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ABSTRACT

Solutions techniques for stochastic programs are reviewed.
Particular emphasis is placed on those methods that allow us to
proceed by approximation. We consider both stochastic programs

with recourse and stochastic programs with chance-constraints.
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STOCHASTIC PROGRAMMING: SOLUTION TECHNIQUES
AND APPROXIMATION SCHEMES

Roger J-B. Wets

1. INTRODUCTION

Optimization problems involving parameters only known in a
statistical sense give rise to stochastic optimization models.
When dealing with such problems it is important to be aware of
their intrinsic dynamic nature since it plays an important role
in the modeling process as well as in the design of solution
techniques. Briefly the general model is as follows. First an

1

v
observation of a random phenomena €1 € R is made. Based on

nq
this information, a decision X4 € R is chosen at some cost

v
f1(x1,€1). Then a new observation is made that yields 52 € R 2.

On the basis of the information (51,52) gained so far, one se-

n
lects a decision x., in R 2 with associated cost f2(£1,£2,x1,x2).

2
This continues up to the time horizon N, possibly «. At each
stage, the decisions Xq/X5,... are subject to constraints that

may, and usually do, depend on the actual realizations £1,£2,...,

as well as reliability type constraints that follow from criteria



that the modeler might find difficult to include in the cost
functions. The problem is to find recourse functions (decision

rules, policies, control laws):

that satisfy the constraints and that minimize the expected cost.
It is assumed that utility factors have been incorporated in the
cost functions.

The development of mathematical programming techniques for
studying and solving certain classes of stochastic optimization
problems was initiated in the mid 50's by E.M. Beale [1},

G. Dantzig [2], G. Tintner {[3] and A. Charnes and W. Cooper [U4].
The models introduced then, as well as those to be considered
here, involve typically only 2(=N) stages with no {(truly) random
phenomena preceding the choice of Xqr but the basic features of
the general model were already ubiquitous. The basic reason for
such limitations is that numerous applications require only 2 or
3 stages, either per se or as a consequence of modeling choices.
However, the number of decision variables and constraints is
liable to be quite large as is the case in typical applications
of linear or nonlinear programming. It is this class of problems
that is at the core of our concerns, i.e., those problems that

can be viewed as "stochastic extensions" of the linear (or



slightly nonlinear) programming model. Multistage problems, say
N > 3, present no significant theoretical difficulties but they
are for all practical purposes computationally intractable, un-
less they possess structural properties that can be successfully
exploited, see for example [5-9]. An excellent overview of the
field of Stochastic Programming and its connections to other
stochastic optimization problems has been provided by M. Dempster
[10, Introduction].

We consider the following class of problems

| v

(1.1) Find x > 0, a € [0,1] with P[A(w)X b(w)] > a,

such that 2{(x) + p(a) is minimized

n

where Z(x) = cx + E{infy>0q(w)y|Wy p(w) - T(w)x}

The vectors b, g, p and the matrices A,T are random, whereas c
n
and W are fixed; their sizes are consistent with: x € R 1,

1

n» m my =
Yy ER 7, b(w) €R and p(w) € R %, and p:[0,1] ® R is a non-

negative monotone nonincreasing lower semicontinuous convex
function. A more complete model would involve a number of chance-

constraints, i.e., several constraints of the type
(1.2) PA(w)Xx > b(w)] > a

but this extension is easy to work out and would add nothing to

the substance of our development. Also, the recourse cost function

(1.3) Q(x) = E{Q(x,w)} = fQ(x,w)P(dw),

determined by the recourse problem



(1.4} Q(x,w) = inf g(w)y

subject to Wy

i
e
B

I
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€
*
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y

could involve more general constraints on y, convex rather than
linear objective, ..., but little would be added to the arguments
except that some technical questions would need to be taken care
of. When W 1s random rather than fixed we need a more general
theory than that sketched out here; see [11,.,12], but since our
computational capabilities do not yet include such a case, for
exposition sake we limit ourselves to fixed W; we then refer to
(1.4) as a problem with fixed recourse.

The function p is not a common feature of the stochastic
programming models found in the literature. It represents a cost

associated with the relaxation of the constraint

(1.5) A(w)x > b{(w) for all w.

Typically it has the form:

N

P\V

1.6 Figure: Reliability Cost.



In the first case the modeler presumably has some cost informa-
tion about the price he needs to pay to weaken reliability con-
siderations. For the second function, he supposedly has been

given a reliability level o° that must be attained at all cost.

Problem (1.1) then becomes

(1.7) Find x > 0 with P[A(w)x > b(w)] > o°

such that Z(x) = cx + 0(x) ,

a more common formulation of stochastic programs with (linear)
chance-constraints. If moreover o° = 1, then the chance-
constraints can be replaced, as we shall see, by deterministic
constraints and (1.1) takes on the usual form of a stochastic
program with recourse.

We take as premise that the probability distribution P of
the random elements is given. We shall not consider here the
case when there is insufficient statistical information about
the random variables of the problem to derive their distribution
with a sufficiently high level of confidence. The study of such
problems is very recent and there are only limited results avail-
anle at this time.

We also assume that the random variables of the problem are
such that the function w " Q(w,x) is bounded below by a summable
(finite integral) so that

0
x P Q(x):R = R U {+e} ;

the function w+—>Q(x,w) is always measurable, details appear



in [13,14]. In particular this implies that almost surely

Q(x,w) > -, or equivalently the system W < g(w) is solvable

for almost all g(w). In fact, let us go one step further and
assume that the random variables are such that Q(x) = += if and
only if Q(x,w) = +» with (strictly) positive probability, i.e.,

if and only if the linear system

Wy = p(w) - T(w)x , y >0

is unsolvable with positive probability. To achieve all of the
above it suffices, for example, that the random elements have
finite second moments, a condition always satisfied in practice.
What precedes are our working assumptions and will be considered
as part of the definition of the stochastic program (1.1).
Section 2 reports on computational methods and solution
strategies, and Section 3 is devoted to approximation techniques
and associated error bounds. In the remainder of this section,
we review briefly the main properties of the stochastic program

(1.1). We start with its region of feasibility. Let

(1.8) K, = {x > 0|P[A(w)x > b(w)] > a° , p(a) < +»} ,

with the induced constraints given by

(1.9) K, = {x|2(x) < +o} .,

The feasibility region K is simply

(1.10) K=K
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One refers to (1.1) as a stochastic program with complete recourse
if K2 = an, i.e., there exists a feasible recourse decision what-
ever be the first stage decision and the random event observed.

In general, it may be difficult to compute K or even to determine
if a given x belongs or does not belong to K, in particular K1
might be hard to calculate. Some characterizations of K1 and K2

are given here below.

