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FOREWORD

The work on regional development at IIASA is devoted to problems of long-term
development of regions and systems of regions. “Long-term” basically means that the
focus is on structural rather than marginal changes of regional economies. Some of these
structural issues of regional policy making are analyzed more efficiently with a continuous
two-dimensional spatial representation than with a discrete subdivision into regions, which
is more common in regional economics.

To stimulate qualitative, structural analysis of regional development issues, IITASA
invited two experts, Martin J. Beckmann and Ténu Puu, to work together at Laxenburg
for a short period in September 1979. Time has not yet permitted the authors to complete
their monograph, though some of the finished chapters have been circulated as IIASA
Collaborative Papers.

One outcome of this work, however, is the present paper by Tonu Puu. It dates
from the same period, but was completed when he visited IIASA again in March 1982.

BORIS ISSAEVY
Leader
Regional and Urban Development Group
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STRUCTURALLY STABLE TRANSPORT FLOWS
AND PATTERNS OF LOCATION

Toénu Puu
Department of Economics, Umed University, S-901 87 Umed, Sweden

SUMMARY

This report describes developments of the continuous model of trade and equilibrium
in two-dimensional space, introduced by Martin J. Beckmann in the early 1950s. The
model has two distinctive features:

1.  Anoptimum flow field is found by solving a variational problem for an isotropic
metric of transportation cost. The condition is analogous to Huygens’ principle
in optics.

2. There is a connection between the local change in density of commodity flow
(its divergence) and the source—sink distribution. This corresponds to the con-
servation equation in hydrodynamics.

Except for its capability of representing very general geometries of spatial economies, the
Beckmann model is shown to be ideal for the application of structural stability analysis.

The original model is extended by treating several interrelated commodity flows
and an explicit production activity, transforming the contents of one flow (labor services)
into another (finished goods). A residential—industrial agglomeration pattern arises that
corresponds to the two flows.

This general model, which is capable of representing very diverse spatial organiza-
tions but at the same time contains very little information, is specified by using the generic
theory of differential equations. Therefore, if structural stability of the flows of commod-
ities is assumed, it is possible to obtain a rather precise topological characterization of the
stable flow and of the corresponding spatial organization.

Structural stability implies that:

a. the flow is regular (or topologically equivalent to parallel straight lines) except
at a finite number of isolated singularities,;
these singularities are sources, sinks, or saddle points, and

¢. no trajectory joins saddle points.
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By assuming these conditions, it is possible to construct (up to topological equivalence)
the global graph of stable flow. This graph corresponds to a quadratic (not hexagonal)
spatial organization.

On the contrary, it is seen that traditional market area theory, as developed by
Christaller and Losch for homogeneous space, becomes structurally extremely unstable if
it is transferred to inhomogeneous space.

The main conclusion is that extreme care should be taken when deriving the results
of classical market area theory from nonlinear models. The classical theory is linear and,
therefore, always structurally stable. Without linearity (i.e. homogeneous space) stability
is no longer guaranteed, but must be expressly assumed. The conclusions about basic spatial
organization then become very different.

1 REGIONAL MODELING AND STRUCTURAL STABILITY

Many spatial organization patterns in regional modeling may represent equilibria or
optima. If a location structure for economic activity is given, the problem of finding an
optimum transportation system can be reasonably well defined, and, conversely, location
problems can be solved if transportation possibilities are known. What can we say, how-
ever, about concentrating economic activity compared with decentralization, or about
different agglomeration patterns when we always suppose that an appropriate transporta-
tion system is chosen?

One approach to this problem would be as follows. A location pattern and a trans-
portation system would give rise to a system of flows of goods and services between loca-
tions in the region being studied. As partial changes in the location of economic activities
occur constantly it is reasonable to suppose that the flow patterns are subject to perturba-
tions. Of particular interest would be flows that are stable to perturbation,i.e. that respond
with small changes to small perturbations but keep their qualitative structures, and loca-
tion patterns that are compatible with such flows. We would expect actual location pat-
terns to be compatible with structurally stable flows most of the time, and that there would
be sudden changes whenever the structures become unstable.

This philosophy is, of course, very much influenced by catastrophe theory and con-
siderations of transversality that lie behind it. The relevant mathematical concepts date
back to work on generic singularities and structurally stable dynamic systems (Morse
1934, Smale 1967, Thom 1969, Peixoto 1973). However, only with the popularity of
applications of catastrophe theory (in almost trivial ways) to various discontinuous changes
has the substance of the mathematics behind folds, swallowtails, and butterflies been made
accessible to nonmathematicians (Poston and Stewart 1978). This could explain why the
powerful concepts of structural stability have not been used much by economists until
recently.

2 THE CONTINUOUS MODEL OF TRANSPORTATION

The distinctive feature of the present study, beside the use of structural stability, is
the continuous transportation model, which was formulated by Beckmann (1952, 1953)
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and Kantorovich (1958). The Beckmann formulation is more appropriate for the present
purpose.

The model has two characteristics. Firstly, the transportation system is not specified
in terms of a network with sources and sinks at a number of nodes, but in terms of a cost
of transfer across each point of the region. For simplicity this cost field can be made iso-
tropic by assuming the cost of transfer to be independent of direction. Optimum routes
can be found by variational calculus and correspond to Fermat’s principle of least time in
geometric optics. Later contributions have developed the approach by mapping the derived
routes as geodesics on to a flat (Wardrop 1969) or curved (Angel and Hyman 1970, 1972,
1976) manifold (also Puu 1978).

Secondly, a continuous distribution of point sources and sinks over the region is
related to excess supplies and demands. The flow of goods becomes analogous to a flow in
hydrodynamics and an important equation, corresponding to the continuity equation,
relates the divergence of the vector field representing flow to excess supply at each loca-
tion. This feature of Beckmann’s model seems not to have been developed further and
hence the continuous space market theory that is occasionally mentioned in textbooks
still has the shape in which Beckmann cast it fifteen years ago. In particular, the theory
concerns one kind of good or a number of different goods that are unrelated, in that they
do not constitute inputs and outputs in some production process, for example.

In this study production activity is explicitly introduced by a Cobb—Douglas pro-
duction function that applies at all locations. Local supplies of raw materials and other
variations of productivity are summarized in the variation of a multiplicative factor. One
good is produced by means of three classical production factors: land, capital, and labor.
By use of this technology, the inputs can be made substitutable in production.

Land is, of course, immobile and so is capital in the sense of buildings and machin-
ery. For labor and goods it is possible that the distribution of residences differs from the
employment distribution and that the consumption distribution differs from the produc-
tion distribution. The result is flows of goods and labor services that are in general oppo-
sitely directed. Related to these flows are price and wage gradients.

Hence transportation possibilities decide wage and price structures. In contrast to
wages and prices, capital rent is assumed to be constant in equilibrium, as capital services
need not be transported. Land rent, finally, is determined as a residual and may vary over
the region. The actual short-run possibilities of production will naturally vary because of
the different amounts of capital invested, even if we disregard nonsystematic variations.

A consequence of the variation of wages and prices is that the factor productivities
and the choice of labor-intensive or capital-intensive techniques will vary over the region.

3 THE PRODUCTIVE SYSTEM

Let us suppose that a Cobb—Douglas production function is applicable at any loca-
tion of the economy. A homogeneous product Q is generated from land A4, capital K, and
labor L. Hence

0=bK%LP 47 (1)
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where
atf+y=1 2)

The production function was chosen for its simplicity, but it is not impossible to defend
the choice on grounds of realism. The substitutability between capital and labor is a stan-
dard assumption in economics. In the economics of agriculture, capital increases the
productivity of land and more labor does the same. This accounts for the two other sub-
stitutions. An analogous argument holds for industrial production, since a factory can be
built in several storeys to reduce the need for land and since lack of space certainly re-
duces the productivity of labor.

Let the local price of the good be p,land rent g, capital rent r, and wage w. Optimum
production requires that

aQ/K=r/p 3)
BG/L=wp 4

These conditions determine how the ratios of rent and wage to price determine total cap-
ital and labor productivities. The production function in (2) can be rewritten as Q/4 =
b(K/A)“ (L/A)B. This together with (3) and (4), where the left-hand sides can be substi-
tuted by Q/A /(K/A) and BQ/A /(L/A), yields three equations in capital, labor, and out-
put per unit area of land, which hence can be solved when the relevant price ratios are
known.

The share of land in the total revenue is pQ —rK — wlL, which, according to (2—4),
equals ypQ. Land rent per unit land area is hence determined by

YO/A=¢g/p Q)

This expression is similar to (3) and (4) but it is no optimum condition. Rather, it expresses
how land rent is determined from productive activity per unit land area and from product
price at the location.

Finally, (2-5) yield
gA +rK + wlL =pQ (6)

or the result that total revenue is divided between incomes of landowners, capitalists, and
workers. This will be of use later when general equilibrium is discussed.

The symbols for production and use of factors of production referred to some profit-
maximizing unit firm using a finite portion of land as one input. We now wish to consider
a continuum of firms at each point; their varying use of land is reflected in varying densi-
ties of production and uses of inputs per unit land area. Therefore, g = Q/A, k = K/A,
and / = L/A are introduced. Equations (1—6) can be rewritten in terms of these new sym-
bols, but making q, &, /, and b functions of the space coordinates (x,y) implies that the
change is not purely formal but represents a limiting process.
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The production function (1} can now be expressed as
q=bk%P 7

where, by virtue of (2), @ + § < 1. The optimum conditions for capital (3) and labor (4)
become

aqfk =r/p ®)

Ba/l=wip )
The equation determining land rent becomes

Ya=g/p (10
and the profit exhaustion condition (6) is now

gtrk+wl=pq 11y

We can see that the price ratios determine the quantities of inputs empioyed and outputs
produced per unit land area by substituting from (8) and (9) into (7):

q = oY BBIY (p/1) Y (p)w) BIY
Substituting back into (8) and (9), respectively, produces
k= oY BBIY (pry 1+l (1) Bl
1= %Y BBIY (p ) @Y (ppw)1+BIY
which establish the assertion. If we now take (10) into consideration, then
Bl Tp=r®whepp

which links together the four prices in the model. As we shall see, the costs of transporta-
tion and the optimum flow directions determine the spatial variation of product price and
wage rate. We shall also assume that capital is optimally allocated so that capital rent is
constant. Thus the last relation determines the land rent at every location.

We can consider the implication of this. From the production side, with given trans-
portation possibilities the whole price structure is completely determined. On the other
hand, the utility of various locations for a household depends on residential space available
and on consumption of goods. The trade-off between housing space and consumption,
however, depends on the four prices, as the cost of housing depends on land and capital
rents, income depends on local wages, and consumption possibilities are determined by
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the local price level. Accordingly, the highest obtainable utility at a given location is de-
termined by the four prices. It would be a very unlikely coincidence, however, if the stip-
ulation of a constant utility for all locations were automatically fulfilled by the price sys-
tem determined from the production side.

The conclusion is that if we do not admit that capital rent may vary over the region,
it is impossible to make all locations equivalent as residences. Therefore, an optimum alloca-
tion of capital, having the same yield everywhere, is incompatible with a spatial structure
where residential locations are equivalent. Either a variation of the yield on capital or a
variation of residential attractiveness is necessary because of a lack of degrees of freedom.
Consequently, either migration flow or a relocation of capital in its accumnulation process
seems to appear whenever this is not precluded by scarcities of space.

We have not considered explicitly the use of land for housing, but doing this would
only add a new demand component for land without increasing the number of degrees of
freedom.

Our assumption of a linearly homogeneous production function may seem unduly
restrictive. It must be admitted that this is crucial to our analysis, as the areal density of
output would not be a well defined function of the areal densities of inputs without linear
homogeneity. Dividing (1) by 4 makes land input disappear only when the exponents add
up to unity. (The form of a Cobb—Douglas function, on the other hand, is not essential.
We could do equally well with other linearly homogeneous functions.)

How restrictive is the assumption of linear homogeneity? Frisch (1965) argues that
variable returns to scale are mainly due to incomplete specification of the inputs (and
other factors that influence output). Once everything relevant is listed, we could consider
any proportionate changes of scale of process operation as possible. We have by no means
avery extensive list of inputs. On the other hand, we deal with very broad categories of in-
puts and output. We have in mind a process by which land is used as space and as a source
of an almost freely available raw material (like a mineral or a biological substance). By the
application of services of labor and capital (a produced means of production) the materials
are turned into finished goods available for general consumption. With such a heavy aggre-
gation the linear homogeneity does not seem too restrictive an assumption.

