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1. Introduction

The performance of a communication system depends greatly
on the technique used for finding good routes for transmitting
the information. In order to improve the robustness and
reliability of such systems, we propose here a decentralized
or distributed technique to control the information flows.
Procedures of this kind have already been proposed [l, 2., 3];
the first two being oriented to channel switching (or circuit
switching) systems have performed very well compared with non-

adaptive routing techniques.

It seems that even better results could be obtained if the
chosen criteria were incorporated directly into the algorithm.
For example, neither El] nor E{U both of which minimize the
probability of losses, directly use the achieved probabilities
as control parameters. The first is based on the shortest
route, and the second takes into account the number of successes

and failures in previous attempts to establish connections.

The routing techniqgue to be described here is based on
the same principle of distributed control as in [1]. We
consider a network in which every node (exchange) receives control
information only from its neighbouring nodes. In every node
there is stored a special routing matrix and every node estimates
continuously the probability of the trunks to each of its
neighbours being blocked, that is, being unavailable for trans-
mission, which will depend on the congestion in the system.

. . . . k .
The routing matrix at node i has entries wij which




represent the estimated probability of a message reaching
destination k from the neighbouring node j. Clearly, when
routing a message to destination k the node j, to which it
should be sent next, is that which maximizes wijk among those
nodes j for which trunk (i,j) is unblocked. If all trunks

are blocked, the message is considered to be lost.

To summarize, then, we wish to present an algorithm for
such networks which converges to the optimal routing policy,

under the assumptions:
i) only local information is available; and
ii) the blocking probabilities remain constant. (1.1)

In practice these assumptions will be fulfilled if the traffic
is light, in which case the blocking probabilities will be
approximately constant. In other cases this policy may not

be optimal since the blocking probabilities will depend
partially on the routing policy. The behaviour of this
algorithm in this case will be investigated later but it

seems likely that it will yield a good if not optimal policy.

2. The Algorithm and Its Convergence

2.1 Example
Let us beyin with an example. In Figure 1 there is an

example of a network in which the aim is to transmit a call

from node 1 to the destination.
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Let Pl’ P2' P3 be the estimates at each node of the probability
of successfully transmitting a message to the destination.

Using conditional probabilities we can see that
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Now it is clear that at node 1 it is better to transmit the

message to node 2 than node 3 since P2 > P3, hence
2 2, 1
Py =5 P+ -3 3Py
=2 . 3.1 41
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But suppose P2, P3 were not known exactly, but rather were

only estimates. 1If, in our example, P., P3 were currently

2

%, respectively, the policy at node 1
would be to transmit messages to node 3 in preference to

estimated to be

O3 RN

node 2, giving a new estimate of

at node 1.

What will be proved here is that for all networks the
estimates obtained in this way will converge if repeated
iteratively, and to the correct solution, from any set of
initial estimates. Incidentally, Fig. 1 is an acyclic network
and it is easy to show that such an algorithm converges finitely
in no more than n-1 steps (n nodes) (use Theorem 16.2 in
Harary [4]).

This algorithm may be repeated once for each possible
destination so we need only consider the case with one

destination.




Recall also that we assume that the probability P of
arc (i,j) being unblocked is constant, independent of other

arcs and independent with respect to time.

2.2 The Algorithm

Let P = (P ,Pn) be the set of node probabilities

EEE
("optimal node probabilities") corresponding to an optimal
routing policy (in the sense of assumption (l1.1)) where P

is the probability of a message at node i being successfully

transmitted to the destination and P is always

destination
equal to 1. Suppose that all but Py for some node k are
known and that it only remains to find Pk. It is evident
that the best policy for a message at k is to transmit it
to the node which, amongst those to which the arcs are
unblocked, gives the best opportunity for reaching the
destination. Hence, the probability P, may be calculated

by the following recursion in which we assume, without loss
of generality, that Pl Y Py e Pn:

Pp = PaPyp * (1 = PPy + L= pyy)

- (1 ) e (2.2.1)

~ Pyo ! Py3Ps

For compactness, define a vector F(p,P) on a matrix p of arc
probabilities and vector P of node probabilities, having
components

Fk(p,P) = Py P+ (1 - Py )pki P, + =+~ (2.2.2)

11 1 2 12

where



The algorithm can now be stated quite simply. Begin with an
initial guess PO, 0 < p° < 1 of the node probabilities and

proceed with a recursion defined by

t+1 .
P = £, (p, 2% i=1,...,n.

It will be shown that this recursion converges to the optimal

node probabilities for all initial values.

