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ABSTRACT 

Solutions techniques for stochastic programs are reviewed. 

Particular emphasis is placed on those methods that allow us to 

proceed by approximation. We consider both stochastic programs 

with recourse and stochastic programs with chance-constraints. 
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STOCHASTIC PROGRAMMING: SOLUTION TECHNIQUES 
AND APPROXIMATIOi\l SCHEMES 

Roger J - B .  W e t s  

1  . INTXODUCTION 

Opt imiza t ion  problems i nvo lv ing  paramete r s  o n l y  known i n  a  

s t a t i s t i c a l  s e n s e  g i v e  rise t o  s t o c h a s t i c  o p t i m i z a t i o n  models. 

When d e a l i n g  w i t h  such  problems it i s  impor t an t  t o  be aware o f  

t h e i r  i n t r i n s i c  dynamic n a t u r e  s i n c e  it p l a y s  an impor t an t  r o l e  

i n  t h e  modeling p r o c e s s  a s  w e l l  a s  i n  t h e  de s ign  o f  s o l u t i o n  

t echn iques .  b r i e f l y  t h e  g e n e r a l  model i s  a s  f o l l ows .  F i r s t  an  

v1 o b s e r v a t i o n  of  a  random phenomena 5 E R i s  made. Based on 1  

t h i s  i n fo rma t ion ,  a  d e c i s i o n  x  E Rnl i s  chosen a t  some c o s t  1 
v2 

f l ( x l l ~ l ) .  Then a  new o b s e r v a t i o n  i s  made t h a t  y i e l d s  C 2  E R . 
On t h e  b a s i s  o f  t h e  i n fo rma t ion  ( 5 1 1 5 2 )  ga ined  s o  f a r ,  one se- 

n2 lec ts  a  a e c i s i o n  x  i n  R w i t h  a s s o c i a t e d  c o s t  f 2 ( ~ 1 1 ~ 2 1 ~ 1 1 ~ 2 ) .  2  

Th i s  c o n t i n u e s  up t o  t h e  t i m e  hor izon  N ,  p o s s i b l y  A t  each  

s t a g e ,  t h e  d e c i s i o n s  x 1 , x 2 ,  ... a r e  s u b j e c t  t o  c o n s t r a i n t s  t h a t  

may, and u s u a l l y  do,  depend on t h e  a c t u a l  r e a l i z a t i o n s  C 1 ,  5 2 t - . . t  

a s  w e l l  a s  r e l i a b i l i t y  t y p e  c o n s t r a i n t s  t h a t  f o l l ow  from c r i t e r i a  



that the modeler might find difficult to include in the cost 

functions. The problem is to find recourse functions (decision 

rules, policies, control laws): 

that satisfy the constraints and that minimize the expected cost. 

It is assumed that utility factors have been incorporated in the 

cost functions. 

The development of mathematical programming techniques for 

studying and solving certain classes of stochastic optimization 

problems was initiated in the mid 50's by E.M. Beale [I], 

G. Dantzig [2] , G. Tintner [3] and A. Charnes and W. Cooper [4]. 

The models introduced then, as well as those to be considered 

here, involve typically only 2 (=N) stages with no (truly) random 

phenomena preceding the choice of x but the basic features of 1' 

the general model were already ubiquitous. The basic reason for 

such limitations is that numerous applications require only 2 or 

3 stages, either per se or as a consequence of modeling choices. 

However, the number of decision variables and constraints is 

liable to be quite large as is the case in typical applications 

of linear or nonlinear programming. It is this class of problems 

that is at the core of our concerns, i.e., those problems that 

can be viewed as "stochastic extensions" of the linear (or 



slightly nonlinear) programming model. Multistage problems, say 

N > 3, present no significant theoretical difficulties but they 

are for all practical purposes computationally intractable, un- 

less they possess structural properties that can be successfully 

expl.oited, see for example [5-91. An excellent overview of the 

field of Stochastic Programming and its connections to other 

stochastic optimization problems has been provided by M. Dempster 

[lo, Introduction]. 

We consider the following class of problems 

(1 . I )  Find x - > 0, a E [0,1] with P[A(w)x - > b(w)] - > a , 

such that Z(x) + p(a) is minimized 

whereZ(x)=cx+E{inf q(w)y(wy=p(w)-~(w)x). 
Y ~ O  

The vectors b, q ,  p and the matrices A,T are random, whereas c 

nl and W are fixed; their sizes are consistent with: x E R 

y E Rn2, b(w) E R ~ '  and p(w) E Rm2, and p: [0,1] + ii is a non- 

negative monotone nonincreasing lower semicontinuous convex 

function. A more complete model would involve a number of chance- 

c o n s t r a i n t s ,  i.e., several constraints of the type 

but this extension is easy to work out and would add nothing to 

the substance of our development. Also, the r e c o u r s e  c o s t  f u n c t i o n  

determined by the r e c o u r s e  problem 



(1 4 )  Q(x ,w)  = i n f  q ( w ) y  

s u b j e c t  t o  Wy = p(w)  - T(w)x  

Y l O  I 

cou ld  i nvo lve  more g e n e r a l  c o n s t r a i n t s  on  y ,  convex r a t h e r  t h a n  

l i n e a r  o b j e c t i v e ,  ..., b u t  l i t t l e  would be added t o  t h e  arguments 

e x c e p t  t h a t  some t e c h n i c a l  q u e s t i o n s  would need t o  be t a k e n  c a r e  

o f .  When W i s  random r a t h e r  t h a n  f i x e d  we need a  more g e n e r a l  

t heo ry  t h a n  t h a t  ske t ched  o u t  h e r e ;  s e e  [11.12] ,  b u t  s i n c e  o u r  

computa t iona l  c a p a b i l i t i e s  do n o t  y e t  i n c l u d e  such a  c a s e ,  f o r  

e x p o s i t i o n  s ake  w e  l i m i t  o u r s e l v e s  t o  f i x e d  W ;  w e  t h e n  r e f e r  t o  

( 1 . 4 )  a s  a  problem w i t h  f i x e d  r e c o u r s e .  

The f u n c t i o n  p i s  n o t  a  common f e a t u r e  of  t h e  s t o c h a s t i c  

programming models found i n  t h e  l i t e r a t u r e .  I t  r e p r e s e n t s  a  c o s t  

a s s o c i a t e d  w i th  t h e  r e l a x a t i o n  of  t h e  c o n s t r a i n t  

T y p i c a l l y  i t  has  t h e  form: 

f o r  a l l  w.  

1.6 F igure :  R e l i a b i l i t y  Cost .  



I n  t h e  f i r s t  c a se  t h e  modeler presumably has  some c o s t  informa- 

t i o n  about  t h e  p r i c e  he needs t o  pay t o  weaken r e l i a b i l i t y  con- 

s i d e r a t i o n s .  For t h e  second func t ion ,  he supposedly has  been 

given a  r e l i a b i l i t y  l e v e l  a" t h a t  must be a t t a i n e d  a t  a l l  c o s t .  

Problem ( 1 . 1  ) t hen  becomes 

(1 .7)  Find x  - > 0 wi th  P [ ~ ( w ) x  - > b(w) ] - > a" 

such t h a t  Z ( x )  = cx + Q(x) , 

a  more common formula t ion  of s t o c h a s t i c  programs wi th  ( l i n e a r )  

chance-cons t ra in t s .  I f  moreover a0 = 1 ,  t hen  t h e  chance- 

c o n s t r a i n t s  can be r ep l aced ,  a s  we s h a l l  s e e ,  by d e t e r m i n i s t i c  

c o n s t r a i n t s  and ( 1 . 1 )  t a k e s  on t h e  u sua l  form of a s t o c h a s t i c  

program wi th  recourse .  

We t a k e  a s  premise t h a t  t h e  p r o b a b i l i t y  d i s t r i b u t i o n  P  of 

t h e  random elements  i s  given.  We s h a l l  n o t  cons ide r  he re  t h e  

c a s e  when t h e r e  i s  i n s u f f i c i e n t  s t a t i s t i c a l  in format ion  about 

t h e  random v a r i a b l e s  of t h e  problem t o  d e r i v e  t h e i r  d i s t r i b u t i o n  

wi th  a s u f f i c i e n t l y  h igh  l e v e l  of  conf idence.  The s tudy  of  such 

problems i s  very  r e c e n t  and t h e r e  a r e  on ly  l i m i t e d  r e s u l t s  a v a i l -  

a b l e  a t  t h i s  time. 

W e  a l s o  assume t h a t  t h e  random v a r i a b l e s  o f  t h e  problem a r e  

such t h a t  t h e  func t ion  w * Q ( w , x )  i s  bounded below by a  sumrr~able 

( f i n i t e  i n t e g r a l )  s o  t h a t  

t h e  f u n c t i o n  w-Q(x,w) is  always measurable,  d e t a i l s  appear 



in [13,14]. In particular this implies that almost surely 

Q(x,w) > -a, or equivalently the system nW - < q(w) is solvable 

for almost all q(w). In fact, let us go one step further and 

assume that the random variables are such that Q(x) = +a if and 

only if Q(x,w) = +a with (strictly) positive probability, i.e., 

if and only if the linear system 

is unsolvable with positive probability. To achieve all of the 

above it suffices, for example, that the random elements have 

finite second moments, a condition always satisfied in practice. 

What precedes are our working assumptions and will be considered 

as part of the definition of the stochastic program (1.1). 

Section 2 reports on computational methods and solution 

strategies, and Section 3 is devoted to approximation techniques 

and associated error bounds. In the remainder of this section, 

we review briefly the main properties of the stochastic program 

(1.1). We start with its region of feasibility. Let 

with the induced constraints given by 

(1 - 9 )  K~ = {xJQ(x) < +a} . 

The feasibility region K is simply 



One r e f e r s  t o  ( 1 . 1 )  a s  a  s t o c h a s t i c  program wi th  c o m p l e t e  r e c o u r s e  

"2 i f  K 2  = R , i . e . ,  t h e r e  e x i s t s  a  f e a s i b l e  recourse  d e c i s i o n  what- 

e v e r  be t h e  f i r s t  s t a g e  d e c i s i o n  and t h e  random event  observed.  

I n  g e n e r a l ,  it may be d i f f i c u l t  t o  compute K o r  even t o  determine 

i f  a  g iven  x  belongs o r  does not  belong t o  K ,  i n  p a r t i c u l a r  K 1 

might be hard  t o  c a l c u l a t e .  Some c h a r a c t e r i z a t i o n s  of K and K 2  1 

a r e  g iven  h e r e  below. 

We s t a r t  wi th  K 1 .  Let  

( 1 . 1 1 )  K ( u )  = IX 2 O(A(w)x - > b ' (w))  , 

and thus  

By ao we denote t h e  lower bound of a  such t h a t  p ( a )  < +m. We 

have 

For each w ,  t h e  s e t  K ( W )  i s  convex b u t  i n  gene ra l  K i t s e l f  i s  
1 

n o t  convex. 

"1 1.13 PROPOSITION. If aO = 0 ,  t h e n  K 1  = R+ . On o t h e r  hand if 

a" = 1 ,  K~ i s  a  c l o s e d  c o n v e x  s e t  g i v e n  b y  



m1 (n l  + I  ? 
where 1 C R i s  t h e  ( i m a g e )  suppor t  o f  A ( * ) ,  b ( = ) ,  i . e . ,  

m,  (n , -+I)  
t h e  s m a l l e s t  c l o s e d  s u b s e t  o f  R 

I I such  t h a t  

P[A(w) ,b(w) ) E I ]  = 1 .  Moreover i f  A i s  f i x e d ,  o r  more genera lZy  

i f  A ( * )  has  f i n i t e  s u p p o r t  ( a  f i n i t e  number o f  p o s s i b l e  v a l u e s )  

t h e n  K1 i s  a  convex  polyhedron .  

PROOF. The s ta tement  involv ing  aO = 0 i s  t r i v i a l .  When aO = 1 ,  

t h e  f a c t  t h a t  K1 i s  c lo sed  and convex fol lows from (1  . 1 4 )  and 

t h a t  i n  t u r n  fol lows from Theorem 2 of [15 ] ,  w i th  t h e  f  func t ion  
ml  x , (n l+ l )  

of [I51 def ined  on Rnl  x Rml x R a s  fo l lows  

nl  and Y = R+ . That K 1  i s  po lyhedra l  i f  A i s  f i x e d  i s  argued a s  

fol lows:  f o r  each b ( w ) ,  t h e  s e t  ~ ( w )  = {x - > O I A X  - > b ( w ) )  i s  a 

convex polyhedron wi th  each p o s s i b l e  f a c e  A.x > b i ( o )  (and x > 0)  
1 - j - 

p a r a l l e l  t o  t h e  corresponding f a c e  determined by t h e  same row A i 

b u t  ano ther  r e a l i z a t i o n  b i ( w l ) .  The same argument remain v a l i d  

when A ( - )  has  f i n i t e  suppor t  because w e  can a rgue  a s  above f o r  

each p o s s i b l e  va lue  of A ( w ) ,  and then  observe t h a t  t h e  f i n i t e  

i n t e r s e c t i o n  of polyhedra is  a l s o  a polyhedron. 

