
NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

IMPLEMENTATION AIDS FOR OPTIMIZATION
ALGORITHMS THAT SOLVE SEOUENCES OF
LINEAR PROGRAMS BY THE REVISED SIMPLEX
METHOD

Larry Nazareth

November 1982
WP-82-107

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of its National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
236 1 Laxenburg, Austria

We describe a collection of subroutines designed a) to facilitate the
implementation of algorithms that are based upon linear programming,
b) to serve as a tutorial on the development of such implementations. We
make this collection the basis for a discussion of some of the broader
issues of software development.

IMPLEMENTATION AlDS FOR OPTIMIZATION ALGORITHMS THAT
SOLVE SEQUENCES OF LINEAR P R O G W S BY THE REVlSED
SIMPLEX METHOD

Larry Nazareth

1. Introduction

In t h s paper we describe a collection of subroutines designed with

two purposes in mind. Firstly, it is designed to facilitate the implementa-

tion of algorithms which solve one or more linear programs in sequence,

by the revised simplex method. For convenience, throughout t h s paper,

we shall refer to such algorithms as LP algorithms. Examples are algo-

rithms based upon the Decomposition Principle of Dantzig and Wolfe, 1961

or certain algorithms for solving stochastic programs, see Nazareth and

Wets, 1982. Secondly, the collection is designed to serve as a tutorial on

the development of such implementations.

We make this collection the basis for a discussion of some of the

broader issues of LP software development. In particular, we discuss the

idea of he r a r chca l implementation of LP algorithms, and t h s enables us

to be more specific about the purposes and limitations of our routines.

2. Hierarchical Implementation of L P Algorithms

In the early stages of the development of an LP algorithms, a useful

computational aid is a suitable high level language, preferably one avail-

able in an interactive computing environment. This enables new ideas to

be quickly and easily implemented and tested out. The computational

experience thus obtained often results in new insights and developments,

and helps in laying out the basic features of an algorithm. Such a

language should permit programs to be written with relative ease, in the

vernacular of applied mathematics. It serves as a medium for communi-

cating algorithmic ideas precisely. The MPL language, see Dantzig et al . ,

1-970, was specifically designed with this in mind. Other examples of suit-

able languages are Speakeasy, see Cohen and Pieper, 1976, and APL, see

Gilman and Rose, 1976. When a collection of subroutines which carry out

some of the basic operations of linear programming, for example, the

main steps in the cycle of the revised simplex method, are also imple-

mented, the usefulness of the language is further enhanced. We shall call

such subroutines m o d u l e s , and they can be thought of as a suitable exten-

sion of the language. From now on we shall refer to experimental imple-

mentations of LP algorithms developed in such an extended h g h level

language as l eve l - I i m p l e m e n t a t i o n s . They comprise the first level in the

hierarchy of implementation and they can clearly suffer from some seri-

ous limitations. For example, the coding is often "quick and dirty", the

routines are often only effective on toy problems, and they will not infre-

quently encounter numerical difficulties. Being able to work in a h g h

level language, no matter how convenient, does not circumvent a basic

stumbling block, namely, routines which are numerically sound and effi-

cient in running time and use of storage, are difficult to write.

When more emphasis is to be placed upon a numerically sound imple-

mentation which can be run on more realistic problems, we then come to

implementations in the second level of the herarchy (called l eve l - 2

i m p l e m e n t a t i o n s) . Problems that arise from real world applications are

usually sparse. For example, even relatively small models, say having 300

to 800 rows and 500 to 1200 columns, tend to have a density of about 0.2

to 0.4, see Greenberg, 1978. Thus efficient representations of date are

needed which take sparsity into account, and the implementations must

whenever possible be robust, flexible and transportable. They should be

able to work with LP problems which are specified in standard MPS input

format. There would again be the need to identify the components that

are used to build LP routines a t this level, to specify them clearly and

carefully, to implement them as modules in a manner that makes them

flexible and easy to use, and to have some standardization of the com-

municating data structure. Because of the above goals, i t would be

natural to implement these modules in Fortran, since it is now the

accepted language of scientific computing for any sort of software

intended for wide distribution. One can then draw upon the quite exten-

sive experience in developing mathematical software described, for exam-

ple, in Smith e t al., 1974, Ford and Hague, 1974. Such a collection of

modules would be useful both for research purposes and as a teachng aid

for more advanced computational aspects of LP algorithms than those a t

the first level of the hierarchy, as described above. Our paper is

concerned with the development of a collection of modules to aid in pro-

ducing level-2 implementations.

