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Abstract

Agricultural irrigation has significantly reshaped the land surface energy and water balance.
Previous studies have well investigated its cooling effect on air temperature (T,;.). However, its
effect on increasing air humidity which can intensify the humid heat was often overlooked,
particularly over urban areas with high population density, high T, and consequently greater
exposure to moist heat stress. In this study, using state-of-the-art reanalysis data at a high spatial
resolution (~9 km), we evaluated how changes in area equipped for irrigation (AEI) around a city
affect urban moist heat stress (UMHS) in more than 1000 cities in China and India. In addition to
T.ir, wet-bulb temperature (Twg) and wet-bulb globe temperature (Twpg), which consider
humidity and are closer to the perceived temperature, were assessed. We found that although AEI
expansion lowers urban Ty, irrigation increases Twg and Twpg due to increased air humidity,
thereby exacerbating the UMHS. This ‘warming’ effect of irrigation is more evident in northern
India where AEI has expanded significantly in recent decades, and is prominent in the
pre-monsoon and post-monsoon seasons, when precipitation and air humidity are low. However,
this effect is not evident in China due to the lower intensity of AEI expansion and differing climatic
conditions. Overall, this study highlights the side-effect of irrigation on regional climate, providing
crucial information for better understanding urban heat stress and for future city planning.

1. Introduction

Irrigation is one of the most important anthro-
pogenic land management activities, with strong
biogeophysical effects on the land surface and
regional climate (DeAngelis et al 2010, Yang et al
2020a). Since the 1950s, to meet the food demands
of the rapidly increasing population, the global area
equipped for irrigation (AEI) has increased substan-
tially, from 111 Mha in 1950 to 306 Mha in 2005
(Siebert et al 2015). In particular, China and India
show the largest AEI increases among all countries
due to their huge populations (figure S1 available
online at stacks.iop.org/ERL/17/054013/mmedia).
Irrigation increases soil moisture and adds
additional atmospheric water vapor through

© 2022 The Author(s). Published by IOP Publishing Ltd

evapotranspiration, which reduces the Bowen ratio,
lowers surface temperature, increases air humidity,
and may also influence regional precipitation. The
cooling effects of irrigation on near-surface air tem-
perature (T,;) and land surface temperature have
been investigated in numerous studies in recent years,
using both meteorological observations (Bonfils and
Lobell 2007, Yang et al 2020a, 2020b) and climate
model simulations (Lobell et al 2008, Cook et al
2010, Kang and Eltahir 2019, Thiery et al 2020). Some
studies have noted that irrigation can reduce human
exposure to heat stress by alleviating extreme Ty
(Lobell et al 2008, Thiery et al 2020). However, in
recent years, it has been increasingly recognized that
the assessment of heat stress should consider not
only T, but also humidity, as high air humidity
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prevents humans and livestock from dissipating heat
through evaporation of sweat (Pal and Eltahir 2015,
Im et al 2017, Raymond et al 2020). For example,
by analyzing 783 cases of heat-related human mor-
tality in 36 countries, Mora et al (2017) investigated
the climatic conditions associated with human death
and found that T, and relative humidity (RH%) are
the most important two factors that determine the
lethality during heat events. Thus, moist heat stress
is closely associated with human health, safety, and
productivity risk characterizations (Kjellstrom et al
2016, Sherwood 2018).

Wet-bulb temperature (Twg) and wet-bulb globe
temperature (Twgpg) are two widely used temperat-
ure indices that quantify the humid heat in an envir-
onment. Twp measures the joint effect of T;; and air
humidity on the perceived temperature of the human
body, while Twpg also considers the influences of
wind speed and solar radiation (equations provided
in text S1). The values of these two indices are directly
correlated with human health and are used to meas-
ure the intensity of heat stress. For example, a Twpg of
35 °C will cause the cooling mechanism of the human
body out of function and result in death within a few
hours (Sherwood and Huber 2010, Hanna and Tait
2015). Even a much lower Ty value of 28 °C caused
deaths during the 2003 European and 2010 Russian
heatwaves (Raymond ef al 2020). Besides, different
Twee values are also used as thresholds for limiting
outdoor military, occupational, and athletic activities
(Japan Sports Association 2013).