2.3 Convergence

Note that relation 2.2.1 may be written

for some constants akj which depend on the particular policy

selected. By optimality

Fk(p,P) z ? aijj

for any policy which gives rise to the a

kj*

Theorem 1. If for two arbitrary vectors P,Q, P < Q then

F(p,P) < F(p,Q)

1

Proof. Fk(p,P) I a, .P. for some a, .

k3™ 3 kJ
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F (p,Q) " by definition of F




Corollary 1. If PO < QO < R are three initial vectors for
the recursion then Pt < Qt < Rt for all t > 0.

Corollary 2. If Pt < Ptnl then Pt+l < pt and conversely if

Pt > Pt—l
then

Pt+l > Pt

t t-1

Proof. If P~ < P then by the theorem

F(p,PY) < Fip,pt7h)
that is Ft+l < pt . Similarly for the other case.

t t+1 t t+1

Corollary 3. 1If for any t -~ O, P~ > P or P~ < P

then the sequence converges.

Proof. The sequence is always bounded (by zero and one) and,
if the conditions of the collorary apply, is monotonic by

Corollary 2. Hence it converges.

Corollary 4. The recursion converges for initial values
o _ o _ . o _
P 1 and P O (with Pdestination 1).

Proof. Corollary 3 applies to the case t = O.

Theorem 2. The algorithm with initial values P° = 1 converges

to the optimal node probabilities.

Proof. By Corollary 4 the sequence converges. By Corollary 1
this solution is an upper bound for all solutions and hence
is an upper bound for the optimal node probabilities. But by

using the policy implied by this solution the upper bound



may be attained. Hence the solution is the vector of optimal

node probabilities.

Theorem 3. The algorithm with initial values p° =0 converges

to the optimal node probabilities.

Proof. Note that in this case Pkt may be interpreted as the
maximum probability of reaching the destination in at most t
steps. Hence as t » ® the recursion yields the maximum
probability that the destination may be reached in an infinite
number of steps, which is exactly the meaning of the optimal

node probabilities.

Corollary 5. The recursion converges to the optimal node

probabilities for all initial values p°.

Proof. Theorems 3 and 4 show that with initial values O and 1
the algorithm converges to the optimal node probabilities. Since
0 < P% < 1 for all initial values, Corollary 1 impiies the

result.

3. Computational Experience

To investigate the performance of this algoritihm over a
range of blocking probabilities, a simulation program was
written {Appendix 1). The algorithm was applied to the network

as shown in Fig. 2.

Three kinds of initial situation were considered:

ay p.9 =1 Vi
1

b) p.° = 0 Wi
1
@)

(e}
jav}
1l

R where R = random number O < R < 1

except for destinaticn nodes, whose destination

probabilities are constant and equal to 1.
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The probability of blocking was set constant and chosen at

different intervals.

In Fig. 3 the dependence of the number of iterations
on precision is represented taking the initial situation (a)

where precision is defined as

Figs. 4 and 5 show similar curves for initial situations (b)
and (c) respectively. From these curves we can see that the
system of equations converges very rapidly and that the number

of iterations grows as a logarithm of precision.

The results described above apply to the case when all

t -
K’ k=1,2,...,
are avallable for the calculations in step t+ 1. If we think

the eguations are changed in every step and all P

of the practical implementation of the algorithm, it corresponds
to the synchronous mode of control. This means that in each
node some calculations have to be made at every iteration to
update Pkt. This must then be transmitted to all neighbouring

nodes and is stored by them. If not all the new results are

t+1
K .
the described calculations should be carried out by the same

known, it 1s not possible to calculate the next P Actually,
eguipment as is responsible for the switching and there is no

reason to assume the synchronization of it.

In Figs. 6 to 8 results are shown for a case when not all
calculations are made simultaneously. An iteration of the
algorithm consisted of choosing one node at random (egual
probabilities) and calculating its new node probability,
which was then available for the next iteration. A sequence
of n (number of nodes of the network) of these iterations is
counted as a step in the figures for comparison with Figs.

3 to 5.
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Looking at the curves we can see that this desynchroni-

zation does not alter the speed of convergence very much.

We also considered another model where each node i missed

the calculation with probability m, - This model corresponds

to the synchronous mode, but some nodes are allowed to miss

calculation when the equipment is not available for the job;

m, is the probability of non-availability of the equipment.

In conclusion, we describe some additional investigations

necessary to clarify the applicability of this algorithm.

1.

The main aim of the algorithm is to make a
communication system more robust and adaptive
to the changing of the loading and network
structure. This leads immediately to a

variable probability of trunk blocking, p..,

1]
which we have considered as constant.
Two problems now arise:
a) Measurement (and perhaps prediction) of pij'

b) In what way does the fluctuation of pij

affect the convergence of the algorithm.

