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We describe a collection of subroutines designed a) to facilitate the 
implementation of algorithms that are based upon linear programming, 
b) to serve as a tutorial on the development of such implementations. We 
make this collection the basis for a discussion of some of the broader 
issues of software development. 
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1. Introduction 

In t h s  paper we describe a collection of subroutines designed with 

two purposes in mind. Firstly, it is designed to facilitate the implementa- 

tion of algorithms which solve one or more linear programs in sequence, 

by the revised simplex method. For convenience, throughout t h s  paper, 

we shall refer to such algorithms as LP algorithms. Examples are algo- 

rithms based upon the Decomposition Principle of Dantzig and Wolfe, 1961 

or certain algorithms for solving stochastic programs, see Nazareth and 

Wets, 1982. Secondly, the collection is designed to serve as a tutorial on 

the development of such implementations. 

We make this collection the basis for a discussion of some of the 

broader issues of LP software development. In particular, we discuss the 

idea of he r a r chca l  implementation of LP algorithms, and t h s  enables us 



to be more specific about the purposes and limitations of our routines. 

2. Hierarchical Implementation of L P Algorithms 

In the early stages of the development of an LP  algorithms, a useful 

computational aid is a suitable high level language, preferably one avail- 

able in an interactive computing environment. This enables new ideas to 

be quickly and easily implemented and tested out. The computational 

experience thus obtained often results in new insights and developments, 

and helps in laying out the basic features of an algorithm. Such a 

language should permit programs to be written with relative ease, in the 

vernacular of applied mathematics. It serves as a medium for communi- 

cating algorithmic ideas precisely. The MPL language, see Dantzig et  al . ,  

1-970, was specifically designed with this in mind. Other examples of suit- 

able languages are Speakeasy, see Cohen and Pieper, 1976, and APL, see 

Gilman and Rose, 1976. When a collection of subroutines which carry out 

some of the basic operations of linear programming, for example, the 

main steps in the cycle of the revised simplex method, are also imple- 

mented, the usefulness of the language is further enhanced. We shall call 

such subroutines m o d u l e s ,  and they can be thought of as a suitable exten- 

sion of the language. From now on we shall refer to experimental imple- 

mentations of LP algorithms developed in such an extended h g h  level 

language as l eve l -  I i m p l e m e n t a t i o n s .  They comprise the first level in the 

hierarchy of implementation and they can clearly suffer from some seri- 

ous limitations. For example, the coding is often "quick and dirty", the 

routines are often only effective on toy problems, and they will not infre- 

quently encounter numerical difficulties. Being able to work in a h g h  



level language, no matter how convenient, does not circumvent a basic 

stumbling block, namely, routines which are numerically sound and effi- 

cient in running time and use of storage, are difficult to write. 

When more emphasis is to be placed upon a numerically sound imple- 

mentation which can be run on more realistic problems, we then come to 

implementations in the second level of the herarchy (called l eve l -  2 

i m p l e m e n t a t i o n s ) .  Problems that arise from real world applications are 

usually sparse. For example, even relatively small models, say having 300 

to 800 rows and 500 to 1200 columns, tend to have a density of about 0.2 

to 0.4, see Greenberg, 1978. Thus efficient representations of date are 

needed which take sparsity into account, and the implementations must 

whenever possible be robust, flexible and transportable. They should be 

able to work with LP problems which are specified in standard MPS input 

format. There would again be the need to identify the components that 

are used to build LP routines a t  this level, to specify them clearly and 

carefully, to implement them as modules in a manner that  makes them 

flexible and easy to use, and to have some standardization of the com- 

municating data structure. Because of the above goals, i t  would be 

natural to implement these modules in Fortran, since it is now the 

accepted language of scientific computing for any sort of software 

intended for wide distribution. One can then draw upon the quite exten- 

sive experience in developing mathematical software described, for exam- 

ple, in Smith e t  al., 1974, Ford and Hague, 1974. Such a collection of 

modules would be useful both for research purposes and as a teachng aid 

for more advanced computational aspects of LP algorithms than those a t  

the first level of the hierarchy, as described above. Our paper is 



concerned with the development of a collection of modules to aid in pro- 

ducing level-2 implementations. 