In recent years, studies have begun to reappraise
the impact of irrigation on heat stress through effects
on heat and humidity. Kang and Eltahir (2018) and
Krakauer et al (2020) conducted regional and global
climate simulations respectively, with and without
irrigation, and found that irrigation tends to increase
extreme Tywp as well as the intensity and frequency of
moist heatwaves. Mishra ef al (2020) investigated the
effects of irrigation on humidity and extreme moist
heat stress in India using satellite data and model
simulations. They demonstrated that intensive irrig-
ation in India increased air humidity and raised the
moist heat stress metrics, indicating impacts on about
37-46 million people in South Asia. However, that
study did not explicitly investigate urban areas or the
influence of rapid expansion of irrigated cropland.

The effects of irrigation on moist heat stress
have not been fully investigated to date, and sev-
eral key concerns remain unsolved. For example, the
few relevant studies have relied on numerical exper-
iments and simply compared simulations with and
without irrigation. Even for the state-of-the-art cli-
mate models, large biases still exist in these simula-
tions (Guo et al 2019, Chen et al 2021). Moreover,
due to inadequate representation of basic physical
processes as well as temporal and spatial discretiza-
tion, the responses of different models to irrigation
may include large uncertainties (Cook et al 2014, Fyfe
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et al 2021). Therefore, investigating and verifying the
results through examination of in-situ and reanalysis
data is of great value.

When considering heat and humidity effects,
great attention should be paid to urban areas due to
the urban heat island effect, high population dens-
ity, and consequently high risk of moist heat stress
(Daniel et al 2018, Katzfey et al 2020). However,
no studies have specifically investigated the effects of
irrigation on urban moist heat stress (UMHS). There-
fore, using the latest reanalysis and in-situ datasets
and focusing on urban areas, this study evaluates the
effects of irrigated cropland expansion on UMHS for
the first time. For more than 1000 cities in China
and India that experienced rapid expansions of irrig-
ated cropland and increases in urban population, we
investigated the relationship of changes of AEI around
cities with UMHS from 1980 to 2005. Moreover, the
spatial diversity and the seasonal patterns of irriga-
tion’s effect on UMHS are investigated.

2.Data

We used four geophysical, two socio-economic, and
two meteorological datasets to calculate AEI expan-
sion around cities and measure its influences on the
urban climate. Information about these datasets is
provided in table 1. The climate classifications of all
cities are shown in figure S2, which is determined
by their coordinates (i.e. latitude and longitude) in
Kottek et al (2006), including 14 climate types in
China and 10 climate types in India.

State-of-the-art global reanalysis meteorolo-
gical data were obtained from ERA5-Land (Munoz-
Sabater et al 2021), which provides the evolution of
land variables with very high temporal (hourly) and
spatial (0.1°, ~9 km) resolution for the period of
1981-2020. T,;;, dewpoint temperature, downward
solar radiation, wind speed, air pressure, and pre-
cipitation are used in this study. From the original
meteorological variables from ERA5-Land, specific
humidity (Q) and relative humidity (RH%) are cal-
culated (text S2). In addition, to validate the reliabil-
ity of ERA5-Land data, in-situ observations of T, Q,
RH%, and Twpg from the Hadley Centre Integrated
Surface Database (HadISD) (Dunn 2019) are used
(text S3 and figures S3-S6).

3. Methods

3.1. Calculation of change in the area equipped for
irrigation around each city

To calculate the change in AEI around each city, an
impact area is defined for each city. Specifically, a
square area around each city (referred to as a city
square) is first determined (text S4 and figures S7
and S8), then the AEI proportion (AEI/total area of
city square x 100 [%]) and its change from 1980 to
2005 are calculated for each city square. Due to the
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Table 1. Information about the datasets used in this study.

Dataset Spatial resolution Time range Time interval References

Irrigated cropland 5 arcmin 1900-2005 5 or 10 year Siebert et al (2015)

map (~9 km)

European Space 300 m 1992-2005 Annual http://maps.elie.ucl.

