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ABSTRACT 

A large-scale linear programming energy systems model is 
decomposed, and analyzed using new decomposition algorithms, 
thus revealing some characteristic features of the model. This 
approach suggests a possible method of constructing a formally 
integrated system of linked models. 

1. BACKGROUND AND OBJECTIVES 

In recent years a nurnber of projects concerned with the analysis of inter- 

national energy systems have been initiated within various institutions, includ- 

ing the International Institute for Applied Systems Analysis (IIASA) [I], the 

International Energy Agency (IEA) [Z], and the European Community [3]. Their 

primary objective has been to  assess the options for long-term development of 

energy supply systems and the interaction between general economic develop- 

ment and the use of energy a t  a national or regional level. 

The above studies have each been built around a large-scale multiperiod 

linear programming model of energy supplv, which a t  IIASA is called MESSAGE, 

and at the IEA is called MARKAL. Current investigation3 of the relationship 

between energy use and the introducticn of energy conservation measures [dl 

seem to be 1ead.ing t,o the development of additional linear programming models 

of, for example, industrial or transportation sectors, thus increasing the dimen- 

sion of the problem. 



The overall problem can  be considered as one of investment and production 

planning in a n  economy divided into an energy sector  supplying a specified se t  

of energy forms and several energy-intensive economic sectors to which energy 

is supplied a t  a given price.  The overall objective is to minimize the  total invest- 

ment  and operating cost of the system over some t ime horizon, which is usually 

of the order of 65 years.  

The scale of the problem and the  variety of sectors considered a re  such 

tha t ,  in a perfect world, the  various submodels should be developed by different 

groups of specialists working in the appropriate fields, but this lies more in the  

realms of fantasy than  reality. One of the main reasons why this approach is not 

ilsed more in practice is t he  absence of efficient methods for linking or bringing 

into agreement  t he  heterogeneous submodels based on different time-scales and 

different degrees of aggregation, operating with different policy variables and 

involving different economic agents. 

Another possible reason for the infrequent use of this modular principle in 

the development. of large-scale models may lie in the many reported failures (for 

purely computational reasons ) of attern-pts to  implement decompositiorr ideas 

in large-scale optimization. T h s  can  be overcome by the development of more 

advanced decomposition techniques and the accumulation of relevant practical 

experience. 

All of t he  above considerations, combined with the practical necessity of 

squeezing a large-scale problem into a small computer,  motivated the  authors to  

undertake the decomposition of the  large-scale 11-4SA energy supply model MES- 

SAGE. The theoretical foundation for the  particular decomposition algorithms 

used here is actually a by-product of a study on nondifferentiable optimization 

currently underway a t  IIASA. This work has resulted in the development of a 

family of decomposition algorithms [ 5 , 6 ]  which have already been succe ssfdly 



applied to medium-scale problems. 

2. THE MODEL MESSAGE I1 

The energy supply model considered in this paper is MESSAGE 11, which is 

currently under development in the Energy Systems Group at  IIASA. It is an 

extended version of the model MESSAGE ( Model for Energy Supply Systems 

Alternatives and their General Environmental impact ) [7] also developed at  

!IASA . 

MESSAGE I1 is a detailed energy supply model in a dynamic linear program- 

ming formulation which is designed to compare alternative existing and pros- 

pective technologies for the extraction, production, secondary conversion, 

storage, distribution, and end-use of energy, capable of meeting the set of 

demands for useful energy specified outside the model. Constraints are 

imposed by the availability of primary energy resources, the market penetration 

rates of new technologies and the rates of decline of existing ones, as well as by 

limitations on capital and materials. The objective is to minimize the total cost, 

discounted over some time interval. 

The model allows a large number of technologies to be include6 in each of 

the energy transformation chains, starting from resources and proceeding via 

central conversion, transmission and decentralized conversion to end use. A 

detailed description of different types of energy storage and the load distribu- 

tion of the intermediate energy forms is also included. More detailed informa- 

tion about the model is given in [B]. 

The comprehensiveness of this approach is achieved at  the cost of increas- 

ing the size of the resulting linear programming problem (up to 3000 rows and 

4000 columns ), leading to some difficulties both in obtaining and interpreting 

the solution. It also hinders the wider application of the model by rest-ricting its 



effective implementation and use to computers above a certain size. 