Finally, we come to level- 3 i m p l e m e n t a t ~ m  whch are designed pri- 

marily to solve user problems. The MINOS code of Murtagh and Saunders, 

1978, written in Fortran, is an example, it being a library quality, user 

oriented, transportable code. Other widely used codes are the commer- 

cially available Mathematical Programming Systems like MPSX/370. 

These large scale MP Systems have extensive control and data manage- 

ment facilities and since they are usually tailored to the characteristics 

of a specific machine for maximum run time efficiency, many of the sub- 

routines that carry out frequently repeated operations may be imple- 

mented in m a c h n e  language. Such systems are expensive to use, and 

there is, of course, a premium to be paid in terms of flexibility and tran- 

sportability, since they are designed for specific machines. Sometimes 

some of the high level routines are made available to the algorithm 

developer. (Figure 1 Lists some of the algorithm oriented modules that 

are available in MPSX/370.) 

An eventual goal of research into optimization algorithms is to 

develop good level-3 implementations. Developing level-1 and level-2 

implementations represents the achevement of important intermediate 

goals. Distinctions between the three different sorts of implementations 

are, of course, not clear cut and are primarily a question of which goals 

are emphasized. Level-2 implementations can and should be used to 

solve practical problems, and level-3 implementations can and should be 

used to study the encoded algorithm, and by replacement of parts  of the 

code, to d.evelop and tes t  out related algorithms. For example, MINOS is 



primarily a level-3 implementation, but it could well be used for algorithm 

experimentation. XMP, see Marsden, 1980, is specifically addressed to 

both levels 2 and 3. It is important to note however, that  the distinctions 

between implementations a t  the three levels we have discused above, are 

not primarily governed by the size of problems addressed. Thus a quality 

code for solving small nonsparse LP  problems could be in the t b r d  level 

of the berarchy rather than the first. 

Modules can be developed a t  all three levels of the luerarchy, but 

especially a t  the first two levels, they are much more than subroutines in 

a well structured program. In addition to having a well-defined function 

and interface, they should be flexible and, whenever possible, context 

independent. We like to think of modules a t  the first two levels of the 

hierarchy as the primitives or basic operators of a language for imple- 

menting LP  algorithms. At the third level modules tend more towards 

being well specified and designed subroutines in a structural program- 

ming sense, but here again the distinctions are not precise. For example, 

the modules listed in Figure 1 are flexible and useful for developing codes 

for algorithmic experimentation. Other useful collections of modules are,  

for example, given by Reid, 1976, Cline, 1977 and Land and Powell, 1973. 

As we have noted above, there is also a need at  each level for a standard- 

ized communicating data structure, and tlus gets increasingly complex as 

we move down in the berarchy.  We have also mentioned the standard 

MPS input formats w b c h  level-2 and -3 implementations should be able to 

handle. 



Figure 1. Some MPSX/370 modules. 

SETLIST (internal translation of variable) PRICEP (Pricing) 
WALUE (match a list of names) CHUZRl (choose row) 
GETVECl (moves colurrm) FTRANLl 

POSTMUL (matrix-vector operations) FTRANU1 (forward and 
PREMUL BTEZANL1 (backward transforms) 

BTEZANLl 

FIXVEC (computes basics) INVCTLl (inversion) 

Given the above context, we can now be more specific about the 

goals of this research effort, and about its limitations. As we have already 

stated, we have developed a small collection of modules designed to aid 

the development of level-2 implementations of LP algorithms, and to 

serve as a classroom tutorial on such implementations. We have drawn 

upon the work of many different workers in the field, for example, 

Saunders, 1977, Reid, 1976, Tomlin, 1975 and Greenberg 1978. Nothng 

that is particularly new in the way of techniques is suggested and ours is 

primarily a systematization and organization effort. Many of our routines 

are derived from MINOS, see Murtagh and Saunders, 1978. However, since 

we have made a great many modifications to suit our particular needs, 

responsibility for errors rests with us, and shortcomings of our routines 

should in no way reflect upon the source of the code. 