Finally, we come to level- 3 i m p l e m e n t a t ~ m whch are designed pri-

marily to solve user problems. The MINOS code of Murtagh and Saunders,

1978, written in Fortran, is an example, it being a library quality, user

oriented, transportable code. Other widely used codes are the commer-

cially available Mathematical Programming Systems like MPSX/370.

These large scale MP Systems have extensive control and data manage-

ment facilities and since they are usually tailored to the characteristics

of a specific machine for maximum run time efficiency, many of the sub-

routines that carry out frequently repeated operations may be imple-

mented in m a c h n e language. Such systems are expensive to use, and

there is, of course, a premium to be paid in terms of flexibility and tran-

sportability, since they are designed for specific machines. Sometimes

some of the high level routines are made available to the algorithm

developer. (Figure 1 Lists some of the algorithm oriented modules that

are available in MPSX/370.)

An eventual goal of research into optimization algorithms is to

develop good level-3 implementations. Developing level-1 and level-2

implementations represents the achevement of important intermediate

goals. Distinctions between the three different sorts of implementations

are, of course, not clear cut and are primarily a question of which goals

are emphasized. Level-2 implementations can and should be used to

solve practical problems, and level-3 implementations can and should be

used to study the encoded algorithm, and by replacement of parts of the

code, to d.evelop and tes t out related algorithms. For example, MINOS is

primarily a level-3 implementation, but it could well be used for algorithm

experimentation. XMP, see Marsden, 1980, is specifically addressed to

both levels 2 and 3. It is important to note however, that the distinctions

between implementations a t the three levels we have discused above, are

not primarily governed by the size of problems addressed. Thus a quality

code for solving small nonsparse LP problems could be in the t b r d level

of the berarchy rather than the first.

Modules can be developed a t all three levels of the luerarchy, but

especially a t the first two levels, they are much more than subroutines in

a well structured program. In addition to having a well-defined function

and interface, they should be flexible and, whenever possible, context

independent. We like to think of modules a t the first two levels of the

hierarchy as the primitives or basic operators of a language for imple-

menting LP algorithms. At the third level modules tend more towards

being well specified and designed subroutines in a structural program-

ming sense, but here again the distinctions are not precise. For example,

the modules listed in Figure 1 are flexible and useful for developing codes

for algorithmic experimentation. Other useful collections of modules are,

for example, given by Reid, 1976, Cline, 1977 and Land and Powell, 1973.

As we have noted above, there is also a need at each level for a standard-

ized communicating data structure, and tlus gets increasingly complex as

we move down in the berarchy. We have also mentioned the standard

MPS input formats w b c h level-2 and -3 implementations should be able to

handle.

Figure 1. Some MPSX/370 modules.

SETLIST (internal translation of variable) PRICEP (Pricing)
WALUE (match a list of names) CHUZRl (choose row)
GETVECl (moves colurrm) FTRANLl

POSTMUL (matrix-vector operations) FTRANU1 (forward and
PREMUL BTEZANL1 (backward transforms)

BTEZANLl

FIXVEC (computes basics) INVCTLl (inversion)

Given the above context, we can now be more specific about the

goals of this research effort, and about its limitations. As we have already

stated, we have developed a small collection of modules designed to aid

the development of level-2 implementations of LP algorithms, and to

serve as a classroom tutorial on such implementations. We have drawn

upon the work of many different workers in the field, for example,

Saunders, 1977, Reid, 1976, Tomlin, 1975 and Greenberg 1978. Nothng

that is particularly new in the way of techniques is suggested and ours is

primarily a systematization and organization effort. Many of our routines

are derived from MINOS, see Murtagh and Saunders, 1978. However, since

we have made a great many modifications to suit our particular needs,

responsibility for errors rests with us, and shortcomings of our routines

should in no way reflect upon the source of the code.

We expect our modules to be of help to someone who is developing a

level-2 implementation of an LP algorithm, particularly if it is based upon

the Decomposition Principle. We do not however expect them to be used

in a 'plug-in' fashion. Rather they provide a starting point for develop-

ment. For tutorial purposes, the code is sufficiently readable to provide a

detailed illustration of implementation techniques.