Agency Climate acbe/CCl/viewer/

Change Initiative download.php

land use

City coordinates Point Single https://simplemaps.
com/data/world-cities

Koppen—Geiger 0.5° 1951-2000 Single Kottek et al (2006)

climate classification

Population 30 arcsec 2010 Single CIESIN—Columbia
University (2018)

Gross domestic 5 arcmin 2010 Single Kummu et al (2018)

product

ERA5-Land 0.1° 1981-2020 Hourly Munoz-Sabater et al

reanalysis data (~9 km) (2021)

HadlISD in-situ Point 1981-2020 Hourly to 6 hour Dunn (2019)

meteorological data

differing sizes of cities, city square size varies among
cities. In general, the size of a city square is approxim-
ately ten times the urban area of the city in 2005. In
addition, city squares with large water surface areas
are excluded from analysis, as water surfaces can have
a strong influence on regional air humidity (Condie
and Webster 1997). This algorithm obtains the AEI
proportion change in each city square for 1036 cities
(647 in China and 389 in India).

3.2. Moist heat stress indices

Two indices, wet-bulb temperature (Twp) and wet-
bulb globe temperature (Twgg), are used to estimate
UMHS. Twpg assumes that the skin is completely wet
and unclothed, and can be determined as a function
of T,y and RH% (Stull 2011). Twgg is @ more com-
prehensive index that is the weighted sum of the T,
Tws, and the globe temperature Tg. Tg measures
the radiation factor (e.g. solar radiation) in human
heat loss and is determined by radiant heat, T;, and
wind speed. Twpg applies to realistic conditions of
hard exertion when some skin is wet and exposed
(Sherwood 2018). The calculation of Twgg in this
study is based on Liljegren et al (2008). More detailed
information on Tywp and Twpgg and their calculation
are provided in text S1.

The UMHS is defined as the intensity and dur-
ation of high values of Twg and Twpg over urban
areas. We investigated the monthly-average daily
maximum Twp and Twge in each grid that includes
a city coordinate at the resolution of ERA5-Land
(~9 X 9 km) to quantify UMHS. The changes
of monthly-average daily maximum T4, Tws, and
Twag in the target area are calculated between 1981—
1990 and 2001-2010 (the latter period minus the
former, hereinafter abbreviated AT, ATwg, and
ATwpg, respectively). In addition to ATwp and
ATwgg, changes in the number of hot days are also

3

evaluated. The number of hot days is defined as
the number of days per month on which the daily
maximum temperature index values exceed a given
threshold: 35 °C, 25 °C, and 31 °C for T, Twa,
and Twgg, respectively. These thresholds are based on
previous research (Sherwood and Huber 2010, Japan
Sports Association 2013) and represent the warning
level that may cause heavy heat stress to the human
body.

4, Results

4.1. Change in the area equipped for irrigation
around each city

The results show that cities in northwestern India
and the North China Plain (NCP) have the highest
AEI proportions in 1980, with AEI proportions of
some cities being greater than 80% in northwest-
ern India and 60% in the NCP (figure 1(a)). The
national average AEI proportions of cities in China
and India were 21.5% and 25.3% in 1980, respect-
ively, with India’s average value being slightly higher
than China’s (figure 1(c)).

In terms of changes in AEI proportion between
1980 and 2005 (hereinafter AAEI), northern India
(mainly the Ganges River basin, hereinafter abbre-
viated NI) has gone through significant AEI expan-
sion over those 25 years, with AAEI in many cities
greater than 30% and a regional average AAEI of
14.1% (red box 1 in figure 1(b)). In China, appar-
ent AEI expansion also occurred in the NCP, North-
eastern China Plain (NECP) (red boxes 2 and 3 in
figure 1(b), respectively), some cities in northwest-
ern China (Xinjiang Province), and Inner Mongo-
lia, with increases greater than 20% in a few cit-
ies. Regional average AAEI in the NCP and NECP
are 6.8% and 8.2%, respectively. In general, AAEI
has been much larger in India than in China, with
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Figure 1. Spatial and frequency distributions of AEI proportion (%) for each city square in China and India in 1980 (a), (c), and
its changes (AAEI) from 1980 to 2005 (b), (d). The dashed lines and numbers in subplots (c) and (d) indicate the national
average values of AEI proportion (c) and AAEI (d) in China (red) and India (green), respectively. The red boxes labeled 1-3 in
subplot (b) represent NI, NCP, and NECP, respectively, and their regional average AAEI values are shown in the box in (d).

national average values of 7.8% and 3.1%, respect-
ively. Moreover, apparent AEI decreases are observed
for cities in northwestern India, with the highest AEI
proportion occurring in 1980. The maximum AEI
proportion decrease of cities in this region is 22.0%.