We start with K1. Let

(1.11) K(w) = {x > 0|A(w)x > b{w)} ,
and thus
(1.12) < Tx) = Ww[awx > bw}

By a° we denote the lower bound of a such that p(a) < +=. We

have

Ky = {x > 0|P[x € x(w)] = Pl "(x)] > o’} .

For each w, the set x(w) 1s convex but in general K1 itself is

not convex.

n
1.13 PROPOSITION. If o° = 0, then K, = R,'. On other hand if

a’ =1, K, 28 a closed convex set given by

(1.14) K, = ”(A,b)ez{x > 0|Ax > b}



m1 (n1+1) . , .

where ) C R 18 the (image) support of A(+), b(*), z.e.,
m1(n1+1)

the smallest closed subset of R

such that

P[A(w),b(w)) € 2] = 1. Moreover i2f A is fizxed, or more generally
2f A(+) has finite support (a finite number of possible values)
then K1 18 a convex polyhedron.

PROOF. The statement involving o° = 0 is trivial. When o° = 1,

the fact that K1 is closed and convex follows from (1.14) and

that in turn follows from Theorem 2 of [15], with the f function

nq m 4 mqx(n1+1)
of [15] defined on R X R x R as follows
f(x,s,w) = A(w)x - b(w) + s
n .
and Y = R+1. That K, is polyhedral if A is fixed is argued as

follows: for each b(w), the set k(w) = {x > 0|Ax > b(w)} is a
convex polyhedron with each possible face Aix > bi(w) (and xj > 0)
parallel to the corresponding face determined by the same row Ai
but another realization bi(w'). The same argument remain valid
when A(+¢) has finite support because we can argue as above for
each possible value of A(w), and then observe that the finite

intersection of polyhedra is also a polyhedron. O

The next proposition completes the results of Proposition
1.13. We state it for the record, its proof would take us too

far astray of our main concerns.



1.15 PROPOSITION. Suppose o = 1, b(*) and A(+) are independent
mq XN :
and the convex hull of ZA CR , the support of A(*), is8 poly-

hedral. Then K, 18 a convex polyhedron.

It is much more difficult to characterize the set K1 when

0 < a®° < 1. Basically this comes from the fact that
"1 o -1 o
P(k (x1)) > a and P(k (x2)) > a
does not imply that
-1 -1 °
P(k " (xq) Nk (25)) > «a '

i.e., there does not exist any subset of events, or possible
values of A and b, that can be singled out to yield an expression
of the type (1.14). In general the set K1 is not convex and
examples can be constructed with K1 disconnected, even with A
fixed. TFor example, let

k(w) = {x|x + 3 > b(w), x < b(w)} = [b(w) - 3, b(w)]

| A

with

P[b(w) = 0] = P[b(w) = 2] P[b(w)

4]

Then for o’ 2/3, we get

K, = [-1,0] VU [1,2] .
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However, when only b(+) is random, there is a general theory
that originates with A. Prékopa [16], who also derived many of
the major results; cf. [17] and [18] for surveys.

We say that a probability measure P on R" is quasi-convex
if for .any pair U,V of convex (measurable) sets and for any

A € [0,1] we have
P((1 - MU + Av) > Min {P(U) , P(V)}

1.17 THEOREM. Suppose A is fixed and the (marginal) probability
distribution of b Zs quasi-concave. Then K, 18 a closed convex

set for any o .

PROOF. If K4 is empty the assertion is immediate. Suppose

Xgr Xq S K1, then with x, = (1 - )\)x0 + Ax

A 1

1

<z 2 (- Mo (x =1

0) + A (xq)

since b(wo) < Axo and b(w1) < Ax1 implies that

(1 - X)b(wo) + Ab(wg) < Ax,

The monotonicity and quasi-concavity of P now yields

P (x,)) 2 BT = Mk (xg) + AT (%)

| v

Min {P(K_1(x0)), P(K_1(X1))}
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But this implies that P(K—1(XX)) > a° since both X and X belong

to K1. Hence XA S K1.

To see that K, is closed simply observe that if {xk,k = 1,...1}

is a sequence in K1 which converges to x, we have that for each k,

{bjb < Ax" =t

mq o

- m
Since for each Kk, P[tk - R+ ] >a, it follows that P[t - R+

s e

where t = AXx. The proof is complete since the last relation
implies that X € K,. O

A large class of gquasi-concave probability measures can be
identified by means of the following result of Borell [19].
Suppose h s a density function of a continuous distribution

functzon defined on R" and h_1/m is convex, then the probability

measure defined on the Borel subsets S of R® by
meas S = fS h(s)ds

28 quasi-concave. In particular this implies that if the density

is of the form
h(s) = e-Q(S)

where Q is a convex function, the resulting measure is quasi-

concave, Since

[e—Q(S)]-1/m — Ma(s)
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is convex as the composition of a convex function with a non-
. . s cq
decreasing convex function si—s e”. Probability measures whose

-Q(s)

densities are given by an expression of the type e are in
fact logarithmic concave, a subclass of the quasi-concave measures,
the first class of measures investigated by A. Prékopa
[16]. Density functions giving rise to logarithmic concave
measures are the (non-degenerate) multi-normal, the multivariate,
Dirichlet and Wishart distributions. The multivariate t and F
densities (as well as some multivariate Pareto density) engender
quasi-concave measures that are not logarithmic concave.

When also A is random, the situation is much more complex.
For all practical purposes we have only one result. It is an
observation made by Van de Pannie and Popp [20], later extended by
Prékopa [21] but involving assumptions that appear difficult to
verify. Before we come to the little we know, we want to point
out the source of the difficulties. Let us consider the "two"-

dimensional case: Suppose here that a(*) and b(*) are real-valued

random variables and

Pla(w)x > b(w)] > a°

is the chance-constraint for some 0 < a° < 1. To each x € R1

corresponds K-1(X) a half-space in R2 given by the expression
kK (x) = {(a,b)|ax - b > 0} .
The feasibility set

K, = {XlP[K_1(X)] > a®}

1
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is convex if for any given pair (XO’X1) in K1 and any A € [0,1]

we have

PIx ' (x,)] > o

where Xy (1 - )\)xO + Ax1

1.18 Figure: Half-spaces Generated by Xgr¥qrX

3
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Figure 1.18 exemplifies a decomposition of the {(a,b)}-space

through K—1(X0), K_1(X1) and K_1(X Note that K_1(X) always

A)'

contains the vertical positive axis. Let

S, = .<'1(x0) n |<_1(x1), Sy = (K—1(x}\) 0 K_1(X0))\Su '
_ -1 -1 =1
-1 2\ .6 .
S, = K (xo)\(Su U s;) and s, =R \ Ui=28i' For i = 1,...,6

let My = P(Si). Since both X, and X belong to K1 we have

(1.19) My + Uy + 1y > a0,
and
(1.20) Mg + Mg + My > o

The convex combination x, of Xq and X4 belongs to K4 if

A
(1.21) 3 + g + Hy > a
which is implied by
(1.22) My + Mg > min [y, + U3, ug + Ugl.