In regional science increasing returns are often assumed, in fact much more often
than in general economics. This indicates that the assumption reflects a wish to establish
certain results about agglomeration. It need not rest on a compelling conviction that in-
creasing returns must be assumed as soon as production theory is applied in a spatial con-
text.

The reasoning about increasing returns, or externalities, or both, in spatial economics
often indicates that they serve as proxies for accessibility between productive activities
that need much interaction. However, once we account separately for the communications,
and hence for the accessibilities, in our system, there seems to be no need for an extra
assumption about increasing returns or externalities. Only the purely technological reasons
remain, but they are no stronger than in general economics so it seems that we should be
allowed to disregard variable returns to scale at the present level of abstraction.

4 FLOWS OF GOODS AND LABOR

Whereas q(x,y) and I(x,y) denote the quantities of product supplied and labor
demanded at each location, ¢'(x,y) and 7'(x,y) denote the quantities of product demanded
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and labor supplied. As the former are determined by the spatial organization of productive
activities the latter depend on the residential location structure. Consumption is, of course,
not only out of labor incomes but out of land and capital rents as well. If residential areas
tend to be differentiated from industrial areas, excess demand and excess supply distribu-
tions will arise such that there is excess supply of goods and excess demand for labor in
industrial areas and the opposite situation in residential areas. The differentiation is not
such that production exclusively takes place in industrial areas; it is just more concentrated
there. As a consequence, flows of goods and labor in opposite directions arise.
We denote the flows of goods and labor, respectively, by

q=(q,xy),q,xy)) (12)

and
1=, x»),1L,xy)) (13)

They are vector fields, i.e. they have direction as well as magnitude, and vary in direction

and/or magnitude from one point to another. Conceptual flows of capital and land might

be introduced as well by assigning residential location to capitalists and landlords, or by

assuming an ownership structure for capital and land among workers. However, it only

complicates analysis to introduce these zero-cost flows, which can take any paths in space.

The cost is zero because capital and land are already invested at the points of employment.
The unit vectors

q/lgl = (cos 8, sin ) (14)

I/l = —(cos 8, sin 8) (15)

define the flow directions, which are assumed to be opposite because we assume that the
same transportation system is used for goods and labor and because we assume goods to
flow from industry to residences and labor services from residences to industry.

The Euclidean norms

gl = (@} +q))""? (16)

=@ + By a7

represent quantities of goods and labor shipped across a given location.

The divergences of the flows, V.q = 3q,/dx + 3q,/dy and V.I =101 [3x + 3l /3y,
represent the quantities of elements added to the flows at each point if positive or the
quantities withdrawn if negative. According to the related vector theorems of Gauss, Green,
and Stokes the divergence of a vector field that represents a flow equals a source or nega-
tive sink density (Marsden and Tromba 1976). Hence we can equate divergence with ex-
cess supply:

Vag=q—q' (18)
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v.Ja=1'—1 (19)

Even though everything could be expressed in terms of partial derivatives, the use of the
nabla operator V, saves a lot of writing. Equations (18) and (19) are the continuity equa-
tions referred to in Section 2.

5 OPTIMUM FLOW LINES

The next task is to determine the optimum flow lines, given a system of transporta-
tion possibilities. As said in the introduction, we are not going to specify any network.
Instead we assume a function

fxy) (20)

that determines the cost of transfer or displacement of some quantum of goods or labor
across the point (x,y). Since the cost field does not depend on the direction 8 of passage
we deal with anisotropic problem. Without loss of generality we can fix the units so that f
is the transfer cost both for one unit of goods and for one unit of labor.

If we have any parametrized curve x(0), y(0), where ¢ is the “natural” arc length
parameter, we can define the cost of transportation of one quantum of goods or labor
over a distance s by the path integral

c(s):ffdo 20

If we fix two endpoints by the boundary conditions x(0) = x, y(0) =y, and x(s) =x ,
¥(s) = y,, the value of ¢ depends on the choice of the arc connecting the endpoints. This
yields a well defined variational problem as the transporters would seek to minimize (21)
for each pair of endpoints. The variational problem is solved by the appropriate Euler
equation (Fox 1954). The solution to the relevant differential equation is really an
extremum (Puu 1978) because the Jacobi and Legendre conditions are fulfilled.

A more elegant way of formulating the problem is to find vector fields g and [ that,
subject to the constraints (18) and (19), minimize total transportation costs for goods
and labor over the region &:

T,=[[flaldx dy (22)
[

Ty=[[f1ldx dy (23)
[

This formulation was used by Beckmann (1952, 1953) and is intuitively plausible. How-
ever, these cost expressions can be transformed in a reasonable way from fourfold integrals
of the product of ¢ according to (21) and the quantity shipped for each pair of endpoints
(Puu 1977).
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The constrained optimization problem for vector fields can be transformed into an
unconstrained problem of minimizing double integrals, over the region &, of the integrands
in (22) and (23), to which the constraints (18) and (19) multiplied by a Lagrangian func-
tion A(x,y) are added. We can use the same multiplier function because we have assumed
the flows to have opposite directions. The signs are, of course, reversed. This yields the
expressions to be minimized:

[[lr1e—Na—q'— V. dx dy (24)
®
ff[flll—?\(l—l'+v.l)]dxdy (25)
R

For minima the Euler equations
fqllqgl=vV A 26)
fill=—vX 27

must be satisfied. As usual V A denotes the gradient vector ()\x, ). The left-hand sides
of (26) and (27) are hence oppositely directed potential flows. The flows ¢ and / are co-
directional, but they need not be potential flows themselves, owing to the multiplicative
factors. Hence the actual flows of goods and labor may be rotational, but the fact that
their flow lines are obtainable from a potential is an iinportant conclusion because it rules
out certain types of critical points (spirals and centers). We shall return to this later.

Let us now multiply both sides of (26) and (27) by the unit vectors ¢/ q| and I/|11,
respectively. The product of two identical unit vectors being a scalar unitary number, the
left-hand sides equal f. On the other hand, these unit vectors are in the directions of the
path and thus their products with the gradient of A equal # d A/ds. However, we see from
(21) that fis the increment of transportation cost along the path. If the price and the wage
increase with transportation cost along the optimum paths, which is an obvious assump-
tion, then

dp/ds = d\/ds (28)

dw/ds =—d\/ds (29)
Integrating, we obtain

p=p+A (30)

w=w—A\ (31)

Hence A(x,y) = constant represents a family of coincident curves in space for constant
price and constant wage. Since, according to (26) and (27), the flow lines for goods and
labor are coincident with the gradient direction (or its opposite) we can conclude that the
lines of constant price and wage are cut orthogonally by the (oppositely directed) flow
lines for goods and labor.
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The potential function A(x,y) hence contains much information and we can expect
that it will play an important role later.

6 EXAMPLES OF OPTIMUM PATHS

To give more substance to the discussion we can examine the system of optimum
routes for some specific class of transfer cost functions. We assume a function with circu-
lar symmetry with respect to the origin. This is a natural choice, having connections back
to von Thiinen and with the literature of the “New Urban Economics’ in which circular
region shapes and other kinds of circular symmetry are abundant.

We hence write (o) where p = (x* + y2)'/ 2. The simplest way of obtaining the
relevant Euler equation is to start with (21), substituting the arc length element d ¢ with
[0? + (dp/dw)*]'"? dew. It is natural to use polar coordinates, where p = (x* + v2)1/2
and w = tan™* (y/x), the latter being treated as an independent variable. The Euler equa-
tion is then

R} p* +(dp/dw)?]V? = constant 32)
If, for illustrative simplicity, we now specify the transfer cost function as

f=p"" (33)
then the solution is

p"=asec (nw+ b) (34)

unless n = 0.
We shall study a few cases of special interest, transforming the solution formulae
back from polar to Cartesian coordinates. Forn =2 and n = 3,

(x?* —y?)cosb—2xysinb =a (35)
(x> —3xy*)cosb — (3x*y —y*)sinb =a (36)

which represent families of level curves for an ordinary saddle and a so-called monkey
saddle, respectively. Different b for a given @ only represent various rotations of some basic
curve of given shape around the origin, whereas different a for a given b yield a whole
family of nonintersecting curves that covers the whole plane. Thus nothing substantial is
lost by assuming b = 0, so that (35) and (36) become x? —y? = g and x* — 3xy? =a.
The solutions are illustrated in these forms in Figures 1 and 2.

Forn=-2,

(x* —y*)cos b — 2xy sin b = a(x® + y?)? 37N

which yields a family of lemniscates. Again, we lose nothing by assuming a certain rotation
of the curve system by putting b = 0, so that x? —y? =a(x? + y?)? gives a family for
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FIGURE 1 Saddle flow.

FIGURE 2 Monkey saddle flow.

various ¢ that covers the whole plane. The curves intersect only at the origin. The solution
is shown in Figure 3.
Finally, the simplest cases aren =1 or — 1:

xcosb—ysinb=a (38)

xcosh —ysinb =a(x® +y?) (39)
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FIGURE 3 Lemniscate flow.

FIGURE 4 Radial flow.

are the solutions. They represent families of straight lines and circular segments, respec-
tively. As before, we are interested in patterns with some rotational group symmetry and
such that the families cover the whole plane with curves that do not intersect (with the
origin as a possible exception). The only way to obtain such patterns from (38) and (39)
is to put @ = 0, while b varies to generate the families. Accordingly, both (38) and (39)
become y/x = tan b, which representsa family of radials. Although it may seem surprising
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that the circles turn into straight lines, they are just circles of infinite radius. The case is
illustrated in Figure 4.

The orthogonal price—wage curves corresponding to the illustrated flows are not
difficult to obtain. In Figure 4 they would be a family of concentric circles, whereas in
Figures 1, 2, and 3 they look like the trajectory families themselves but rotated by an
angle of 30-45°. The four types of flow illustrated will be of interest later in this article.
Running ahead of argument, we shall see that Figure 3 and the case of Figure 4 where the
radii are “‘circles” are excluded because the flows actually intersect at the origin. There
may be a confluence of flows that stagnate at the origin, as the other case illustrated in
Figure 4 demonstrates, but no crossing. We shall see also that cases like that in Figure 2
are excluded because the pattern is structurally unstable and the singular point at the
origin may be suddenly split by the smallest perturbation.

7 GENERAL EQUILIBRIUM PROPERTIES OF THE MODEL

We shall next study the general equilibrium properties of the model to check its
internal consistency. Therefore, we shall study the value flows pg for goods and wl for
labor and their divergences in particular.

One of the fundamental tools in vector analysis is a theorem that makes the surface
integral of the divergence of any regular vector field on some bounded region equal to the
line integral of the outward component of the field along the boundary. The theorem is
usually called Gauss’s theorem or the divergence theorem. Its general form is relevant for
a surface in three-dimensional space, but our interest is in a much simpler version for a
two-dimensional plane. We have already touched on the subject in the comments on the
interpretation of a divergence. Obviously, if we shrink the bounded region to a single point
then the line integral gives net outflow from the single point. To unveil some of the mystery
about the theorem we could also stress that it has a parallel with the fundamental theorem
of calculus that relates the value of a definite integral to the values of the primitive func-
tion on the boundary. Thus

ffv.(pq)dx dy = qu.nds (40)
& Y

ffV.(wI)dx dy = }(wl.n ds “n
& ag :

are the formulae we need. Here n is the usual symbol for a unit outward vector normal to
the boundary 0& and the line integrals on the right-hand sides are taken in a positive
direction (i.e. the one that leaves the interior of ® to the left).

Since these line integrals denote net value outflow from the region they must equal
the differences between the values of export and import. By introducing the symbols X ,
X, for the value exports of goods and labor and Mq, M, for the value imports of googs
and labor, we can write

b}zpq.nds=xq—Mq (42)
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fwl.n ds= X, — M, (43)
R

Next we note a theorem from vector analysis by which the divergence of the product of a
scalar and a vector equals the dot product of the gradient of the scalar and the vector plus
the product of the scalar and the divergence of the vector. Marsden and Tromba (1976)
may be consulted about this, as well as about Gauss’s theorem. Hence we can expand the
left-hand sides of (40) and (41) as

[[v.0oaxdy=[[Vp.qdxdy+ [[pV.qdxdy (44)
.44 ®] K]
fqu(wl)dxdy=fwa,ldxdy+ffwv,ldxdy (45)
®] 15 &

How can the right-hand sides of (44) and (45) be interpreted? First, we note from
(30) and (31) that Vp = VAand Vw =— V A. Thereafter we see from (26) and (27) that
VA.q = flgl and — VA, I = flll. This is so because g.q = |g|* and L.l = |/|*. Collecting
the results, we can write

[fvp.aaxay=[[rlalaxdy (46)
[ ®
[[owddxdy= [[rindxdy 7
] ]

However, according to (22) and (23) these right-hand sides equal the transportation costs
for goods and labor respectively, Tq and T,.