4.2. Change in urban moist heat stress

We investigated ATy, ATwg, ATweg (figures 2(a)-
(c) and (g)-(i)) and changes in the number
of hot days based on these temperature indices
(figures 2(d)—(f) and (j)—(1)). The results for the
hottest month in China (July) and India (May) are
shown. The urban maximum T}; in most Chinese
cities shows an apparent increase in July (figure 2(a)),
and the national average value for all Chinese cities is
around 0.5 °C (figure 2(g)). The urban ATy, values
are slightly lower in the NCP and NECP than in other
areas (figure 2(g)). In India, however, the AT, in
May differs among cities located in different regions.
The urban maximum T;, shows an apparent increase
in cities in northwestern India, where an apparent
decrease in AEI is observed (figure 1(b)), as well as
in the central region near the east coast. By con-
trast, apparent decreases in urban maximum T';, are
observed for cities in NI, which have experienced sig-
nificant AEI expansion, as well as in southern India.
In general, the increase of maximum urban T is
not as intense in India as in China, and the national
average value for India is around 0 °C. In terms of the

number of hot days based on T4, similar changes are
observed in regions with significant AEI changes (i.e.
NI, NCP, and NECP) as well as in the other regions
of each country, except that the increase in hot days
in the NECP is slightly smaller than in other regions
of China (figure 2(j)).

The results for Twg and Twpgg differ from those
for T,.. Although the apparent cooling of max-
imum T, is observed in NI, a significant increase
in maximum Twg (~0.5 °C) occurs in this region
(figure 2(b)). This increase is much larger than
the increase in other regions (~0.1 °C) of India
(figure 2(h)). This increase of urban maximum Twp
in NI is caused mainly by the significant increases in
urban maximum Q and RH% (figures S9(a) and (b)).
In addition to the increase of daily maximum Tys,
the number of hot days based on Twg also shows an
apparent increase (~4 d month™!) in NI compared
to other regions of India (~1 d month™!). However,
for cities in China, no difference in ATywg is evident
between regions with apparent AEI increases (NCP
and NECP) and other regions. Furthermore, due to
the decrease of Q in the NECP (figure S9(a)), its
maximum Twg and number of hot days show slight
decreases.

For Twgg, which further considers downward
solar radiation and wind speed, similar results to Twp
were observed in both China and India. The increases
in maximum daily Twgs and the corresponding
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Figure 2. The changes in average daily maximum Tyir, Tws, and Twsg (ATair, ATws, and ATwsg, °C) (a)—(c) and their
corresponding hot days (d month™!) (d)—(f) in the urban area of each city between 1981-1990 and 2000-2010; boxplots of
ATgir, ATwg, and ATwgg (°C) (g)—(i) and their corresponding hot days (d month ') changes (j)—(1) in different regions. On
the x-axis label in (j)—(1), ‘Others’ represents the other cities excluding NI (for India), NCP, and NECP (for China). The results of

the hottest month are shown for China (July) and India (May).

number of hot days in NI are much greater than in
other regions in India (figures 2(c), (f), (i) and (1)).
The time series of Tqi, Q, Twa, and Twpg for cit-
ies in India also indicate that cities in NI experienced
apparent T, cooling along with significant increases
of Q, Twg, and Twpg compared with other regions
(figure S10).

4.3. Correlation between expansion of the area
equipped for irrigation and changes in urban
moist heat stress

To investigate the relationship between AEI expan-
sion and UMHS changes in recent decades, we ana-
lyzed the correlations of ATy, ATws, and ATwgg
with AAEI in NI, NCP, and NECP. The correspond-
ing Spearman correlation coefficients are denoted as
the AT, -AAEL ATwg-AAEIL and ATWBG-AAEI
correlation coefficients, respectively. Figure 3 shows
a scatterplot of temperature metric changes versus
AAEI for cities located in NI, NCP, and NECP.
Due to the differing climatic conditions of these cit-
ies, the results are presented separately for each cli-
mate classification, including Csa (warm temperate,

summer dry, hot summer), Cwa (warm temperate,
winter dry, hot summer), and Dwa (snow, winter dry,
hot summer). The AEI changes of cities under each
climate classification in China and India are shown in
figure S11.