If o° is relatively large, i.e., much larger than .5 if not

nearly 1, then (1.19) and (1.20) imply that My must be of the

6

order of a°; recall that 2i=1

My = 1, My > 0. Thus the inequality
(1.22) will be satisfied whenever the probability mass is
"sufficiently unimodal". On the other hand, if for example, the

distribution is discrete with a sufficient number of points,



~-15-

linearly independent, not "uniformly" distributed on the plane
and with the probability mass sufficiently well-spread out, it
will always be possible to find Xgr X4 and XA such that (1.19)
and (1.20) hold, but (1.21) and thus also (1.22) fail.

Precise and verifiable conditions that would yield the con-
vexity of K1 when the matrix A is random have not yet been found
although the problem has now been around for the last two decades.
It might appear that we exaggerate the importance of convexity
for K1. In this connection, it should be pointed out that the
search for a convexity result does not stem purely from compu-

tational considerations but from model validation questions. In

many ways the chance-constraint
(1.23) PA(w)x > b(w)] > a’

is often accepted as the natural generalization of the standard
deterministic linear constraints. Little attention is paid to
the consequences of this "simple" extension. If we interpret
the decision variables x &€ Rn1 as activity levels, then non-
convexity implies that we can choose two programs of activity
levels satisfying the constraints but any combinations of these
programs is totally unacceptable. Moreover, from what precedes
we know that this will occur whenever A(+*) and b(°¢) lack "unimodal
properties", in particular if they are discreetly distributed
with the probability mass sufficiently will spread out. To some
extent this appears to be an irredeemable condemnation of the
modeling of stochastic constraints through chance-constraints,

at least if more than the right-hand sides of the constraints



-16-

are random. However, there is little doubt that there are many
situations when it is convenient to rely on chance-constraints
to quantify certain of the criteria used by decision makers.
Since well-formulated practical problems cannot lead us to un-
reasonable mathematical constructs, we introduce the following

concept:

1.24 DEFINITION. We say that the probability measure P is o’ -

consistent if for all a € [a°,1], the set K, is a closed convex

1

set.

1.25 PROPOSITION. [19] Suppose that the chance-constraint is
actually of the form

11
P[2j=1 aj(wxy 2 b(w)] >-0°

where the aj(-) and b(*) =:a0(-) are normal random variables,
with mean a., variance o. and covariance p.,0.0,. Then the
] J Jk7 3k

14

Nj—=

corresponding probability measure is o -consistent for all o° >

or equivalently the set K, is convex for all o° € [1/2,1].

1

PROOF. For any given x, define the random variable

cxow) = 1) ag @)y - bw)

This is a normal random variable. Setting

Xy = 1 and b(w) = a(w) ’
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we get that its mean u and its variance 02 are given by

ng _
U(X) - Z:]=O ajxj 14
and
2 Dy 22 Ny M
o7 (x) = . oo x. + 2 . . ., 0.0, X.X .
(x) zJ=0 3773 ZJ=0 Zk>J °3x73%%* 3%k

The chance constraint is then equivalent to

1 -~ &(~-u(x)/o(x)) > a°

where ¢ is the distribution function of (standard) normal with

mean 0 and variance 1. Which can also be expressed as
o (a®)o(x) - u(x) < 0
. -1 _ =1
recalling that ¢ (1 - a) = -¢ (o).

This yields the convexity of K1, since the form OZ(X) is positive

:
2 5

semidefinite in x and ®—1(a°),3 0 precisely when o’ O

As indicated already earlier the preceding proposition
(with some extensions [21]) is basically the only known result
about a°-consistent probability measure for problems involving
random matrix A. On the other hand, there are clear indications

that a probability measure with "appropriate unimodal"” properties

is always o°-consistent for o’ < 1 sufficiently large. For
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example, the next approximation result due to S. Sinha [22]

points in that direction.
1.26 PROPOSITION. Let

n
K, = {(x OIP[Zjl1 aj(xy > bW 2 o]

| v

Define
| - - o, =2 n1 % - n
Ky = {x >0[(1 - 0%) "], SN Ej

where ao(-) = b(*), Y. 28 the expectation of aj(-) and the

J
covariance of aj(')ak(-). Then we always have that K

Ojk

1 .
28 closed

1

and convex and K, 2 K;.
PROOF. With ao(') = pb(*) the chance-constraint can be expressed as
nq o
P[Ej=0 aj(wlxy = z(x,w) > 0] > a , X, =1 .
We now use one side of Chebyshev's inequality, viz.,

Plc(x,0) > T(x) - K 20, ()] > 1 -k

where 7 (x) is the expectation of 7 (x,+) and Oz(x) its variance,
to obtain the next inequality that implies that the chance-constraint

T(x) - —— o _(x) > 0 , Xg =1 .

(1-0)% &
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This can also be expressed as

0.=2 n1 n1 % n1 B
(1 o) (2j=0 2k=0 Ojkxjxk) - 2j=0 pjxj <0 , Xg =
From this it follows that K. C K.. The set K, is clearly closed

1 1 1
n n

. . 1 1 .

and also convex since the quadratic form zj=0 zk=0 Ojkxjxk is

positive semidefinite. O

1

approximation to K1 and usually will delete from K1 those points

It should be pointed out that in general K, is a very crude
that are associated with the optimum. There are however many
practical situations in which only the means and (co)variances
of the random parameters of the problem are known, in which case
K; is the best available approximation to K,.

are then the result of insufficient information.

The points deleted

We now consider K and here because we are able to asso-

2l

cilate to the stochastic constraints

T(u))X w_n p(w)

a discrepancy cost proportional to the recourse activities needed
to correct the observed differences, a more flexible modeling
tool, we are led to a much less hectic situation, at least in

general.
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1.27 THEOREM. The set K, 18 a closed convex set given by the

relation

. np
(1.28) K, = n(p’T)EE{xlp - Tx € W(R, ")}
m2(n2+1)
where & C R 28 the support of p(*), T(*), ©T.e., the
m2(n2+1)
smallest closed subset of R such that Pl(p(w), T(w)) € E] = 1,

Moreover, i1f either p and T are independent and the convex hull of
the support of T(+) is polyhedral, or Zf T(*) has finite support,

then K, 1s also polyhedral.

2
For the proof of this theorem, we refer to [13, Section 4];
note also that Sections 4 and 5 of [13] give constructive des-—
criptions of K,-
Next we turn to the recourse cost function 0 as defined (1.3).