The nex t  p r o p o s i t i o n  completes t h e  r e s u l t s  of P ropos i t i on  

1.33. We s t a t e  it f o r  t h e  record ,  i t s  proof would t a k e  us  t oo  

f a r  a s t r a y  of our  main concerns.  



1.15 PROPOSITION. Suppose a" = 1 ,  b ( * )  and A ( * )  a r e  i n d e p e n d e n t  

and t h e  convex  hu t2  o f  lA C R~~~~~ , t h e  suppor t  o f  A ( * ) ,  i s  po ty -  

h e d r a t .  Then K 1  i s  a  convex  potghedron.  

I t  i s  much more d i f f i c u l t  t o  c h a r a c t e r i z e  t h e  set K1 when 

0 < a0 < 1. B a s i c a l l y  t h i s  comes from t h e  f a c t  t h a t  

P ( K - ' ( x , ) )  2 UO and P ( K - '  ( x 2 ) )  2 a0 

does n o t  imply t h a t  

i . e . ,  t h e r e  does  n o t  e x i s t  any s u b s e t  o f  e v e n t s ,  o r  p o s s i b l e  

v a l u e s  o f  A and b ,  t h a t  can  be s i n g l e d  o u t  t o  y i e l d  an e x p r e s s i o n  

o f  t h e  t y p e  ( 1 . 1 4 ) .  I n  g e n e r a l  t h e  se t  K 1  i s  n o t  convex and 

examples c an  be c o n s t r u c t e d  w i t h  K1 d i s connec t ed ,  even w i t h  A 

f i x e d .  For  example, l e t  

w i t h  

1  P[b(w)  = 01 = P[b(w)  = 21 = P [b(w)  = 41 = - 
3  

Then f o r  a" = 2/3, w e  g e t  

K1 = [-1,OI u [ 1 , 2 ]  . 



However, when on ly  b ( * )  i s  random, t h e r e  i s  a  g e n e r a l  t h e o r y  

t h a t  o r i g i n a t e s  w i t h  A. ~ r g k o p a  [ 1 6 ] ,  who a l s o  d e r i v e d  many o f  

t h e  major r e s u l t s ;  c f .  [17] and [18] f o r  su rveys .  

W e  s ay  t h a t  a  p r o b a b i l i t y  measure P  on R~ i s  quas i -convex  

i f  f a r  any p a i r  U , V  o f  convex (measurable)  sets and f o r  any 

X E [ 0 , 1 ]  w e  have 

P ( ( 1  - X ) U  + XV) - > Min {P(U) , P(V) 1 

1.17 THEOREM. Suppose A i s  f i x e d  and t h e  ( m a r g i n a l )  p r o b a b i l i t y  

d i s t r i b u t i o n  o f  b  i s  quas i -concave .  Then K1 i s  a  c l o s e d  convex  

s e t  fo r  any a". 

PROOF. I f  K1 i s  empty t h e  a s s e r t i o n  i s  immediate. Suppose 

Xo x1 E K1 , t h e n  w i t h  x X  = (1 - h)xo  + Axl 

s i n c e  b(wo) - < Axo and b ( w l )  < Ax i m p l i e s  t h a t  - 1 

The monoton ic i ty  and quas i -concav i ty  o f  P  now y i e l d s  

p  ( K - '  ( x X ) )  2 P  ( (1 - A )  K- '  ( xO)  + X K - '  ( X I )  ) 

> Min P K x  , p  (K-l ( x l )  ) 1 - 



But t h i s  imp l i e s  t h a t  P ( r - I  ( x A )  ) - > aO s i n c e  both xo and x l  belong 

t o  K 1 .  Hence xA E K 1 .  

To s e e  t h a t  K1 i s  c lo sed  simply observe  t h a t  i f  {xk,k  = I , . . . }  

i s  a  sequence i n  K1 which converges t o  x, we have t h a t  f o r  each k t  

ml ml Since f o r  each k ,  P [ t k  - R+ 1 2 a O ,  it fo l lows  t h a t  P [F - R+ 1 L a0 
- 

where t = Ax. The proof is  complete s i n c e  t h e  l a s t  r e l a t i o n  

imp l i e s  t h a t  x E K 1 .  

A l a r g e  c l a s s  of  quasi-concave p r o b a b i l i t y  measures can be 

i d e n t i f i e d  by means of t h e  fol lowing r e s u l t  of Bore11 [ 1 9 ] .  

Suppose h  i s  a  d e n s i t y  f u n c t i o n  o f  a  c o n t i n u o u s  d i s t r i b u t i o n  

f u n c t i o n  d e f i n e d  on R~ and h- l lm  i s  convex,  t h e n  t h e  p r o b a b i l i t y  

measure d e f i n e d  on t h e  Bore2 s u b s e t s  S  o f  R~ by 

i s  quas i -concave .  I n  p a r t i c u l a r  t h i s  imp l i e s  t h a t  i f  t h e  d e n s i t y  

i s  of t h e  form 

where Q i s  a  convex f u n c t i o n ,  t h e  r e s u l t i n g  measure i s  quas i -  

concave, s i n c e  



is convex as the composition of a convex function with a non- 

s decreasing convex function s~ e . Probability measures whose 

densities are given by an expression of the type e -Q(s) are in 

fact logarithmic concave, a subclass of the quasi-concave measures, 

the first class of measures investigated by A. Prkkopa 

[16]. Density functions giving rise to logarithmic concave 

measures are the (non-degenerate) multi-normal, the multivariate, 

Dirichlet and Wishart distributions. The multivariate t and F 

densities (as well as some multivariate Pareto density) engender 

quasi-concave measures that are not logarithmic concave. 

When also A is random, the situation is much more complex. 

For all practical purposes we have only one result. It is an 

observation made by Van de Panne and Popp [20], later extended by 

Prkkopa [21] but involving assumptions that appear difficult to 

verify. Before we come to the little we know, we want to point 

out the source of the difficulties. Let us consider the "two1'- 

dimensional case: Suppose here that a(*) and b(*) are real-valued 

random variables and 

is the chance-constraint for some 0 < a" < 1. To each x E R 1 

- 1 2 corresponds K (x) a half-space in R given by the expression 

The feasibility set 



i s  convex i f  f o r  any g i v e n  p a i r  ( x  . x l )  i n  K and any h E [0,11 
0 1 

w e  have 

P[K- '  ( x h ) l  2 a0 

where x = ( 1  - A)xo + Axl . A 

1.18 F i g u r e :  Ha l f - spaces  Genera ted  by x O t X 1  t X A .  



Figure 1.18 exemplifies a decomposition of the {(a,b))-space 

- 1 - 1 - 1 through K-' (xo) , K (xl) and K (x~). Note that K (x) always 

contains the vertical positive axis. Let 

- 1 - 1 - 1 - 1 
S4 = K (x0) n K (xl) I S3 = (K ( x ~ )  K (xo) )\s4 I 

- 1 - 1 sS = (K (xX) o K-I (xi 1 )\s4, s6 = K (xl)\ ( ~ 4  s5) I 

- 1 
S2 = K (x0)\ (S4 U S3) and S1 = R ~ \  u6 S . For i = 1,. . . ,6 

i=2 i 

let vi = P(Si). Since both xo and xl belong to K1 we have 

(1.19) V2 + V3 f V4 2 a0 I 

and 

(1.20) v6 + v5 + v4 2 

The convex combination x of xo and xl belongs to K1 if X 

(1.21) v3 + v5 + v4 2 a0 

which is implied by 

(1.22) v3 + v5 Zmin [v2 + v3 1 v6 + p51* 

If a" is relatively large, i.e., much larger than .5 if not 

nearly 1, then (1.19) and (1.20) imply that v4 must be of the 
6 

order of aO ; recall that xi=l pi = 1 , vi - > 0. Thus the inequality 

(1.22) will be satisfied whenever the probability mass is 

"sufficiently unimodal". On the other hand, if for example, the 

distribution is discrete with a sufficient number of points, 



linearly independent, not "uniformly" distributed on the plane 

and with the probability mass sufficiently well-spread out, it 

will always be possible to find xo, xl and xA such that (1.19) 

and (1.20) hold, but (1.21) and thus also (1.22) fail. 

Precise and verifiable conditions that would yield the con- 

vexity of K1 when the matrix A is random have not yet been found 

although the problem has now been around for the last two decades. 

It might appear that we exaggerate the importance of convexity 

for K1. In this connection, it should be pointed out that the 

search for a convexity result does not stem purely from compu- 

tational considerations but from model validation questions. In 

many ways the chance-constraint 

is often accepted as the natural generalization of the standard 

deterministic linear constraints. Little attention is paid to 

the consequences of this "simple" extension. If we interpret 

the decision variables x E as activity levels, then non- 

convexity implies that we can choose two programs of activity 

levels satisfying the constraints but any combinations of these 

programs is totally unacceptable. Moreover, from what precedes 

we know that this will occur whenever A(*) and b(*) lack "unimodal 

properties", in particular if they are discreetly distributed 

with the probability mass sufficiently will spread out. To some 

extent this appears to be an irredeemable condemnation of the 

modeling of stochastic constraints through chance-constraints, 

at least if more than the right-hand sides of the constraints 



are random. However, there is little doubt that there are many 

situations when it is convenient to rely on chance-constraints 

to quantify certain of the criteria used by decision makers. 

Since well-formulated practical problems cannot lead us to un- 

reasonable mathematical constructs, we introduce the following 

concept : 

1.24 DEFINITION. We say  t h a t  t h e  p r o b a b i l i t y  measure  P i s  a 0 -  

c o n s i s t e n t  i f  f o r  a l l  a  E [ a 0  ,1], t h e  s e t  K1 i s  a  c l o s e d  c o n v e x  

s e t .  

1.25 PROPOSITION. [19] Suppose  t h a t  t h e  c h a n c e - c o n s t r a i n t  i s  

a c t u a l l y  o f  t h e  form 

where  t h e  a. ( 9 )  and b(-) =: a ( 0 )  a r e  normal  random v a r i a b l e s ,  
7 0 

w i t h  mean a v a r i a n c e  a and c o v a r i a n c e  p 0 . 0  
j ' j jk J k' 

T h e n  t h e  

1 c o r r e s p o n d i n g  p r o b a b i l i t y  measure  i s  a" - c o n s i s t e n t  f o r  a l l  a" 2 

or e q u i v a l e n t l y  t h e  s e t  K1 i s  c o n v e x  f o r  a l l  a" E [1/2,1]. 

PROOF. For any given x, define the random variable 

This is a normal random variable. Setting 

x = 1 and b(w) = a (w) , 
0 



2 
we get that its mean y and its variance a are given by 

and 

The chance constraint is then equivalent to 

where @ is the distribution function of (standard) normal with 

mean 0 and variance 1. Which can also be expressed as 

recalling that @-' (1 - a) = - @  
- 1 

(a) 

2 This yields the convexity of K1, since the form a (x) is positive 

1 semidefinite in x and (a" ) . > 0 precisely when a" > - - 2 '  

As indicated already earlier the preceding proposition 

(with some extensions [ 2 1 ] )  is basically the only known result 

about a"-consistent probability measure for problems involving 

random matrix A. On the other hand, there are clear indications 

that a probability measure with "appropriate unimodal" properties 

is always a"-consistent for a" < 1 sufficiently large. For 



example, the next approximation result due to S. Sinha [22] 

points in that direction. 

1.26 PROPOSITION. L e t  

Def ine  

where a ( * )  = b(*), p .  i s  t h e  e x p e c t a t i o n  o f  a.(*) and a t h e  o 3 3 jk 

c o v a r i a n c e  o f  a.(*)a ( a ) .  Then we always have t h a t  K; i s  c l o s e d  
3 k 

and convex  and K 1 2 K ; .  