For cities in NI, the AT, values show signific-
ant negative correlations (p-value < 0.01) with AAEI
in the surrounding area (figures 3(a) and (b)). The
AT,i;-AAEI correlation coefficients for Csa and Cwa
in NI are —0.56 and —0.31, respectively. By contrast,
ATwsg and ATwpg in urban areas show positive cor-
relations (p-value < 0.01) with AAEL, with ATwsg-
AAEFEI and ATwgg-AAEI correlation coefficients for
both climate classifications greater than 0.5. These
results indicate that the increase of AEI in the NI
region tends to reduce the daily maximum urban T,
in the hottest month, but, intensified irrigation activ-
ities also affect other climate variables (e.g. increased
air humidity), which increases the risks of moist heat
stress in urban areas.

However, this phenomenon is not evident in
the NCP and NECP regions of China, and the
corresponding correlation coefficients between
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Figure 3. Scatterplots of ATy (a)—(d), ATws (e)—(h), ATwsc (i)—(1) between 1981-1990 and 2000-2010 (y-axis) versus AAEI
from 1980 to 2005 (x-axis) for cities under four Képpen—Geiger climate classifications located in NI, NCP, and NECP. Each dot
represents the result for one city; the dot size indicates the city square size. The dot color is consistent with the climate
classification in figure S2. The results for the hottest month in China (July) and India (May) are shown. r and p represent the
Spearman correlation coefficient and the corresponding p-value, respectively.

temperature metric changes and AAEI are low
(figures 3(c), (d), (g), (h), (k) and (1)). This differ-
ence between India and China may result from the
following four factors. First, the expansion of AEI is
more significant for cities in NI. The average value of
AAEI in NI is approximately double those in NCP
and NECP. This difference makes AEI expansion a
more critical factor in shaping the regional climate
in NI than in the other areas. Second, the impact of
artificial moisture supply from irrigation should be
greater under drier conditions. The air is much drier
in NI in May (with RH% around 20%-40%) than
in the NCP and NECP in July (with RH% around
60%—-80%) (figure S12). Third, NI may have larger
irrigation water consumption compared with NCP
and NECP. For example, Siebert and Doll (2010)
showed that the annual irrigation consumption in
NI (mainly 400-1922 mm yr~!) is apparently higher
than NCP and NECP (mainly 250-600 mm yr~! and
150—400 mm yrfl, respectively). In addition, the dif-
ference in regional irrigation method/efficiency may
also influence. For example, Fu et al (2022) found
that by implementing water-saving techniques, irrig-
ation water use has been substantially reduced in
Northwest China in recent decades, which mitigates
the influence of irrigation on regional evapotran-
spiration, temperature, and humidity. Similarly, such
water-saving techniques are also substantially applied
in NCP and apparent improvement in irrigation

efficiency is found in NCP in recent decades (Zhou
et al 2020). Forth, for cities of the NCP and NECP
regions, other factors such as urban area expansion
and global warming may have strong impacts on
the regional climate that mask the influence of AEI
expansion.

To further investigate the seasonal variation of
the effect of AEI expansion on daily maximum
urban T, and UMHS, the AT..-AAEIl, ATwg-
AAEIL and ATwgg-AAEI correlation coefficients for
12 months are plotted in figure 4. Only correla-
tion coefficients that meet the significant criterion
(p-value < 0.05) are shown in color. The results indic-
ate that the cooling effect of AEI expansion on urban
T.ir generally occurs throughout the year in Cwa cli-
mate zones in NI, while it is apparent only during
winter (November—February) and the pre-and early-
monsoon (May—June) seasons in Csa zones in NI
These results are in accordance with the findings of
Mishra et al (2020), who reported that irrigation-
induced cooling is more dominant during the pre-
monsoon and post-monsoon seasons in NI based
on satellite data. For Twg, the enhancement driven
by AEI expansion is most apparent during the pre-
and early-monsoon seasons (February—June) for both
Cwa and Csa climate zones in NI and during the
post-monsoon season (October—November) for Cwa.
In monsoon months with abundant precipitation
and air humidity, the effect of AEI expansion on
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Figure 4. Heatmap of Spearman correlation coefficients between the changes in three temperature indices (daily maximum T,
(a), (b), Tws (c), (d), and Twsg (e), (f)) between 1981-1990 and 2000-2010 and AAEI from 1980 to 2005 in cities under four
Képpen—Geiger climate classifications in NI (Cwa and Csa in (a), (c), (e)), NCP (Cwa in (b), (d), (f)), and NECP (Dwa in (b),

(d), (f)) for 12 months.