Since the right-hand side of (1.4) is a linear function of x, it

follows from parametric programming that for all w,

X—» Q(x,w)

is a convex polyhedral function. From this and the integrability
conditions introduced in connection with the definition of the

original problem (1.1), it follows:

1.29 THEOREM. The function Q is Lipschitz (finite) and convex on

K,. Moreover, for all x € K,

1.30 §0(x) = f8Q(x,w)P(dw) + Sy (x)

K,
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where wK 18 the indicator function of K2, Z.e., 0 on K2 and +
2

on 1ts complement. If P Zs absolutely continuous (with respect

to the Lebesgue measure) then Q is differentiable at every point

in the interior of K,.

PROOF. The first assertions are proved in [13, Theorems 7.6 and
7.7]1. Formula (1.30) follows from a more general result of
Rockafellar [23, Corollary 1B], consult [24]. The differentia-
bility follows from (1.30), the fact that dwKz(x) = {0} on int K2
and that {le(x,w) is not differentiablel} is a set of zero measure
because P is absolutely continuous and Q(+,w) is differentiable

at every x € K2, except possibly on a set of zero Lebesgue measure.
Thus ¢Q is a singleton for every x € int K2 which yields the
differentiability at x since Q is convex. 0O

K

Combining the properties of K and Q we have the following

17 72

1.31 THEOREM. Suppose the probability measure P is o’ —consistent,

then the stochastic program (1.1) is a convex programming problem

whose objective function is Lipschitz on the convex closed set

K = K, N K2. The set K is polyhedral if for example o° = 1 and

T 28 fixed or T(*) takes on a finite number of possible values.
Many variants and extensions of the stochastic program (1.1)

have been studied in connection with various applications.

Theorem 1.31, except for the assertion about the solution set

being polyhedral, remains valid under much more general conditions;

for example, when the costs are convex-Lipschitz rather than linear

and the constraints have similar properties, when there are more
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than 2 stages [12], when the recourse decision must be selected
subject to (conditional) chance-constraints involving stochastic
variables not yet observed [25, Section V], and so on. In this
context, let us just mention a model studied by Prékopa [26]
which has an additional reliability constraint for the induced

constraints. The set K2 is redefined as

= {x|P[T(w)x + Wy(w) = p(w), y(w) > 0] > a'}

N+

and the objective is rendered finite by defining it as follows:
+ +
Q (x) = EQ (x,w)

where

+ .
Q0 (x,w) = inf [g(w)-y + r(s)|Wy + s =p(w) - T(w,x), v > 0};
)
here s € R and r is a finite positive convex penalty function.

The set K; can be reexpressed as

n
KZ = {x|Plp(w) - T(w)x € W(R,

)1 > a'l} .

The chance-constraints are thus linear and the results known
about K1 also apply to K;. We are essentially in the setting of
problem (1.1). Note also that this is a problem with complete

+ . ..
recourse, and hence 0 is finite valued.



2. ALGORITHMIC PROCEDURES

Attention will be focused on methods to evaluate and mini-
mize Q; we content ourselves with a few brief remarks concerning
feasibility. For the chance-constraint(s) (1.8), we assume that

the hypotheses of the problem are such that K1 can be expressed as

(2.1) K1 = {x > 0|g1l(x,a°) <0, 1= 1,...,L1}
where for all 1, the functions (x,a)k—+>g1l(x,a) are quasi-

convex. This certainly includes the case when both A and b are
fixed, but also those cases for which we have convexity charac-
terizations for K1, e.g., with A fixed and b{(+) random and P is

guasi-concave, then with
-1
(2.2) g (x,0) = =P[x” (x)] + a

we have the above representation for K These linear or non-

1°
linear constraints are handled as usual in constrained optimi-
zation. At least if explicit expressions are available for them.
If this is not the case, as would usually occur when 94 is de-
fined through an expression of the type (2.2), solution procedures
must be adapted to the "computable” quantities of that function.
For example, computing P[K-1(X)] presuppose the availability of

a multidimensional integration routine. We would also need an

associate calculus for the multivariate distribution of A(+) and

-23-



-24-

b(+) that allows us to obtain the gradient (or subgradient) of

the function th—yP[K—1(X)] if the algorithmic procedures requires
such information. 1In [27] Prékopa et al. report on a case where
all these gquestions were confronted.

Similarly, we assume that the induced constraints K., can be

2

represented by a finite number of constraints, viz.,
(2.3) K, = {x|g,;(x) <0 , 1=1,...,L,}

where naturally, for all 1 = 1,...,L the functions

2[
X'_*gzl(x)

are convex, cf. Theorem 1.27. Again, explicit expressions for
the functions g,, are not easy to come by. However, it is
usually possible, as done first in [28], to construct these
constraints as needed, i.e., suppose an algorithmic procedure

generates an R that does not belong to K i.e.,

2I

2)

n
P(w) - T(W)R & W(R,
with positive probability. Then there exist a supporting hyper-
plane, corresponding to a facet, of the polyhedral convex cone
n
2
W(R+ )., say

my
{t R st

I

0} ,

such that
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Pls(p(w) - T(w)X) < 0] >0

The constraint

(2.4) inf(p,T)EES(p - Tx) >0

where Z is again the support of the random p(¢) and T(+), is not
satisfied by & but does not eliminate any feasible points. There
are only a finite number of these constraints since W(Riz) has
only a finite number of facets. 1In general (2.4) is not a linear
constraint, but in practice these gonstraints are very often

linear [13, Section 5]. For example, if T is fixed then (2.4)

becomes
(2.5) (sT) x i_infpeE ps
p
where Ep is the support of p(+*). The infpe: either exists in

P
which (2.5) yields a valid linear constraint or this infimum is

-» in which case there are no points satisfying this constraint
which means that the original stochastic program is infeasible.
Taking into account (2.1) and (2.3), we see that the prob-

lem to be solved is given by

(2.6) Find x > 0 , o € [0,1] such that
gqp(x,) <0 1L=1,...,L,
ng(X) _<_0 [/ 1l = 1l"'IL2

and z = ¢cx + Q(x) + p(a) is minimized
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where § is a finite convex-Lipschitz function on K2, defined by

(1.3) and (1.4), and repeated here for easy reference,
Q(x) = E{Q(x,w)} ,

and
Q(x,w) = infy{q(w)ylWy = p(w) - T(w)x , y > 0} .

At least in theory, any standard convex programming package could
be used to solve problem (2.6), but usually computing the value
of 9, its subgradients or even more so, second order information
about Q requires computational resources far beyond the advantages
to be gained from knowing an optimal solution to (2.6). For
these reasons any solution method involving line minimization or
of the Quasi-Newton type must be quickly discarded, except pos-—
sibly for special classes of stochastic programs, such as sto-
chastic programs with simple recourse whose random variables
obey specific probability laws [29]. We shall not deal with
those cases here; because of their special nature, the work on
algorithmic procedures for stochastic programs with simple re-
course, when W = (I,-I), and extensions thereof)is following a
course of its own that is being reviewed separately, see [30].
Here we shall be mostly concerned with the case when no advantage
is.taken of any special structure of the recourse matrix W, or
other components of the stochastic program (1.1).