As to the interpretation of the second terms on the right-hand sides of (44) and
(45), we see from (18) and (19) that

pV.qdxdy=[[plg—q")dxdy (48)
JJ J/
[i%4 |
f wvazdxdyz—ffw(z—l')dxdy (49)
®! list

We are now able to collect the results. Substitution from (42), (44), (46), (22), and (48)
into (40) and from (43), (45), (47), (23), and (49) into (41) yields

[[ra—qaxdy=x, —M, ~T, (50)
®]
[[wa—1"dx dy =—(x,~M,—T) (51)
®

Equation (50) shows that the value of all excess supplies of goods evaluated at the local
price levels equals the value of exports of goods minus the value of imports of goods minus
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the cost of transportation for goods. Likewise, according to eqn. (51) the value of all ex-
cess demands of labor evaluated at the local wage rates equals the negative of the value of
exports of labor services minus the value of imports of labor services minus the cost of
transportation for labor. That transportation cost is equivalent to imports is not at all
surprising as transportation services are in a certain sense imported because we have not
accounted for any use of inputs for transportation. It would be easy to change this fact
by introducing some transportation technology in terms of some simple production func-
tion for transportation services, but this only complicates the model without yielding
more than obvious conclusions.

As already noted, land and capital are treated differently from goods and labor. This
is so because land and capital are already at the place of employment, whereaslabor services
and goods produced need to be transported at nonzero freight rates. By this procedure we
miss the possibility of specifying a spatial ownership structure for land and capital. How-
ever, differentiating between demand and supply of land and capital, where the former
depends on the production structure and the latter on the ownership structure, would
double the number of derivations, (40—51), again without yielding more than obvious
conclusions. Therefore, incomes from land rent and capital rent need not be referred to
any spatial structure because purely monetary transfers in space are assumed to be costless.

We define total income from land rent as

G=ffgdxdy (52)
®!

and total income from capital rent as

R=ffrkdxdy (53)
®!

Further we define labor incomes as

szfwl'djcdy (54)
&

and total consumption as
C=fqu'dxdy (55)
®

If we now integrate both sides of eqn. (11) over the region and substitute from eqns.
(50-55), we obtain

G+R+W—C=X-M~—-T (56)

We have lumped exports, imports, and transportation costs together so that X = X

+X, M= Mq +Mpand T = Tq + T;. The equation states that the sum of all incomes from
land rent, capital rent, and wages minus regional consumption equals exports minus im-
ports minus the costs for transportation that are assumed as imported. This establishes
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the consistency of the system conceived as a general equilibrium. For simplicity we do
not consider flows of incomes from land and capital ownership across the boundary. This
is another generalization that would be easy to put into effect but it would make the
formalism grow disproportionately to the extra conclusions that could be drawn.

8 OPTIMALITY

We have treated the problem as a competitive equilibrium with individually opti-
mizing agents. The natural question arises whether this equilibrium represents a social
optimum or not. To answer this we take a planning model as illustration, where the
welfare of the inhabitants of an isolated area is maximized within the limits imposed by
the available resources. The optimality conditions include those for individual producers
and transporters as stated above. We shall also use this discussion to show how transporta-
tion services can be made endogenous.

Let us suppose that we wish to maximize

ffl'U(q'/l')dx dy (57)

[

where U(q'/l") is the individual utility of per capita consumption. At each location we
multiply individual utility by the population and assume that utilities are additive over
locations. As before, local production depends on inputs according to

q=bk%B (58)
and the excess of local production above local consumption enters the flow as before, i.e.
4—q'=V.q (59)

We now suppose that transportation uses up K units of capital and A units of labor per
unit flow density. These fixed coefficients are assumed to be functions of the space co-
ordinates. As capital and labor are now needed for transportation the constraints can be
expressed as

[[le+xQqi+1m] dxdy =K (60)
]

and
'—1—=X(ql+ )=V (61)

The constraints look different in two respects. The constraint for capital is in integral
form as we are free to choose the spatial distribution of capital, whereas the constraint
for labor is in local form as the supply of labor is given at each location. Moreover, there
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may be local discrepancies between labor supply and demand that are equal to the diver-
gence of the flow. This is not so with capital.

We now associate Lagrangian multipliers p, r, and w with the constraints (59), (60),
and (61) and are ready to formulate an optimization problem. We maximize (57) with
respect to consumption, capital, and labor used in production at every location and with
respect to the flows of goods and labor subject to the constraints, including (58), which is
substituted into (59). The optimum conditions are

aufd@'/1"y=p (62)
aq/k =r/p (63)
Ba/t = wip (64)
k+wNgllgl=Vp (65)
rk+wNIll=9w (66)

Among these equations (63)and (64) are familiar as conditions for maximizing the profits
of individual producers. From the integral form of (60) we conclude that the correspond-
ing Lagrangian multiplier r is a constant over locations. The Lagrangian multipliers also
receive the interpretations of production and factor prices. If we define profits as being
g=pq—rk—wl=(1—a—B)pg = ypq we again have

Yq =g/p (67)

where we can interpret the profits as land rent.

The expression rk + wA obviously denotes the local displacement cost, and we can
again denote it by f if we wish. The cost of displacement is the same in (65) and (66), so
the two gradients have the same modulus and we can define Vp = VAand Vw=—VA.
Again, goods and labor flow in the directions of steepest increase of prices and wages,
which increase with transportation cost in those directions. The only new condition is
(62), stating that marginal utility must equal product price everywhere.

By specifying the need for transportation of inputs we have endogenized transporta-
tion. We can show this by multiplying (65) and (66) by g and /, respectively:

rek+wdlgl=Vp.q (68)
rk+wMll=9Iw 1 (69)
As there is no trade at all in goods or labor between the isolated area and the outside we

conclude from Gauss’s theorem that the integrals of the divergences of both value flows,
pq and wl, on & must equal zero. Hence

ffVP.tIdxdy+ffpV.qudy=0 (70)
I &
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ffw.tdx dy +f wV.ldx dy =0 (71)
®! ®!

Using (68) and (69) along with (59), (60), (61), and the identity pg = rk + wl + g in (70)
and (71), we arrive at

fqu’dxdy=r1<+ffwldxdy+ffgdxdy (72)
®! ®! ®!

where in particular all the transportation cost expressions have disappeared. The left-hand
side equals consumption and the right-hand side the sum of capital, labor, and land in-
comes. In the symbols used before,

C=R+W+¢G (73)

We have thus seen that the competitive equilibrium conditions for autonomous firms
and transporters are the same as the social optimum conditions when the welfare of the
inhabitants of the region is maximized. In particular, the optimum conditions are inde-
pendent of the form of the utility function. The only equation in which the latter appears
at all is (62). This condition, of course, puts a further restriction on the type of spatial
organization, but it in no way conflicts with the other optimality conditions for trans-
portation and production. The same is true about the aggregation conditions, (72) and
(73). This is of particular interest as they state that for the whole region an aggregate
budget constraint is fulfilled with all quantities evaluated at local prices. This implies that,
even if a spontaneous equilibrium solution to the spatial equilibrium problem were not
in accordance with (62), it would be possible to design an internal income transfer policy
within the region, because the fulfillment of the aggregate budget constraint admits local
fulfillment. The conclusion is that the social optimum is also compatible with consumer
autonomy, provided that a proper transfer policy is designed.

9 UNIQUENESS OF THE FLOW PATTERNS

In the discussion of Figures 1—4 we mentioned that flow trajectories should not
cross. The reason for this is obvious. In Section 5 we showed that the flow lines coincide
with the gradient directions of a potential function, so that the level curves of this poten-
tial, which represent the loci of constant wage and constant price, are cut orthogonally by
the flow lines for goods and labor.

If two sets of flow lines did cut each other then the orthogonal price and wage lines
would intersect as well, but what would be the consequence? Since, then, different price—
wage curves in one family of level curves would be intersected by any one curve of the
intersecting family, prices and wages along the intersecting curve would be at once equal
and different. As we suppose a system of competitive pricing only one product price and
one wage rate are associated with each location and thus the case of intersecting price—
wage curves or, which is the same, of intersecting trajectories leads to a contradiction.
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The potential function conceived asa surface would have a very curious look because there
would be self-intersections of the surface whenever the trajectories intersected.

What has been said does not rule out the possibility that there may be points of
confluence for the trajectories, provided that the flows stagnate at these critical points.
The following study will examine which types of such critical points are likely to occur
and how these critical points are typically related to each other. As we shall see, these
considerations result in one basic type of flow pattern. This, however, does not mean that
the flows cross, as they stagnate when the flow lines seem to intersect.

10 ANALYTICITY OF THE POTENTIAL FUNCTION

As has already been stressed, the potential function A(x,y) plays a fundamental role
in the discussion. Section 9 led to the conclusion that the potential function is single-valued,
because prices and wages are unique functions of the space coordinates. We also discussed
critical points where the flows stagnate. As the directions of the flows are determined by
the gradient directions to the potential the critical points obviously correspond to station-
ary points of the potential function. Later we shall show that only elliptic and hyperbolic
stationary points are likely, i.e. where the surface has an isolated maximum or minimum
or an ordinary saddle, and that it is unlikely that characteristic lines join two different
stationary points. This yields the main conclusions and results in a definite basic pattern
of the flows.

Before entering these matters we make the simple and very weak assumption that
the potential function is analytic, i.e. it can be expanded in a Taylor series in some neigh-
borhood of any point. This assumption makes it easier to work with a complex analytic
function. This may seem restrictive as analyticity for a complex function requires fulfill-
ment of the Cauchy—Riemann differential equations, but these are in fact equivalent to
the condition that the function may be expanded in a power series that converges. The
particular case where the function is real hence only means expandability in a convergent
Taylor series. The advantage is that, by working with complex functions, we can make
use of the very powerful tools that Cauchy’s integral formulae represent. The reader is
referred to Marsden (1973) for complex analysis in general, and to Cartan (1963) for the
case of an analytic function of two complex variables. The symbols in this section are
used in a completely different sense from possible uses in the rest of the study.

A general analytic complex function of two complex arguments z , z, can be writ-
ten as a power series:

i
a;z, z] (74)

M3

f=
k

o i+j=k

The series has been written as a double sum because there are certain advantages in assem-
bling all terms of the same degree in one sum and in making a second summation over all
degrees. By using Cauchy’s integral formulae, which determine the values of any complex
analytic function and its derivatives for any point from its values on a closed curve surround-
ing this point, we can easily evaluate the coefficients a; as these depend on the various
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partial derivatives. Hence, taking a so-called polydisk where both complex variables vary
along circles so chosen that the function converges, we obtain

1 f(z,,2,)dz, dz,
a’.j..-:—m 1z =R, zzl+1z]2+1 (75)
lz,|=R,

where R, R, are the radii of the circles along which the two integrals are taken. For sim-
plicity we have assumed that the expansion is made at the origin.
Next we define

M= max |[f(z,z,) (76)
Iz, 1= R,
lz,I=R,

Then from (75) and (76),
la, | <MJ(R{R]) (77

and if R = min (R, R,),

> ayzlz]| <Mk + DORY (78)

i+f= k

holds true whenever r = max(|z, |, |1z,|). Since we suppose that the arguments only take
values within the radius of convergence this last condition holds true and, moreover, we
have r/R < | for the same reason. The important relations (77) are called Cauchy’s inequal-
ities. The factor k + 1 is simply the number of different monomials of degree %.

The relation (78) could be applied equally well to real variables, in which case we
putz, =x, z, =y.Thenr is the absolute value of the two variables x, y that is greater and
it is still less than R, for which the series converges.

We now express the series (74) in real arguments and with real coefficients. Let us
write the terms of the three lowest orders explicitly. What then can we say about the re-
mainder of the series? The answer is easy to obtain with the help of (78). The remainder
of the terms, denoted by Tayl, is, because of (78), subject to the following inequality:

. Ekai]. Y I<M Y (k+1)pk (79)
=3 i+f= k=3

where we define p = r/R < 1. The sum on the right-hand side of (79) can be evaluated to
P*[1/(1 — p)* + 3/(1 — p)] . Hence, remembering that p> =r>/R>, we have

| Tayl/r* | <M [1/(1 — p)* + 3/(1 — p)} IR® (830)
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which obviously is finite since p is less than unity; M is the finite maximum of the func-
tion on one of the two circles and R is the positive radius of the smaller of the circles.