3. Description of Modules

We now give an overview of our modules, and in particular, the con-

siderations that guided our design. We do not however limit our discus-

sion solely to the modules we have implemented since an aim of this

paper is to give the reader a feel for some of the broader issues involved

in a effort such as t h s one. We attempt, in our discussion, to strike a bal-

ance between describing what we have implemented and speculation

about a more comprehensive collection. A much fuller description of our

implementation can be found in the documentation (see Section 4).

Figure 2. Overview

1. PROBLEM ORIENTED MODULES
PREADR, PREADC, PRDRHS, PREADB, PCHKST

2. ALGORITHM ORIENTED MODULES

2.1 Data Structure Manipulation
ADCONC, ADRNDX, ADINTF, ADUPKC, ADDELC

2.2 Basic Simplex Modules
MODRHS, FORMC, PRICE, CHUZR, UPBETA

2.3 Sparse Linear Algebra Modules
Interface to routines of Reid, 1976.

We have grouped our modules according to their function, and Figure

2 gives a summary of them. We have a naming convention that the first

character indicates the main category to which the module belongs -

problem oriented or algorithm oriented, the second character may indi-

cate a subcategory, and the remaining characters indicate the module's

function. In some cases however, the module names are so standard, that

we have dispensed with the naming convention. (A t h r d category - code

oriented modules - could usefully be added though we have not done so

here. These provide aids to coding, e.g., routines to efficiently do inner

products, and so on.)

3.1. Problem Oriented Modules

In order to solve an LP problem both conveniently and efficiently, a

user requires more than just a well implemented LP algorithm. Problem

oriented modules are designed to help provide the interface between the

user and h s L P matrix on the one hand, and the LP optimization routine

on the other.

Interface features are, for example:

a) To read in the LP matrix specified in some standard input format

and develop a suitable data structure representing it.

b) Verify information about the matrix and/or gather statistics

about it.

c) Output solution found in some standard format.

d) Having set up the input matrix, by permutation of rows and

columns, t ry to reorder it into a specific structure, e.g., block angu-

lar.

e) Modify portions of the initial problem, e.g., delete a set of rows.

We have concentrated upon a) and b) and the following factors have

influenced our design:

i. We want to be able to handle practical problems of a reasonable

size i .e., problems that are representative of real life applications,

and these are often specified in standard MPS input format (see

Appendix I).

ii. Such LP problems are usually sparse, and therefore they should

be stored in some packed representation (see Appendix I).

iii. Furthermore, LP problems are often structured and we expect

our modules to be used for implementing algorithms that take

advantage of t h s structure. Typical examples of structured LP's

are:

Block Angular Dual Block Angular Staircase

A1 A2 A3 A4 1 A 1 A1

A routine designed to take advantage of special structure may have

to keep different parts of the LP matrix, e.g.,] in diffirent packed

data structures, perhaps with rows consecutively numbered. It would

therefore not be appropriate to provide a general input routine which

reads and packs a single matrix specified in MPS input format. Instead,

using to a large extent the input routines of MINOS, we have developed a

set of components from whch a suitable input routine can be built.

Our modules, which we have designed to be very flexible, are as fol-

lows :

a) PREADR (Prob lem oriented READ R o w s)

T h s module reads in the list of row names and row types from the

ROWS Section of the matrix and optionally builds a hash table, see Brent,

1973, to speed up input of matrix elements. Extensive error checks are

provided.

b) PREADC (Prob lem or ien ted READ C o l u m n s)

T h s module reads in specified subset of columns from the COLUMNS

Section of the LP matrix and builds a new packed data structure or

extends a previously built one. Hashing can optionally be used to speed

input. Again extensive error checks are provided, for example, upper and

lower bounds on row indices can be set, to verify that the matrix is struc-

tured as expected.

c) P R D R H S (Prob lem or ien ted R e a d R H S)

T h s module reads in a specified right hand side vector from the RHS

Section of the LP matrix into a packed data structure.

d) PREADB (Prob lem or ien ted READ B o u n d s)

Reads in a specified bounds vector from the BOUNDS Section of the

LP input matrix. Lower bounds are set up in an array BL and upper

bounds in an array BU. All variables are initially set to default lower and

upper bounds and then reset as follows, if they are included in the bounds

vector:

Field specifying
type of bound Setting for BL Setting for BU

LO bound value unchanged
UP unchanged bound value
FX bound value bound value
FR - PLINFY + PLINFY
PL 0 + PLINFY
MI - PLINFY 0

where PLINFY is a rnachne representation of infinity

e) PCHKST (Problem oriented CHecK STa t i s t i c s)

Checks bounds and reports statistics on the input matrix.