PROOF. With ao(*) = b(*) the chance-constraint can be expressed as 

We now use one side of Chebyshev's inequality, viz., 

2 where 3(x) is the expectation of 5 (x, 0 )  and a (x) its variance, 
5 

to obtain the next inequality that implies that the chance-constraint 



This can also be expressed as 

From this it follows that K; C K1. The set K; is clearly closed 

and also convex since the quadratic form 1 nl nl a x.x is 
j = O  Ik=O jk -J k 

positive semidefinite. 

It should be pointed out that in general K; is a very crude 

approximation to K1 and usually will delete from K1 those points 

that are associated with the optimum. There are however many 

practical situations in which only the means and (co)variances 

of the random parameters of the problem are known, in which case 
1 

K is the best available approximation to K1. The points deleted 1 

are then the result of insufficient information. 

We now consider K 2 ,  and here because we are able to asso- 

ciate to the stochastic constraints 

a discrepancy cost proportional to the recourse activities needed 

to correct the observed differences, a more flexible modeling 

tool, we are led to a much less hectic situation, at least in 

general. 



1.27 THEOREM. The s e t  K 2  i s  a  c l o s e d  c o n v e x  s e t  g i v e n  b y  t h e  

r e l a t i o n  

m2 (n2+1 
where 5 C R i s  t h e  s u p p o r t  o f  p ( * ) ,  T ( - ) ,  i . e . ,  t h e  

m2 (n2+1 
s m a l l e s t  c l o s e d  s u b s e t  o f  R s u c h  t h a t  P [ ( p ( w ) ,  T ( w ) )  E E l  = 1.  

Moreover ,  i f  e i t h e r  p  and T a r e  i n d e p e n d e n t  and t h e  c o n v e x  h u l l  o f  

t h e  s u p p o r t  o f  T ( * )  i s  p o l y h e d r a l ,  o r  i f  T ( * )  h a s  f i n i t e  s u p p o r t ,  

t h e n  K2 i s  a l s o  p o l y h e d r a l .  

For  t h e  proof  o f  t h i s  theorem,  w e  r e f e r  t o  [13 ,  S e c t i o n  4 1 ;  

n o t e  a l s o  t h a t  S e c t i o n s  4 and 5 o f  [13]  g i v e  c o n s t r u c t i v e  des-  

c r i p t i o n s  of  K 2 .  

Next we t u r n  t o  t h e  r e c o u r s e  c o s t  f u n c t i o n  2 as d e f i n e d  ( 1 . 3 ) .  

S i n c e  t h e  r i g h t - h a n d  s i d e  o f  ( 1 . 4 )  i s  a l i n e a r  f u n c t i o n  o f  x ,  it 

f o l l o w s  from p a r a m e t r i c  programming t h a t  f o r  a l l  w ,  

i s  a  convex p o l y h e d r a l  f u n c t i o n .  From t h i s  and t h e  i n t e g r a b i l i t y  

c o n d i t i o n s  i n t r o d u c e d  i n  c o n n e c t i o n  w i t h  t h e  d e f i n i t i o n  o f  t h e  

o r i g i n a l  problem (1 .1  ) , it f o l l o w s :  

1.29 THEOREM. The  f u n c t i o n  2 i s  L i p s c h i t z  ( f i n i t e )  and c o n v e x  o n  

K 2 .  Moreover ,  f o r  a l l  x E K2 



where $ i s  t h e  i n d i c a t o r  f u n c t i o n  o f  K2, i .  e . ,  0 on K2 and +a 
K2 

on  i t s  complement .  I f  P i s  a b s o l u t e l y  c o n t i n u o u s  ( w i t h  r e s p e c t  

t o  t h e  Lebesgue  measure )  t h e n  2 i s  d i f f e r e n t i a b l e  a t  e v e r y  pognt 

i n  t h e  i n t e r i o r  o f  K2. 

PROOF. The first assertions are proved in [13, Theorems 7.6 and 

7.71 . Formula (1.30) follows from a more general result of 

Rockafellar [23, Corollary IB], consult [24]. The differentia- 

bility follows from (1.30) , the fact that S $  (x) = {o) on int K2 
K2 

and that {u~Q(x,u) is not differentiable) is a set of zero measure 

because P is absolutely continuous and Q(-,u) is differentiable 

at every x E K except possibly on a set of zero Lebesgue measure. 2' 

Thus 62 is a singleton for every x E int K2 which yields the 

differentiability at x since 2 is convex. 

Combining the properties of K K2 and 2 we have the following 
1' 

1.31 THEOREM. Suppose t h e  p r o b a b i l i t y  measure P i s  a " - c o n s i s t e n t ,  

t h e n  t h e  s t o c h a s t i c  program (1.1) i s  a  c o n v e x  programming problem 

whose o b j e c t i v e  f u n c t i o n  i s  L i p s c h i t z  on t h e  c o n v e x  c l o s e d  s e t  

K = K  1 n K2. The s e t  K i s  p o l y h e d r a l  i f  f o r  example  a" = 1 and 

T i s  f i x e d  o r  T(-) t a k e s  on a  f i n i t e  number o f  p o s s i b l e  v a l u e s .  

Many variants and extensions of the stochastic program (1.1) 

have been studied in connection with various applications. 

Theorem 1.31, except for the assertion about the solution set 

being polyhedral, remains valid under much more general conditions; 

for example, when the costs are convex-Lipschitz rather than linear 

and the constraints have similar properties, when there are more 



t han  2 s t a g e s  [12 ] ,  when t h e  recourse  d e c i s i o n  must be s e l e c t e d  

s u b j e c t  t o  ( c o n d i t i o n a l )  chance-cons t ra in t s  involv ing  s t o c h a s t i c  

v a r i a b l e s  n o t  y e t  observed [25, Sec t ion  V ] ,  and s o  on. I n  t h i s  

c o n t e x t ,  l e t  u s  j u s t  mention a  model s t u d i e d  by Prkkopa [26] 

which has  an a d d i t i o n a l  r e l i a b i l i t y  c o n s t r a i n t  f o r  t h e  induced 

c o n s t r a i n t s .  The s e t  K2 i s  r ede f ined  a s  

and t h e  o b j e c t i v e  i s  rendered f i n i t e  by d e f i n i n g  it a s  fol lows:  

where 

m2 h e r e  s E R and r i s  a  f i n i t e  p o s i t i v e  convex p e n a l t y  func t ion .  

+ 
The s e t  K2 can be reexpressed  a s  

The chance-cons t ra in t s  a r e  t hus  l i n e a r  and t h e  r e s u l t s  known 

+ 
about  K1 a l s o  apply t o  K 2 .  We a r e  e s s e n t i a l l y  i n  t h e  s e t t i n g  of 

problem ( 1 . 1 ) .  Note a l s o  t h a t  t h i s  i s  a  problem wi th  complete 

+ 
r ecour se ,  and hence Q i s  f i n i t e  valued.  



2. ALGORITHMIC PROCEDURES 

Attention will be focused on methods to evaluate and mini- 

mize 2; we content ourselves with a few brief remarks concerning 

feasibility. For the chance-constraint(s) (1.8), we assume that 

the hypotheses of the problem are such that K1 can be expressed as 

where for all 1, the functions (x, a) gll (x, a) are quasi- 

convex. This certainly includes the case when both A and b are 

fixed, but also those cases for which we have convexity charac- 

terizations for K1, e.g., with A fixed and b(*) random and P is 

quasi-concave, then with 

we have the above representation for K1. These linear or non- 

linear constraints are handled as usual in constrained optimi- 

zation. At least if explicit expressions are available for them. 

If this is not the case, as would usually occur when gl is de- 

fined through an expression of the type (2.2), solution procedures 

must be adapted to the "computable" quantities of that function. 

For example, computing P [K-l (x) 1 presuppose the availability of 

a multidimensional integration routine. We would also need an 

associate calculus for the multivariate distribution of A(*) and 

-23- 



b(*) that allows us to obtain the gradient (or subgradient) of 

- 1 
the function x ~ P [ K  (x)] if the algorithmic procedures requires 

such information. In [27] Prhkopa et aZ. report on a case where 

all these questions were confronted. 

Similarly, we assume that the induced constraints K2 can be 

represented by a finite number of constraints, viz., 

where naturally, for all 1 = 1r...rL2f the functions 

are convex, cf. Theorem 1.27. Again, explicit expressions for 

the functions g21 are not easy to come by. However, it is 

usually possible, as done first in [28], to construct these 

constraints as needed, i.e., suppose an algorithmic procedure 

generates an 2 that does not belong to K2, i.e., 

with positive probability. Then there exist a supporting hyper- 

plane, corresponding to a facet, of the polyhedral convex cone 

n2 
W (R+ ) , say 

such that 



The c o n s t r a i n t  

i n f  -s ( p  - Tx) 
(prT)E-  

where E i s  a g a i n  t h e  s u p p o r t  of  t h e  random p ( * )  and T ( * ) ,  i s  n o t  

s a t i s f i e d  by 2 b u t  does  n o t  e l i m i n a t e  any f e a s i b l e  p o i n t s .  There  

are  o n l y  a f i n i t e  number of  t h e s e  c o n s t r a i n t s  s i n c e  w ( R ~ ~ )  h a s  

o n l y  a f i n i t e  number o f  f a c e t s .  I n  g e n e r a l  (2 .4 )  i s  n o t  a l i n e a r  

c o n s t r a i n t ,  b u t  i n  p r a c t i c e  t h e s e  c o n s t r a i n t s  are v e r y  o f t e n  

l i n e a r  [ I  3 ,  S e c t i o n  51 . For example, i f  T i s  f i x e d  t h e n  ( 2 . 4 )  

becomes 

( s T ) x  - < i n f  
PEE PS 

P 

where L- i s  t h e  s u p p o r t  o f  p ( = ) .  The i n f  
-P 

e i t h e r  e x i s t s  i n  
p e  

P  
which (2 .5 )  y i e l d s  a v a l i d  l i n e a r  c o n s t r a i n t  o r  t h i s  infimum i s  

-m i n  which c a s e  t h e r e  are no p o i n t s  s a t i s f y i n g  t h i s  c o n s t r a i n t  

which means t h a t  t h e  o r i g i n a l  s t o c h a s t i c  program i s  i n f e a s i b l e .  

Taking i n t o  a c c o u n t  ( 2 . 1 )  and ( 2 . 3 ) ,  w e  see t h a t  t h e  prob- 

l e m  t o  be  s o l v e d  i s  g i v e n  by 

(2 .6 )  Find x  - > 0 , a  E [O, 11 such  t h a t  

g I 1 ( x I a )  ( 0  , 1 = 1 ,  ..., L1 

g 2 1 ( ~ )  - < 0  I 1 = 1 ,  ..., L2 

and z  = cX + Q ( x )  + p ( a )  i s  minimized 



where Q i s  a f i n i t e  convex-Lipschi tz  f u n c t i o n  on K d e f i n e d  by 
2 ' 

( 1 . 3 )  and ( 1 . 4 )  , and r e p e a t e d  h e r e  f o r  e a s y  r e f e r e n c e ,  

and 

A t  l e a s t  i n  t h e o r y ,  any s t a n d a r d  convex programming package c o u l d  

be  used t o  s o l v e  problem ( 2 . 6 )  , b u t  u s u a l l y  computing t h e  v a l u e  

of  2, i t s  s u b g r a d i e n t s  o r  even more S O ,  second o r d e r  i n f o r m a t i o n  

a b o u t  2 r e q u i r e s  computa t iona l  r e s o u r c e s  f a r  beyond t h e  advan tages  

t o  be g a i n e d  from knowing a n  o p t i m a l  s o l u t i o n  t o  ( 2 . 6 ) .  For  

t h e s e  r e a s o n s  any s o l u t i o n  method i n v o l v i n g  l i n e  min imiza t ion  o r  

of  t h e  Quasi-Newton t y p e  must  be  q u i c k l y  d i s c a r d e d ,  e x c e p t  pos- 

s i b l y  f o r  s p e c i a l  c l a s s e s  of s t o c h a s t i c  programs,  such  as s t o -  

c h a s t i c  programs w i t h  s i m p l e  r e c o u r s e  whose random v a r i a b l e s  

obey s p e c i f i c  p r o b a b i l i t y  l a w s  [ 2 9 ] .  We s h a l l  n o t  d e a l  w i t h  

t h o s e  c a s e s  h e r e ;  because  of  t h e i r  s p e c i a l  n a t u r e ,  t h e  work on 

a l g o r i t h m i c  p r o c e d u r e s  f o r  s t o c h a s t i c  programs w i t h  s i m p l e  re- 

c o u r s e ,  when W = ( I , - I ) ,  and e x t e n s i o n s  t h e r e o f , i s  f o l l o w i n g  a 

c o u r s e  of  i t s  own t h a t  is  b e i n g  reviewed s e p a r a t e l y ,  s e e  [30] .  