UMHS is insignificant. Similar to Twg, the influ-
ence of AEI expansion on Twgg in NI is stronger
in the pre-monsoon (April-May) and post-monsoon
(October—November) seasons. In the NCP (Cwa) and
NECP (Dwa) regions of China, the effect of AEI
expansion on maximum urban T,; and UMHS is
unclear, and no seasonal variation pattern can be
identified.

To directly evaluate the correlations between
AAEI and influencing factors of moist heat met-
rics, heatmaps of correlation coefficients of AAEI
with the change in daily maximum Q, solar radi-
ation, wind speed, and daytime mean RH% in urban
areas were constructed (figure S13). Changes in Q and
RH% in NI show strong positive correlations with
AEI expansion during the pre-and early-monsoon
season (January—June) and the post-monsoon sea-
son (October—November). In addition, wind speed
change shows negative correlations with AEI expan-
sion in NI (March—June, September—December),
which may be driven by the increased roughness
of the land surface caused by cropland expansion
around the city. The change in solar radiation has no
apparent correlation with AEI expansion.

4.4. Relative contribution of the area equipped for
irrigation expansion to urban moist heat stress

In addition to AEI change, changes in urbanized
areas and regional precipitation may also affect urban
Toir and humidity. Changes in the urban area pro-
portion of each city square and regional precipit-
ation in recent decades are shown in figures S14
and S15, respectively. To evaluate the contributions
of AEI expansion to UMHS compared with those

two factors, we applied multivariate linear regression
to fit urban AT, AQ, and ATwg as functions of
AAEI urban area proportion change (AUA), and
precipitation change (AP) (text S5). Using the fitted
regression model, the contribution of each factor to
urban AT, AQ, and ATwg can be measured based
on a change (increase) of one standard deviation for
each factor. The regression model was fitted for 70 cit-
ies under the Cwa climate in NI in May, which is both
the hottest month and when UMHS changes have
strong correlations with AAEFI (as shown in figures 4
and S13).

Figure 5 shows the performance of the regres-
sion models (a)—(c) and the contribution of each
factor to the output (d)—(f). The results indicate that
the regression model can accurately simulate met-
rics changes from ERA5-Land data and that the vari-
ability of metric changes is explained well by three
input factors, all of which have R? values near or
greater than 0.5. Moreover, the regression models
have small root mean square error (RMSE) values. In
terms of the contribution of each factor to the met-
rics changes, an increase in urban area proportion
tends to increase urban maximum T,; in NI, while
increases in AEI and precipitation tend to decrease
urban maximum T, with increased precipitation
showing a larger cooling effect on T',;; than AAEI. For
AQ and ATwsg, increases in both AEI and precipit-
ation tend to increase urban maximum Q and Twg,
with AEI expansion making the larger contribution
to the increases of Q and Twg. An increase in urban
areas has a slight negative effect on Q, and its impact
on Tywp is negligible compared to the effects of AEI
expansion and increased precipitation.
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Figure 5. (a)—(c) Scatterplots of urban ATy, AQ, and ATwg simulated with a multivariate regression model versus
corresponding reference data from ERA5-Land for each city in the Cwa climate zone in NI. RMSE and R? indicate root mean

square error and coefficient of determination, respectively. (d)—(

f) Relative contributions of changes of one standard deviation in

urban area proportion (AUA, 3.9%), AEI proportion (AAEI, 13.1%) and precipitation (AP, 21.7%, 18 mm) to ATy, AQ, and

ATwg.

4.5. Verifying results with HadISD in-situ data

For validation, we investigated the changes in daily
maximum Ty, Q, Twp, and daily average RH% of
the hottest month between the periods of 1981-1990
and 2001-2010 at 372 stations in China and 72
stations in India using the HadISD dataset (figure
S16). Although climate stations have a much lower
density than cities, especially in India, similar regional
patterns can be observed. In addition, despite the
cooling of T, in NI is less evident in the station data
than in reanalysis data due to the influences of local
conditions around the station and the low station
density, much greater increases of air humidity and
Twg are observed in NI than in other regions of India.
These results indicate that NI has experienced a strong
intensification of moist heat stress in recent decades.
As NI has the highest population density in India and
very high gross domestic product (figure S17), the
enhancement of UMHS due to AEI expansion may
lead to high exposure and risk for outdoor workers,
impacting economic activities.