If we put 7 = (x + y?)'/? instead of equating it to the larger of x and y then the
left-hand side of (80) would be diminished even further and the inequality would hold
with this new interpretation of r. As r goes to zero so does p and hence

lim | Tayl/r*| < 4M/R? (81)
r-o
The right-hand side is finite and hence the ratio of Tayl to 7* stays finite as r goes to zero.
The standard expression for this property is

Tayl = O(r°) (82)

11  THE CRITICAL POINTS OF THE FLOWS ARE SIMPLE

The result of the preceding section is that if we assume the potential function to be
analytic then we can write its Taylor series as a sum of the terms of the three lowest orders
with a remainder whose ratio to p* stays finite as p = (x? + y?)!’? approaches zero. We
shall now continue with the original notation of this study. Implicit in the discussion of
analytic functions was that they were expanded at the origin, x =y = 0. We are particu-
larly interested in critical points where the potential function is stationary. Hence it is
natural to put the critical point studied at the origin.

At a critical point the conditions for stationarity of the potential function A(x,y)
are that the first partial derivatives are equal to zero: ?\x = ?\y =0 at x = y = 0. Moreover,
we lose nothing in generality by assuming that A = 0 as well at x = y = 0. All this only
amounts to a translation of the coordinate system to put the critical point at the origin of
(x,y, M) space. Thismeans that at the origin the constant and the linear term vanish. However,
since we have decided to write down the terms of the three lowest orders (from zeroth to
second) the potential may be expressed as

Axy)=(A, x* + 2>\xyxy + )\yyy2)/2! + 0(r*) (83)

Only quadratic terms are explicit in this expansion. The partial derivatives are constants
evaluated at the origin. To simplify notation and avoid misunderstanding, we make the
convention that when the potential function or its derivatives are written with explicit
arguments they are to be interpreted as functions, whereas A or its derivatives written
without arguments denote the constant values at the origin. This practice is used in this
section only and saves some notation.

As we have assumed the potential function to be analytic we can calculate its deriva-
tives by differentiating term by term in the series. This is an elementary result for all ana-
Jytic functions. We hence obtain

AGy) =N x +A Y +00?) (84)

— 2
NG =N, x 8,y +00%) (85)
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near the origin. This illustrates the convention made. The derivatives on the left-hand sides
are conceived as functions and those on the right-hand sides as constants. The degree of
the remainder terms is obviously lowered by one through differentiation. The fact that
the remainder terms are O(r%) implies that they are o(r), which means that the ratio of
the remainder to r goes to zero as r does. This must be true if the ratio of the remainder
to r? stays finite in the same limiting process.

As the flow lines for goods and labor were seen to coincide in direction with the
gradient of A(x,y), i.e. with VA = (A (x,y), A (x,y)) — even though the flows were not
necessarlly gradlent flows — then there exists a parametnzatlon of the flow lines such that
x =X (x,y)and y = A (x,y). The derivative of a parametrized curve with respect to the
parameter will be denoted by a dot. Thus

X = A x+ ?xxyy + o(r) (86)
y= ?\yxx + ?\yyy + ofr) 87)

are the relevant differential equations in the vicinity of a critical point. These equations
differ from linear equations of the simplest form by the o(r) term only. Hence the critical
points are what in the theory of ordinary differential equations are called simple critical
points. A standard result is that simple, isolated critical points look precisely like those of
the corresponding purely linear systems (without the o(r) terms). As the latter are well
known and classified in a few simple categories the situation is fortunate. The requirement
for this is that the nonlinear systems differ from the linear ones only by terms that go to
zero faster than the linear terms, and this holds for an analytic potential. Simmons
(1972) can be consulted about critical points for differential equations.

It still remains to be shown that the critical points are isolated as well as simple,
otherwise the conclusion cannot be drawn. This, however, will be accomplished by using
transversality considerations. The result will be that the critical points are nodes, saddles,
or spirals. It will, moreover, be demonstrated that spirals (including centers) are ruled out
because the flow lines coincide with those of a potential flow, which thus leaves two cat-
egories of critical points only.

Before continuing we should consider how restrictive the assumption of analyticity
is. All the well known elementary functions are analytic and it is difficult to construct an
example of an explicit function as a compound of these elementary functions that is not
analytic and renders a system of differential equations that differs from a linear system
by more than o(r). The assumption of analyticity is thus not restrictive.

12 TRANSVERSALITY AND MORSE FUNCTIONS

We must now make it probable that critical points are isolated. This will be done by
showing that the potential function is a Morse function at a critical point, i.e. it can be
transformed to a Morse saddle by some smooth change of coordinates, or, which is the
same, that the critical points are either elliptic or hyperbolic in the terminology of differ-
ential geometry. This will be accomplished by using transversality considerations that
make it unlikely that the Hessian A ?\yy - )xiy is zero at a critical point where A and
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A, are zero. At the same time as we rule out whole curves of critical points or areas of
them, we also exclude some complicated shapes of isolated critical points like monkey
saddles. These points are structurally unstable and split by the slightest deformation of
the potential surface.

Transversality is concerned with typical crossings of manifolds in some surrounding
space in which they are embedded. It introduces probability considerations in pure math-
ematics that usually deals only with what is possible and what is impossible. In the Euclidean
plane two straight lines through the origin would be very unlikely to coincide if all inclina-
tions are a priori equally probable for the lines. The probability measure for coincidence
would be zero, even if it were possible. In the natural Euclidean space of three dimensions
two planes through the origin would for the same reason typically intersect in a line. The
probability of coincidence, so that the intersection is a plane, would again have zero prob-
ability measure. If a plane and a line pass through the origin in the same space the typical
intersection would be a single point. That the line lies in the plane is unlikely.

That a crossing is likely, in that its probability measure is not zero, is exactly what
is meant by a transverse crossing. The preceding examples make transversality depend on
the dimensions of the intersecting subspaces, of the intersection space, and of the sur-
rounding space. The reasoning has been in terms of linear subspaces, but there is no diffi-
culty in changing the picture to affine subspaces, i.e. planes and lines that are translated
in space so that they do not pass through the origin, and to manifolds in general, i.e.
curves instead of lines and surfaces instead of planes, as long as we are confined to a sur-
rounding space of three dimensions. Then a surface, if crossed at all by the other manifold,
would still have an intersection curve or point depending on whether this other manifold is a
surface or a curve. If the other manifold is a point then it would typically miss the surface.

The transversality condition might be so formalized that the crossing is transverse if
the sum of the dimensions of the crossing manifolds equals the sum of the dimensions of
the intersection manifold and the surrounding space. If the sum of the dimensions of two
manifolds is less than the dimension of the surrounding space then they miss each other
because the dimension of the intersection cannot be less than zero. Hence a point and a
surface in ordinary space miss each other, whereas a curve and a surface meet in isolated
points. This is what we need from transversality. Poston and Stewart (1978) discuss this,
as well as Morse functions.

The relation of transversality to Morse functions is as follows. The value combina-
tion of the second derivatives of a function in two arguments, for example )\xx, A, ,and
)\x , represents a point in three-dimensional Euclidean space. If, instead, we regard the
development of these partial derivatives over time then a one-parameter manifold, i.e. a
curve in space, is considered. If we had to consider two parameters then we would deal
with a surface.

On the other hand, the quadratic form

)\xxx2+2)\xyxy+)\yyy2 (88)

which plays a crucial role in the linear differential equations that determine the behavior
of the system (86—87), is degenerate in one direction if the Hessian

Mty TNy (89)
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is zero without all derivatives being zero. If they are zero, the quadratic form is degenerate
in two directions. If we equate (89) to zero the equation defines a surface in the three-
dimensional space of which we have been talking. The surface is a double cone and con-
tains all the points that make the quadratic form degenerate. The apex of the cones im-
plies degeneracy in two directions. Comparing this cone of degeneracy with the manifold
mentioned above, we would say that if the manifold is just a point it is unlikely to lie on
this cone. If it is a curve, representing a development over time, then the cone would be
intersected only at isolated points of time.

Thus, if we consider an equilibrium pattern of flows where the potential function is
given, it is unlikely that the Hessian (89) is zero. If we consider a dynamic process, the
Hessian could be zero at isolated points of time, but picking a moment at random we
would again expect the Hessian to be nonzero. The result is that the quadratic form (88)
is nondegenerate and the system of differential equations (86—87) is hence well behaved.

This implies that critical points are isolated. If we supposed the contrary, that there
is some curve x(s), y(s) along which A, (x,y) and )\y(x,y) are zero, then by differentia-
tion we would obtain

7\” dx/ds + )\xy dy/ds=0 (90)
)\yx dx/ds + 7\yy dy/ds =10 91)

However, with dx/ds, dy/ds not both zero this system can only be solved if (89) is zero.
Hence there can be no such curve, as assumed. The conclusion is that a nonzero Hessian
rules out that critical points cluster along whole curves and, a fortiori, over whole areas.
This conclusion is, however, due to transversality considerations where we have no a priori
knowledge. Should we know that there is a frontier between isolated trade areas then
naturally there is a curve along which the flows stagnate.

A nonzero Hessian not only rules out the possibility of critical points that are not
isolated. It does the same to more complicated types of isolated critical point like the
monkey saddle illustrated in Figure 2. The odd feature of a monkey saddle is that a tangent
plane and the surface intersect along three different directions so that the tangent plane
is divided into six sectors with their common vertex at the point of tangency such that
the surface alternatingly lies above and below the plane. A nonzero Hessian, however,
admits at most two directions and four corresponding sectors, i.e. an ordinary saddle.

To demonstrate this we assume A(x,y) = constant. Differentiating twice yields

AL, (@x)? + 2)\xy dx dy + xyy @ =0 (92)

We assume also that A isnot zero. Then (92) gives a quadratic equation in dy/dx. Should
the assumption not be true but )\xx be nonzero, we obtain a quadratic equation in dx/dy
instead. The roots for the two cases are, according to elementary algebra,

dyldx =—N N, £ (N2, =N A W2 (93)

dx/dy - _xxy/xxx * ()\)ch - )\xx )‘yy )llz/xxx (94)
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The roots are real only when the Hessian is negative and then there are exactly two roots,
i.e. two different directions, dy/dx and dx/dy, in which A(x,y) is constant.

The result is reasonable. If the Hessian were positive the left-hand side of (92) would
be (positive or negative) definite and the equality to zero could not hold true. Should the
Hessian be zero, but not all three of the partial derivatives, then there is only one double
root, yielding a whole curve of critical points. This is obvious because if the surface around
a critical point has only one line of contact with the tangent plane then the contact will
be that of tangency and not of intersection.

The possibility that one of Axx and A y is zero makes no significant change to the
conclusions, but only that one of the two cﬁrections of constant potential is parallel to
the y or x axis. Should both partial derivatives be zero at once, the directions are parailel
to both the x and y axes. Hence there are more than two directions in which the potential
is constant only when Axx =\, = 7\x =0, i.e. when we deal with a higher degeneracy.
The facts are easily checked for a monkey saddle used as example. With A = x* — 3xp?
we have 7\x = 3(x* —y?¥)and )\y =—6xy. The first partial derivatives are both zero only
at the origin so thatx = y = 0 is the unique critical point. However, 7\xx =6x,\  =—6x,
and 7\x =—6y. Hence not only the Hessian —36(x? — y?) but all second partial deriva-
tives as well are zero at the critical point.

We can appeal to more powerful mathematical tools than this heuristic reasoning
about what a nonzero Hessian excludes. As a result of Morse’s lemma, at any critical point
where the Hessian is nonzero we can introduce a smooth change of coordinates to u(x,y)
and v(x,y) so that the potential function can be written as

A=tu? +y? (95)

where, for convenience, the critical point is assumed to be at the origin of (x,y,A) space.
This is a Morse saddle where the potential function is either a circular paraboloid or a
hyperbolic paraboloid. The various sign combinations only result in reflections in the hor-
izontal plane of the basic types u*> +»? and u* —v?.