More extensive descriptions of the above modules are given in the

documentation (see Section 4) and the testing programs of Chapter 111 of

this documentation give an example of how the modules can be used.

3.2. Algorithm Oriented Modules

These provide some of the basic building blocks of LP algorithms, and

we have gathered them into three groups as follows:

I

3.2.1. Data Structure Manipulation Modules

An LP algorithm will usually carry out numerous operations whch

modify and update its representation of data. For example, a decomposi-

tion algorithm will continuously add and delete columns from the packed

data structure holding its master problem. Another example was men-

tioned earlier in Section 3.1, where we talked about the need to reindex

rows in a packed data structure, and there are numerous other examples

of t h s type. L P algorithms that exploit the special structure of the

matrix often require complex strategies, for example, how many columns

to add or purge from a data structure, how often to do Lhs, and so on. By

isolating basic operations on packed data structures, we can make a dis-

tinction between the task of devising a good strategy upon whch the suc-

cess of a particular algorithm often depends, and the task of implement-

ing this strategy, which data structure manipulation modules can facili-

tate.

We have provided just a few basic operations of this type, and more

can be added as the need arises:

a) ADCONC (Algorithm oriented Data s t r . m a n i p . CONCatenate da ta

s t ruc tures)

Concatenates two packed data structures, and returns result in the

first one.

b) ADRNDX (Algorithm oriented Data s t . m a n i p . ReiNDeX d a t a s t ruc ture)

Reindexes the rows in a packed data structure.

c) ADINTF (Algorithm oriented Data s tr . m a n i p . INTerFace)

Converts a packed data structure into an element/row index/column

index data structure ad thus provides an interface to routines that use

the latter.

d) ADUPKC (Algorithm oriented Data s t r . m a i p , UnPacK Column)

Unpacks a specified column of a packed data structure.

e) ADDLC (Algorithm oriented Data ST. m a n i p . DELete Column)

Deletes a column of a packed data structure and closes it up.

3.2.2. Basic Simplex Modules

Different algorithms for structured L P usually require a somewhat

different version of the simplex algorithm. For example, in the Dantzig-

Wolfe decomposition algorithm, a subproblem may be solved by the

revised simplex method, but several intermediate solutions will usually be

saved and passed back to the master problem. If the subproblem is

unbounded, the extreme ray solution that is found must again be passed

back to the master. This requires a tailored version of the revised sim-

plex algorithm. Implementing such an algorithm and algorithms of this

type, is made a whole lot easier, by having at ones disposal the modules of

this section.

In devising modules that help in implementing different versions of

the revised simplex method, some conventions must be established

about:

1. The canonical form in which the LP problem is set up.

2. The data structure that provides the communication between

modules.

We have been motivated in our design by techniques used by Tomlin

1975, Saunders 1977, and others, and we have adopted the following con-

ventions:

1. Computational Canonical Form

Suppose that the initial LP problem is

minimize T C Z

If the problem was specified in MPS input format, the type of con-

straint would be given by the ROWS Section and the bounds constraints

can be identified as described in Section 3.1 d).

- 14-

Transform the problem as follows:

m i n i m i z e T
C 2

subject I z + Ax = b

Z I z I u

and

0 s zi s if row i is a l row (nonnegative slack)

-m I zi I 0 if row i is a 2 row (nonpositive slack)

0 < zi I 0 if row i is an = row (artificial)

Finally we have the computational.canonical form:

m i n i m i z e -z

subject z 0 + c T z = 0

Iz + A2 = b

I I z I u

-a0 I z ' , I +m

and z bounded as above.

We define

We call x the structural variables and (z o , z) the Logical variables.

Thus in the computational canonical form whch we work with, a full iden-

tity matrix for the logical variables is assumed to be written at the start

of A . The bounds on these logical variables are determined by the type of

row, and no distinction is made between nonpositive, nonnegative slacks

or artificial. They simply have different bounds that they must satisfy.