If the probability distribution of the random elements of

the stochastic program is anything but discrete with finite
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support, the evaluation of Q or its subgradient given by .
formula (1.30), involves--at least in principle--the solution of
an infinite number of linear programs to describe the function
Wi—»0Q(x,w), followed by a multidimensional integration. The
material impossibility to work out these operations exactly has
led to the development of approximations schemes. To date the
only proposed schemes that have been exploited computationally
are discretization schemes which consist in the replacement of
the original random variables by approximating random variables
whose support is finite; henceforth we reserve the term discrete
to designate this type of random variables. The next section is
concerned with the convergence and the error bounds that can be
associated with various approximations, the rest of this section
deals with solution procedures for (2.6) for discretely distri-

buted random variables.

Let {(qk, Py s Tk), k =1,...,N} be the (possible) values of
the random variables (g(+¢), p(*), T(-)) and let
fk = P[(q(w), p(w), T(w)) = (qkr Py s Tk)]
be the associated probabilities. 1In this case, problem (2.6) is
equivalent to
(2.7) Find x > 0, a € [0,1] and Y >0, k =1,...,N such that
g1l(xra) _<_0 l=1,...,L1
Tix + Wy, = Py
T2X + WYZ = lp2
; T - '
I = 1
TNx *WyN = PN

and

cx + f1q1y1 + f2q2y2 +.o..+ quNyN + p(a) = z is minimized.



-28-

Except possibly for some nonlinearity in p or the constraints in-
volving 917 this is a large scale linear program with dual block
angular structure. How large, clearly depends on N the number of
realizations of the random variables. Note that there was no

need to include the induced constraints

9,7 (x) <0 ' L=1,...,L, .
they are automatically incorporated in (2.7), which will be

feasible only if for some x there exist for all k = 1,...,N, Y

such that

Again here any large scale programming technique can be special-
ized--note that the matrices that appear along the diagonal are
the same--to solve this type of problem. In fact various such
possibilities have been worked out, consult for example [31],
[32, Section 3]. Here we retain only those based on compact
basis and decomposition techniques, that have been implemented
and exhibit at this date the greatest promise.

To somewhat simplify the presentation and to keep our dis-
cussion in the realm of large scale linear programming, we assume
that there are no terms involving a and suppose that K1 is given
by linear relations of the type

K, = {x > 0]ax = b} ,

1
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where A and b are fixed matrices. Problem (2.7) then reads

(2.8) Find x > 0 and Yy >0, k=1,...,N such that
Ax = b 7
Tkx + Wyk = pk k=1,...,N

and

cx + X§=1 fquyk = z is minimized .

A version of the dual of this problem is then

, m1 m3
(2.9) Find 0 € R and Ty €& R ’ k=1,...,N such that
N
oa + 2k=1 fkﬂka < c
ﬂkW < qk k=1,...,N
and

N _ . P
ob + Zk=1 £, 1P = W 1is minimized.

Problem (2.9) is not quite the usual (formal) dual of (2.8). To

obtained the standard form, set

and substitute in (2.9). The dual problem has block-angular

structure, the diagonal consisting of identical matrices W.
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The compact basis technique, as worked out by B. Strazicky
[33] and further analyzed by P. Kall [34], who also implemented
the technique as part of an approximation scheme, exploits the
structure of the bases of this dual problem to obtain a working

basis with

—_
NN

elements, a number substantially smaller than

2
(n1 + Nn2)
which would be the size of the basis for the standard simplex

method. What makes this basis reduction possible is the follow-

ing observation. Including the slack variables, the constraints

of problem (2.9) involve N systems of the type

(2.10) mT, W-—-m, W+ s, I = qk , T

Now assuming that (2.9) is feasible (and bounded) it follows
that each basic solution will have at least n, basic variables
among those associated to the k-subsystem. (In case of de-
generacy the pivoting rule can easily be adjusted to guarantee
the above.) Any basis generated by the iteration of the simplex
method will thus contain at least n, columns that "intersect™
the k-subsystem.

To see this, it helps to consider the detached coefficients

form (2.9):
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I S | o
T .
W, W, T 9
T T _ | T
W -W I
l ’ ’ j ; q2
— ;.,.\ - —‘.__
N
N {
™ !
T T _ T
| W,-Ww,I J !J q'ﬂ'
Lo O i ;
- ) e N L R
T Tol gl T ( T T 1 | [ 1]
:f]Tl, flTl’O! f2T2, f2']:'2,01j ‘fNTN’ -fNTN, ! ‘ AT, AT, IJ c
PR SR A T [T T oL, T o]
flpl’ flpl’o }fzpzs f2P2’0 “fNPN’ prN’O =b » “b", 0 |
e e e o e e e |

Let ﬁT be a (feasible) basis for this problem whose restriction

to the k-subsystem, we denote by

T LT]

[By » Ly

i.e., [Bg, LE] is for all k, a submatrix of

The matrix BE is supposed to be invertible (at least n, of the

columns of the submatrix are linearly independent). The columns

of Li are linear combinations of the columns of BE, we can

thus express LE as follows:

T _ _T_.T
(2.12) L, = BLE, -
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Recall that naturally LE may be empty when exactly n, columns of
the k-subsystem are in the basis ﬁT. Schematically, and up to a

rearrangement of the columns, the basis is of the form

|
. T T
AT - B LT = By mNT
cT,pT —
(11 [
DT
T eTl.....
C1' ||€2 CNT ~DpT][DgT

where CE is the submatrix of

T T
[fkar _fkar 0]
T T T
that corresponds to Bk and Dk the one that corresponds to Lk‘

The Dg matrix comes from the columns of

[A~, -A~, I]

that are in the basis. Observe that the n1xn1—matrix DT is

invertible. This structure of B is to be exploited to reduce
the simplex eperations, that usually require the inverse of B, to

operations requiring essentially no more than the inverses of By -
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The simplex multipliers associated with basis ﬁ, denoted by

SH
y| = :
X Yy
(I
are given by the relation
~ Y B C y P
(2.14) B = =:
X L D X B

where [pT, BT] is the appropriate rearrangement of the subvector
of the coefficients of the objective of (2.11) that corresponds
to the columns of ﬁT with BT being the subvector whose components
correspond to the columns of DT. The (dual feasible) basis is

optimal if the vectors
(x, ¥, » k= 1,...,N)

are primal feasible, i.e., satisfy the constraints of (2.8). To

obtain x and y we see that (2.14) yields

-1
y =B (p - Cx)