The smooth change of coordinates can be intuitively conceived in the following
way. We imagine any of these Morse saddle surfaces as marked by a continuum of vertical
sticks with their lower ends fastened to a perfectly elastic rubber sheet that represents the
(x,y) plane. The length of each stick represents the value of A at the relevant point. We
then deform the surface by stretching the rubber sheet in various ways, letting the sticks
move with the points to which they are attached while keeping them vertical. Critical
points with nonzero Hessians are then all the stationary points that we can obtain by such
surface transformations. For a simple formal proof of Morse’s lemma the reader may con-
sult Poston and Stewart (1978).

It would now be tempting to deal only with potentials of the simple form (95) and
study their gradient directions that yield flows that are either radial or hyperbolic in shape.
This would, however, misguide us for the following reason. Even though the coordinate
changes needed to arrive at a Morse saddle can be smooth there is nothing in Morse’s lem-
ma to guarantee that they can be made conformal, i.e. angle-preserving. Thus, whereas in
the original coordinates the flows are orthogonal to the level curves of the potential sur-
face this is not necessarily true in the new coordinate system. If we take an elliptic parab-
oloid as an example, the level curves are ellipses and the orthogonal trajectories are parab-
olas with a common tangent that forms the major axis of the ellipses. By a smooth and
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very simple coordinate change we can transform the potential surface to a circular parab-
oloid. The orthogonal trajectories to the circular level curves are, of course, radials, but
there exists no smooth coordinate change that maps the family of parabolas on to a family
of radials, because the common tangent remains after a smooth transformation and the
parabolas remain parabolas. This means that after the transformation to a Morse saddle
the gradient directions give no information at all about the flow lines. In terms of the
theory of differential equations we cannot smoothly transform an improper node to a
proper one.

How all this is related to the subject of structural stability is understood if we recall
that when we regarded a time development of the point (A, A o ?\xy ) as a parametrized
manifold in three-dimensional space, i.e. as a line, then the cone of degeneracy could be
met in isolated points on the path through time. It is, however, unlikely that the param-
etrized manifold meets the apex (even a two-parameter manifold would not do that,so a
three-parameter case is needed). Let us forget this for a moment and suppose that the apex
is met at some point of time. Hence at some moment we may have a monkey saddle as
illustrated in Figure 5(a), but as time passes the potential surface will be deformed. For
simplicity we take the perturbation as the addition of a plane through the y axis. This
means that a slight component of horizontal flow is added to the flow lines of the mon-
key saddle. Formally we deal with the potential A = x> — 3xy? — x¢, where ¢ denotes
time. The monkey saddle is relevant just for one point of time, t = 0. For any time before,
however close to zero, the pattern looks like that in Figure 5(b), and for any time after-
ward, however close to zero, the pattern looks like that in Figure 5(c). This illustrates the
instability of the monkey saddle flow.

As the monkey saddle point in Figures 5(b) and (c) is split into two ordinary saddles
this will contrast with what will be said below concerning the improbability of a trajectory
joining two saddle points. This hints at the fact that the cases portrayed are still not stable
and that they may be split by additional perturbations. We can see this by perturbing the
flow illustrated in Figure 5(c), adding a slight vertical flow to the horizontal one already
introduced. Putting A = x* — 3xy? — xt — yt produces the pattern shown in Figure 5(d)
for positive ¢, no matter how close to zero. Even though the two saddles remain there is
no longer a trajectory joining the saddles, as there was in Figure 5(c). This illustrates that
a saddle connection is still structurally unstable and can be broken by the slightest further
perturbation.

We have by no means detected all the phenomena that can arise from perturbing a
monkey saddle. We have introduced a sample of two perturbations but, as was said in the
introduction to this discussion, the case represents a degeneracy in two directions that is
likely to occur only with a three-parameter family of perturbations. There is even evidence
that the universal unfolding of a gradient flow is of higher dimension than the universal
unfolding of its potential function. With two-dimensional flows one more parameter is
added. The final structurally stable configuration into which a monkey saddle can be split
seems to be a set of four critical points: one sink, one source, and two saddles of the
ordinary type.

Figures 5(e) and (f) illustrate the results of perturbation of a monkey saddle by a
radial flow. The potentialis A = x* —xy? — x?t — y?+. Figure 5(e) illustrates the situation
just before time zero and Figure 5(f) the situation just afterward. For time zero, of course,
Figure 5(a) portrays the situation, but the situation can still be altered by further pertur-
bations. We have only illustrated a small sample of the phenomena that can arise with the
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FIGURE 5 Monkey saddle (a) at an isolated moment, (b) just before, (c) just afterward.
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FIGURE 5 (d) Monkey saddle perturbed by slight horizontal and vertical flows. (e¢) Splitting the
monkey saddle by weak radial outward flow, (f) by weak radial inward flow.
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extremely unstable monkey saddle. This is of some importance because flow patterns of
the monkey saddle type are associated with hexagonal subdivisions of a region, as is tradi-
tional in the Christaller—Losch paradigm. We shall return to this issue.

13 NODES AND SADDLES

Even though it is impossible to proceed from potentials transformed to Morse sad-
dles, we know a lot about the critical points already. From analyticity of the potential we
know that the critical points are simple and by the transversality considerations we know
that they are isolated. Hence, the solutions to (86—87) are of the same type as those of a
linear system,

x=?\xxx+7\xyy (96)
y=?\yxx+?\yyy )
with a nonzero Jacobian, ie. ?\xx A — ); . # 0 (Simmons 1972). The categories are

nodes (proper and improper), saddles, and spirals (including centers). Among these we
can even exclude spirals and centers. This is so because the differential equations are ob-
tained from a potential function. The roots of the characteristic equation of the system
(96—97) are

NSO NN TP X3 ((WINES W LR LR Re?. (98)

1

The root structure determines the character of the critical point. Complex roots
lead to spirals and purely imaginary roots to centers. If the roots are real, as they obviously
are in our case, then we deal with nodes or saddles, depending on whether the roots have
the same or opposite signs. The signs are the same when the Hessian is positive and oppo-
site when it is negative. Spirals were ruled out since A, = A\ with a potential flow, and
other types were ruled out because the potential was assumed to be analytic and because
of our appeal to transversality.

Our assumptions have been hardly restrictive at all. The flow lines could be obtained
from a potential because this was the consequence of the solution of the optimum path
problem. Analyticity is a very general property and transverse crossings deal with everything
that is stable and robust to disturbances in a system. The conclusions are quite like those
conjectured by the (incorrect) reasoning about the gradient directions to Morse saddles.
The only difference is that with a Morse saddle any node would be proper, whereas proper
nodes at present only occur if ?\ and ?x

In the discussion about how dlfﬂgrent crltlcal pomts are related to each other in the
region considered, we shall find that the improper nodes turn out to be typical, rather than
the proper ones. However, the relation of a proper node with its radial paths and circular
price contours to von Thiinen’s model makes the case particularly interesting. In addition,
we are going to study a regular saddle, where movement is on hyperbolas and where the
surroundings of the critical point are split into sectors of different kinds.
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14 LOCATION PATTERNS AROUND NODES AND SADDLES

It is now time to discuss simple location patterns that can arise around a critical
point of the node or saddle type. We shall deal with proper nodes. Let us assume a poten-
tial of the form

‘}\z (x2 +y2)1/2 (99)

This is simply the square root of the basic Morse case of a circular paraboloid. We have
taken the square root because its gradient must fulfill the conditions of (26) and (27) for
a convenient f:

VA = (x/p,y/p) (100)
From (26) and (27), with f= 1,

q = lqI(x/p.y/p) (101)

I'==\lix/0,y/P) (102)
The simplest assumption to make is that we study some disk-shaped neighborhood of the
critical point and that, as a consequence, the norms of the flows are functions with circu-

lar symmetry. As |g| and |/| are then functions of o = (x? + »*)"/? only, we obtain simple
expressions for the divergences of (101) and (102), namely

1 d

g=— 103
V.q P dp(lqlp) (103)
va=—L 4y (104
A= pdp( p) )

Hence we conclude that the critical point is the center of some industrial region if the
divergence of the flow of goods is positive, i.e. V.q =g —q' >0, whereas the divergence
of the flow of labor is negative,i.e. V. =1' —! < 0. The condition for this to hold is that
the flow intensities of goods as well as labor should decrease as we approach the critical
point, or if they increase the rate of increase should be lower than the rate of decrease of
the distance to the center. Intuitively, the assumption seems reasonable as the flows ac-
cumulate through the surrounding industrial region. The conclusions would be reversed in
a residential region because all the signs would be reversed, starting with that of the poten-
tial (101).

Let us now study the industrial center a little more closely. Use of (101) in (30)
and (31) yields the conclusion that prices increase with the distance from the center,
whereas wages decrease. Both are constant on concentric circles, as is the real wage rate
that decreases with the distance from the center. This is acceptable to intuition as the resi-
dents of a certain location have the option to work closer to their homes for a lower wage or
to receive a higher wage closer to the center and have to deduct commuting costs. Likewise,
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they could buy goods closer to their homes at higher prices or buy them closer to the site
of production and add transportation costs. Equilibrium requires that these options are
equivalent.

The varying real wage entails different choices of technique at the various sites of
production. According to (8) and (9) a labor-intensive technique of production would be
chosen at the outskirts of the region because of low real wages, whereas capital-intensive
production occurs close to the industrial center owing to high real wages. We can also see
that according to the same equations factor productivities are high for both capital and
labor in the industrial center. If we do not interpret the homogeneous product assump-
tion literally we could say that basic production of goods takes place in the center, where-
as production of services mainly takes place in the outskirts of the industrial region.

Some more conclusions can be drawn. From (8) and (10) we see that, because capi-
tal rent is constant, the land rent g is proportional to the density of capital, k, invested
per unit land area. It is now reasonable to suppose that capital is concentrated and land
rent is high close to the industrial center, but then we see from (10) that because land
rent is high and prices are low in the center, production per unit land area, g, is high there.
All this is appealing to intuition.

We can also say that the fact that land rent is high in the center could explain why
workers do not live only where real wages are most advantageous. As land rent determines
housing costs and the real wage variation represents communication costs we have the
disadvantage of expensive housingat the center along with the advantage of low transporta-
tion costs, whereas the matters are reversed at the outskirts. This is reasonable for an
equilibrium pattern of residential location. The case is illustrated in Figure 6.

FIGURE 6 Flow and potential contours at a proper node.



32 T. Puu
The second interesting case is
A= —yH)2 (105)

representing the standard Morse case of a hyperbolic paraboloid. We have divided by two
because then the gradient is

VA=(x,—y) (106)

The length is p = (x? + y?)!'2, so for f = p the potential is in accordance with (26) and
(27). From these equations,

q=1qlGx/p,—y/P) (107)
I=—1ll(x/p,—y/p) (108)
We can now make various assumptions about the Euclidean norms of the flows. One pos-

sibility is to assume circular symmetry again, so that |g| and [/ are functions of p =
(x? +»*)*? only. Then we have from (107) and (108) the divergences

xt—y° d lIql
v.¢= — — 109
q 5 dp p (109)
xX—y* d |l
7. 0=— — — 110
p dp p (110)

Provided that the ratios of the flow intensities to the distance from the origin are mono-
tonic functions of this distance, everything about excess supplies and demands is decided
by the sign of x> — y*. From (107) and (108) we see that goods and labor flow along
hyperbolic pathsin four quadrants, labor from east and west to north and south and goods
in the reverse directions. It is reasonable to assume that then there is excess demand of
labor and excess supply of goods in north and south, whereas there is excess supply of
labor and excess demand of goods in east and west. Accordingly the derivatives in (109)
and (110) should be negative, so that if the flow intensities increase with the distance
from the origin they do so at a lower rate than the distance itself. In that case the model
is consistent.

The assumption of circular symmetry is not at all as natural in the present case as in
the case of a proper node. Even if we specify the region as circular there may be reasons
to regard other structures. The assumption may, however, serve as an illustration because
it is in no way unreasonable. As the flow lines are hyperbolas they come closest to the
origin on the lines at + 45°_ If the flows are built up by additional elements on one side of
the lines whereas elements are only withdrawn from the other side it seems acceptable
that the flows have maximum force in their middle sections, where they are close to the
origin.
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The resulting structure has two industrial sectors, one north and one south, and two
residential sectors, one east and one west. We have seen that hyperbola-shaped flows are
orthogonal trajectories to another family of hyperbolas rotated by an angle of 45°. Hence,
as can be seen from (105) in conjunction with (30) and (31), prices increase from east
and west to north and south, whereas wages do the reverse. 4 fortiori, real wages are high
in the north and south and low in the east and west. This means that the sectors in the
north and south are industrial, having excess demand of labor and excess supply of goods,
whereas the facts are reversed for the sectors in the east and west, which hence have resi-
dential character. Goods flow from the industry to the residences and labor flows in the
revérse direction. Along the flowsthe local price and wage increase so that in the industrial
sectors we encounter use of a capital-intensive technique, whereas labor-intensive produc-
tion occurs in the residential sectors. Again assuming much capital to be invested per unit
area in the industrial sectors, we find high land rents there along with a high concentra-
tion of productive activity.