H e r e  w e  s h a l l  be mos t ly  concerned w i t h  t h e  case when no advan tage  

i s - t a k e n  of any s p e c i a l  s t r u c t u r e  o f  t h e  r e c o u r s e  m a t r i x  W ,  o r  

o t h e r  components of  t h e  s t o c h a s t i c  program ( 1 . 1 ) .  

I f  t h e  p r o b a b i l i t y  d i s t r i b u t i o n  of  t h e  random e lements  o f  

t h e  s t o c h a s t i c  program is  a n y t h i n g  b u t  d i s c r e t e  w i t h  f i n i t e  



suppor t ,  t h e  e v a l u a t i o n  of 2 o r  i t s  subgrad ien t  g iven by 

formula ( 1 . 3 0 ) ,  involves--a t  l e a s t  i n  p r inc ip l e - - the  s o l u t i o n  of 

an i n f i n i t e  number of  l i n e a r  programs t o  d e s c r i b e  t h e  func t ion  

w ~ Q ( x , w ) ,  fol lowed by a  mul t id imensional  i n t e g r a t i o n .  The 

m a t e r i a l  i m p o s s i b i l i t y  t o  work o u t  t h e s e  o p e r a t i o n s  e x a c t l y  has 

l e d  t o  t h e  development of approximations schemes. To d a t e  t h e  

on ly  proposed schemes t h a t  have been e x p l o i t e d  computat ional ly  

a r e  d i s c r e t i z a t i o n  schemes which c o n s i s t  i n  t h e  replacement of 

t h e  o r i g i n a l  random v a r i a b l e s  by approximating random v a r i a b l e s  

whose suppor t  is  f i n i t e ;  hencefor th  we r e s e r v e  t h e  term d i s c r e t e  

t o  d e s i g n a t e  t h i s  t ype  of random v a r i a b l e s .  The nex t  s e c t i o n  i s  

concerned wi th  t h e  convergence and t h e  e r r o r  bounds t h a t  can  be 

a s s o c i a t e d  wi th  va r ious  approximations,  t h e  rest of t h i s  s e c t i o n  

d e a l s  w i th  s o l u t i o n  procedures  f o r  (2 .6)  f o r  d i s c r e t e l y  d i s t r i -  

buted random v a r i a b l e s .  

Le t  { ( q k t  p k t  T k ) ,  k  = 1 ,  ..., N} be t h e  ( p o s s i b l e )  va lues  of 

t h e  random v a r i a b l e s  (q  ( * )  , p ( - )  , T ( - )  ) and l e t  

be t h e  a s s o c i a t e d  p r o b a b i l i t i e s .  I n  t h i s  c a s e ,  problem (2.6)  i s  

equ iva l en t  t o  

( 2 . 7 )  Find x  - > 0,  a  E [ O t l ]  and yk 2 0 ,  k  = 1 .  ..., N such t h a t  

and 

cx + f  l q l y l  + f2q2y2  +. . .+ fNqNyN + p ( a )  = z i s  minimized. 



Except poss ib ly  f o r  some n o n l i n e a r i t y  i n  p o r  t h e  c o n s t r a i n t s  in-  

volving g  
1 1 '  

t h i s  i s  a  l a r g e  s c a l e  l i n e a r  program wi th  dua l  b lock 

angula r  s t r u c t u r e .  How l a r g e ,  c l e a r l y  depends on N t h e  number of 

r e a l i z a t i o n s  of t h e  random v a r i a b l e s .  Note t h a t  t h e r e  was no 

need t o  i nc lude  t h e  induced c o n s t r a i n t s  

they a r e  au toma t i ca l ly  incorpora ted  i n  ( 2 . 7 )  , which w i l l  be 

f e a s i b l e  only  i f  f o r  some x  t h e r e  e x i s t  f o r  a l l  k  = 1 ,  . . . I N I  yk 

such t h a t  

Again h e r e  any l a r g e  s c a l e  programming technique can  be s p e c i a l -  

ized--note t h a t  t h e  m a t r i c e s  t h a t  appear along t h e  d iagona l  a r e  

t h e  same--to s o l v e  t h i s  type  of problem. I n  f a c t  va r ious  such 

p o s s i b i l i t i e s  have been worked o u t ,  c o n s u l t  f o r  example [ 3 1 ] ,  

[32, Sec t ion  31. Here we r e t a i n  only  those  based on compact 

b a s i s  and decomposition techniques ,  t h a t  have been implemented 

and e x h i b i t  a t  t h i s  d a t e  t h e  g r e a t e s t  promise. 

To somewhat s imp l i fy  t h e  p r e s e n t a t i o n  and t o  keep ou r  d i s -  

cus s ion  i n  t h e  realm of l a r g e  s c a l e  l i n e a r  programming, we assume 

t h a t  t h e r e  a r e  no terms involv ing  n and suppose t h a t  K1 i s  given 

by l i n e a r  r e l a t i o n s  of t h e  type  



where A and b  a r e  f i x e d  m a t r i c e s .  Problem (2 .7)  t h e n  r e a d s  

(2 .8 )  Find x  - > 0 and yk 2 0 ,  k = 1 ,  ..., N such t h a t  

Ax = b  , 

TkX 
- 

+ ' y k - P k  k = 1 ,  ...I N 

and 

f  q  y  = z  i s  minimized . CX + 1;=1 k  k k 

A v e r s i o n  of  t h e  d u a l  o f  t h i s  problem i s  then  

(2 .9 )  Find a  € R m 1  and i i k € R  I k = 1 ,  ..., N such t h a t  
m2 

O A + L ~  f n ~  < c  k=l k k  k -  

n w < q  
k - k  

and 

f  ii p  = w is  minimized. O b  + $1 k  k k 

Problem (2 .9 )  i s  n o t  q u i t e  t h e  u s u a l  ( f o rma l )  d u a l  of (2 .8 )  . To 

o b t a i n e d  t h e  s t a n d a r d  form, se t  

and s u b s t i t u t e  i n  ( 2 . 9 ) .  The d u a l  problem has  b lock-angular  

s t r u c t u r e ,  t h e  d i agona l  c o n s i s t i n g  of i d e n t i c a l  m a t r i c e s  W.  



The compact b a s i s  t e chn ique ,  a s  worked o u t  by B .  S t r a z i c k y  

[ 3 3 ]  and f u r t h e r  ana lyzed  by P. Ka l l  [ 3 4 ]  , who a l s o  implemented 

t h e  t e chn ique  a s  p a r t  of  a n  approximat ion scheme, e x p l o i t s  t h e  

s t r u c t u r e  o f  t h e  b a s e s  o f  t h i s  d u a l  problem t o  o b t a i n  a  working 

b a s i s  w i t h  

e lements ,  a  number s u b s t a n t i a l l y  s m a l l e r  t han  

which would b e  t h e  s i z e  o f  t h e  b a s i s  f o r  t h e  s t a n d a r d  s implex 

method. What makes t h i s  b a s i s  r e d u c t i o n  p o s s i b l e  i s  t h e  fo l low-  

i n g  o b s e r v a t i o n .  I n c l u d i n g  t h e  s l a c k  v a r i a b l e s ,  t h e  c o n s t r a i n t s  

of  problem (2.9') i n v o l v e  N systems o f  t h e  t y p e  

N o w  assuming t h a t  (2 .9 )  i s  f e a s i b l e  (and bounded) it fo l l ows  

t h a t  each b a s i c  s o l u t i o n  w i l l  have a t  l e a s t  n2 b a s i c  v a r i a b l e s  

among t h o s e  a s s o c i a t e d  t o  t h e  k-subsystem. ( I n  case of  de- 

generacy t h e  p i v o t i n g  r u l e  c an  e a s i l y  b e  a d j u s t e d  t o  g u a r a n t e e  

t h e  above. )  Any b a s i s  gene ra t ed  by t h e  i t e r a t i o n  o f  t h e  s implex  

method w i l l  t h u s  c o n t a i n  a t  l e a s t  n2 columns t h a t  " i n t e r s e c t "  

t h e  k-subsystem. 

To see t h i s ,  it  h e l p s  t o  c o n s i d e r  t h e  de tached  c o e f f i c i e n t s  

form (2 .9)  : 



L e t  kT be a  ( f e a s i b l e )  b a s i s  f o r  t h i s  problem whose r e s t r i c t i o n  

t o  t h e  k-subsystem, w e  deno te  by 

-1' i. e . ,  [Bk , L;] i s  f o r  a l l  k t  a  submatr ix  of  

The m a t r i x  BE i s  supposed t o  be  i n v e r t i b l e  ( a t  l e a s t  n2 of  t h e  

columns of  t h e  submatr ix  a r e  l i n e a r l y  i ndependen t ) .  The columns 

of  LT a r e  l i n e a r  combinat ions  o f  t h e  columns o f  B~ w e  can k  k '  

t hus  e x p r e s s  LE a s  fo l lows :  



Recall that naturally L~ may be empty when exactly n2 columns of k 
*T the k-subsystem are in the basis B . Schematically, and up to a 

rearrangement of the columns, the basis is of the form 

where cT is the submatrix of k 

T that corresponds to BE and D: the one that corresponds to Lk. 

T The Do matrix comes from the columns of 

that are in the basis. Observe that the n.,xn,-matrix D~ is 
h 

invertible. This structure of B is to be exploited to reduce 

the simplex aperations, that usually require the inverse of 2 ,  to 

operations requiring essentially no more than the inverses of B k' 



a r e  given by t h e  r e l a t i o n  

T T where [ p  , 6 ] i s  t h e  a p p r o p r i a t e  rearrangement of t h e  subvector  

of t h e  c o e f f i c i e n t s  of t h e  o b j e c t i v e  of ( 2 . 1 1 )  t h a t  corresponds 

t o  t h e  columns of  iT with  f iT  being t h e  subvector  whose components 

T 
correspond t o  t h e  columns of D . The (dua l  f e a s i b l e )  b a s i s  is  

op t imal  i f  t h e  v e c t o r s  

a r e  pr imal  f e a s i b l e ,  i . e . ,  s a t i s f y  t h e  c o n s t r a i n t s  of ( 2 . 8 ) .  To 

o b t a i n  x and y  we s e e  t h a t  (2.14) y i e l d s  

from which we g e t  



and f o r  k  = 1 ,  ..., N  , 

where p T  i s  t h e  subvec to r  of  t h e  o b j e c t i v e  of (2 .11)  correspond-  
k  

i n g  t o  t h e  columns i n  Bk. W e  have used t h e  f a c t  t h a t  B i s  b lock  

d i agona l  w i t h  i n v e r t i b l e  m a t r i c e s  B on  t h e  d i a g o n a l .  Going one 
k  

s t e p  f u r t h e r  and u s ing  t h e  r e p r e s e n t a t i o n  (2.12) f o r  t h e  m a t r i c e s  

Lk, w e  g e t  t h e  equa t i on  

f o r  x. What i s  impor t an t  t o  n o t i c e  i s  t h a t  t o  o b t a i n  x  and y  

through (2 .16)  and ( 2 . 1 5 ) ,  w e  on ly  need t o  know t h e  i n v e r s e  of 

t h e  N  ( n  x . n  ) - m a t r i c e s  B and of t h e  m a t r i x  (D - EC). 2  2  k  

S i m i l a r l y  t o  o b t a i n  t h e  v a l u e s  o f  t h e  v a r i a b l e s  o and 

+ - 
( n k  , n k ) ,  k  = 1 ,  ..., N ;  a s s o c i a t e d  t o  t h i s  b a s i s ,  e x a c t l y  t h e  

same i n v e r s e s  i s  a l l  t h a t  i s  r e a l l y  r e q u i r e d ,  a s  can  e a s i l y  . .  

be v e r i f i e d .  One now needs t o  work o u t  t h e  upda t ing  

p rocedures  i n  o r d e r  t o  show t h a t  t h e  s t e p s  of  t h e  s implex method 

can  be  performed i n  t h i s  compact form, i . e . ,  t h a t  t h e  upda t i ng  

p rocedures  i n v o l v e  on ly  t h e  r e s t r i c t e d  i n v e r s e s .  Th i s  h a s  been 

c a r r i e d  o u t  i n  [33] .  Exper imenta l  computa t iona l  r e s u l t s  a r e  a l s o  

mentioned i n  [33] ; w i t h  on ly  t h e  v e c t o r  p  random, i . e . ,  q and T 

f i x e d  and 

m l  = 30 , n l  = 4 0 , m 2 = 6 , n  = 5  and N = 5 4 0  , 
2 



t h e  r u n  t i m e  on a  CDC 3300 was 20 minutes .  F u r t h e r  computa t iona l  

expe r i ence  i nvo lv ing  ( g e n e r a t e d )  problems w i th  random T i s  r e p o r t e d  

i n  [ 3 5 ] .  