D™ (g - Ly

b
il

from which we get

x = (D - LB_1C)—1(B - LB”1p)
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and for k = 1,...,N ,

(2.15) 7 =8 (o, - ¢, x)

where pz is the subvector of the objective of (2.11) correspond-
ing to the columns in Bk' We have used the fact that B is block

diagonal with invertible matrices B, on the diagonal. Going one

k
step further and using the representation (2.12) for the matrices

L, , we get the equation

kl

RCERNR

_ _ tvN
(2.16) x = (D - )4 ECp)
for x. What is important to notice is that to obtain x and y
through (2.16) and (2.15), we only need to know the inverse of

the N (n2_X»n2)—matrices B, and of the matrix (D - EC).

k
Similarly to obtain the values of the variables ¢ and

(ﬂ;, ﬂ;), k=1,...,N; associated to this basis, exactly the

same inverses is all that is really required, as can easily

be verified. One now needs to work out the updating

procedures in order to show that the steps of the simplex method

can be performed in this compact form, i.e., that the updating

procedures involve only the restricted inverses. This has been

carried out in [33]. Experimental computational results are also

mentioned in [33]; with only the vector p random, i.e., g and T

fixed and

5 and N = 540 ,

B8
i
w
o
o
Il
=
o
=
i
o
3
I
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the run time on a CDC 3300 was 20 minutes. Further computational
experience involving (generated) problems with random T is reported
in [35].

A number of improvements suggest themselves. In [33] it is
observed that in problem (2.9) the variables T and ¢ are not

restricted in sign and that it is not really necessary to express

each m, as
k

which doubles the number of variables. In fact the T should

be treated as sign-unrestricted variables with the corresponding
columns, i.e., all of WT, always part of the basis. 1In fact if
the rows of W are linearly independent, then for all k, the

columns of WT could always be left in BT This means that the

k*

only changes that would occur in the matrices

from one basis to the next, would be columns of the identity I(nz)
shuffling in and out of the new basis. This feature was not ex-
ploited in the implementation of the algorithm and one may reason-
ably expect that there would be substantial savings if one did,
especially if the inverses can be stored in product form. 1In

fact one could go much further, as we show next.

Since for all k-subsystems, the columns of WT will be con-
T T

tained in (Bk ’ Lk), we can always keep them in BE. We have
(2.17) B, = W , I(xD] , Ly = I(k2)
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where I (k1) consists of (n m,) columns of the (n2 X n,)-

2 7 T2 2
identity and I(k2), possibly empty, consists of a few of the
remaining columns of the same identity matrix. Schematically,

and up to some rearrangement of the rows, we have that

7_—””7‘“‘ |
3 T !
S, | 0 |
i
PRl
B; = T . = (W, I(k1)]
Ve . |
| A
|

Kk The

To know the inverse of BT

X it really suffices to know S

inverse is given by
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as can easily be checked. Thus rather than keeping and updating
an n, X n,- matrix for each subsystem, it appears that all the

information that is really needed can be manipulated in an m, X m,-

2 2
matrix. As for standard linear programs we expect m, to be usually
much smaller than n,. This should result in substantial savings
that would drastically reduced the number of essential operations
by simplex iteration as calculated by Kall [34, equations (29)

and (30)]. We could pursue the detailed analysis still further
taking advantage of the fact that the matrices D1""'Dk are all
zero, that a number of the S, are bound to be identical if N is

k

large, and so on. We shall however not do this here, basically
because the operations would mimic very closely those of the
algorithm to be described next. It is conjectured that a ver-
sion of this compact basis technique that would fully exploit
the structural properties of the dual problem (2.9) would then
exhibit the same Qomputatiena;,cpmplegity as -this second algorithm.

The suggestion of using the decomposition principle to solve
stochastic programs goes back to G. Dantzig and A. Madansky [36],
the procedure they sketched out took advantage of the structure
of the dual problem (2.9). This approach via decomposition was
elaborated by R. Van Slyke and myself in'[37] relying on a cut-
ting hyperplane algorithm (outer linearization, Benders' de-
composition) which can be interpreted as a partial decomposition
method [37, Section 3]. In view of the matrix lavout of
the problem to be solved, and the explicit use made of this struc-
ture, we refer to it as the L-shaped algorithm. Recent work by

J. Birge [32] extends the method to multistage problems, he also

reports on computational experiments with large scale problems;
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see also [38] and [39]. (For an alternative use of decomposition
techniques, consult [30, Section 6].)
To describe the method it is useful to think of problem (2.8)

in the following form:

(2.18) Find x > 0 such that
Ax = Db , and
cx + 0Q(x) = z is minimized
where

~ §N : = -
Q(x) = zk=1 fk(lnf qky|Wy =P, - Tx , Y > 0) .

Infeasibility and unboundedness are ignored, they can usually be
handled by an appropriate coding of the initialization step,

see [40]. The L-shaped algorithm given here is actually a
variant of the one in [37, Section 5], in the sense that we are
working with a more general class of stochastic programs than
those under consideration in [37]. The method consists of 3
steps that can be interpreted as follows. In Step 1 we solve an
approximation to (2.18) using an outer-linearization of Q. The
two types of constraints (2.19) and (2.20) that appear in this

linear program come from

(1) feasibility cuts (determining K, = {x|Q(x) < +}),
and
(ii) linear approximations to Q on its domain of

finiteness.
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These constraints are generated systematically through Steps 2
and 3, when a proposed solution x” of the linear program of

Step 1 fails to be in K, (Step 2) or if the approximating prob-

2

lem does not yet match the function Q at x"

(step 3). The row-
vectors generated during Step 3 are actually subgradients of @
at x”. The convergence 1is based on the fact that there are only
a finite number of constraints of type (2.19) and (2.20) that
can be generated since each one corresponds to some basis of W
and either some point (pk, Tk) or to a (finite) number of

weighted averages of these points.

Step 1. Set v = v + 1. Solve the linear program

Find x > 0 , 6 € R such that

Ax = Db
(2.19) Dlx > dl , l1=1,...,s
(2.20) Elx + 0 > ey 1=1,. 't
and

cx + 0 = 2 is minimized.

Let (xv, Ov) be an optimal solution. If no constraints of the
form (2.20) are present, 0 is set equal to -« and ignored in the

computation. Initially set s =t = v = 0.

Step 2. For k = 1,...,N solve the linear program
(2.21) Findy >0 , vi >0, v >0 such that
+ - _ v
Wy + Iv - Iv = Py Tkx ’ and
evi ¥ ev” = W' is minimized,



_qo_

until for some k, the optimal value w1 > 0. Let s” be the

associated simplex multipliers and define

s+1 k

and
_ .V
dg41 = 9 P v
to generate a cut of type (2.19). Return to Step 1 with a new
constraint of type (2.19) and set s = s + 1. If for all k, w1 =0

go to Step 3.