The case isillustrated in Figure 7. Hence the two location patterns outlined in Figures
6 and 7 are the typical organizations around a critical point of generic type, i.e. one of a
stable flow. This, of course, also holds if all the flows are reversed, by changing the sign of
the potential. The saddle case does not change character, but the node becomes one where
there is a reservoir of labor and consumptive potential at the origin, whereas production
occurs in the outskirts. For agricultural production this is a von Thiinen case.

AN
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FIGURE 7 Flow and potential contours at a saddle.

Before looking at how the whole picture could be assembled to yield a typical flow
pattern and a corresponding location pattern, we have to return to the question of struc-
tural stability and find how different critical points can be related.
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15 TRAJECTORIES CANNOT JOIN SADDLES

The fundamental tool that we use in assembling the whole picture is the fact that it
is extremely improbable that two saddles are directly joined by a trajectory. There are
only two different directions around a saddle in which the saddle point itself is connected
with the system of trajectories. Of the infinity of trajectories in the neighborhood of the
critical point there is one pair going out from it in opposite directions and one pair going
into it from opposite directions. Each pair represents a characteristic direction, and these
two directions correspond to the two real roots (of opposite signs for a saddle) of the
characteristic equation. Hence, only the two characteristic lines pass through the critical
point whereas all the other trajectories miss it, following hyperbolic paths in one of the
four quadrants into which the characteristic lines split the plane around the critical point.
As two saddles are joined only if they have a critical line in common this would seem highly
improbable.

As we deal with potential flows the system of differential equations corresponds to
simple geometric properties of the potential surface A(x,y) in (x,y, \) space. The mapping
of (x,y) on to (x,y, A(x,y)) isa well defined parametrization of a surface in ordinary space.
The tangent vectors to the coordinate lines are (1,0,\,) and (O,l,?\y). Accordingly, the
Gaussian “first fundamental coefficients” that determine the metric structure of a surface
are obtained as various dot products of these tangent vectors. In standard notation,

E=(10,).(10A)=1+A2 (111)
F=(10A).0,LA)=A A (112)
G=(012).(01A)=1+X\} (113)

The “second fundamental coefficients’” that define the whole curvature structure of
the surface will also be needed. To define them we need the second derivatives of the space
vector (x,p,A(x,y)) with respect to the coordinates (x,y). These are (0,0,Axx), (0,0,Axy),
and (0,0,Ayy). The unit normal vector to the surface, (—Ax, — Ay, /(1 + AZ + A3)V/2,
is also required. The three second fundamental coefficients are defined as dot products of
the normal vector with each of the second-order derivative vectors listed. Thus

L=\ /[01+X+ >\;)“’ (114)

M=X,, /0 +A2 +>\;)”2 (115)
— 2y1/2

N=1,,/ +>\§+>\y)/ (116)

The curvature in the direction of the normal of the surface taken in a section of the
direction dy/dx is given by

_ L(dx)® + 2M dx dy + N(dy)?
 E(dx)? + 2F dx dy + G(dy)?

K (117)
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In Gaussian differential geometry there are two directions in which curvatures are maxi-
mal and minimal, respectively. In a hyperbolic point, i.e. at a saddle, they are of opposite
sign. These directions are given by the system

(L—kE)dx+M—«kF)dy =0 (118)

M—kF)dx+ (N —kG)dy =0 (119)
which only has a solution when the determinant of the system is zero, i.e. when

(L—KEYN—KkG)—(M—KkF)* =0 (120)

If we study the system of relations introduced at a critical point with 7\ =A
then £ = G =1 and F = 0 from (111-113), which means that the surface is loca y iso-
metric to the plane. Moreover, from (114-116),L =X, , M= )\ ,and N = )\yy’ which
gives (120) the form

e O pp)K QA —x;y)=o (121)

xx yy

This second-order equation has the solutions
=\, + xyy)/z (A, — xyy)z + 4)\;y] 17245 (122)

which, when substituted into (118—119), yield two principal directions (dy/dx), and
(dy/dx), . If we start from the critical point in one of these principal directions and con-
tinue in the direction of the gradient, we can trace a curve on the potential surface. Since
there are four (oriented) directions of this kind at a critical point we can trace four such
curves. How each of these curves lies on the surface depends on the global character of A.
By introducing a suitable deformation of the surface, we can make any curve starting out
in a principal direction from one critical point a gradient curve while keeping this point
and any other critical point unaffected.

Now let us consider another critical point on the surface. At present, we are dealing
with a one-dimensional curve and a zero-dimensional point embedded in a two-dimensional
surface. Because of transversality they typically miss each other. The reader is referred to
do Carmo (1976) for the terminology of classical differential geometry.

Let us now compare eqns. (98) and (122), which yield the roots of the characteristic
equation for the dynamic system and the principal curvatures of the potential surface,
respectively. They are identical and hence the projections of the principal directions on to
the parameter plane are the same as the characteristic directions. This suggests that the
projections of the surface curves are simply the trajectories running through the saddle,
but then it is extremely unlikely that any one of these trajectories runs through another
saddle point. The reader may ask why it would not be equally unlikely that a node lies on
one of these trajectories. The answer is given if we reverse the roles and regard the trajec-
tories running out from a node. On the potential surface they represent a collection of
radiating curves going in all the gradient directions. It is in no way unlikely that another
critical point, a node or a saddle, lies on one of these infinitely many trajectories.
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16 THE LATTICE OF CRITICAL POINTS

With the conclusion of the preceding section that no trajectory can join two saddles,
let us see how a lattice of critical points can be put together. Starting with a saddle, we
know that it is intersected by two trajectories. Let us suppose that, as we follow these
two trajectories to both sides of the critical point, sooner or later we meet another critical
point. This is the most complicated possible arrangement, but since no trajectory can lead
from one saddle to another we know that all four new critical points met are nodes. We
can draw a picture on a regular quadratic point lattice as the two principal directions give
a quadratic structure to the arrangement. If we hence mark one point as a saddle in a
quadratic point lattice then it will be surrounded to the east, north, west, and south by
neighboring nodes. In the lattice we can connect the points by sets of horizontal and
vertical straight lines. As two directions are inward to a saddle and two outward from it
one pair of surrounding nodes will be an attractor or a sink and the other pair a rejector
Or a source.

We arrange the critical points in a quadratic lattice because this represents the most
general pattern for arranging them, but from this basic shape we can transform the system
of critical points and flows to any geometric shape wished. Hence the pattern covers a
great many patterns if we take smooth coordinate transformations into account, but it
should be observed that however we transform the quadratic grid with its lattice of inter-
section points the basic shapes will still be quadratic rather than hexagonal. This holds
true for various subregions, trade areas, and so on. Hence structural stability seems to
contradict the economic principle of packing market areas in a honeycomb arrangement,
and hence the Christaller—Losch theory of market areas (Beckmann 1968).

We can now trace out the whole typical flow. We use the quadratic grid of Figure 8
to represent trajectories, whose directions are marked by arrows. We have already inferred
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FIGURE 8 Oriented graph of the basic structurally stable flow. Critical points: ¢ saddles, o sources,
® sinks.
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FIGURE 9 (a) Flow lines that are Minkowski circles. (b) The basic structurally stable flow.
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that a saddle (#) has two sources (0) in two directions and two sinks (®) in the orthogonal
directions as its closest neighbors. This defines the directions of the trajectories incident
to the saddle. However, since the characters of the four surrounding nodes are given, all
lines incident to them are given certain orientations. These lines meet two by two at right
angles. We conclude that at these points of intersection there are ingoing as well as out-
going paths. Hence they are saddles.

Knowing that saddles are surrounded by nodes, we can proceed farther away from
the original saddle, determining by the same argument the character of each point and
the orientation of each edge of the graph. There is hence one basic lattice arrangement
and a basic oriented graph structure of the flows. It is shown in Figure 8. Of course, there
are lacking whole families of trajectories that would represent whole flow patterns. We
shall supply such an example below, but it should be noted that the graph structure fully
adequately represents the basic flow. It would be very simple to fill in families of directed
trajectories as soon as the graph frame is given.

Figure 9(a) shows an example that has a mathematical representation:

lx —mlH+|y—nH=1 (123)

where m, n are integers such that m + niseven and where u varies between zero and unity.
The relation determines a set of concentric Minkowski circles for various ¢ when m, n
are fixed. Changing the latter generates a new set of Minkowski circles so that the whole
lattice of squares is filled by lines. Different flows can be obtained from the pattern in
Figure 9(a) by smooth coordinate changes.

Strictly speaking, the case portrayed is still not structurally stable since all the nodes
are proper (or foci in another terminology), which means that the eigenvalues are equal.
It is easy to perturb a differential equation so that only one eigenvalue is changed and
hence the case is not stable as far as the shape of the trajectories is concerned. A stable
flow would have to look something like Figure 9(b). Obviously this gives a main direction
to each node as all trajectories except one pass it in that direction.

17  POSSIBLE COMPLICATIONS OF THE BASIC PATTERN

We assumed quite arbitrarily that all saddle trajectories, i.e. the four trajectories
actually incident to the saddle point, should be incident to different nodes. We saw that
saddles could not be connected by trajectories, which implied that an outgoing trajectory
did not return to the same saddle after a loop as an ingoing trajectory. This does not ex-
clude the possibility that a pair of trajectories, outgoing or ingoing, can be incident to the
same node. This cannot be the case with both pairs since the trajectories would have to
cross, but for one pair this is perfectly possible. That pair would form a closed loop, with
a node between, as shown in Figure 10(a). As there is a trajectory from the saddle going
inside this loop that cannot end at the opposite node, because it has a wrong direction,
we conclude that there must be a node inside this loop. Thus we arrive at the organization
illustrated.

In particular, it should be observed that the circular loop defines an isolated trade
area. Inside the circle everything consumed is produced inside as well. This isolated trade
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FIGURE 10 Flows and trade areas: (a) structural stability, (b) structural instability.
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area is different to the one usually encountered in location theory, which usually looks
somewhat like Figure 10(b), where the flow stagnates along the boundary of the area.
Exactly because of this, the traditional picture is structurally unstable. As we have seen,
singular points in a structurally stable flow are isolated and do not cluster along lines.

However, the case of a boundary consisting of stagnation points has a strong intui-
tive appeal, so we should say something about it. The classical case is the market area
separation in Launhardt’s theory. If the supplier with higher production costs has lower
freight rates then the trade areas are inside and outside an elliptic boundary curve. The
case is then like that of Figure 10(b), except for the shape of the boundary.

Let us suppose now that transportation facilities are not uniform and that there are
particularly good transportation facilities along the main connection between the two
supply centers. Then the routes are not radial, but would be curved as if they were attracted
by the particularly favorable transportation facilities. The case then turns into that depicted
in Figure 10(a). The isolated areas remain, but the flows do not actually stagnate on the
boundary. Rather, there is a flow, however weak, along it. A moment of reflection will
show that what we really want to keep from location theory is the concept of trade areas,
rather than the conclusion that there must be stagnation everywhere along the boundary.

The complications brought into the basic pattern, Figure 8, are not as large as could
be imagined. This may be most easily seen if we consider the “price landscape,” or the
picture of the potential surface along which the flows may be traced in the gradient direc-
tions. This price landscape is shown in Figure 11, which corresponds to the flow of Figure
8. Price maxima, at consumption centers, alternate with price minima, at production cen-
ters, and in between there are saddle points. The only thing we have to do to bring the
present considerations into the picture is to introduce “craters” on the tops of the hills

FIGURE 11 Price landscape for the basic quadratic flow.
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(and, mutatis mutandis, for the bottoms), as shown in Figure 12(a). We only have to re-
member that the craters cannot look as in Figure 12(b): this would lead to the flow of
Figure 10(b), and hence toinstability. Figure 12(a) corresponds to the flow of Figure 10(a).
These deformations of the landscape of Figure 11 can be made at any set of nodes. By
considering these we actually cover everything that is compatible with structural stability.