2. Communicating Data Structure

The data structure hat we use for communication between different

modules is summarized in Figure 3. We have followed Tomlin 1975,

Saunders 1977, and Ho 1974 in our naming conventions. The matrix is in

computational canonical form and is packed as explained in Appendix I in

arrays A, HA and HE. The integer variables LDA, LDHE, N and NHE give

information about the data structure. KINBAS and PEG identify the state

of each variable of the problem and a small extension of the simplex

method is permitted in that variables can be temporarily pegged between

their bounds. This idea is related to the superbasic variables of Murtagh

and Saunders, 1978, but the latter used in a more powerful way, since an

optimization is carried out in the subspace that they define. The use of

pegged non-basic variables involves some straightforward extensions to

the modules PRICE, CHUZR and UPBETA described below. PEG contains

the current value of every variable in the problem, both logicals and

structurals. Thus there is some redundancy of dormat ion stored; but

t h s is not too great a penalty to pay at t h s level, given the added flexibil-

ity that PEG makes possible, for example, being able to start with a non-

basic feasible solution whch the user may have available to him, as often

happens in decomposition algorithms. Finally, the array JH keeps track

of the basis, and the variables JXOUT = JH(JP) and J X l N keep track of the

existing and incoming variables, respectively. IOBJ points to the objective

row.

The modules we have implemented communicate through the above

data structure. They carry out the main steps in the cycle of the simplex

method, apart from the operations involving the basis matrix, whch are

discussed in the next section. There is, of course, a substantial overlap

between our modules and those listed in Figure 1.

a) MODRHS (Algor i thm or i en t ed , bas i c s i m p l e z , M ODif y Right Hand

S i d e)

Given the values of the nonbasic variables in PEG, t h s module forms the

starting basic solution. It also returns a vector whose elements are useful

for determining whether the level of rounding error is significant.

b) FORMC (Algor i thm or i en t ed , bas i c s i m p l e z , FORM Cost r o w)

This module sets up the objective row vector c suitably, dependng on

whether the current solution is feasible or not. If feasible, then c l = -1

and c j = 0 for j 2 2, (see the computational canonical form of Section

3.2.2). If infeasible, then ci = 0 if zi is feasible, ci = -1 if xi violates its

lower bound, and ci = +1 if zi violates its upper bound. The documenta-

tion (see also Section 4) justifies t h s in. detail.

c) PRICE (Algor i thm or i en t ed , bas ic s i m p l e z , PRICE out c o l u m n s)

Determine one or more variables as suitable candidates to enter the

basis, i.e., use the vector of prices ~r to calculate the reduced cost of the

nonbasic columns. Various options are provided including partial and

Figure 3. Data Structure for Simplex Modules

LOGICALS

NHE

STRUCTURALS
status of columns: KINBAS I I

Lower bounds: DL I I
Upper bounds: BU m
Pegged variabln: PEG 1 I

M' .. 2

LOGICALS STRUCTURALS

JH (1) Poinu to the I'th variable of the basis

KINBAS (JI = 0 if the J'th variable i s at lower bound - 1 if the J'th variable is at upper bound - 2 if J'th variable is pegged between bounds - 3 i f J'th variable is basic

JXlN points to column to enter ba$icldetermined by PRICE)

JP poinu into JH and identifies which column JXOUT will exlt from basic (determined by CHUZR)

A, HA. HE packed data structure, A and HA are of dimension LDA, and HE is of dlmenslon LDHE

1

2

NROWS

1

2

1

3

1

2

3 e

The LP matrix shown here is the one
given in the Appendix transformed into
'computational cannonical forrn'and
then packed

N E number of elements in A

NHE number of columns of A

multiple pricing

d) CHUZR (A lgor i thm or ien ted , bas ic s i m p l e z , choose (CHUZ) R o w)

Given the index of the incoming variable, this module determines whch

variable it replaces. There are two cases:

(i) basic variables are feasible. In this case the basic procedure is

straightforward, but there are a number of special cases w h c h make the

implementation a little messy. a) The entering variable is the first to hit

its bound. In this case the basis is unchanged, b) The entering variable

can be increased indefinitely leading to an unbounded optimal solution.

c) Ties in the choice of the exiting basic variable are found. In this case

we use the two pass perturbation technique of Harris as implemented by

Tomlin 1975.