A number of improvements s u g g e s t  themselves .  I n  [ 3 3 ]  it i s  

observed t h a t  i n  problem ( 2 . 9 )  t h e  v a r i a b l e s  nk  and o a r e  n o t  

r e s t r i c t e d  i n  s i g n  and t h a t  it is  n o t  r e a l l y  nece s sa ry  t o  e x p r e s s  

each 7~ a s  k  

which doub l e s  t h e  number of v a r i a b l e s .  I n  f a c t  t h e  nk shou ld  

be t r e a t e d  a s  s i g n - u n r e s t r i c t e d  v a r i a b l e s  w i t h  t h e  cor responding  

T  
columns, i . e . ,  a l l  o f  W , always  p a r t  o f  t h e  b a s i s .  I n  f a c t  i f  

t h e  rows o f  W a r e  l i n e a r l y  independen t ,  t h e n  f o r  a l l  k ,  t h e  

T columns o f  wT cou ld  always be  l e f t  i n  Bk. Th i s  means t h a t  t h e  

on ly  changes t h a t  would occur  i n  t h e  m a t r i c e s  

from one b a s i s  t o  t h e  n e x t ,  would be columns o f  t h e  i d e n t i t y  I (n, 
s h u f f l i n g  i n  and o u t  o f  t h e  new b a s i s .  Th i s  f e a t u r e  w a s  n o t  ex- 

p l o i t e d  i n  t h e  implementa t ion  of  t h e  a l g o r i t h m  and one may reason-  

a b l y  e x p e c t  t h a t  t h e r e  would b e  s u b s t a n t i a l  s a v i n g s  i f  one d i d ,  

e s p e c i a l l y  i f  t h e  i n v e r s e s  c an  b e  s t o r e d  i n  p roduc t  form. I n  

f a c t  one  cou ld  go much f u r t h e r ,  a s  w e  show nex t .  

S i n c e  f o r  a l l  k-subsystems,  t h e  columns of  wT w i l l  be  con- 

T T T  t a i n e d  i n  (Bk , L k ) ,  w e  can  always keep them i n  Bk.  W e  have 

= [wT , I ( k l ) ]  , L: = I (k2)  Bk 



where I (kl) consists of (n - m2) columns of the (n2 2 x n2)- 

identity and I(k2), possibly empty, consists of a few of the 

remaining columns of the same identity matrix. Schematically, 

and up to some rearrangement of the rows, we have that 

To know the inverse of BT it really suffices to know s;'. The k 

inverse is given by 



a s  can e a s i l y  b e  checked. Thus r a t h e r  t h a n  keeping and upda t ing  

an n  x n2- m a t r i x  f o r  each subsystem, it appears  t h a t  a l l  t h e  
2 

in format ion  t h a t  i s  r e a l l y  needed can be manipula ted  i n  an  m x m2- 2  

mat r ix .  A s  f o r  s t a n d a r d  l i n e a r  programs w e  expec t  m t o  be  u s u a l l y  2 

much s m a l l e r  t han  n2 .  Th is  should  r e s u l t  i n  s u b s t a n t i a l  s av ings  

t h a t  would d r a s t i c a l l y  reduced t h e  number of  e s s e n t i a l  o p e r a t i o n s  

by s implex i t e r a t i o n  a s  c a l c u l a t e d  by K a l l  [34,  e q u a t i o n s  ( 2 9 )  

and ( 3 0 ) l .  W e  cou ld  pursue  t h e  d e t a i l e d  a n a l y s i s  s t i l l  f u r t h e r  

t a k i n g  advantage o f  t h e  f a c t  t h a t  t h e  m a t r i c e s  D l ,  ..., D a r e  a l l  k  

ze ro ,  t h a t  a  number o f  t h e  Sk a r e  bound t o  be i d e n t i c a l  i f  N i s  

l a r g e ,  and s o  on. W e  s h a l l  however n o t  do t h i s  h e r e ,  b a s i c a l l y  

because t h e  o p e r a t i o n s  would mimic very  c l o s e l y  t h o s e  o f  t h e  

a lgo r i t hm t o  be d e s c r i b e d  nex t .  I t  i s  c o n j e c t u r e d  t h a t  a  ve r -  

s i o n  o f  t h i s  compact b a s i s  t echn ique  t h a t  would f u l l y  e x p l o i t  

t h e  s t r u c t u r a l  p r o p e r t i e s  of  t h e  dua l  problem (2 .9 )  would then  

e x h i b i t  *he- same c o m p u t a k i ~ n a l  complexity a s  t h i s  second a lgo r i t hm.  

The sugges t i on  o f  u s i n g  t h e  decomposit ion p r i n c i p l e  t o  s o l v e  

s t o c h a s t i c  programs goes  back t o  G .  Dantzig and A. Madansky [ 3 6 ]  , 
t h e  procedure  t hey  ske t ched  o u t  took advantage o f  t h e  s t r u c t u r e  

of  t h e  d u a l  problem ( 2 . 9 ) .  Th i s  approach v i a  decomposit ion was 

e l a b o r a t e d  by R. Van Slyke and myself i n  [37] r e l y i n g  on a  cut: 

t i n g  hyperplane  a lgo r i t hm ( o u t e r  l i n e a r i z a t i o n ,  Benders '  de- 

composi t ion)  which can  be  i n t e r p r e t e d  a s  a partial decomposit ion 

method [37,  Sec t i on  31. I n  view of t h e  m a t r i x  l a y o u t  o f  

t h e  problem t o  b e  so lved ,  and t h e  e x p l i c i t  u s e  made of  t h i s  s t r u c -  

t u r e ,  we r e f e r  t o  it a s  t h e  L-shaped  a lgo r i t hm.  Recent work by 

J. Bi rge  [32] ex tends  t h e  method t o  m u l t i s t a g e  problems,  he  a l s o  

r e p o r t s  on computat ional  exper iments  w i t h  l a r g e  s c a l e  problems; 



see also [38] and [391. (For an alternative use of decomposition 

techniques, consult 130, Section 61 . ) 
To describe the method it is useful to think of problem (2.8) 

in the following form: 

(2.18) Find x - > 0 such that 

A x = b  , and 

cx + Q(x) = z is minimized 

where 

Infeasibility and unboundedness are ignored, they can usually be 

handled by an appropriate coding of the initialization step, 

see [40]. The L-shaped algorithm given here is actually a 

variant of the one in [37, Section 51, in the sense that we are 

working with a more general class of stochastic programs than 

those under consideration in [37]. The method consists of 3 

steps that can be interpreted as follows. In Step I we solve an 

approximation to (2.18) using an outer-linearization of 2. The 

two types of constraints (2.19) and (2.20) that appear in this 

linear program come from 

(i) feasibility cuts (determining K = {x 1 Q(x) < + . . I ) ,  
2 

and 

(ii) linear approximations to 2 on its domain of 

finiteness. 



These c o n s t r a i n t s  a r e  genera ted  s y s t e m a t i c a l l y  through S teps  2 

v 
and 3 ,  when a  proposed s o l u t i o n  x  of t h e  l i n e a r  program of 

S tep  1 f a i l s  t o  be i n  K 2  (S t ep  2 )  o r  i f  t h e  approximating prob- 

lem does n o t  y e t  match t h e  func t ion  2 a t  xV (S tep  3 )  . The row- 

v e c t o r s  genera ted  du r ing  S t e p  3  a r e  a c t u a l l y  subgrad ien t s  of 2 

a t  xV.  The convergence i s  based on t h e  f a c t  t h a t  t h e r e  a r e  only  

a f i n i t e  number of c o n s t r a i n t s  of  type  (2.19) and (2.20) t h a t  

can be  g e n e r a t e d s i n c e  each one corresponds t o  some b a s i s  of W 

and e i t h e r  some p o i n t  (pk,  T k )  o r  t o  a  ( f i n i t e )  number of  

weighted averages  o f  t h e s e  p o i n t s .  

S t e p  I .  S e t  v = v + 1 .  Solve t h e  l i n e a r  program 

Find x  - > 0  , O E R such t h a t  

Ax = b  

D x  
1 - > dl 1 

E x + O > e  
1 - 1 ,  

and 

cx + O = z i s  minimized. 

Le t  ( x V ,  O w )  be  an op t imal  s o l u t i o n .  I f  no c o n s t r a i n t s  of t h e  

form (2.20) a r e  p r e s e n t ,  O i s  s e t  equa l  t o  and ignored i n  t h e  

computation. I n i t i a l l y  set s = t = v = 0. 

S t e p  2 .  For k = 1 , .  . . ,N so lve  t h e  l i n e a r  program 

+ - 
( 2 . 2 1 )  F i n d y > O , v  - - > O , v  - > O  such t h a t  

+ - w Wy + I v  - I v  = pk - T x  , and 
k  

1 ev+ + cv- = w is  minimized, 



u n t i l  f o r  some k t  t h e  op t imal  v a l u e  w1 > 0. Le t  ov b e  t h e  

a s s o c i a t e d  s implex m u l t i p l i e r s  and d e f i n e  

and 

t o  g e n e r a t e  a  c u t  of  t y p e  (2 .19 ) .  Return  t o  S t e p  1  w i t h  a  new 

1 c o n s t r a i n t  o f  t y p e  (2.19) and set  s = s + 1 .  I f  f o r  a l l  k t  w = 0 

go  t o  S t e p  3 .  

S t e p  3. For a l l  k = 1, ..., N, s o l v e  t h e  l i n e a r  program 

( 2 . 2 2 )  Find y  - > 0 such t h a t  

v 
Wy = pk - Tkx , and 

g y = w2 i s  minimized k 

v Let  nk b e  t h e  m u l t i p l i e r s  a s s o c i a t e d  w i th  t h e  op t ima l  s o l u t i o n  

of  t h e  problem k. Define  

and 



2v v I f  0" > w s t o p ,  x  i s  an  opt imal  s o l u t i o n .  Otherwise ,  r e t u r n  

t o  S t e p  1 w i th  a  new c o n s t r a i n t  of t y p e  (2.20) and set  t = t + 1 .  

The s e p a r a t i o n  of  S t eps  2 and 3 i s  n o t  j u s t  f o r  e x p o s i t o r y  

reasons .  Problem (2.21) is t h e  c o u n t e r p a r t  o f  Phase I o f  t h e  

s implex method f o r  ( 2 . 2 2 ) .  Thus, i n  p r a c t i c e  t h e s e  two o p e r a t i o n s  

would n o t  b e  s e p a r a t e d  i f  w e  proceeded p r e c i s e l y  a s  i n d i c a t e d  

h e r e .  However, t h e r e  a r e  many c a s e s  i n  which S t e p  2 can  be  modi- 

f i e d  t o  s o l v i n g  on ly  1 l i n e a r  program. D e t a i l s  can be 

found i n  [ I  3 ,  S e c t i o n  51 , h e r e  l e t  u s  j u s t  s u g g e s t  t h e  r ea sons  

f o r  t h i s  s i m p l i f i c a t i o n .  ~ e t (  be  t h e  o r d e r i n g  induced by t h e  

n2  m 2  c l o s e d  convex cone W(R+ ) on R , i - e . ,  

Then f o r  a l l  k = 1 ,  ..., N ,  t h e  system of e q u a t i o n s  

i s  f e a s i b l e ,  i f  t h e r e  e x i s t s  a  E R~~ such t h a t  f o r  a l l  k = 1  , . . . , N  

and t h e  system of equa t i ons  

( 2 . 2 4 )  W y . = a ,  y 1 0  

i s  f e a s i b l e .  There always e x i s t  such a  lower bound. I f  i n  



a d d i t i o n ,  w e  c a n  choose a such t h a t  

f o r  some k ' ,  t h e n  w e  have t h a t  (2 .23)  i s  f e a s i b l e  f o r  a l l  k  i f  

and on ly  i f  (2 .24)  i s  f e a s i b l e .  Although i n  g e n e r a l  such a  unique 

a w i l l  n o t  e x i s t ,  it does  e x i s t  in-many i n s t a n c e s .  And even when 

a  s i n g l e  a w i l l  n o t  do,  it w i l l  u s u a l l y  b e  s u f f i c i e n t  t o  c o n s i d e r  

a  few such  lower bounds, much fewer i n  any c a s e  t h a n  a l l  p o s s i b l e  

( pk t  T k )  Le t  u s  remark t h a t  computat ing a  lower bound w i t h  

r e s p e c t  t o  < may b e  t o o  d i f f i c u l t ,  b u t  it r e a l l y  s u f f i c e s  t o  

work w i t h  lower bounds w i t h  r e s p e c t  t o  a cone o r d e r i n g  induced 

n2 by any c l o s e d  convex cone con t a ined  i n  W(R+ ) - - f o r  example, a  

cone g e n e r a t e d  by a  s u b s e t  o f  t h e  columns of W--and t h a t  cone 

c o u l d  b e  an  o r t h a n t ,  c f .  [13, Theorem 4.371. 