The next step for investigation should be the
simulation of communication channel switching
networks controlled by the help of this algorithm
and by comparison with the control of others
(e.g. [1, 2, 3]).
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APPENDIX 1

Description of the Implemented Algorithms

This program was used to test the convergence of the algorithm.
It began with EPS being 1, and if DIFA becomes less than EPS,
then EPS becomes EPS/2 until a maximum of 100 iterations has
been done or DIFA becomes egual to zero. To avoid numerical
errors, the program was run in double precision and addition

was done in an increasing order.

For real time simulation this does not seem to be necessary

and thus the orogram would be faster.

List of the most important variables:

Integers

ITER: Number of current iteration

ITERM: Maximum number of iterations

KANAL: Current channel

KANALA: Number of the first channel of current node
KANALE: Number of the last channel of current node
KNOT: Number of current node

KNOTZ : Number of current adiacent node

NBKNOT : Highest node number

NKANAL: Number of channels

NKNOT: Number of nodes

NKNOT?Z : Highest number of destination nodes.

Integer arravs

KN (60) : KN(I) number of node at the end of
Channel I
M(17): M(I), M(I) + 1, M{I+l1) - 1. numbers

of the channels leavina node I.

Reals
PB: Lower bound of PBLOK if created
PBH: Upper bound of PBLOK if created.

~-17-
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Real arrav

PBLOK (60) : PBLOK(I) probabilitv of channel I being
blocked

Double precision

DOSKN : Addition variable

DIFA: Highest difference between old and
calculated value of PDOS (node,
destination) for all nodes and all
destinations

DIF: Difference between o0ld and new value
of PDOS for current node and current
destination.

Double precision array

PDOS(16,16.2): PDOS ({(node. destination. L): proba-
bilitv of reaching destination from
node

PMEM B (16): workina arrav.



INPUT AND
INITIALISING
EVERY THING

OuUTPUT
OF M, KN,
PBLOK

DIFA=0
L=MOD({ITER+1,2}-1

KANALA =
M{KNQT]
KANALE =

M KNOT+1 })-1

NBKNOT=KN(KANAL]
D1=1-PBLOK(KANAL ]
PMEMB [NBKNOT] =
POOS([NBKNOT,
KNOTZ, L)x D1
—1

KANNEW =
KANAL A+1KANALE

N BNEWzKN(KANNEW’,
P 2=PDOS{NBNEW,
KNOTZ, L) |

KAN =
KANALA,
KANNEW- 1

SHEET 1

-19-

DIFA < EPS?

OuUT PUT

EPS=EPS/2
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NBKNOT=KN(KAN)
P1 = PDOS
(NBKNOTKNQTZ, L)

PMEMB(NBKNQT)= PMEMB(NBNEW) =
PMEMB{NBKNOT) » PMEMB(NBNEW ) %
PBLOK (KANNEW ) PBLOK (KAN ]
@ T
LN=MOD [L,2]+1
DOSKN =10

KANAL =

KANALA +1,
KANALE

/'

NBKNOT=KN(KANAL)
NBKN =KN{KANAL

KANAL=
KANAL A KANALE

NBKNOQOT=
KN{KANAL)
DOSKN =DOSKN + HELP=PMEMB(NBKN]| &
PMEMB { NBKNOT) PMEMB [ NBKN) =
PMEMB(NBKNOT)
PMEMB (NBKNQOT}=
DIF = DABS HELP
Sosx
PDOS(KNOT, - ]
KNOTZ , L))
DIFA = DIF
]

POOSIKNOT, KNOTZ,
LN] = DOSKN

SHEET 2
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HSRED CDC /60N FTN V3.0=-P355 0OPT=]

FROGRA M KSRED{INPUTQUTPUT «TAPFI=INPUT s TAPF2=0UTPUT)
LOUSLE PRECISION HELPWP)eP?
Dot PReECISTON PMEMBeDUSKNODIF9sDIFAIPNOSyFPSHD1
DIMERSTON KN (60) oM (17)ePDIS(Lby16Hel) s PMEMR(16) +PBLOK(60)
“Eau(leHll) PBepGH
R11l Formal (2F2,¢7)
MKANAL=60
NEKNUT/=10
NENOT= 1A
JTEmr= | By
FEAD (14322) (KN(L)ei=10600) 9 (M{T)el=1916)9s (PBLOK(I)sI=1960)
327 FORMAT (w0l /72012/71612/74C0F2,2/20F242)

HECAUSE DALY THE NYMBER OF THE ADJACENT NODES OF NODE I IS AS YET
STORED I M(T) M NOW GETS NORMALIZED.