(ii) Some basic variables are infeasible. In t b s case we use the

m'ethod of Rarick, again as implemented by Tomlin 1975. For algorithmic

details see also Greenberg 1978, and the documentation of Section 4.

e) UPBETA (A lgor i thm or ien ted , b m i c s i m p l e z , U p d a t e so lu t ion

(BETA))

This module updates the basic solution and the driving arrays JH, KINBAS

and PEG.

There are again many other modules that could be added to the col-

lection. For example, if we wished to implement methods based upon the

dual simplex method, we would need a version of CHUZR that worked with

rows rather than columns. But the ones given above arise most com-

monly, and others can be added as the need arises.

3.2.3. Sparse Linear Algebra Modules

In the revised simplex method, the basis matrix is maintained and

updated in some factored form, and used to transform columns of the LP

matrix by the FTRAN operation as it is commonly called, (see Figure I) ,

and to compute the price vector by the BTRAN operation. Factorization

of the basis that was based upon Gauss-Jordan elimination was the earli-

est method used, but now much more sophsticated techniques are avail-

able, see, e.g., Saunders 1976, Forrest and Tomlin 1972, Hellerman and

Rarick, 1971, Reid 1976, and Cline 1977. At level-2 for which our modules

are intended, the routines of Reid 1976 which employ LU factorization and

Bartels-Golub updating are almost ideal, and we have done little more

than provide an interface to them. The subroutines of Cline 1977 are also

numerically stable, but they do not take sparsity into account and were

therefore not suitable for our needs, and the bump and spike method of

Hellerman and Rarick 1971, or the method of Saunders 1976, are more

suited to level-3 implementations.

4. DOCUMENTATION

The documentation is organized into four chapters as follows:

Chapter 1: A discussion of each module under the headings

1. PURPOSE

2. USAGE

3. ALGORITHMIC & PROGRAMMING DETAILS

Each of the main categories of modules described in Section 3 above

is in addition preceded by an introductory section, which prSovides back-

ground information. For example, the introductory section for Problem

oriented modules of Section 3.1 discusses MPS input format and hasbng.

Chapter 2: In order to make it possible to add to the collection and main-

tain some uniformity in the coding, we describe here some coding and

documentation conventions that were used.

Chapter 3: For each major group of modules we provide a testing pro-

gram and give its input and its output. The testing program on Problem

Oriented modules gives a detailed illustration of how to construct a rou-

tine to read an MPS tape using the modules provided, and of the error

checlclng that is made possible. The testing program on Data Structure

Manipulation modules simply calls each one in turn. Finally the testing

program for Basic Simplex and Sparse Linear Algebra modules shows in

detail how to implement the cycle of the revised simplex method. These

testing programs could also provide a useful starting point when coding

an LP algorithm.

Chapter 4 : A Fortran listing of each module in the collection.

The above four chapters of documentation and listings are written in

machine readable form. They are available as a single file on a magnetic

tape, wbch can be read and partitioned according to one's own needs.

For further details write to the author a t the following address:

IIASA
System and Decision Sciences Area
A-2361 Laxenburg, Austria

We should conclude on a note of caution. The effort described above

is limited in scope, and we do not claim that our routines meet the stan-

dards of quality software and transportability as set out for example in

Smith e t al., 1974. Testing is still continuing, and the test programs of

Chapter 3 give the current extent of testing to whch the modules have

been subjected. We believe however that we have met our goals as laid

out in Sections 1 and 2, namely:

a) to provide some aids whch serve as a starting point for

developing level-:! implementations of LP algorithms. Indeed, we

are currently using them in the implementation of an algorithm

for two-stage stochastic programming with fixed recourse;

b) to provide a tutorial on implementation of LP algorithms.

5. Acknowledgement

The author is most grateful to Drs. M. Saunders, J . Tomlin, J . Reid and

H. Greenberg who provided the foundation upon which rests much of this

work.

Brent, R.P. (1973),, educing the retrieval time of Scatter Storage Tech-

niques, Comm. A.C.M., 16, pp. 105-109.

Cline, A.K. (1977), Two Subroutine Packages for the Efficient Updating of

Matrix Factorizations, University of Texas a t Austin, Department of

Computer Science Report TR-68, Austin, Texas.

Cohen, S. and S.C. Pieper (1976), The Speakeasy-3 Reference Manual,

Level Lamda, Argonne National Laboratory, Report ANL-0000,

Argonne, Illinois.