The test problem reported here is part of a stndy undertaken as a follow-up 

to the global energy systems analysis conducted at IIASA and reported in full in 

[I]. This later study concentrates on specific energy options for certain Latin 

American countries, including Mexico and Brazil. In this study the model MES- 

SAGE I1 was used to investigate the feasibility and timing of the introduction of a 

menu of new technologies in order to explore the possibilities of existing and 

potential energy resources, to examine import/export strategies, as well as  to 

determine the impact of the rapid introduction of nuclear or hydropower plants 

on the development of the energy supply system. The analysis was constrained 

throughout by a set  of exogenous energy demands. 

The case study for Mexico was chosen to test  the decomposition algorithm 

This example contains a detailed description of the energy forms and technolog- 

ical options considered (see Tables 1 and 2) ,and thus represents a good off-the- 

shelf problem including all the features characteristic of an energy system 

study a t  the national level . 

Table I .  Forms of energy considered in the Mexican case study. 

Primary Secondary and final End-use 

Hard coal (indigenous) Coke Process heat (high temp.) 
Hard coal.(imported) Light fractions of oil Process heat (medium and low temp.) 
Crude oil (onshore) Heavy fractions of oil Coal, specific uses 
Crude oil (offshore) Domestic gas Liquid fuels 
Natural gas Industrial gas Electricity (industrial) 
Uranium Electricity Electricity (domestic) 

District heat Space and water heating 
Cooking 

Ttie mat:-lx generating program of t h e  MTSSAGE I1 model is very versatile, 

3nd t h . ~  made it possibie for the adaptations required by tne decomposition 

algorithm to be made relatively easily. 





It can be seen from Table 2 that there is only a small number of intermedi- 

ate final energy flows, reflecting the exchange between the energy sector and 

decentralized users, and this gives us the opportunity to divide the model into 

two parts : 

S1 .  The first submodel (c.alled CENTR ) describes the production chains for a 

oiven set of final energy forms from sources such as fossil and nuclear fuels, 
0 

solar energy and hydropower (see Tables 1 and 2). The final energy forms 

are electricity, district heat, light and heavy fractions ( residual ) of oil, 

coal, gaseous fuels, and metallurgical coke (Table 1) 

52. The second submodel (called END ) is concerned with the transformation of 

final energy into useful energy forms. It describes the Ao~vs of h a 1  energy 

through the different stages of transformation, distribution, and on-site 

conversion to meet the demands of end.-users. 

A schematic representation of the model structure is given in Figure 1 

The matrix statistics of the submodels are compared with those of the  

undecomposed model (COMBINED or COMB) in Table 3. 

Table 3. Matrix statistics of the original problem (COMBINED) and the two subproblems (CENTR, END). 

Problem Total Normal Free Fixed Bounded Matrix Density 
elements 

COMBINED 1 1276 0.306 
Rows 2132 1851 201 80 0 
Columns 1729 1555 0 67 63 

CENTR (19-th cycle) 10546 0.435 
Rows 1581 1243 20 1 137 0 
Colunlns 1532 1416 0 53 63 

END (19-th cycle) 5181 1.234 
Rows 7 24 626 33 65 0 
Columns 5 80 519 2 15 44 

Table 3 

The linking variables (LINKS) are the flows of final energy between submo- 



dels, and could be interpreted as the energy supplied by the  energy sector to 

the  consumers. These linking variables are  listed in  Table 4. 

Table 4. Linking variables. 
-- - 

Link Enel-gy form Load region 

1 Electricity 1 
2 Electricity 2 
3 Electi-ici ty 3 
4 Electricity 4 
5 Electricity 5 
6 District heat  1 
7 District heat  2 
8 District heat  3 
9 District heat  4 

1 0  District heat  5 
11 Direct utilization o f  coal 
1 2  Light oil fractions 
13 Hcavy oil fractions 
14 G a s e o ~ ~ s  fuels 
15 Metallu~.gical coke  

Table 4 

This table gives the linking variables for one time period. The model was se t  

up for eight such periods, bringing the number of linking variables to  120. We 

assume a t ime horizon of 65 years,  subdivided into three s teps of five years and 

five s teps of t e n  years. This horizon was chosen to allow time for the  deprecia- 

tion of existing capital stock and the penetration of new energy technologies . 