We expect our modules to be of help to someone who is developing a 

level-2 implementation of an LP algorithm, particularly if it is based upon 

the Decomposition Principle. We do not however expect them to be used 

in a 'plug-in' fashion. Rather they provide a starting point for develop- 

ment. For tutorial purposes, the code is sufficiently readable to provide a 



detailed illustration of implementation techniques. 

3. Description of Modules 

We now give an overview of our modules, and in particular, the con- 

siderations that guided our design. We do not however limit our discus- 

sion solely to the modules we have implemented since an  aim of this 

paper is to give the reader a feel for some of the broader issues involved 

in a effort such as t h s  one. We attempt, in our discussion, to strike a bal- 

ance between describing what we have implemented and speculation 

about a more comprehensive collection. A much fuller description of our 

implementation can be found in the documentation (see Section 4). 

Figure 2. Overview 

1. PROBLEM ORIENTED MODULES 
PREADR, PREADC, PRDRHS, PREADB, PCHKST 

2. ALGORITHM ORIENTED MODULES 

2.1 Data Structure Manipulation 
ADCONC, ADRNDX, ADINTF, ADUPKC, ADDELC 

2.2 Basic Simplex Modules 
MODRHS, FORMC, PRICE, CHUZR, UPBETA 

2.3 Sparse Linear Algebra Modules 
Interface to routines of Reid, 1976. 

We have grouped our modules according to their function, and Figure 

2 gives a summary of them. We have a naming convention that the first 

character indicates the main category to which the module belongs - 

problem oriented or algorithm oriented, the second character may indi- 

cate a subcategory, and the remaining characters indicate the module's 

function. In some cases however, the module names are so standard, that 

we have dispensed with the naming convention. (A t h r d  category - code 

oriented modules - could usefully be added though we have not done so 



here. These provide aids to coding, e.g., routines to efficiently do inner 

products, and so on.) 

3.1. Problem Oriented Modules 

In order to solve an LP problem both conveniently and efficiently, a 

user requires more than just a well implemented LP algorithm. Problem 

oriented modules are designed to help provide the interface between the 

user and h s  L P matrix on the one hand, and the LP optimization routine 

on the other. 

Interface features are, for example: 

a) To read in the LP matrix specified in some standard input format 

and develop a suitable data structure representing it. 

b) Verify information about the matrix and/or gather statistics 

about it. 

c )  Output solution found in some standard format. 

d) Having set  up the input matrix, by permutation of rows and 

columns, t ry to reorder it into a specific structure, e.g., block angu- 

lar. 

e) Modify portions of the initial problem, e.g., delete a set of rows. 

We have concentrated upon a) and b) and the following factors have 

influenced our design: 

i. We want to be able to handle practical problems of a reasonable 

size i .e.,  problems that are representative of real life applications, 

and these are often specified in standard MPS input format (see 

Appendix I). 



ii. Such LP problems are usually sparse, and therefore they should 

be stored in some packed representation (see Appendix I). 

iii. Furthermore, LP problems are often structured and we expect 

our modules to be used for implementing algorithms that take 

advantage of t h s  structure. Typical examples of structured LP's 

are:  

Block Angular Dual Block Angular Staircase 

A1 A2 A3 A4 1 A 1 A1 

A routine designed to take advantage of special structure may have 

to keep different parts of the LP matrix, e.g., ] in diffirent packed 

data structures, perhaps with rows consecutively numbered. It would 

therefore not be appropriate to provide a general input routine which 

reads and packs a single matrix specified in MPS input format. Instead, 

using to  a large extent the input routines of MINOS, we have developed a 

set  of components from whch a suitable input routine can be built. 