The work t o  s o l v e  S t e p  3  can  a l s o  b e  s i g n i f i c a n t l y  reduced- 

i f  w e  u s e  s i f t i n g  o r  bunching p rocedures  a s  w e  now e x p l a i n .  By 

bunching w e  mean t h e  fo l l owing .  With g i v e n  x ,  l e t  B b e  a  sub- 

ma t r i x  of  W t h a t  i s  op t ima l  f o r  some k t  i . e . ,  cor responding  t o  

some r e a l i z a t i o n  (qk,  p k l  T k )  Then from t h e  o p t i m a l i t y  condi-  

t i o n s  f o r  l i n e a r  programming it f o l l o w s  t h a t  t h i s  b a s i s  w i l l  b e  

a l s o  be  o p t i m a l ,  when s o l v i n g  problems ( 2 . 2 2 ) ,  f o r  a l l  k  such 

t h a t  

and 



where yk i s  t h e  subvec to r  o f  q whose e lements  a r e  t h e  c o e f f i -  
k  

c i e n t s  of  t h e  v a r i a b l e s  t h a t  a r e  i n  t h e  b a s i s .  S ince  B-' i s  

a l r e a d y  a v a i l a b l e ,  v e r i f y i n g  i f  t h e  above i n e q u a l i t i e s  a r e  s a t i s -  

f i e d  i n v o l v e s  r e l a t i v e l y  l i t t l e  work, e s p e c i a l l y  i f  on ly  p  o r  q 

v a r i e s  w i t h  k. Moreover, because  of  t h e  n a t u r e  o f  t h e  problem 

a t  hand it i s  r ea sonab l e  t o  e x p e c t  t h a t  on ly  a  s m a l l  number 

o f  b a s e s  i n  W w i l l  s u f f i c e  t o  bunch a l l  t h e  r e a l i z a t i o n s .  

I f  problem (2 .7 )  i s  t h e  r e s u l t  o f  a  d i s c r e t i z a t i o n  of  t h e  random 

v a r i a b l e s  o f  t h e  s t o c h a s t i c  program, a  r e f i nemen t  o f  t h e  d i s -  

c r e t i z a t i o n  w i l l  o n l y  i n c r e a s e  t h e  work by t h a t  r e q u i r e d  t o  

bunch a  l a r g e r  number o f  r e a l i z a t i o n s ,  t h e  b a s i c  s t e p s  o f  t h e  

a l g o r i t h m  remain u n a f f e c t e d .  

I n  f a c t  t h e  p reced ing  s u g g e s t  t h e  fo l l owing  o v e r a l l  p rocedure  

t o  s o l v e  s t o c h a s t i c  programs w i t h  a r b i t r a r y  d i s t r i b u t i o n s  f o r  t h e  

random v a r i a b l e s .  F i r s t ,  s o l v e  an  approximat ion o f  t h e  o r i g i n a l  

program w i t h  o n l y  a  few samples of q ( 0  ) , p  ( ) and T ( 0  ) , f o r  

example, such t h a t  

where ,Qk i s  p a r t  of  a  p a r t i t i o n  of  t h e  sample space .  Using t h e  

L-shaped a lgo r i t hm s o l v e  t h e  r e s u l t i n g  program ( 2 . 8 ) ,  keeping t h e  

b a s e s  used t o  perform t h e  l a s t  bunching. ( I f  s t o r a g e  l i m i t a t i o n s  

make t h e  s t o r i n g  of  a l l  t h e s e  ba se s  imposs ib l e ,  i t  i s  always pos- 

s i b l e  t o  r e co rd  them th rough  a  l i s t i n g  of  t h e  cor responding  i n -  

dex v e c t o r s . )  Next i n c r e a s e  t h e  number o f  samples ,  e i t h e r  sy s -  

t e m a t i c a l l y  v i a  (2 .25)  u s i n g  a  f i n e r  p a r t i t i o n i n g  o f  t h e  sample 

space  o r  through a  sampl ing p rocedure  (Monte-Carlo).  Then bunch 



t h i s  extended sample us ing  t h e  ba se s  a l r e a d y  a v a i l a b l e ,  i f  some 

samples escape  t h i s  bunching p roce s s  proceed w i t h  t h e  unass igned 

samples a s  u s u a l  i n  S t e p  3 ,  us ing  f o r  v a l u e  of  x t h e  op t ima l  

s o l u t i o n  o f  t h e  p r ev ious  d i s c r e t i z a t i o n .  Cont inue  u n t i l  t h e  

op t ima l  s o l u t i o n  of  t h i s  new (approximat ing)  problem i s  a t t a i n e d .  

Then repeat--by which w e  mean: r e f i n e  t h e  d i s c r e t i z a t i o n ,  u se  

t h e  s t o r e d  ba se s  of  W t o  bunch t h i s  l a r g e r  sample and s o  on-- 

u n t i l  t h e  s o l u t i o n  reached  s a t i s f y  a c c e p t a b l e  e r r o r  bounds, see 

S e c t i o n  3 .  

By s i f t i n g  w e  mean p rocedures  t h a t  r e l y  on  a  s y s t e m a t i c  

ar rangement  o f  t h e  v e c t o r s  

and 

i n  o r d e r  t o  f a c i l i t a t e  t h e  pa r ame t r i c  a n a l y s i s  of t h e  l i n e a r  

program (2 .22)  t o  b e  so lved  i n  S t e p  3. Th i s  would t h e n  subs tan-  

t i a l l y  s i m p l i f y  and s h o r t e n  t h e  t i m e  r e q u i r e d  t o  perform S t e p  3 .  

I n  [39] S. Ga r t ska  and D.  Ruthenberg d e s c r i b e  such a  s i f t i n g  pro- 

cedure .  A v a r i a n t  of  t h e  arrangement t hey  s u g g e s t  was compared 

t o  a  bunching p rocedure  f o r  t h e  c a s e  when on ly  p  and/or  q a r e  

random. S i f t i n g  appea r s  t o  b e  b e t t e r  t h a n  bunching i f  t h e  num- 

b e r  o f  d i f f e r e n t  b a s e s  needed t o  s i f t  o r  bunch t h e  sample i s  

s m a l l ,  o t h e r w i s e  t h e  need t o  r e a r r a n g e  t h e  v e c t o r s  

{pk - Tkx , k = 1,  . . . ,N} w i t h  each new x ,  appea r s  t o  c a n c e l  o u t  



whatever advantage one may g a i n  from t h i s  p recondi t ion ing  of t h e  

d a t a  t o  a c c e l e r a t e  S t e p  3. However, t h e r e  appears  t o  be room 

h e r e  f o r  s u b s t a n t i a l  improvements. 

We t e rmina t e  t h i s  s e c t i o n  wi th  a  s h o r t  d i s c u s s i o n  of s t o -  

c h a s t i c  q u a s i g r a d i e n t  methods. Solving s t o c h a s t i c  programs i s  

on ly  one of t h e i r  p o t e n t i a l  a p p l i c a t i o n s .  The method whose r o o t s  

l i e  i n  t h e  theory  of s t o c h a s t i c  approximation o r i g i n a t e s  w i th  

E. Kie fe r  and I .  Wolfowitz who propose a  method f o r  unconstra ined 

op t imiza t ion ,  c f .  a l s o  t h e  r e l a t e d  work of H.  Robbins and S. Monro 

f o r  s o l v i n g  systems of non l inea r  equa t ions .  Appl ica t ions  t o  

s t a t i s t i c s  and p r o b a b i l i t y  w e r e  f u r t h e r  developed by V. ~ u p a b ,  

V. Fabian,  J. Sachs and many o t h e r s ,  who provided a l s o  r a t e s  of 

convergence a s  w e l l  a s  va r ious  c h a r a c t e r i z a t i o n s  of t h e  l i m i t  

d i s t r i b u t i o n s .  H. Kushner and h i s  s t u d e n t s  extended t h e  methods 

t o  encompass systems t h a t  can only  be measured up t o  some n o i s e .  

The use  of s t o c h a s t i c  q u a s i g r a d i e n t  methods t o  s o l v e  cons t r a ined  

op t imiza t ion  problems s t a r t  w i th  t h e  work of  V. Fabian and 

Y. Ermoliev i n  t h e  mid 60 ' s .  S ince  then  t h e r e  have been numerous 

c o n t r i b u t i o n s  by B. Po l j ak ,  H. Kushner and D .  C la rk ,  K. Mar t i ,  

J - B .  H i r i a r t -Ur ru ty ,  L. Schmet terer ,  G. P f lug  and A. Ruszcynski, 

... t h e  main impetus coming from Y .  Ermoliev and h i s  c o l l a b o r a t o r s  

from t h e  I n s t i t u t e  of Cybernet ics  i n  Kiev: N.  Shor ,  L. Bajenow, 

A .  Gupal, E. Nurminiski and A .  Gaivoronsky. A r e c e n t  survey has  

been provided by Y. Ermoliev [ 4 1 ] .  Of d i r e c t  i n t e r e s t  t o  t h e  

problem a t  hand i s  [42; Chapter I ,  $41 ,  [431, [ 4 4 1 ,  [41, Sec t ion  

71 and e s p e c i a l l y  t h e  i n t e r e s t i n g  monograph [451 of K.  Mart i  who 

uses  t h e  method t o  o b t a i n  a  c o n s t r u c t i v e  proof of d u a l i t y  r e s u l t s ,  

f o r  example; c f .  a l s o  C461 and [47] where two a p p l i c a t i o n s  of  t h e  



s t o c h a s t i c  q u a s i g r a d i e n t  methods t o  s t o c h a s t i c  programming prob- 

l e m s  a r e  d e s c r i b e d  i n  d e t a i l .  

I n  o u r  s e t t i n g ,  t h e  method works b a s i c a l l y  a s  f o l l o w s .  L e t  

F:S -+ R w i th  S a  c l o s e d  convex s u b s e t  o f  R~ be  d e f i n e d  by 

and l e t  us assume t h a t  f o r  a l l  w ,  x w f ( x , w )  i s  convex. The 

a lgo r i t hm g e n e r a t e s  a  sequence ~ x I , x 2 ,  . . . I  o f  p o i n t s  o f  S  through 

t h e  r e c u r s i v e  formula  

where p r j S  deno tes  t h e  p r o j e c t i o n  on S t  {pv ,  V = . i s  a  

sequence of  s c a l a r s  and SV i s  a  s t o c h a s t i c  q u a s i g r a d i e n t  o f  F  a t  

x  by which one means a  r e a l i z a t i o n  o f  a  random n-vector  5 v -v 

s a t i s f y i n g  

Typ ica l l y  Sv i s  ob t a ined  a s  a  subg rad i en t  o f  f ( = , w V )  a t  xv where 

w i s  a  sample o f  t h e  random elements  de te rmin ing  f o r  more g e n e r a l l y  
V 

where each vl E a f  (x  , w ) wi th  t h e  ol ,  1 = 1,. . . ,L a  c o l l e c t i o n  
v 1 

of  independent  samples. 



The method converges with probability 1 if the selected 

scalars p satisfy conditions such as 
V 

2 
> o 1 'Iv p V  > and I,, P v  < a  . 

Pv - 

- 1 For example, pv = v is such a sequence. The proof can be 

derived from a modified super-martingale convergence argument 

[42, Theorem 31 , consult also [48] . 
The application of the method to stochastic programming 

problem (2.6) works essentially as follows. To facilitate the 

exposition, let us consider the case when,.a is not a variable and 

thus (2.6) can be reexpressed as 

(2.26) find x E K = {x > OIg - 1, (XI ( 0, g21 (XI 7 ' 0) , 
such that cx + g(x) = z is minimized, 

where 

Samples of q ( *  ) , p ( *  ) and T ( corresponding to a (sample) event 

will be indicated by subscripting w, i-e., 

with the sample values (qk, pk, T ) corresponding to the event 

w k' Finally, note that for al.1 x E K, Q(x,w ) is finite and 
k 



aQ(x.uk) = { - v T ~ ~ v  optimal multiplier for (2.22)) . 