VO 324 1=2+NKNOT

M{l)y=m[=1)+em(])
320 CONTINUE

[RIVENE V- =1 e RNOT

M{NKNOT=L+2) =M (YKNQT=]+]1)+]
321 CUNTJINIE

r(l)=1

MANk) T+ L) =NKANAL+]

wrlTE (2 323) (MI1) o 1=LolT7) e (KN(I)sI=])o60)
323 FORMAT (1T (2Xe I3V /730(2Xe12)/30(2Xe12)/30(H®)Y0///7//730(1H*))
40 EPS=1.000

IF THE vAapLUES Ot PRLUK COMF FROME THE INPUT THIS DO~LOOP IS OMITTED.

DU 20 KANAL=1 9 NKANAL
22 k=sranFk (0o}
JF (k=PdH) 1s ]l s22
1 IF (iFd=R) 72 3e22e2¢
23 PHLON (KANAL) =R
20 CONT dhE
wHITE (26622) (PRLUOK(I)el=1e60)
622 FORMAT (6(1UF6,37)7)

FHF STarTTNG VALUES FOR PDOS ARE CREATED

DO 1943 K0T =] ¢NKNOT
PO 194 KNUTZ=1oNKNQTZ
TF (K IOToE Qe NOT2) 60O TQ LYS
POOS(KHOTyKNOTZ e 2) =RANF (09 0)
PODOSIKNODT o NOTZ4 1) =PLOSIKNOT 9 KNOTZ97)
GO 10 194

1949 PUUS(KGOTyRNOTZy 1) =180
RPOOS(KNOT ok NOT 2Za2) =1 40

194 CovT L ik

TO3 CONY [inv)FE

MOw Trt TTERATTON STAKTS

DY oTd TTER=] 100

09/12/74
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DIFA=, GRAODOZ20
LEMOL LT TE s {al) el
DO 191 <O T=1 «NKNOT
KANAL A= (A ()
KANALF=M(RNOT+] ) =]
PUo Ty KrOT/z=]1 W NRNOTZ
IF(KHNOTEW.XNOTZ) GO TO 130
O 197 KANAL=KANALALKANALE
NHEENOT=KN (ICANAL)Y
DL=1e UNY=HIILOK (KANAL )
PMEME (NBEKNOT ) =PN0S (NBKNOT s KNOTZeL) #D1
19T CONTT g E
KANI = <ANAL A+]
N 137 WANME w=KAN] s KANALL
NN wEKN(RKANNEW)
FARFUOSINGMEWeKHOT 2oL )
KANEW] = KANNEW-1
) 133 KRAN=ZKANALASKANEW!
MAKNOT=KN (KAN)
FlzPo0S (eBENUT ok NUTZ 9 L)
1F(PleGESP?) GO TO 134
PMLMM(%HRNO1)=PMtMH(NBKNOT)“PQLOK(KANNEN)
GO TO 133 N
34 PMEMS (MINEW) =PMFMo (NRNEW) *PRLOK (KAN)
133 (ONTY INDE
172 CuntInct
LN=MOU (Lel) +1
HOSK=041)
KAN]I=KANALA+]

THE VALUES OF PMEMR ARF PUTTED 1IN INCREASING ORDER

141 [v=u
O 1A RANAL=KAN] s KANALF
MHERANOTZKNEKANAL)
MR KN (RANAL=])
1F (PMEMY (NRKN) (LE.PMEMB (NBKNOT)) GO TO 140
HELLPEPME MM (IVRKN)
PME @ (KN) =PMEMB INKKNOT)
Pk (BRPOT) SHFLP
Iv=1v+)
lan CUNTINE
IF(IveTaD) GU TO 141
Fr0 13% KAaNAL=KANALAJKANALE
NBKMOT =K (RANAL)
DOSKHZPMEME (NHENOT ) +DOSKN
139 CONTINIE
DIr=oanS tUUSKN=PRUS (KNOTsniNDTZsL )
IF(NDIF.6T«0IFA) DIFA=DIF GRAO0DO030
O3 POUS (KN TaKNDTZ 4 LN) =DUSKN GRAONNL3
130 CuniliINUE ‘
141 CotaTINE
7o COMTLINUE
Aow 1F (DaRs(DLE ) =FBS) 1379137910
137 1F(DIFahGa0etiNQ)IGLTIY 13
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FPOZEPS/Z. 00U
(F(DAaRS(0IFA)=+ES) 1379137610
10 CONT[wiie
WhITE(?e7) 1TEryEPSWDIFA
T FURMAT (1 X5 (1h#)saHNACHyI5,42H TTER.~SCHRITTEN OHMNE ERFOLG BEENDET
BFedb PSSz Ulle3ent DIFazet))le3)
13 wWwRITE(RPel4)PheFHHIDIFA
Ja FORMAT (/28 PRINK LIEGT ZWISCHFN oF6.394H UUNN9FH3ebHESantn//
Bl X0l 3(LHY) 9DGULJU 13 (1H#))
07 STOP
kN
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