3. DECOMPOSITION ALGORITHMS 

The problem discussed above may be described formally by the following 

two-block linear program~ning problem with linhng variables: 

min 1 c A z n  + c g z g  

By defining subproblems 

f  A ( x )  = min c A z A  

f  ( x )  = min c g z g  

problem ( i )  can be restated as the problem of finding the optimum value z *  of 

linking variables 

Variables zA and z g  can be viewed as internal variables of subproblems ( A )  and 

(B), respectively, with values which beccrne known after solution of subproblems 

(A) and (B) with fixed optimal linking varsiables. Functions f A ( x )  and f  g ( z )  are 

piecewise linear functions attaining possibly infinite values for those z whch 

result in empty feasible sets for ( A )  or ( B ) .  We shall refer to ( 2 )  as the primal 

form of problem (1). 

The application of standard convex duality theory to problem ( 2 )  leads to 

the following equality: 



where h A ( - p ) ,  denotes the conjugate of a convex function f A ( x ) :  

The conjugate function may be interpreted as the pay-off obtained in t he  

subproblem for given prices p  of linking variables z .  

Two different decomposition algorithms were applied to problem ( 2 ) .  The 

first algorithm, proposed in [ 5 ] ,  is based on the  idea of replacing ( 2 )  by the  

sequence of problems 

min f A ( z )  + f h ( z )  = vk S V *  
x 

( 4 )  

where f h ( z )  is the approximation of the function f B ( x )  obtained on the k - t h  

iteration. 

It was suggested tha t  this approximation should be derived by constructing 

a piecewise linear support function for f  B ( z )  based o n  the  values of this func- 

tion and its subgradient computed a t  the solutions of auxiliary problem (4). This 

approximation is gradually refined, directing the sequence of solutions of the  

auxi.liary problem ( 4 )  toward the solution of the problem ( 2 ) .  

The resulting algoriihm performs quite satisfactorily for small and 

medium-sized problems [ 5 ] .  On applying it to  the  dual par t  of (3) it is possible 

to use the optirr~al solution 05i;ained in one major iteration as  a starting basis for 

the next cycle, with the result tha t  the number of auxiliary simplex iterations 

decreases rzpidly as the algorithm progresses. 



However, t h s  algorithm does not make full use of the information available 

during the optimization process. Another drawback is that it does not produce 

both upper and lower estimates of the optimum, which makes it, difficult to 

determine the rate of convergence. 

Also, in many practical cases, information on Lhe solution of the dual form 

of problem ( 3 ) ,  which may be interpreted as a set of shadow prices for linking 

variables, can provide additional insight into the qualitative properties of p r ~ b -  

lem ( 1 ) .  Ths  information is not readily available even if the solution of the pri- 

mal form is known; substantial further analysis of the problem is required to 

reveal it. Similarly, if the algorithm is applied to the dual form of problem ( 1 )  

then the primal solution cannot be found immediately. 

These considerations stimulated the development of another algorithm, 

which is based on the simultaneous use of approximation in the primal and dual 

formulations of problem ( 3 ) .  This second algorithm provides both primal and 

dual solutions of problem (3),  supplies upper and lower estimates of the 

optimum during solution, and, as the numerical experiments show, converges 

more rapidly than the &st. 

The theoretical basis of this algorithm is described in some detail in [6]; 

here we simply explain the underlying ideas. 

The main cycle of the algorithm involves the solution of two auxiliary prob- 

lems: 

and 

min I h j ( - p )  h g ( p )  { = h i ( - p k - ' I )  + h g ( p k f 1 )  = - W k  0) 
P  

where the solution of problem ( P )  is used to update the approximatior] of a he 



function hA (-p) : 

h;(-p) = max h;-l(-p) , -xkp -fA(xk) j 

and the solution of problem (D) is used to update the approximation of the func- 

tion f (x) : 

When solving the auxiliary optimization problem (D) it is agair, possible to 

use the preceding optimal solution as a starting point for each new cycle; for the 

problem (P), however, the previous optimal 'solution is not feasible but it can 

still be used as a n  advanced starting basis for the next iteration. Both stra- 

tegies lead to a rapid decrease in the number of simplex iterations performed in 

solving subproblems (P) and (D). 

Both algorithms were implemented on a VAX-11/78O computer under the 

UNIX [ 9 ]  operating system, using the code MINOS [lo] to solve the auxiliary 

linear problems. For simplicity tne auxiliary subproblems were formulated and 

updated through modification of the input liles. 

This is clearly not the most efficient way to implement the algorithm, but at 

this stage we are more concerned with the number of major iterations required 

than with computational efficiency as a whole. One advantage of this approach 

was the small amount of additional programming needed to  supply codes for 

generating updated input files: U N R  functions proved very useful in this respect. 