1 2  The sequence of solution {x ,x ,... ) is produced by the recur- 

sion: 

where for some M > 1 - 

and for p = 1, ..., M, 

The scalars p are assumed to satisfy the appropriate conditions v 

to ensure convergence (with probability 1). 

There are three possible stumbling blocks in the implementa- 

tion of the stochastic quasigradient method to solve (2.26): 

the projection on K, 

the choice of the step-size pv, 

the stopping criterion. 

The projection of a point on the closed convex set K is easy only 

if K is "simple" by which we mean a set such as a bounded interval 

or a sphere, ... If K is an arbitrary convex polyhedron, then one 

does usually need to solve a quadratic program of some type in 

order to obtain xV+' as given by (2.27). If K is a general con- 

vex set then an even more sophisticated nonlinear programming 



v+l 
technique must be used to get x . 

The choice of the step-size p is theoretically prescribed 
V 

by convergence requirements. However, when we use the stochastic 

gradient method to solve (2.26) we are interested in its short 

run properties rather than its long run properties, and there is 

at present no theory that guides us in the choice of the step- 

size. In practice, some p is chosen at the outset and kept a 

fixed value until the user intervenes to change it or some heu- 

ristic is built in- the code to adjust the size of p when certain 

phenomena are observed. That takes us very far away from the 

convergence requirements. How to remedy this is not clear 

at this time. 

Finding a good stopping criterion is still very much an open 

question. Because the function 2  is difficult to evaluate--and 

that is why we are using stochastic quasigradient methods in the 

first place--it is out of the question to use value comparisons 

between 2  at xV and at xV+l. Y. Ermoliev has suggested that 

the following quantity 

be used as an estimate for 2 ( x V )  with M a relatively large number. 

The algorithm is to terminate when no improvement is observed in 
A 

the value of 2  after p has already been reduced to its computa- 

tionally desirable lower bound. 

To conclude this too brief discussion of the stochastic 

quasigradient method, we would like to point out the connections 

between this solution method and the L-shaped algorithm. To do 



so we work with version (2.18) of the stochastic program, i.e., 

the discrete case with linear constraints determining K1. The 

straightforward implementation of the stochastic quasigradient 

method would run into difficulties if there are induced constraints 

on x that cut the feasibility region, i.e., if x E K1 = 

Ix - > O ~ A X  = b) does not automatically imply that there is a 

feasible recourse yk for all (pk, Tk). Assume this does not 

occur, in stochastic programming parlance this means that the 

r e l a t i v e l y  comple te  r e c o u r s e  condition is satisfied [13, Section GI. 

This also means that Step 2 of the L-shaped algorithm can be skipped. 

Both algorithms require the calculation of the subgradient of 2. 

For the L-shaped algorithm this is done in Step 3, whereas in the 

stochastic quasigradient algorithm only on estimate of the sub- 

gradient is needed. Naturally, if all points {(qk, pk, Tk), k = 1, ..., N 1 

are used to obtain (2.28) then not an estimate but an actual sub- 

gradient of Q is utilized by the stochastic quasigradient method. 

But this would be contrary to the strategy of the method which 

consists in moving forward as soon as an estimate of a direction 

of descent is made available, and one hopes that after N(= number 

of different sample values) steps, with xv adjusted at each step, 

the decrease in the objective will be more substantial than if 

all samples were used to compute a (reliable) subgradient of 2. 

Assuming this to be true, and ignoring some of the difficulties 

that may arise from step-size and projections, the question would 

then be if the advantage gained from bunching (or sifting), which 

can be used to speed up Step 3 in the L-shaped algorithm, would 

not totally offset the fact that at each step of the stochastic 

quasigradient method, the recourse problem (2.22) must be solved 



with a new value of x and (q, p, T). Naturally there too, one 

should take advantage of the fact that already a basis is avail- 

able but usually a few pivot operations will be required to reach 

the new optimal basis. 

If one was going to compare the two algorithms it would not 

be sufficient to measure their respective performance on (discrete) 

problems of type (2.18) but also when (2.18) is part of an 

approximation scheme for the original problem, since the stochas- 

tic quasigradient method takes no advantage of the shape of the 

probability distribution of the random variables and is in no 

way hampered by having continuous distributions. In this connec- 

tion, one should also mention a recent, still unpublished, result 

of A. Gaivoronsky which shows that under certain conditions on f, 

the number of steps required by the stochastic quasigradient 

method to find the minimum of ~(f(x,w)} is smaller (in a sense 

which can be made precise) than the number of points required to 

0 compute for fixed x , the value of ~ ( f  (xo, u )  } by a sampling 

technique. 



3. APPROXIMATIONS AND ERROR BOUNDS 

Section 2 dealt with algorithmic procedures for solving 

stochastic programs whose random variables are discretely dis- 

tributed. It was suggested that in the case of arbitrary distri- 

butions we could proceed by approximation through discretization, 

obtaining a sequence of approximate solutions through successive 

refinements of the discretization. This was originally proposed 

by P. Kall [48] and P. Olsen [49] for recourse problems and by 

G. Salinetti [50] for chance-constraints. Although approximation 

through discretization will be the prominent theme of this sec- 

tion, it is by no means the only possibility, see for example [51] 

where it is suggested that the distribution functions be approxi- 

mated by piecewise linear distribution functions, or [52] where 

the multivariate distribution is approximated by linear combina- 

tion of lognormal univariate distributions, and also the resource- 

ful applications of stochastic programming [53] , [54] , [55] and 

[56] where it is the structure of the problem itself that is 

approximated. 

As in Sections 1 and 2 we start with a brief study of 

Let us assume that there exist matrices A- and A+ and vector b- 

and b+ such that for all w 



-5 3- 

- 
(3 .1)  A - < A ( w )  L A +  and b- - < b(w) - < b+ , 

(3 .2 )  no row of  (Arb)  i s  i d e n t i c a l l y  ze ro  f o r  a l l  

A E  [A- , A+] and b ~ [ b - , b + ]  , 

+ 
(3 .3 )  t h e  i n t e r i o r  o f  K -  = {X ) OIA-x - > b J i s  nonempty. 

Then it i s  easy t o  c o n s t r u c t  sequences of random m a t r i c e s  A - ( * )  v 
+ + 

and Av ( ) , and v e c t o r s  b- ( ) and bv ( 0  ) t a k i n g  on on ly  a f i n i t e  v 

number of  v a l u e s  ( d i s c r e t e l y  d i s t r i b u t e d ) ,  s a t i s f y i n g  t h e  same 

bounds a s  A ( ) and b ( ) , and such t h a t  t h e  sequences a r e  monotone 

w i t h  

{ ( A ; ( - )  , b ; ( * ) )  , v = 1 . .  J i n c r e a s i n g  

and 

+ + 
{ A v  , b v ( * )  , v = 1 ,  ... dec reas ing ,  

bo th  sequences converging uniformly t o  (A ( ) , b ( *  ) ) . Relying on 

t h e  r e s u l t s  f o r  t h e  a lmost  s u r e  convergence of measurable mu l t i -  

f u n c t i o n s  and t h e  p r o p e r t i e s  o f  pe r tu rbed  polyhedra ,  G.  S a l i n e t t i  

[49] proves  t h e  fol lowing:  

(3 .4)  THEOREM. Suppose  A ( * )  and b ( * )  s a t i s f y  c o n d i t i o n s  (3 .1 ) -  

+ + 
(3.3)  and t h e  s e q u e n c e s  { ( h V ( * )  , b V ( * ) )  , v = 1 ,.. . J and 

{ (A; (* )  , b ; ( = ) )  , v = 1 , .  . . 1 a r e  c o n s t r u c t e d  t o  have  t h e  mono- 

t o n i c i t y  and u n i f o r m  c o n v e r g e n c e  p r o p e r t i e s  i n d i c a t e d  h e r e  above .  

Then t h e  s e t s  d e f i n e d  by  



and 

d e t e r m i n e  m o n o t o n i c  s e q u e n c e s  o f  s e t s ,  w i t h  t h e  K;\, c o n v e r g i n g  

+ 
from beLow and t h e  K l v  c o n v e r g i n g  from above  t o  K 1 .  

R e c a l l  t h a t  a . -sequence o f  s u b s e t s  iSV ,v  = 1 , .  . .) of  R" i s  s a i d  t o  

converge t o  a se t  S i f  

S = { l im X V b v  E Sv f o r  a l l  v )  

= { l i m  xklxk E s f o r  a l l  k t  f o r  some subsequence 
Vk 

{vkJ l  . 

The e f f i c i e n c y  of  t h i s  approximation scheme depends c l e a r l y  

on t h e  cho i ce  of  t h e  d i s c r e t i z a t i o n s  b u t  a l s o ,  presuming t h a t  

t h e s e  approximat ions  a r e  p a r t  o f  an o v e r a l l  i t e r a t i v e  p rocedure ,  

on t h e  p o s s i b i l i t y  of u s i n g  a l r e a d y  a v a i l a b l e  ba se s  t o  s i m p l i f y  

subsequent  c a l c u l a t i o n s .  A t  t h i s  t ime t h e r e  a r e  no computat ional  

r e s u l t s  a v a i l a b l e  t h a t  a l l ow  us  t o  v e r i f y  t h e  p r a c t i c a l i t y  of  

t h i s  approximat ion scheme. 

Approximation o f  t h e  r ecou r se  problem, more s p e c i f i c a l l y  t h e  

f u n c t i o n  2, i n  p a r t i c u l a r  through d i s c r e t i z a t i o n  ha s  been exten-  

s i v e l y  s t u d i e d ,  i n  p a r t i c u l a r  by K .  Mar t i  [ 5 7 ] ,  [ 4 5 ]  , and 

W. RGmisch [ 5 8 ]  i n  a d d i t i o n  t o  P. Ka l l  and P.  Olsen a l r e a d y  

mentioned e a r l i e r .  Following ano the r  l i n e  of  a t t a c k  B. Van 

Cutsem [ 5 9 ]  i n i t i a t e d  t h e  u se  of  se t -convergence t o  s t udy  t h e  



convergence of the solutions of stochastic linear programming. 

Eventually this, as well as developments in many other areas of 

Nonlinear Analysis, led to the theory of epi-convergence which 

provides a unifying framework for the approximation of optimiza- 

tion problems. 

v Let if;£ ;V = 1, ... ) be a collection of lower semicontinuous 

functions defined on Rn and with values in R = [-m,~]. The 

v sequence {f ,V = 1, ... ) is said to e p i - c o n v e r g e  to f if for all 

x E Rnl we have 

(3.5) lim in£ fV (xv) > f (x) for all {xv, v = 1,. . . ) converging to x , 
V +4J 

- 

and 

(3.6) there exists {xv,v = 1, ...) converging to x such that 
lim sup fv (xv) < f(x) . 

v+O0 - 

It is easy to verify that (3.5) actually implies 

Vk lim in£ f (xk) 
k+rn 

Vk for any subsequence of functions {f ,k = 1, ... ) and sequence 
{xk,k = 1, ... } converging to x. The name epi-convergence comes 

from the fact that the fv epi-converge to f if and only if the 

sets epi f converge to epi f, where epi h is the epigraph of the v 

function h, 



Our i n t e r e s t  i n  epi -convergence  s t e m s  from t h e  f o l l o w i n g  

p r o p e r t i e s  [60] : 

( 3 . 7 )  THEOREM. Suppose  a  s equence  o f  l ower  s e m i c o n t i n u o u s  f unc -  

t i o n s  { f v , v  = 1 , .  . . } e p i - c o n v e r g e s  t o  f .  Then i f  f o r  some 

I< sequence  {f  , k  = I , . .  . 1 

Xk E argmin f v k  = {XI f v k ( x )  - < i n £  f v k }  

and x  = l i m  x  i t  f o l l o w s  t h a t  
k- k  

x  E argmin f  , 

and i n £  f  = l i r n  i n f  f v k .  Moreover,  i f  argmin f  + 4 and i n £  f  
k- 

i s  f i n i t e ,  t h e n  i n £  f  = l i r n  i n £  f V  i f  and o n l y  i f  
v- 

x  E argmin f 

i m p l i e s  t h a t  t h e r e  e x i s t  s e q u e n c e s  { E  > 0 ,  v = I , . . .  1 w i t h  v - 
l i m  g V  = 0  and {xv,V = 1. ... } c o n v e r g i n g  t o  x  s u c h  t h a t  f o r  a l l  v 
v- 

v 
x  v E E,-argmin f  = { x ( f V ( x ) <  - i n f  f v  + gV} . 