Dantzlg e t al. (19701, MPL-Mathematical Programming Language - Specifi-

cation Manual, Report STAN-CS-70-187, Computer Science Dept.,

Stanford University.

Dantzig, G.B. and P. Wolfe (19611, The Decomposition Algorithm for Linear

Programming, Econometica, 29, pp. 767-778.

Ford, B. and Hague, S.T. (1974), The Organization of Numerical Algorithms

Libraries, In Proceedings of IMA Conference on Software for Numeri-

cal Mathematics, J . Evans, (Ed.), Academic Press, pp. 357-372.

Forrest, J.J.H. and Tomlin, J.A. (1972), Updating Triangular Factors of the

Basis to Maintain Sparsity in the Product Form Simplex Method,

Mathematical Programming, 2, pp. 263-278.

Gilman, L. and A.J. Rose (1976), APL An Interactive Approach, (Second edi-

tion, revised) Wiley.

Greenberg, H.. (1978), Pivot Selection Techniques, In Design and Imple-

mentation of Optimization Software, H. Greenberg (Ed.), NATO

Advanced Studies Institute Series E. Applied Science, No. 28, Sijthoff

and Noordhoff, pp. 1-26.

Hellerman, E. and Rarick, D. (1971), Reinversion with the Preassigned

Pivot Procedure, Mathematical Programming, 1, p. 195-216.

Ho, J.K. (1974), Nested Decomposition of Large Scale Linear Programs

with the Staircase Structure, Systems Optimization Laboratory

Report SOL 74-4, Department of Operations Research, Stanford

University.

Land, A.H. and S. Powell (1973), Fortran Codes for Mathematical Program-

ming, Wiley.

MarsLen, R.E. (198O), The Design of the XMP Linear Programming Library,

Management Information Systems Report 80-2, University of Arizona,

Tucson.

Murtagh, B.A. and M.A. Saunders (1978), Large Scale Linearly Constrained

Optimization, Mathematical Programming, 14, pp. 41-72.

Nazareth, L. and R. J-B. Wets (1982), Algorithms for Stochastic Programs:

the case of non-stochastic Tenders, IIASA Working Paper (Forthcom-

ing).

Reid, J.K. (1976), Fortran Subroutines for handling Sparse Linear Pro-

gramming Bases, A.E.R.E. Harwell Report RB269, Harwell, England.

Saunders, M.A. (1976), A Fast, Stable Implementation of the Simplex

Method Using Bartels-Golub Updating, In Sparse Matrix Cornputa-

tions, Bunch and Rose (Eds.), Academic Press, pp. 213-226.

Saunders, M.A. (1977), MINOS-User's Manual, Systems Optimization

Laboratory Report SOL 77-31, Department of Operations Research,

Stanford University.

Smith, B.T.. Boyle, J.M. and Cody W.J. (1974), The NATS Approach to Qual-

ity Software, in Proceedings of IMA Conference on Software for

Numerical Mathematics, J. Evans (Ed.), Academic Press, pp. 393-405.

Tomlin, J.A. (1975), LPM1-User's Manual, Systems Optimization Labora-

tory, Department of Operations Research, Stanford University.

Appendix I

EXAMPLE OF MPS INPUT FORMAT AND PACKED MATRICES

. min xl + x2 + x3

se t . 2x1 + 3x3 < t o

4x2 + 5x3 < 20

100 ,x12 0, x22 0

Sample MPS Input

NAME LP

ROWS

N OBJ

L RWN 1

COLUMNS

CLM1 OBJ 1.0 RWNl 2.0

CLM2 OBJ 1.0 RWN2 4.0

CLM3 OBJ 1.0 RWNl 3.0
CLM3 RWN2 5.0

RTH RWNl 10.0

RTH RWN2 20.0

BOUNDS

UP BVN CLMl 100.

EN DATA

TABLEAU

qumn Names
Row nam;;\ CLMl CLM2 CLM3 RTH

Packed Representation of Above Matrix. Excludins
RHS (column listlrow index data structure)

Column Pointers Matrix Elements Row Indices

Pointer to first unused
element of this array

Thus the third column (called CLM3) starts a t element a + 4
of array called 'Matrix Elements'. This column
has three elements whose corresponding indices are
given by the elements of the array called
' Row Indices'.