Our modules, which we have designed to be very flexible, are as fol- 

lows : 

a )  PREADR (Prob lem oriented READ R o w s )  

T h s  module reads in the list of row names and row types from the 

ROWS Section of the matrix and optionally builds a hash table, see Brent, 

1973, to speed up input of matrix elements. Extensive error checks are 



provided. 

b )  PREADC (Prob lem or ien ted  READ C o l u m n s )  

T h s  module reads in specified subset of columns from the COLUMNS 

Section of the LP matrix and builds a new packed data structure or 

extends a previously built one. Hashing can optionally be used to speed 

input. Again extensive error  checks are provided, for example, upper and 

lower bounds on row indices can be set,  to verify that the matrix is struc- 

tured as expected. 

c )  P R D R H S  (Prob lem or ien ted  R e a d  R H S )  

T h s  module reads in a specified right hand side vector from the RHS 

Section of the LP matrix into a packed data structure. 

d )  PREADB (Prob lem or ien ted  READ B o u n d s )  

Reads in a specified bounds vector from the BOUNDS Section of the 

LP input matrix. Lower bounds are set  up in an array BL and upper 

bounds in an  array BU. All variables are initially set  to default lower and 

upper bounds and then reset  as follows, if they are included in the  bounds 

vector: 

Field specifying 
type of bound Setting for BL Setting for BU 

LO bound value unchanged 
UP unchanged bound value 
FX bound value bound value 
FR - PLINFY + PLINFY 
PL 0 + PLINFY 
MI - PLINFY 0 

where PLINFY is a rnachne representation of infinity 



e )  PCHKST (Problem oriented CHecK STa t i s t i c s )  

Checks bounds and reports statistics on the input matrix. 

More extensive descriptions of the above modules are given in the 

documentation (see Section 4) and the testing programs of Chapter 111 of 

this documentation give an example of how the modules can be used. 

3.2. Algorithm Oriented Modules 

These provide some of the basic building blocks of LP algorithms, and 

we have gathered them into three groups as follows: 

I 

3.2.1. Data Structure Manipulation Modules 

An LP algorithm will usually carry out numerous operations whch 

modify and update its representation of data. For example, a decomposi- 

tion algorithm will continuously add and delete columns from the packed 

data structure holding its master problem. Another example was men- 

tioned earlier in Section 3.1, where we talked about the need to reindex 

rows in a packed data structure, and there are numerous other examples 

of t h s  type. L P  algorithms that  exploit the special structure of the 

matrix often require complex strategies, for example, how many columns 

to add or purge from a data structure, how often to do Lhs, and so on. By 

isolating basic operations on packed data structures, we can make a dis- 

tinction between the task of devising a good strategy upon whch the suc- 

cess of a particular algorithm often depends, and the task of implement- 

ing this strategy, which data structure manipulation modules can facili- 

tate. 



We have provided just a few basic operations of this type, and more 

can be added as the need arises: 

a )  ADCONC (Algorithm oriented Data s t r .  m a n i p .  CONCatenate da ta  

s t ruc tures )  

Concatenates two packed data structures, and returns result in the 

first one. 

b )  ADRNDX (Algorithm oriented Data s t .  m a n i p .  ReiNDeX d a t a  s t ruc ture )  

Reindexes the rows in a packed data structure. 

c )  ADINTF (Algorithm oriented Data s tr .  m a n i p .  INTerFace) 

Converts a packed data structure into an  element/row index/column 

index data structure ad thus provides an interface to routines that use 

the latter.  

d )  ADUPKC (Algorithm oriented Data s t r .  m a i p ,  UnPacK Column)  

Unpacks a specified column of a packed data structure. 

e )  ADDLC (Algorithm oriented Data ST. m a n i p .  DELete Column)  

Deletes a column of a packed data structure and closes it up. 