To u s e  t h i s  i n  t h e  c o n t e x t  o f  s t o c h a s t i c  programming, r e c a l l  

t h a t  t h e  f u n c t i o n  2 i s  g i v e n  by t h e  f o l l o w i n g  e x p r e s s i o n  



and approx imat ing  t h e  p r o b a b i l i t y  d i s t r i b u t i o n  P  by P  y i e l d s  v 

t h e  f u n c t i o n  2' d e f i n e d  by 

I n  what f o l l o w s  w e  t a k e  t h e  Pv and P  t o  be  d i s t r i b u t i o n s  d e f i n e d  

on t h e  sample s p a c e  of  ( q ( * ) ,  p ( * ) ,  T(-)) and i d e n t i f y  w w i t h  

(q ( w )  , p  ( w )  , T ( w )  ) . I n  o r d e r  t o  bypass  some t e c h n i c a l  d i f f i c u l t i e s  

w e  s h a l l  assume t h a t  t h e  s u p p o r t  o f  t h e  Pv and P  a r e  c o n t a i n e d  i n  

a  bounded set  S t  c e r t a i n l y  n o t  a  s i g n i f i c a n t  p r a c t i c a l  r e s t r i c t i o n .  

( 3 . 9 )  THEOREM. Suppose {Pv,v  = 1,. .. } i s  a  sequence o f  proba- 

b i l i t y  measures t h a t  converge  i n  d i s t r i b u t i o n  t o  P  (= weak con- 

v v e r g e n c e l .  Then for  a l l  x  E K2 t h e  f u n c t i o n s  , v  = 1 ,  ... 1 

epi -converge  t o  2. Among o t h e r  t h i n g s ,  i t  fo l lows  t h a t  f o r  a l l  

v ,  xv i s  an op t imal  s o l u t i o n  t o  t h e  problem: 

V f i nd  x  E K t h a t  .minimizes  c x  + 2 ( x )  

* 
and x  i s  a  c l u s t e r  p o i n t  o f  t h e  sequence {x , V  = 1 ,  ... v * 
t h e n  x  s o l v e s :  

f i n d  x  E K t h a t  min imizes  c x  + 2 ( x )  . 

PROOF. For any x  E K t h e  f u n c t i o n  2 



i s  cont inuous [13,  P ropos i t i on  7.51 and t h u s  a l s o  bounded on S f  

from which we have t h a t  f o r  every x  E K 2 ,  

a s  fol lows from t h e  theo ry  of weak convergence of p r o b a b i l i t y  

measures, c f .  Portemanteau theorem. Thus c o n d i t i o n  (3 .6)  f o r  

epi-convergence i s  f u l f i l l e d .  

The func t ion  x  W Q  (x,w) i s  ( f i n i t e )  L i p s c h i t z  on K 2 .  Thus 

wi th  L i p s c h i t z  c o n s t a n t  L ( w ) ,  we have 

f o r  any p a i r  x1 ,x2  i n  K 2 .  Ac tua l ly  L ( w )  can be chosen independent 

of w[13, Proof of  Theorem 7 - 7 1 .  Let {xv ,v  = 1 ,  ... 1 be any 

sequence of p o i n t s  i n  K2 t h a t  converges t o  x  E K 2 .  We g e t  

I n t e g r a t i n g  both  s i d e s  w i th  r e s p e c t  t o  Pv y i e l d s  

2' (x )  - L d i s t  (x ,  xv )  - < 2' (x,) . 

and hence 

2 ( x )  = l i m  2' ( x )  - L l i m  d i s t  ( x ,  xv )  
v- v- 

= l i m  i n £  ( q V ( x )  - L d i s t ( x , x V ) )  
v- v < l i m  i n £  2 (xv )  , - 
v- 



which gives us (3.5) and thus completes the proof of the epi- 

convergence of the functions 2' to 2. The remaining assertions 

directly follow from the definition--the epi-convergence of the 

2' to 2, implies the epi-convergence of c * +  2' to c* + 2--and 

Theorem 3.7. 

From the Lipschitz bound used in the proof of Theorem 3.9, 

it is actually possible to obtain an estimate of the rate of 

convergence. For example, P. Kall [48] shows that if only p 

and T are random, then 

where l l e l l  indicates the vector norm and 

y = max [det V ~ V  is an invertible submatrix of W] . 

This is somewhat better than the constant L that appears in the 

proof of the theorem. It allows us to compute an a priori bound, 

but in order to get a good approximation bound via (3.10) one 

needs a discretization with extremely fine mesh which would 

render the approximate problem (2.8) extemely large. This is why 

another approach is advocated. 

n Approximating a convex function f from R into R can be done 

in many ways, but if in addition we seek to obtain upper and 

lower bounds on the infimum of this function one is naturally led 

to proceed via outer- and inner-linearization of the function f. 

The infimum of outer- and inner-linearization providing 



r e s p e c t i v e l y  t h e  d e s i r e d  lower and upper bounds. For 2, t h e  

ques t ion  i s  how t o  choose t h e  sequence Pv s o  t h a t  t h e  approxima- 

t i o n s  a r e  of o u t e r  o r  i n n e r  t ype .  

3.10 FIGURE:  Inner/Outer L i n e a r i z a t i o n s  of  f .  

We on ly  cons ider  t h e  ca se  when p  and T a r e  random and q  i s  

f i x e d .  (The case  q random must be d e a l t  w i th  s e p a r a t e l y ,  f o r  

t h e  p r o p e r t i e s  t o  e x p l o i t  i n  t h a t  ca se ,  c o n s u l t  [13,  Sec t ion  71.)  

Again, i d e n t i f y i n g  w w i th  ( p  ( a )  , T ( w )  ) , we have t h a t  t h e  f u n c t i o n  

i s  a  convex (po lyhedra l )  f u n c t i o n  f o r  a l l  x  [13, P ropos i t i on  7.51. 

v v Le t  sV = {Sh , h  = I , . .  .,H 1 be a  f i n i t e  p a r t i t i o n  of  Z ,  t h e  

suppor t  o f  t h e  d i s t r i b u t i o n  of  p ( * )  and T ( = )  , and d e f i n e  Pv a s  

fo l lows  : 



wnere 

The d i s t r i b u t i o n  Pv i s  t h u s  a  d i s c r e t e  d i s t r i b u t i o n  whose proba- 

b i l i t y  mass p o i n t s  a r e  t h e  c o n d i t i o n a l  e x p e c t a t i o n  o f  ( p  ( *  ) , T ( * )  ) 

v  
g iven  sV f o r  h  = 1 ,  ..., H . 

h 

3.11 PROPOSITION. Suppose  t h e  s equence  o f  d i s t r i b u t i o n  { P v l v  = I , . . .  1 
v 

a r e  d e f i n e d  a s  h e r e  above  t h r o u g h  p a r t i t i o n s  {S ,v = 1 ,  ... 1 s u c h  

t h a t  S v .  i s  a  r e f i n e m e n t  o f  S , t. e . ,  

v  Then  { Q  ,V = 1 ,. . . 1 i s  a  s equence  o f  monotone i n c r e a s i n g  f u n c t i o n s  

s u c h  t h a t  f o r  a l l  v 

PROOF. The r e s u l t  f o l l ows  from t h e  convex i ty  o f  Q ( x ,  ) through 

J e n s e n ' s  i n e q u a l i t y .  Indeed w e  always have 

from which w e  g e t  



To see that qV - < 2"' simply repeat the argument using again the 

convexity of Q(x, - )  to obtain 

Clearly if the approximating functions are defined as in 

Proposition 3.11 such that the Pv converge in distribution to P 

and there is a bounded sequence {xv,v = 1, ... 1 such that 

x E argmin v XEK cx + qV(x) I 

* 
then any cluster point x of the sequence solves the problem 

find x E K that minimizes cx + Q(x) . 

Moreover, the sequence {cx + Q(xV) = z v = 1 ,  ... } is 
V 3' 

monotone and 

All of this follows directly from Theorem 3.9 and Proposition (3.11). 

A. Mandansky [611 was the first to use Jensen's inequality to 

obtain a lower bound for the infimum; see also [62] for a careful 

treatment of the nonlinear case. The use of conditional expectations 

to refine these bounds is due to P. Kall [48] and C. Huang, W. Ziemba 

and A. Ben-Tal [63]. 



Proposition (3.11) may seem to suggest that better lower 

bounds for the infimum of the stochastic program requires a 

global refinement of the partition of E. But clearly it really 

suffices to choose the refinement so as to improve the approxi- 

mation of 2 in the neighborhood of the infimum. How to achieve 

this while relying only on a rough partition, is still an open 

question. The same question needs to be raised in the context 

of deriving upper bounds that we discuss next. 

Upper bounds on 2 are obtained through inner linearizations 

as indicated in Figure 3.10. The basic idea is the following. 

Again with w = (p ( w )  , T (w) ) , we have that w e Q  (x,w) is convex, 

and finite valued on 5 when x E K 2 .  Let us suppose that E is 

bounded and denoted by ext Z ,  the extreme points of its convex 

- h~ll,.con c .  Since Q(x,') -is -convex on con Z which is bounded, it 

follows that its supremum is attained at some extreme point of 

- con z, say ex E ext E. We get 

1 v 1 If x , . . . ,x are a collection of points in K  and e , . . . ,eV are 2 

the corresponding extreme points of E that yield the preceding 

1 V 
inequality, we get that for all x E con (x ,..., x ) ,  the convex 

1 v hull of x ,..., x 

The bounds can be substantially improved by considering parti- 

tions of 5. Let S = { S  h = 1, ..., H) be a partition of E with h' 



with exIh the extreme point of the convex hull of Sh at which 

Q(x,-) attains its supremum. Then, for x E K2 

Using this bound rather than (3.13) naturally yields an improved 

version of (3.14). 

These bounds, due to P. Kall and D. Stoyan [35], can be much 

sharpened when the function Q has separability properties. Once 

again we start with the fact that Q(xf0) is convex to obtain 

where pw is a probability measure on ext Z such that 

i.e., such that the convex combination (generated by pU) yields 

w. Thus, we have 

The problem with this bound, generally much tighter than (3.14), 

or even the improved version resulting from (3.15), is that it 

is usually quite difficult to find a manageable expression for 

as a function of w. Expect if, for example, 



where for all i = 1, ..., M 

Then 

where P is the marginal distribution of wi. We can find an 
i 

expression for the bound (3.16) by obtaining bounds for each 

Q.(x,-) separately. Let ai and Bi respectively be the upper and 
1 

lower bounds of the support of wi, recall that E was assumed to 

be bounded. By convexity of Qi(x,*) we have for every w E [ai,Bi1 i 

where h = ( w  - a )  - a .  Integrating the above on both 
w 2 
I 

sides with respect to Pi, and summing over i, we get 

In stochastic programming one refers to this inequality as the 

~dmundson-  ad an sky inequality. A refinement of this bound can 

be detained by breaking up 

k k  [ai , Bi] into subintervals, say [ai, Pi] and for each 

one rewriting (3.17) using the extreme points of the subinterval. 



With m denoting the conditional expectation of w when 
ik i 
k k  k k  w E [ai, pi) and Pik = Pi [ai , 6. ) , by integrating and summing we get i 1 

A. Madansky 6611 was the first to suggest the use of (3.18), the 

refinement is due to C. Huang, I. Vertinsky and W. Ziemba [64], 

see also [35] where the connection with the theory of partial 

ordering of distribution functions is exhibited. Another. way to 

obtain these inequalities, which loads them with a rich inter- 

pretation, is through the minimax approach to stochastic program- 

ming investigated first by M. Isofescu and R. Theodorescu [65] 

and developed by J. ~ u ~ a z o v a  [66] , [67] where stochastic programs 

are viewed as games against nature: the in£ is with respect to x 

and the sup with respect to a given class of distribution func- 

tions. She obtains (3.18) as the result of considering for the 

class of distributions those satisfying given moment conditions [68]. 

If the function w W Q ( x , w )  is concave, which would be the 

case if only q is random. Then inequality (3.19) and that of 

Proposition (3.11) are simply reversed. 

The preceding results yields basically a priori bounds, but 

they can also be exploited in the design of algorithmic procedures 

using the points generated by the algorithm to construct parti- 

tioning schemes, ... Other bounds that can be exploited in various 

situations, a posteriori bounds have been suggested by 

A. ~illiams [691, K. Marti [451 and J. Birge [70], cf. 1711 for 

a recent compilation as well as further developments. 
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