4. SOLUTION OF T I B  PROBLEX 

It is clear from the theoretical description of the algorithms that  they are 

unsymmetrical with respect to the subproblems into which the original problem 

( 1 )  is divided. In the primal deconiposition algorithm, subproblem. 4 is con- 

sidered in its full form while subproblem B is approximated. The primal-dual 



algorithm again considers A in its full form but in this case subproblem B is also 

represented in full, though in dual form. 

The computational performance of the algorithms can depend quite 

strongly on which of the subproblems is considered in full, and this may partly 

explain the different computational experiences with the decomposition 

approach reported in the literature or passed along the scientific grapevine. We 

will call the subproblem whch is considered in full in the primal problem t.he 

primal master problem, and that which is considered in full in the dual problem, 

the dual master. 

At this stage it would be difficult to give any sound recommendation as to 

whch subproblem should be taken as master. The rule ~f thumb, however, is to 

take the most complex problem as the dual master, where complexity could 

simply reflect the size of the problem. 

The whole discussion is confused by the fact that the primal decomposition 

algorithm was applied to  the  dual of the initial problem. However, we will still 

describe it as the primal decomposition algorithm. This particular implementa- 

tion of the algorithm is referred to below as DEC-1.2. 

In our experiments CENTR was chosen as the (dual) master subproblem, 

whch means that it acted as  a pricing device for subproblem END. The roles of 

the subproblems and the structure of information exchange are illustrated in 

Figure 2. 

The prices p provided by CENTR are used by DEC-1.2 to price the linking 

variables in subproblem END, and the proposals x generated in this subproblem 

are then used to update the approximation of subproblem END in CEXTR. 

This distribution of I-oles was based first1.y on the difference in the complex- 

ity of the s~lbproblems ( subproblem CEKTR is essentially larger than END ) and, 

secondly, on some preliminary computational experience with a small scale 
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(dual master) 

E  N  D 

(primal maslerl 

Figure 2. 
Interaction between subproblems CENTR and END 

version of t h s  problem [ 5 ] .  

The same distribution of roles was preserved for the primal-dual algorithm 

with the difference that the prices p provided by CENTR were used by END not 

only Lo price linking variables but also to update the approximation of subprob- 

lem CENTR in END. The implementation of the primal-dual algorithm used in 

these experiments is referred to below as DEC-2.3. 

Both algorithms were first tested on a limited run ( 12 and 19 iterations , 

respect.ively) and the results are shown in Figure 3. 

This graph shows the convergence of the upper and lower bounds for the 

prirnal-dual algorithm ( continuous and dotted l i ~ e s ,  respectively), and of the 

upper bound for the primal algorithm ( dashed line ) .  The figure illustrates the 

relative accuracy ( on a logarithmic scale ) of each bound, whic!l is calculated as 
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Figure 3 
Convergence of DEC-1.2 and DEC-2.3 

If i  - f  * I 
Y i  = 

f * 

where f denotes the value obtained for the objective function on the i - th  cycle 

and f * denotes the optimal value obtained from the subsequent computations. 

It was clear that algorithm DEC-2.3 converged more rapidly than DEC-1.2 

and so further experiments were carried out with the primal-dual algorithm 

alone. 

The accuracy of the solution ( with respect to the objective ) is about 5 per- 

cent after 19 major iterations. To analyze further convergence the run was 

extended to 32 cycles, bringing the accuracy to 0.1 percent. The results 



obtained are shown in Figure 4 

-6.00 ; 
0 5 12 19 25 3 1 

Number of ~teratlons 

Figure 4 
Convergence of DEC-2.3 

This algorithm displays a geometrical rate of convergence which compares 

favorably with the long tail of slow convergence in the final iterations typical of 

the Dantzig-Wolfe algorithm. 

The number of local iterations is shown in Figure 5 

Table 5 shows the total number of iterations and computed CPU time for 

subproblems CE'NTR and EYD for both algorithms. The average CPU time per 

!ocal. iteration is 0.891 sec for CENTR and 0.634 sec for END . These values were 

used to estimate the CPU time for the whole run. 

The data for  total elapsed time are not meaningful in this case because of 
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Figure 5 
Numbers of local iterations 

The dot-dash line and continuous bold line represent the number of local 
iterations for CENTR and END, respectively, under DEC-1.2. The dotted and 
continuous lines represent the number of local iterations for CENTR and 
END, respecLively , under 3EC-2.3, 

Table 5. Total n u n ~ b e r  of iterations and estimated CPU time t o  solve subproblems CENTR and END. for 
both algorithms. 