3.2.2. Basic Simplex Modules 

Different algorithms for structured L P  usually require a somewhat 

different version of the simplex algorithm. For example, in the Dantzig- 

Wolfe decomposition algorithm, a subproblem may be solved by the 

revised simplex method, but several intermediate solutions will usually be 

saved and passed back to the master problem. If the subproblem is 



unbounded, the extreme ray solution that is found must again be passed 

back to the master.  This requires a tailored version of the revised sim- 

plex algorithm. Implementing such an algorithm and algorithms of this 

type, is made a whole lot easier, by having at  ones disposal the modules of 

this section. 

In devising modules that help in implementing different versions of 

the revised simplex method, some conventions must be established 

about: 

1. The canonical form in which the LP problem is set up. 

2. The data structure that  provides the communication between 

modules. 

We have been motivated in our design by techniques used by Tomlin 

1975, Saunders 1977, and others, and we have adopted the following con- 

ventions: 

1. Computational Canonical Form 

Suppose that the initial LP problem is 

minimize T C Z 

If the problem was specified in MPS input format, the type of con- 

straint would be given by the ROWS Section and the bounds constraints 

can be identified as described in Section 3.1 d). 



- 14-  

Transform the problem as follows: 

m i n i m i z e  T 
C 2 

subject  I z  + Ax = b 

Z I z I u  

and 

0 s zi s if row i is a l row (nonnegative slack) 

-m I zi I 0 if row i is a 2 row (nonpositive slack) 

0 < zi I 0 if row i is an = row (artificial) 

Finally we have the computational.canonical form: 

m i n i m i z e  -z  

subject  z 0  + c T z  = 0 

Iz + A2 = b 

I I z  I u  

-a0 I z ' ,  I +m 

and z bounded as above. 

We define 



We call x the structural variables and ( z o , z )  the Logical variables. 

Thus in the computational canonical form whch we work with, a full iden- 

tity matrix for the logical variables is assumed to be written at the start 

of A .  The bounds on these logical variables are determined by the type of 

row, and no distinction is made between nonpositive, nonnegative slacks 

or artificial. They simply have different bounds that they must satisfy. 

2. Communicating Data Structure 

The data structure hat we use for communication between different 

modules is summarized in Figure 3. We have followed Tomlin 1975, 

Saunders 1977, and Ho 1974 in our naming conventions. The matrix is in 

computational canonical form and is packed as explained in Appendix I in 

arrays A, HA and HE. The integer variables LDA, LDHE, N and NHE give 

information about the data structure. KINBAS and PEG identify the state 

of each variable of the problem and a small extension of the simplex 

method is permitted in that variables can be temporarily pegged between 

their bounds. This idea is related to the superbasic variables of Murtagh 

and Saunders, 1978, but the latter used in a more powerful way, since an 

optimization is carried out in the subspace that they define. The use of 

pegged non-basic variables involves some straightforward extensions to 

the modules PRICE, CHUZR and UPBETA described below. PEG contains 

the current value of every variable in the problem, both logicals and 

structurals. Thus there is some redundancy of dormat ion  stored; but 

t h s  is not too great a penalty to pay at  t h s  level, given the added flexibil- 

ity that PEG makes possible, for example, being able to start with a non- 

basic feasible solution whch the user may have available to him, as often 



happens in decomposition algorithms. Finally, the array JH keeps track 

of the basis, and the variables JXOUT = JH(JP) and J X l N  keep track of the 

existing and incoming variables, respectively. IOBJ points to the objective 

row. 