The change is interesting from another point of view, too. Obviously, the bottoms
of the craters need not be as deep as the bottoms of the original landscape. We can hence
introduce a notion of hierarchy of supply centers. As the procedure just discussed can be
repeated at the new nodes of the system we can actually nest trade areas inside each other
and so consider a hierarchy of any number of levels.

(b)

FIGURE 12 Price landscapes and trade areas: (a) structural stability, (b) structural instability.
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18 INCOMPATIBILITY OF HEXAGONAL SHAPES WITH STRUCTURAL
STABILITY

If we tried to distinguish a pattern of various subregions in Figures 8 and 9 we would
end up with a chessboard of alternating industrial and residential areas. The squares of the
chessboard would have a side length inflated by a factor of 2'/? compared with the side
of the quadrats in the flow pattern and would be tilted at 45° to the latter. The flow and
the subdivision patterns would fit together so that each square of the subdivision would
have each one of its corners in a saddle point and have a node as its center.

The basic spatial arrangement is thus a quadratic regular tessellation. As already
mentioned, this is not in agreement with the hexagonal shapes that have been basic to
regional modeling since Christaller’s work. Due to the mathematical properties of the
hexagonal tessellation, i.e. that it encloses the largest area for a given total perimeter
among all the regular tessellations, it comes as close to the isoperimetric solution of a circle
as is possible with densely packed cells. For the mathematics of tessellations we refer to
Fejes Toth (1964). Tessellations occur also in studies of the economic packing of market
areas (Beckmann 1968).

These shapes, however, would be connected with flows of the same type. We would
expect critical points to which there are three incident directions at 120° angles, or six
incident directions at 60° angles. The former are in fact completely inorientable. If we try
to draw trajectories in the three 120° angles and to give them an orientation we inescap-
ably arrive at a contradiction. This proves that we cannot have anything of “saddle”-like
character (Figure 13(a)). On the other hand, such a junction of three incident directions
could well be a node. However, if we put together a set of only nodes, as in Figure 13(b),
we produce a hexagon with alternating sources and sinks at the corners. Completing the
picture of flow lines inside this hexagon, however, shows that there is something missing
in the middle of it, which can only be a monkey saddle. Thus we are left with the case of
six incident directions. They too can be made nodes, as in Figure 13(c), but then they
must have monkey saddles on the surrounding hexagon.

We conclude that if we try to arrange the graph of a flow on a hexagonal pattern,
then provided that we at least construct a consistent pattern we end up with monkey

\’/
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(b)

FIGURE 13 (a) Inorientable flow. (b) Missing monkey saddle. (c) Occurrence of monkey saddles (*)
in hexagonal lattice.
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saddles, which are structurally unstable. The case is not strong enough to dismiss hexago-
nal patternsin favor of quadratic ones, but there is at least a hint that the optimum hexag-
onal patterns may be structurally unstable.

We have been talking of flow patterns, but the resulting region shapes are similar to
the flow patterns. This isillustrated in Figure 14, where the basic subdivision of the region
can be interpreted as either triangular or hexagonal. This way of fitting flows to these
shapes seems to be the only, unique possibility.

((/)))v@l_\,
VLL& 24

FIGURE 14 Flows associated with hexagonal or triangular subdivisions.

The considerations presented above have an uncommon character; at the same time,
they contradict some deeply rooted ideas concerning spatioeconomic structure. Therefore,
they should be discussed in some more detail at the intuitive level. Classical location theory,
associated with the names of Launhardt—Weber and Christaller—Losch, has a geometric
character in the Euclidean sense. We find boundaries of market areas to take the shape of
conic sections, and find the market areas of identical firms in homogeneous space to be
packed as regular tessellations of hexagons.

In contrast to this geometric information of great Euclidean detail, our characteriza-
tion is in terms of topological “‘rubber-sheet geometry.”” It may seem surprising that this
vague information is at all able to refute anything as precise as the beautiful hexagonal
tessellations of classical theory, but so it is, and we have to resolve the contradictions.

First, it should be stressed that our considerations imply nothing at all about the
original works of the classical authors, all of whom treat the setting of a homogeneous
plane with equal facility of communication everywhere. This spatial invariance of trans-
portation costs and the resulting straight-line routes of communication make all the clas-
sical models linear. Linear models automatically possess structural stability. Only when
we wish to derive the results due to the classics from nonlinear models do the difficulties
arise. Structural stability is then no longer guaranteed, but must be expressly assumed. As
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some basic features of classical location theory are refuted, we have to make a choice. We
could abstain from dealing with nonlinearities and stick to the classical models of the
homogeneous plane, or we could insist on nonlinear models. Then there is a conflict. We
can dismiss structural stability as irrelevant, or else we have to dismiss traditional market
areas and hexagonal tessellations.

Spatial economists, like Isard (1956), have long been aware of the severe limitations
imposed by linearity. Theoretical geographers have used their understanding of map pro-
jections to define curved spaces, in which efficient communication is along as straight lines
as exist on a curved space (geodesics) (e.g. Warndtz 1967, Angel and Hyman 1976). The
obvious purpose has been to make it possible to apply classical location theory to the
more general case of inhomogeneous space. We have concluded that certain features of
classical theory do not easily carry over to the more general case. It is unfortunate that
some of these features are among the most appealing in classical theory.

What about not assuming structural stability? Unfortunately, we would need a non-
scientific amount of self-confidence to claim that any model we construct in the social
sciences takes explicit care of all relevant factors and interactions so that we can disregard
exogenous disturbances. Hence, we cannot escape admitting that our model is subject to
perturbation. This being so, it is a mathematical fact that it is extremely unlikely that we
shall observe a structurally unstable flow. Another mathematical fact is that accumulated
singularities and monkey saddle singularities are vanishingly unlikely to be observed.

Just how bad is this? For one thing, we no longer have trade areas where trade stag-
nates along the boundaries, but we still have completely self-contained trade areas, delim-
ited by boundaries that are crossed by no trajectory. The difference is that now the
boundaries themselves are made up of sections of trajectories. With reference to the earlier
discussion, this does not seem too revolutionary. We saw that nonlinearity could develop
in a traditional Launhardt—Weber model if a transportation network was developed along
the axis of connection between the sites of the firms. Efficient routes would then be
curved because of the attraction toward this axis. This curving of flow lines makes them
asymptotic rather than transverse to the boundary itself. From this there is only a small
step to our new concept of a market area.

The harm done to the hexagonal tessellations of economic space is greater. To be
more exact, if all trade is confined to separate market areas (in one single subdivision)
then the concern is still with the boundaries of market areas and the accumulation of
singularities only. If we recall how Losch organizes space by several superposed hexagonal
tessellations of increasing cell size, we find that flows of goods of some levels of the hier-
archy actually cross boundaries to other levels. The Loschian communications are still
along straight lines, but once we make the model nonlinear, and still wish to maintain the
hexagonal patterns, we have to realize that this cannot be done without monkey saddles
and that the monkey saddles are structurally very unstable. Thus, the Christaller—Losch
theory cannot be applied to inhomogeneous space.

19 CATASTROPHES

We have used structural stability as a basic modeling instrument. The idea has been
that only structurally stable flows and location patterns are likely to persist through time.
The structurally unstable configurations were discarded because, in the course of their
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development, they would only have momentary existence. The structure before and after
those isolated moments would have an easily recognizable, qualitative character and would
only change smoothly over time. This character would be one of structural stability.

The story is, however, not assimple as that. Even if the structurally unstable pattern
is itself without interest, owing to its only momentary existence, the fact that the stable
patterns before and after are qualitatively very different is of great importance. We can
take Figure 5 as an example. The flows before and after the occurrence of the unstable
monkey saddle are very different. First, there are singular points north and south and
afterward there are singular points east and west. The whole pattern seems to be rotated
through a right angle. This transition is momentary and since the resulting patterns are so
different the change is very dramatic. A similar transition is from the case shown in Figure
5(c) to that of Figure 5(d). The isolated trade areas in north and south are suddenly fused
into one. Another example is provided by Figures 5(e) and (f).

The study of such sudden changes is catastrophe theory proper. As developed by
Thom, this theory applies to gradient systems to a potential function. Fortunately, our
flow lines represent gradient flows, so the theory is applicable. The object studied is the
potential surface itself and the purpose is to classify all the catastrophes, or sudden changes
of shape, that can occur with the potential surface when it undergoes a small deformation.

Without any restrictions at all, anything can happen. Therefore, a good procedure is
again to use transversality. We are, however, not dealing with transversality and structural
stability for potential surfaces any longer but for families of potential surfaces depending
on a number of parameters. Transversality and structural stability used in this way yield
the classification of elementary catastrophes when the number of variables and parameters
is manageable.

If we dealt with the structural stability of potential functions, we would arrive at
the conclusion that only Morse functions, i.e. functions with, at the most, some finite
number of critical points with nonzero Hessians, would occur. The corresponding gradient
flows would then be exactly those we have characterized as structurally stable, the hyper-
bolic singularities corresponding to the Morse critical points.

The use of transversality for families of potential surfaces would, on the contrary,
admit such transitions as those illustrated in Figure 5. Moreover, if we suppose this new
type of stability, every sudden dramatic change that could occur is completely classified
up to topological equivalence. This is most remarkable.

In our case we deal with two variables, the two space coordinates, as was implicit in
the discussion of potential surfaces. The catastrophes occurring then are not of the simp-
lest types, the fold and cusp as encountered with one variable. We must start with umblic
catastrophes, which are well classified for at least four parameter families. We would only
need three parameters in the model. Only factors that influence the local transportation
cost are relevant for the determination of the flow lines. In our specification of this trans-
portation cost we used f = rk + wA. Now, the wage w depends on the flow lines and
hence cannot represent an independent parameter. Capital rent r, on the contrary, can
change over time because of capital accumulation. This process is exogenous to the model
and so is the transportation technology, including the availability of roads. We must hence
include the two technical coefficients k, Ain the list of independent parameters. Together
with capital rent they make three.
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The corresponding catastrophes are accordingly of two possible types: the elliptic
and hyperbolic umblic. The elliptic umblic has already been amply illustrated: it is nothing
but the monkey saddle, or rather, the phenomena that can occur when it is disturbed. All
these phenomena are confined to the class that can be obtained by varying the parameters
in the expression

x*=3xp? +a(x*+y)+bx+cy (124)

which is called the universal unfolding for the function x> — 3xp?. We have studied ex-
actly these ways of disturbing the monkey saddle flow as an example. The remarkable
fact is that this illustration covers half of all the phenomena of sudden change that can
occur in the model.

The second half is represented by the hyperbolic umblic catastrophe. The function
studied then is x* + y*, with the universal unfolding

x> +y3 4+ 3axy +bx+cy (125)

This is easy to study by using simple geometry. The gradient flow has zero components in
the coordinate directions when ay =—x? — b/3 or when ax =—y? — ¢/3. Geometrically,
they are simple parabolas where a determines the sense and scale of the parabola and
where b, ¢ determine the intercepts. As the critical points are at the intersections of these
two parabolas, directed at right angles, we can have no, two, or four critical points of
the node and saddle types. The last case always comprises one source, one sink, and two
saddles. Several of these structures may seem to be stable in the meaning used above. This,
however, is deceptive. The patterns of hyperbolic singularities with no saddle connections
are necessary in order that no catastrophes can occur, but only necessary and not sufficient.

20 CONCLUSIONS AND LOOSE ENDS

We can now summarize the arguments, point out some of the numerous loose ends,
and hint at possible ways of completing the model. In Section 1 we conjectured that to a
given locational structure for productive activity and for the distribution of residences
there would correspond an optimum transportation pattern, and conversely . It was assumed
that routes for transportation would be so chosen that their costs were minimized. They
were so chosen, however, under the assumption that there was a given transfer cost func-
tion that represented the existing system of roads with respect to the geometric network
shape and density distribution over the region. In a more general context this transfer cost
function should be subject to optimizing choice. The author has worked with various ways
of doing this (Puu 1979), but presently we just note that we have been little concerned
by optimality.

It is even worse with respect to the converse conjecture, that to a given transporta-
tion system would correspond some location patterns with optimality or equilibrium
characteristics. We have set down some relations belonging to a spatial general equilibrium
model. By the specification of a production technology and the assumption of profit-
maximizing behavior we have specified the forces behind the supply of goods and the
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demand for labor services. However, about the other side of the market, which depends
on the location of residences of workers, we have said very little. It is true that we have
checked the general consistency of the general equilibrium system uncompleted as it
stands, but otherwise we have only hinted that, in order that various locations should be
equivalent for residential choice, the noncentral locations with resulting low wages and
high prices must be endowed with compensating factors such as low housing costs due to
low land rent. In this context, land rent was determined residually from productive activity
and was proportional to the amount of capital invested. It is not quite satisfactory to dis-
regard the use of land for housing and the effect of this on rent. In particular, the agglom-
eration of people with much capital invested for housing in a certain residential area should
raise rent in the same way as the agglomeration of industrial activity does. We could also
consider the effect of the demand for land for use in road building.