Algorithm Major Local iterations 

iterations CENTR END 

User time (est.) 

CENTR END 

DEC-I .9- 12 747 1 1725 6656.7 

DEC-2.3 19 7760 4283 6914 2715 
3 2 8496 13147 7570 8335 

(est. 6680)* (est. 4235)* 

'Values that would have been obtained if  thc LP solver had not failed thrcc times. 



the large amount of time necessary for read-write operations. 

The number of iterations performed by DEC-2.3 for subproblem END was 

also distorted by repeated malfunctions of the linear program solver, whch 

necessitated starting from scratch on major iterations 21, 28, and 31 (see Table 

6 1. 

Table 6. Failed iterations. 

Iteration CENTR Uppcr bound END Lower bound 

2 1 64 0.941828d + 05 1794 0.937126d + 05 
2 8 39  0.940096d + 05 2765 0.938754d + 05 
3 1 16 0.940026d + 05 2431 0.939661d + 05 

These "cold starts" naturally required more local iterations than would other- 

wise have been the case, but this can be attributed to the fact that the LP solver 

is not completely reliable rather than reflecting any fault in the algorithm. If 

the numbers of local iterations corresponding to these failures are replaced by 

the average number of local iterations obtained in the major iterations on either 

side, the total number would be reduced considerably (estimated values in Table 

5 ). 

The solution of the COMBINED problem required about 10000 iterations and 

about 24000 sec of CPU time. 

5. ANALYSIS OF THE OITIMAL SOLUTION 

The optimal levels of the primal and dual variables obtained using the 

decomposition algorithm described above are actually the trajectories of the 

final energy flows and their shadow prices over the specified time horizon. Some 

of these trajectories are illustrated in Figs. 6 and 7. 

The division of the Mexican case modeled via MESSAGE 11 into two submo- 

dels (CENTR and END ) chosen here allows us to snalyze the sensitivity of the 
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Figure 6 
Final energy flows over the planning horizon for selected energy forms 

optimal solution of each submodel and the relative contribution of each submo- 

del to the optimal solution. Ths  may be acheved by separate consideration of 

the two submodels in the environment provided by the joint optimal solution 

(optimal levels of activities and shadow prices ). 

Conceptually MESSAGE I1 can be considered as a demand driven model, with 

the aim of transferring resources via technological chains into a specified 

demand vector, and therefore the levels of activities are of primary importance. 
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Figure 7 
Shadow prices over the planning horizon for selected energy forms 

The submodels were therefore run as independent models with the final 

energy flows (FEFs) fixed a t  the optimal levels, yielding the  shadow prices associ- 

ated with these constraints. These shadow prices can be called l o c a l  s h a d o w  

p~?kf?s. The local shadow prices calculated with fixed optimal FEFs do not neces- 

sarily coincide with the optimal prices obtained using the decomposition algo- 

rithm. This is a typical feature of linear programming models and the difference 

between these values provides an estimate of the marginal utility of the FEFs for 

the submodels . These differences are depicted in Figure 0 
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Figure 8 
Optimal and local shadow prices for selected energy forms 

I t  can be seen from the figure that these trajectories are very similar, and 

this fact could be interpreted as follows : 

1) The major contribution to the optimal cost is associated with CENTR. 

2) END acts  as  a device transforming demands for useful energy into final 

energy flows, and has no internal freedom for optimization. 

Additional support for the second conclusion is provided by experiments in 

whch  END was operating under fixed h a 1  energy flows. The subsystem exhibited 



slight infeasibility a t  the level of whch shows that END itself actually has a 

very small feasible region under these conditions. Ths  is, of course, an undesir- 

able feature and is due mostly to the need to keep the size of the model withn 

practical limits. The decomposition approach allows these bounds to be widened 

and, as we have shown, is also computationally efficient. 

6. CONCLUSIONS 

The experiments conducted so far suggest a method of constructing an 

integrated system of energy models whch  could provide a detailed representa- 

tion of the energy supply system itself and its interaction with the major energy- 

intensive economic subsectors. A thorough investigation of this interaction, in 

terms of the energy flows represented by the linking variables, could be valuable 

in determining an  internally consistent energy policy for a nation. 

The two algorithms studied both converged reasonably fast, with the 

primal-dual algorithm converging more rapidly in the final stages. However, the 

accuracy and reliability of the algorithm could be increased by improved imple- 

mentation. 
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