5. Discussion

The near-surface meteorological variables of ERA5-
Land are used to conduct the main analysis, which
uses similar data inputs with ERA5 that com-
bines multi-source observations and model fore-
casts. Admittedly, assumptions and inadequacies of
the model may induce biases to the outputs (Singh
et al 2021), which may also partly result in its

deviation with respect to ground-based observations
(figure S16). However, vast amounts of radiosonde,
satellite-based, and in-situ observations are assimil-
ated into the estimation to obtain the most plausible
state of the atmosphere. For example, in terms of
near-surface field, from 1979 to 2019, there are about
one billion observations for each of surface air tem-
perature and relative humidity were processed by
the land data assimilation module of ERA5-Land
(Hersbach et al 2020). The assimilated data with
these comprehensive observations can well reflect the
time-evolving and the spatial diversity of the near-
surface climate state, which provides reliable support
to measure the influence of AEI change on regional
climate.

The Koppen—Geiger climate classification of Kot-
tek et al (2006) is used to classify the cities when
conducting correlation analysis, which represents the
climate state of 1951-2000. Admittedly, the climate
classification is changing under global warming, and
some updated versions of Koppen—Geiger climate
classification with higher-resolution were proposed
based on different input datasets (Beck et al 2018).
However, the focus of our research is to detect the
influence of irrigation in specific regions with intens-
ive irrigated cropland expansion (e.g. NI), and the
climate classification is only used to mitigate the
potential influence of climate difference in correlation
analysis. Therefore, although there are various ver-
sions of climate classifications, we believe it will not
change our results and conclusions in how irrigated
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cropland expansion influences the region and urban
climates.

Notably, changes in UMHS can be influenced by
global warming and internal climate variability in
addition to the regional influence of AEI expansion
(Im et al 2017, Mishra et al 2020). For example,
El Nifio—Southern Oscillation affects monsoon sys-
tems, altering temperature and humidity in India
and China (Revadekar et al 2009, Zhang et al 2018,
Kiran Kumar and Singh 2021). Nonetheless, the main
objective of this study is investigating the influence of
AEI expansion on UMHS. In-depth quantification of
the contributions of various factors influencing tem-
perature and humidity in these regions is a critical
research direction for future studies.

In addition to moisture from anthropogenic irrig-
ation activities, urbanization can lead to additional
anthropogenic moisture emissions through multiple
pathways (e.g. thermal power plants), with effects
on humidity. In this study, the specific humidity Q
is negatively correlated with AUA in NI, demon-
strating an urban dry island effect (Hao et al 2018).
However, the influence of urbanization on humid-
ity remains under debate and opposing results have
been obtained in different cities (known as urban wet
and dry island effects) (Wang and Gong 2010, Sailor
2011, Hao et al 2018). Future comprehensive analyses
of UMHS should consider these effects.

6. Conclusions

This study presents novel findings regarding the influ-
ence of irrigated cropland expansion around cities on
UMHS in more than 1000 cities in India and China.
Using state-of-the-art reanalysis and in-situ climate
data, we conducted the first analysis focused specific-
ally on urban areas and found that during 1980-2005,
cities in NI, NCP, and NECP have experienced sig-
nificant increases in the AEI in their suburb areas
of 14.1%, 6.8%, and 8.2%, respectively. In NI, AEI
expansion tends to result in urban T, cooling. Con-
versely, as irrigation activity increases air humidity,
AEI expansion shows positive correlations with the
increases of Twp and Twgg, indicating enhancement
of the UMHS. This effect is most apparent in the pre-
monsoon and post-monsoon seasons, when precipit-
ation is low. However, no such effects of AEI expan-
sion are observed for cities in NCP and NECP in
China due to the differences in AEI expansion intens-
ity and climatic conditions. The results of multivari-
ate linear regression analysis support AEI expansion
having stronger impacts on exacerbating the UMHS
than precipitation changes and urban area expansion
in NI over recent decades.
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