Step 8. For all k =1,...,N, solve the linear program
(2.22) Find y > 0 such that
Wy = Pp ~ Tkxv , and

_ 2 e
Gy = W is minimized

Let ﬂﬁ be the multipliers associated with the optimal solution

of the problem k. Define
_ tN V

Eypr = =1 E™ Tk
_ N Vv

141 = Ix=1 TxTkPk

and

2v _ ¢N _ .V _ _
WO g TP - mTY) = ey BpgX
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vV 2V AV . . .
If 07 > w stop, X is an optimal solution. Otherwise, return

to Step 1 with a new constraint of type (2.20) and set t = t + 1.

The separation of Steps 2 and 3 is not just for expository
reasons. Problem (2.21) is the counterpart of Phase I of the
simplex method for (2.22). Thus, in practice these two operations
would not be separated if we proceeded precisely as indicated
here. However, there are many cases in which Step 2 can be modi-
fied to solving only 1 linear program. Details can be
found in [13, Section 5], here let us just suggest the reasons
for this simplification. Let< be the ordering induced by the

2 mp
closed convex cone W(R+ ) on R “°, i.e.,

. ny
a1<a2 if a2—a1eW(R+) .

Then for all k = 1,...,N, the system of equations
v
(2.23) Wy = P ~ Tkx ' y >0
. , . . m
is feasible, if there exists o € R such that for all k= 1,...,N

Vv
a < P — TyX

and the system of equations

(2.24) Wy =a , vy >0

is feasible. There always exist such a lower bound. If in
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addition, we can choose a such that

V
a = pk' - Tklx

for some k', then we have that (2.23) is feasible for all k if
and only if (2.24) is feasible. Although in general such a unique
o will not exist, it does exist in:many instances. And even when
a single a will not do, it will usually be sufficient to consider
a few such lower bounds, much fewer in any case than all possible
(pk, Tk). Let us remark that computating a lower bound with
respect to-( may be too difficult, but it really suffices to

work with lower bounds with respect to a cone ordering induced

2)——for example, a

by any closed convex cone contained in W(Ri
cone generated by a subset of the columns of W--and that cone
could be an orthant, cf. [13, Theorem 4.17].

The work to solve Step 3 can also be significantly -reduced.
if we use sifting or bunching procedures as we now explain. By
bunching we mean the following. With given x, let B be a sub-
matrix of W that is optimal for some k, i.e., corresponding to
some realization (qk, Py Tk). Then from the optimality condi-
tions for linear programming it follows that this basis will be

also be optimal, when solving problems (2.22), for all k such

that

and
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where Y is the subvector of qy whose elements are the coeffi-
cients of the variables that are in the basis. Since B—1 is
already available, verifying if the above inequalities are satis-
fied involves relatively little work, especially if only p or g
varies with k. Moreover, because of the nature of the problem
at hand it is reasonable to expect that only a small number .

of bases in W will suffice to bunch all the realizations.

If problem (2.7) is the result of a discretization of the random
variables of the stochastic program, a refinement of the dis-
cretization will only increase the work by that required to
bunch a larger number of realizations, the basic steps of the
algorithm remain unaffected.

In fact the preceding suggest the following overall procedure
to solve stochastic programs with arbitrary distributions for the
random variables. First, solve an approximation of the original
program with only a few samples of g(°), p(+) and T(+), for

example, such that
(2.25) (Qy s Pps T) = E{(g(w), p(w), T(w)|(q(w), plw), T(w) € 2.}

where Qk is part of a partition of the sample space. Using the
L-shaped algorithm solve the resulting program (2.8), keeping the
bases used to perform the last bunching. (If storage limitations
make the storing of all these bases impossible, it is always pos-
sible to record them through a listing of the corresponding in-
dex vectors.) Next increase the number of samples, either sys-

tematically via (2.25) using a finer partitioning of the sample

space or through a sampling procedure (Monte-Carlo). Then bunch
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this extended sample using the bases already available, if some
samples escape this bunching process proceed with the unassigned
samples as usual in Step 3, using for value of x the optimal
solution of the previous discretization. Continue until the
optimal solution of this new (approximating) problem is attained.
Then repeat--by which we mean: refine the discretization, use
the stored bases of W to bunch this larger sample and so on--
until the solution reached satisfy acceptable error bounds, see
Section 3.

By sifting we mean procedures that rely on a systematic

arrangement of the vectors

{qk , k=1,...,N}

and

{pk - Tyx , ko= 1,...,N}
in order to facilitate the parametric analysis of the linear
program (2.22) to be solved in Step 3. This would then substan-
tially simplify and shorten the time required to perform Step 3.
In [39] S. Gartska and D. Ruthenberg describe such a sifting pro-
cedure. A variant of the arrangement they suggest was compared
to a bunching procedure for the case when only p and/or g are
random. Sifting appears to be better than bunching if the num-
ber of different bases needed to sift or bunch the sample is
small, otherwise the need to rearrange the vectors

{pk - Tkx , k =1,...,N} with each new x, appears to cancel out
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whatever advantage one may gain from this preconditioning of the
data to accelerate Step 3. However, there appears to be room
here for substantial improvements.

We terminate this section with a short discussion of sto-
chastic quasigradient methods. Solving stochastic programs is
only one of their potential applications. The method whose roots
lie in the theory of stochastic approximation originates with
E. Kiefer and I. Wolfowitz who propose a method for unconstrained
optimization, cf. also the related work of H. Robbins and S. Monro
for solving systems of nonlinear equations. Applications to
statistics and probability were further developed by V. Dupaf,

V. Fabian, J. Sachs and many others, who provided also rates of
convergence as well as various characterizations of the limit
distributions. H. Kushner and his students extended the methods
to encompass systems that can only be measured up to some noise.
The use of stochastic quasigradient methods to solve constrained
optimization problems start with the work of V. Fabian and
Y. Ermoliev in the mid 60's. Since then there have been numerous
contributions by B. Poljak, H. Kushner and D. Clark, K. Marti,
J-B. Hiriart-Urruty, L. Schmetterer, G. Pflug and A. Ruszcynski,
the main impetus coming from Y. Ermoliev and his collaborators
from the Institute of Cybernetics in Kiev: N. Shor, L. Bajenow,
A. Gupal, E. Nurminiski and A. Gaivoronsky. A recent survey has
been provided by Y. Ermoliev [41]. Of direct interest to the
problem at hand is [42; Chapter I, &41, [43], (441, [U41, Section
71 and especially the interesting monograph [45] of K. Marti who
uses the method to obtain a constructive proof of duality results,

for example; cf. also [46] and [47] where two applications of the
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stochastic quasigradient methods to stochastic programming prob-
lems are described in detail.
In our setting, the method works basically as follows. Let

F:S5 > R with S a closed convex subset of R" be defined by
F(x) = E{f(x,w)}

and let us assume that for all w, x+—»f(x,w) is convex. The

algorithm generates a sSequence {x1,x ;--.} of points of S through

2

the recursive formula

X,41 = Prig (%, = 0 E)

where prjS denotes the projection on S, {pv, v=1,...} is a
sequence of scalars and gv is a stochastic quasigradient of F at
X s by which one means a realization of a random n-vector Ev

satisfying
E{§V|x1,x2,...,xv} € 3F(x") .

