limitations in that area (Guisan et al., 2017; 
Soberón & Peterson, 2005) or by chance due to inaccuracies in model 
predictions. Therefore, interpretations of the measure outputs should 
consider the potential effects of dispersal limitations. Dispersal limita-
tion is less likely to bias the conclusions with volant animals like bats 
and birds, but more so with dispersal-limited taxa, such as other small 
mammals, reptiles and amphibians. The comparison between the ob-
served patterns with null models based on virtual species allows to 
identify the cases where the observed pattern is greater than expected 
by chance and therefore most likely to be result of competition.

Altogether, this approach is most suitable for pairs of species 
with well and equally known ranges and little dispersal restrictions. 
Inferences given by the measure should be taken as a geographic 
pattern consistent with a process of broad-scale competitive exclu-
sion, and not as a direct inference of the effect of competition. A 
sensible interpretation of current biogeographical patterns also re-
quires knowledge of evolutionary history to tease-apart biotic and 
historical effects, in particular for species with limited dispersal and 
colonization abilities (Dormann et al., 2018; Warren et al., 2014), and 
information on ecological similarity between species.

4.3 | Including biotic interactions in range shift 
projections under climate change

Biotic interactions can modify predicted responses of species 
to climate change (HilleRisLambers et  al.,  2013), as highlighted 

F I G U R E  4   Present and future 
predicted suitable range for E. serotinus 
(a), E. isabellinus (b), P. austriacus (c) and 
P. kolombatovici (d) and extent of range 
overlap with their potential competitors. 
Orange shows current range that will 
become unsuitable in future. Green shows 
current range that will still be suitable in 
future, and blue shows current unsuitable 
range that will become suitable. Black 
shows future suitable range that will 
overlap with future suitable range of a 
competitor [Colour figure can be viewed 
at wileyonlinelibrary.com]

(a) (c)

(d)(b)

www.wileyonlinelibrary.com
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by theoretical models assessing species extinction risk (Norberg 
et  al.,  2012). Climate change can lead to changes in the intensity 
of interactions or the appearance of novel interactions (Alexander 
et al., 2016). While the outcome of the interaction between biotic 
interactions and range shift processes is difficult to predict, consid-
ering the patterns of species geographic avoidance presented in our 
study could be of relevance. In species pairs with high geographic 
avoidance, if future suitable range overlap is predicted to increase, 
model projections that ignore the impact of strong biotic interactions 
will overestimate future range suitability. In contrast, a decrease in 
predicted future suitable overlap could lead to an unexpected larger 
suitable area due to competitive release. In our study system, among 
the pairs of species whose current ranges are most likely shaped by 
competition, future models predict a decrease in range overlap be-
tween E. serotinus and E. isabellinus, which would lead to competitive 
release effect and larger realisation of their future suitable ranges 
than at present. Conversely, the ranges of P. austriacus and P. kolom-
batovici are predicted to overlap substantially more in the future, 
which may limit the ability, in particular of P. kolombatovici that al-
ready has a very restricted range, to shift its range to track future 
suitable conditions. We show that disregarding biotic interactions 
can affect our ability to accurately predict species future distribu-
tions and their vulnerability to climate change. We also stress the 
importance of generating future range suitability projections that in-
dicate areas where interspecific competition may limit range shifts.

5  | CONCLUSIONS

Our study suggests that in absence of fine-scale mechanisms of re-
source partitioning, the effects of interspecific competition can scale 
up to impact species broad-scale geographic ranges. Therefore, this 
study highlights the importance of considering the effects of biotic 
interaction when predicting future range suitability under climate 
change. While a better comprehension of the operation of biogeo-
graphical processes across spatial scales requires better integration 
of community ecology process with larger-scale species distribution 
models, the measure of geographic avoidance that we present can be 
used to identify range patterns compatible to a broad-scale effect of 
interspecific competition. Its low data and computational requirements 
allow it to be widely applied as a screening tool to identify cases where 
biotic interactions could impact future climate change predictions.
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