The modules we have implemented communicate through the  above 

data structure. They carry out the main steps in the cycle of the simplex 

method, apart from the operations involving the basis matrix, whch  are 

discussed in the next section. There is, of course, a substantial overlap 

between our modules and those listed in Figure 1. 

a)  MODRHS (Algor i thm or i en t ed ,  bas i c  s i m p l e z ,  M ODif y Right  Hand 

S i d e )  

Given the values of the nonbasic variables in PEG, t h s  module forms the 

starting basic solution. It also returns a vector whose elements are useful 

for determining whether the level of rounding error is significant. 

b )  FORMC (Algor i thm or i en t ed ,  bas i c  s i m p l e z ,  FORM Cost r o w )  

This module sets up the objective row vector c suitably, dependng on 

whether the current solution is feasible or not. If feasible, then c l  = -1 

and c j  = 0 for j 2 2, (see the computational canonical form of Section 

3.2.2). If infeasible, then ci = 0 if zi is feasible, ci = -1 if xi violates its 

lower bound, and ci = +1 if zi violates its upper bound. The documenta- 

tion (see also Section 4) justifies t h s  in. detail. 

c )  PRICE (Algor i thm or i en t ed ,  bas ic  s i m p l e z ,  PRICE out  c o l u m n s )  

Determine one or more variables as suitable candidates to enter the 

basis, i.e., use the vector of prices ~r to calculate the reduced cost of the 

nonbasic columns. Various options are provided including partial and 



Figure 3. Data Structure for Simplex Modules 

LOGICALS 

NHE 

STRUCTURALS 
status of columns: KINBAS I I 

Lower bounds: DL I I 
Upper bounds: BU m 
Pegged variabln: PEG 1 I 

M' .. 2 

LOGICALS STRUCTURALS 

JH (1) Poinu to the I'th variable of the basis 

KINBAS (JI = 0 if the J'th variable i s  at lower bound - 1 if the J'th variable is at upper bound - 2 if J'th variable is pegged between bounds - 3 i f  J'th variable is basic 

JXlN points to column to enter ba$icldetermined by PRICE) 

JP poinu into JH and identifies which column JXOUT will exlt from basic (determined by CHUZR) 

A, HA. HE packed data structure, A and HA are of dimension LDA, and HE is of dlmenslon LDHE 

1 

2 

NROWS 

1 

2 

1 

3 

1 

2 

3 e 

The LP matrix shown here is the one 
given in the Appendix transformed into 
'computational cannonical forrn'and 
then packed 

N E number of elements in A 

NHE number of columns of A 



multiple pricing 

d )  CHUZR (A lgor i thm or ien ted ,  bas ic  s i m p l e z ,  choose (CHUZ)  R o w )  

Given the index of the incoming variable, this module determines whch 

variable it replaces. There are two cases: 

(i) basic variables are feasible. In this case the basic procedure is 

straightforward, but there are a number of special cases w h c h  make the 

implementation a little messy. a) The entering variable is the first to hit 

its bound. In this case the basis is unchanged, b) The entering variable 

can be increased indefinitely leading to an unbounded optimal solution. 

c) Ties in the choice of the exiting basic variable are found. In this case 

we use the two pass perturbation technique of Harris as implemented by 

Tomlin 1975. 

(ii) Some basic variables are infeasible. In t b s  case we use the 

m'ethod of Rarick, again as implemented by Tomlin 1975. For algorithmic 

details see also Greenberg 1978, and the documentation of Section 4. 

e )  UPBETA (A lgor i thm or ien ted ,  b m i c  s i m p l e z ,  U p d a t e  so lu t ion  

(BETA))  

This module updates the basic solution and the driving arrays JH, KINBAS 

and PEG. 

There are again many other modules that could be added to the col- 

lection. For example, if we wished to  implement methods based upon the 

dual simplex method, we would need a version of CHUZR that  worked with 

rows rather than columns. But the ones given above arise most com- 

monly, and others can be added as the need arises. 



3.2.3. Sparse Linear Algebra Modules 

In the revised simplex method, the basis matrix is maintained and 

updated in some factored form, and used to transform columns of the LP 

matrix by the FTRAN operation as it is commonly called, (see Figure I) ,  

and to compute the price vector by the BTRAN operation. Factorization 

of the basis that was based upon Gauss-Jordan elimination was the earli- 

est method used, but now much more sophsticated techniques are avail- 

able, see, e.g.,  Saunders 1976, Forrest and Tomlin 1972, Hellerman and 

Rarick, 1971, Reid 1976, and Cline 1977. At level-2 for which our modules 

are intended, the routines of Reid 1976 which employ LU factorization and 

Bartels-Golub updating are almost ideal, and we have done little more 

than provide an interface to them. The subroutines of Cline 1977 are also 

numerically stable, but they do not take sparsity into account and were 

therefore not suitable for our needs, and the bump and spike method of 

Hellerman and Rarick 1971, or the method of Saunders 1976, are more 

suited to level-3 implementations. 