All this suggests that we should have introduced more types of production than just
that of consumer goods, in particular the production of housing and transportation services.
In addition, the decisions of the workers, landlords, and capitalists in choosing residential
location should be introduced, or at least a condition of equivalence of various locations
should be specified, in order that we arrive at a real general equilibrium model. As it stands,
the present model just relates various flows of the Beckmann type by use of a production
technology. This means that we actually have been little concerned with optima and
equilibria, and have only hinted at location patterns that are just compatible with certain
flows. The flows were assumed to be of the Beckmann type, i.e. they can be represented
by vector fields that are related to the excess supply distributions by their divergences,
and by flow lines obtainable from a gradient field to some potential. They were thus ob-
tainable because it was assumed that the transportation system could be represented by a
transfer cost field that was isotropic.

Despite the obvious abstraction from real networks, I am sure that these continuous
models are valuable tools in regional modeling, too little explored as yet. Their advantage
is that they make a number of powerful mathematical tools available to the economist. It
is true that the more pictorial network models dealing with a finite set of nodes and edges
arranged in graphs are increasingly yielding instruments that result from the development
of mathematical programming and computation techniques. Such models are, however,
not suitable for dealing with general geometric properties of cases that are not numerically
specified. Thus the continuous models provide a complement.

The distinctive feature of the present study is the use of transversality to find which
flows are structurally stable. It is surprising that this general principle of transversality, in
conjunction with the weak assumptions that the flow is a gradient flow (a result of opti-
mization) and that the potential is analytic (expandable in a power series), yields such rich
results. First, we can conclude that because the analyticity makes critical points simple
and because transversality makes them isolated the dynamic system in the neighborhood
of a critical point behaves like a linear system of the simplest type. This reduces the pos-
sibilities for the types of critical points to those occurring with linear systems, i.e. nodes,
saddles, and spirals. Second, the fact that the flows are potential flows rules out spirals.
Since the most restrictive assumption we have made is that the directions of the flows are
gradient directions toa potential, it is interesting that this assumption only rules out flows
that wind around some point during infinite time without arriving at the goal during any
finite period or that even circle around the critical point in closed orbits. Such flows of
goods and labor services, or whatever, certainly make no economic sense.
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We also assumed that unique prices and wages dominated at each location because
of competition, so that the potential could be a single-valued function and the trajectories
did not cross. Hence, we produce a system in which the flows do not stagnate along curve
segments or on patches with areal content, but only at a number of isolated stagnation
points that may be of two types: nodes and saddles. The location pattern around a node
that is a sink or a source has circular ring symmetry (if the node is proper) and radial tra-
jectories as in the classical von Thiinen case. If the node is improper the trajectories be-
come parabolic with a common tangent and the rings become elliptic. Only this latter
case was seen to be compatible with structural stability, as the characteristic roots (eigen-
values) coincide by mere accident. Around a saddle the locational structure was such that
the rings were split into sectors.

Transversality gave results even for the way in which the critical points could be
fitted together. First, we saw that it is unlikely that two saddles are joined by a trajectory
because there are only four trajectories, among the infinity of trajectories in the neighbor-
hood of a critical point of saddle type, that go into it. Then, assuming the most general
case that when going from one critical point along a characteristic line we sooner or later
encounter a new critical point, we could arrange the set of critical points on a quadratic
lattice. There is nothing odd in assuming that a trajectory from a saddle (one of the char-
acteristic lines) ends at a node, since all trajectories in the neighborhood of a node are
collected and incident to the critical point itself. It turned out that there was a unique
way of orienting the graph consisting of the critical points and the quadratic grid joining
them, where a node was always surrounded by four saddles and a saddle by four nodes.
This resulted in a quadratic pattern of flows. By topological deformation a multitude of
structurally stable flow and location patterns could be obtained. They were, however, all
basically “‘quadratic” rather than “hexagonal’ in shape.

To complete the picture, we tried to apply a flow orientation to a hexagonal graph;
whenever this was done in a consistent way we obtained some monkey saddle, but monkey
saddles were seen to be structurally unstable. The simplest and weakest perturbation would
split them instead of introducing a smooth change in the location of the critical point and
a small change of the exact shape of the trajectories around it, as is the case with perturba-
tion of a structurally stable point. We concluded that in the hexagonal patterns there was
an inherent structural instability. This was in strong contrast to the Christaller—Losch
tradition of hexagonal patterns, which are the closest possible approximations to the ideal
circular trade areas. They are likely to turn up in considerations of optimum arrangements
because of the extremum properties of the hexagonal tessellation that maximizes the market
area of each firm, for a given length of the boundary enclosing it. In considerations of regu-
lar road networks too,a triangular tessellation (implying hexagonal subregions) emerges as
the one that minimizes the detour factor.

It is not the intention here to suggest that the basic hexagonal shapes in theory
should be replaced by quadratic ones. To assess the realism of the two patterns, empirical
studies are needed. We can only point to the fact that hexagonal patterns are connected
with flows that tend to have inherent instability.

We have already pointed to a number of loose ends left and building blocks lacking
in a complete model. Even if this model is completed, certain questions remain. We have
only considered one type of productive activity. What is the effect of introducing not
only the production of housing and transportation services but also a great number of dif-
ferent productive activities possibly using several different transportation systems?
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In addition, it would be most interesting to consider a model that includes a devel-
opment over time when the system is not in equilibrium, involving migration flows and
capital accumulation that may change the locational pattern of capital. A continuous dy-
namic system in three independent variables, time and the two space coordinates, would
probably be the most yielding formulation as this may make the well investigated partial
differential equations for diffusion and heat conduction or wave propagation applicable.

Another methodological question is whether it could simplify the analysis if we
regard the region as a curved surface and the trajectories as geodesics. We broached the
subject in the discussion of the potential surface in terms of differential geometry, but the
question is whether a systematic use of tensors would simplify matters.

It cannot be overemphasized that the model is still incomplete as long as these
questions are not answered and the lacking building blocks not supplied. Likewise, the
use of the concept of structurally stable flows is tentative and rests on transversality con-
siderations that tell us what is typical if all possibilities in some set are equally probable.
However, when we know that something is true, transversality does not rule out facts
even when they are improbable.

This study reflects two convictions of the author. The first is that aggregation from
individual- behavior relations derived from optimizing behavior are poor instruments when
used alone in model building. At the micro level, optimizing behavior yields very few
qualitative conclusions concerning the relations, and after aggregation the uncertainty is
increased instead of reduced. In regional modeling the entropy model has introduced a
most interesting aggregation method clearly superior to the methods envisaged by econ-
omists when aggregation problems were at issue in the 1950s. This is so because the use of
the assumptions of independence of actions and a priori equiprobability of alternative
choices reduces the uncertainty about macro relations as compared with micro. This is as
things should be. Transversality is another similar modeling concept that, from a positive
assumption of equiprobability when we have no knowledge about all factors, rules out
certain cases as highly improbable.

The other conviction is that the continuous transportation models should have a
power as scientific instruments far beyond the results they have yielded in pure transport-
ation analysis. The flow property and not only the continuous transfer cost field property
may be useful. Even though computation algorithms and computation efficiency and cost
have developed amazingly, classical mathematical methods that have been perfected over
centuries in applications to physical problems still supply a reservoir of unexploited
methods.

APPENDIX GENERICITY AND STRUCTURAL STABILITY

I have tried to make the exposition in terms of classical calculus and the classical
theory of differential equations, with slight reference to transversality. However, the treat-
ment would be very incomplete if nothing were said about the global theory of differential
equations, which yields results that can be used in a more direct way. The problem with
this approach is that by employing methods of differential topology and concentrating on
manifolds with a much more complicated and general nature than the plane, it uses a
terminology that is too general for the present purpose. At the same time it is difficult to
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gain an intuitive understanding of the facts involved when the highly general and abstract
methods of topology are used.

To complete the picture, however, a brief survey will be given of the results needed
from the theory of differentiable flows on manifolds. The line of development was opened
by Poincaré and Birkhoff. The results needed were announced in 1937 by Pontryagin and
Andronov, but the complete development is due to Smale (1967) and Peixoto (1973).

By a generic property of an operator or of a vector field is meant that among the
set of all operators or vector fields the subset characterized by a generic property is dense
and open. That is, any generic or nongeneric vector field at a point can be approximated
arbitrarily closely by a generic field, whereas the converse is not true. From this it can be
suspected that nongeneric properties are associated with instability, as the generic class is
reached as soon as the system is changed a little, whereas generic properties are associated
with stability. In fact it is demonstrated that structural stability is a generic property of
vector fields. Structural stability means stability to perturbation, i.e. small changes of the
structure of the dynamic system.

A perturbation is usually explained in the following way. Let us consider two vector
fields f(x) and g(x) with f,g: R* -~ R*. We define a norm (Euclidean or other) on the
components of the difference between the mapped vectors, f(x) —g(x), and denote it by
[f(x) — g(x)|. Moreover, we define anorm on the difference between the operators, Df(x)
— Dg(x), as max {|(Df(x) — Dg(x))x|:lx| < 1}= |IDf(x) — Dg(x)l| where D is the deriva-
tive conceived as a 2 X 2 matrix. If the vector x takes values on the unit disk then the two
mappings transfer the vector to the positions Df (x)x and Dg(x)x, respectively. We apply
the previously used norm to measure the distance between the two images. The norm on
the operator is hence the maximum distance between the images into which a point on
the unit disk is mapped. If we now suppose that |f(x) —g(x)| <€ and ||Df(x) — Dg{x)l|
< €, we make sure that the differential equations x = f(x) and y = g(x) are “close” or, in
other words, perturbations of each other. If a perturbation does not alter the character of
the trajectories, so that we can find a homeomorphism (i.e. a continuous one-to-one map-
ping) R* - R? that maps trajectories for the g system on to trajectories of the f system,
then the latter is said to be structurally stable. This is a precise definition of structural
stability.

We are now ready to turn to what is typical for structurally stable systems. By a
hyperbolic singularity or critical point is meant a critical point where the real parts of all
eigenvalues are nonzero. This concept should not be confused with the concept of a hyper-
bolic point on a surface such as a potential surface. There, a hyperbolic point meant a
saddle, whereas a maximum or a minimum was termed an elliptic point. In the present
context a hyperbolic point can be a sink, a source, or a saddle. For gradient flows the
singularities are nodes, since spirals do not occur. The index of a hyperbolic singularity
designates how many eigenvalues are positive and how many are negative.

An important result is that a hyperbolic critical point is transferred close to its
original position and retains its index by a perturbation, provided that Df is an invertible
mapping. However, this condition only means that the Jacobian of the system of differ-
ential equations (or the Hessian of the potential) is nonzero. With this provision, nodes
and saddles are stable to perturbation.

Another important result is that no trajectory joins two saddles.
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LIST OF SYMBOLS

land as productive input

aggregate consumption value

cost of transporting a quantum of goods or labor from one location to another
cost of transfer across a point

aggregate land rent value

local land rent

capital as productive input

capital density per unit land area

labor as productive input
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1,1' labor demand, supply per unit land area
components of labor flow field
flow of labor services
[7] flow intensity for labor services
V.l excess supply of labor
M aggregate import value
M, aggregate labor import value
Mq aggregate goods import value
n unit normal to the boundary of the region
p local price of goods
Q productive output of goods
q' goods supply, demand per unit land area
q,,9, components of goods flow field
g flow of goods
lgl flow intensity for goods
V.q excess supply of goods
R aggregate capital rent value
& the region considered
o8 boundary of the region
r local capital rent
s arc length parameter
T aggregate transportation cost
T, aggregate labor transportation cost
T, aggregate goods transportation cost
U individual utility of per capita consumption
(u,v), (x,y) Cartesian space coordinates
W aggregate wage incomes
w local wage rate
X aggregate export value
X, aggregate labor export value
Xq aggregate goods export value
o, 3,7 coefficients in Cobb—Douglas production function
, roots of characteristic equation
X Lagrangian potential function
VA gradient field
u coefficient in Minkowski metric
(p, w) polar space coordinates
¢ ‘“natural” arc length parameter
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