4. DOCUMENTATION 

The documentation is organized into four chapters as follows: 

Chapter 1: A discussion of each module under the headings 

1. PURPOSE 

2. USAGE 

3. ALGORITHMIC & PROGRAMMING DETAILS 

Each of the main categories of modules described in Section 3 above 

is in addition preceded by an  introductory section, which prSovides back- 



ground information. For example, the introductory section for Problem 

oriented modules of Section 3.1 discusses MPS input format and hasbng.  

Chapter 2: In order to make it possible to add to the collection and main- 

tain some uniformity in the coding, we describe here some coding and 

documentation conventions that were used. 

Chapter 3: For each major group of modules we provide a testing pro- 

gram and give its input and its output. The testing program on Problem 

Oriented modules gives a detailed illustration of how to construct a rou- 

tine to read an MPS tape using the modules provided, and of the error 

checlclng that is made possible. The testing program on Data Structure 

Manipulation modules simply calls each one in turn. Finally the testing 

program for Basic Simplex and Sparse Linear Algebra modules shows in 

detail how to implement the cycle of the revised simplex method. These 

testing programs could also provide a useful starting point when coding 

an LP algorithm. 

Chapter 4 :  A Fortran listing of each module in the collection. 

The above four chapters of documentation and listings are written in 

machine readable form. They are available as a single file on a magnetic 

tape, wbch can be read and partitioned according to  one's own needs. 

For further details write to the author a t  the following address: 

IIASA 
System and Decision Sciences Area 
A-2361 Laxenburg, Austria 

We should conclude on a note of caution. The effort described above 

is limited in scope, and we do not claim that  our routines meet the stan- 



dards of quality software and transportability as set out for example in 

Smith e t  al., 1974. Testing is still continuing, and the test programs of 

Chapter 3 give the current extent of testing to whch  the modules have 

been subjected. We believe however that we have met  our goals as laid 

out in Sections 1 and 2, namely: 

a) to provide some aids whch  serve as a starting point for 

developing level-:! implementations of LP algorithms. Indeed, we 

are currently using them in the implementation of an  algorithm 

for two-stage stochastic programming with fixed recourse; 

b) to provide a tutorial on implementation of LP algorithms. 
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Appendix I 

EXAMPLE OF MPS INPUT FORMAT AND PACKED MATRICES 

. min xl + x2 + x3 

se t .  2x1 + 3x3 < t o  

4x2 + 5x3 < 20 

100 ,x12 0, x22 0 

Sample MPS Input 

NAME LP 

ROWS 

N OBJ 

L RWN 1 

COLUMNS 

CLM1 OBJ 1.0 RWNl 2.0 

CLM2 OBJ 1.0 RWN2 4.0 

CLM3 OBJ 1.0 RWNl 3.0 
CLM3 RWN2 5.0 

RTH RWNl 10.0 

RTH RWN2 20.0 

BOUNDS 

UP BVN CLMl 100. 

EN DATA 

TABLEAU 

qumn Names 
Row nam;;\ CLMl CLM2 CLM3 RTH 

Packed Representation of Above Matrix. Excludins 
RHS (column listlrow index data structure) 

Column Pointers Matrix Elements Row Indices 

Pointer to first unused 
element of this array 

Thus the third column (called CLM3) starts a t  element a + 4 
of array called 'Matrix Elements'. This column 
has three elements whose corresponding indices are 
given by the elements of the array called 
' Row Indices'. 