Typically Ev is obtained as a subgradient of f(-,wv) at X, where

W is a sample of the random elements determining f or more generally

1 L
g\) = L_ zl=1 Vl

where each v, € Bf(xv, wl) with the w 1=1,...,L a collection

1

of independent samples.

ll
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The method converges with probability 1 if the selected
scalars oy satisfy conditions such as
>0, ) p. > and ) p2 < w o,
- "Ly Ty AV

Py

For example, pv =V is such a sequence. The proof can be
derived from a modified super-martingale convergence argument
[42, Theorem 3], consult also [48].

The application of the method to stochastic programming

problem (2.6) works essentially as follows. To facilitate the

exposition, let us consider the case when o is not a variable and

thus (2.6) can be reexpressed as

(2.26) find x € K = {x > O|g1l(x) < 0,'g21(x) < 0} ,

such that cx + Q(x) = z is minimized,

where
0(x) = E{Q(x,w) = infy>0 (q(w)y|Wy = p(w) - T(w)x)}

Samples of g(*), p(*) and T(*) corresponding to a (sample) event

will be indicated by subscripting w, i.e.,
Q(x,w, ) = Min {qky|Wy =P, - T, X, ¥ > 0}

with the sample values (qk, Py s Tk) corresponding to the event

Wy - Finally, note that for all x € K, Q(x,wk) is finite and
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8Q(x,wy ) = {—ka|v optimal multiplier for (2.22)} .
The sequence of solution {x1,x2,... } is produced by the recur-
sion:
. v+l _ . Vo v
(2.27) X = Prjp(x p,9 ")

where for some M > 1

AV 1
(2.28) g =c+y z“=1 9,
and for u = 1,...,M,
v
9, € 30(x ,w“) .

The scalars p, are assumed to satisfy the appropriate conditions
to ensure convergence (with probability 1).
There are three possible stumbling blocks in the implementa-

tion of the stochastic quasigradient method to solve (2.26):

the projection on K,

the choice of the step-size Py

the stopping criterion.
The projection of a point on the closed convex set K is easy only
if K is "simple" by which we mean a set such as a bounded interval
or a sphere, ... If K is an arbitrary convex polyhedron, then one
does usually need to solve a quadratic program of some type in

v+1

order to obtain x as given by (2.27). If K is a general con-

vex set then an even more sophisticated nonlinear programming
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technique must be used to get xv+1.

The choice of the step-size Py is theoretically prescribed
by convergence requirements. However, when we use the stochastic
gradient method to solve (2.26) we are interested in its short
run properties rather than its long run properties, and there is
at present no theory that guides us in the choice of the step-

size. In practice, some p is chosen at the outset and kept a

fixed value until the user intervenes to change it or some heu-
ristic is built in the code to adjust the size of p when certain
phenomena are observed. That takes us very far away from the
convergence requirements. How to remedy this is not clear

at this time.

Finding a good stopping criterion is still very much an open
guestion. Because the function 0 is difficult to evaluate--and
that is why we are using stochastic quasigradient methods in the
first place--it is out of the question to use value comparisons

v+1

between 9 at x” and at x Y. Ermoliev has suggested that

the following quantity

be used as an estimate for Q(xv) with M a relatively large number.
The algorithm is to terminate when no improvement is observed in
the value of a after p has already been reduced to its computa-
tionally desirable lower bound.

To conclude this too brief discussion of the stochastic
quasigradient method, we would like to point out the connections

between this solution method and the L-shaped algorithm. To do
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so we work with version (2.18) of the stochastic program, i.e.,
the discrete case with linear constraints determining K- The
straightforward implementation of the stochastic quasigradient

method would run into difficulties if there are induced constraints

on x that cut the feasibility region, i.e., if x € Ky =
{x > 0|Ax = b} does not automatically imply that there is a

feasible recourse Yy for all (pk, Tk). Assume this does not

occur, in stochastic programming parlance this means that the
relatively complete recourse condition is satisfied [13, Section 6].
This also means that Step 2 of the L-shaped algorithm can be skipped.
Both algorithms require the calculation of the subgradient of Q.

For the L-shaped algorithm this is done in Step 3, whereas in the
stochastic quasigradient algorithm only on estimate of the sub-

gradient is needed. Naturally, if all points {(qk, Py s Tk), k=1,...,N

are used to obtain (2.28) then not an estimate but an actual sub-
gradient of Q is utilized by the stochastic quasigradient method.
But this would be contrary to the strategy of the method which
consists in moving forward as soon as an estimate of a direction
of descent is made available, and one hopes that after N (= number
of different sample values) steps, with x” adjusted at each step,
the decrease in the objective will be more substantial than if
all samples were used to compute a (reliable) subgradient of Q.
Assuming this to be true, and ignoring some of the difficulties
that may arise from step-size and projections, the question would
then be if the advantage gained from bunching (or sifting), which
can be used to speed up Step 3 in the L-shaped algorithm, would
not totally offset the fact that at each step of the stochastic

quasigradient method, the recourse problem (2.22) must be solved
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with a new value of x and (g, p, T). Naturally there too, one
should take advantage of the fact that already a basis is avail-
able but usually a few pivot operations will be required to reach
the new optimal basis.

If one was going to compare the two algorithms it would not
be sufficient to measure their respective performance on (discrete)
problems of type (2.18) but also when (2.18) is part of an
approximation scheme for the original problem, since the stochas-
tic quasigradient method takes no advantage of the shape of the
probability distribution of the random variables and is in no
way hampered by having continuous distributions. In this connec-
tion, one should also mention a recent, still unpublished, result
of A. Gaivoronsky which shows that under certain conditions on f,
the number of steps required by the stochastic quasigradient
method to find the minimum of E{f(x,w)} is smaller (in a sense
which can be made precise) than the number of points required to
compute for fixed xO, the value of E{f(xo,w)} by a sampling

technique.
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3. APPROXIMATIONS AND ERROR BOUNDS

Section 2 dealt with algorithmic procedures for solving
stochastic programs whose random variables are discretely dis-
tributed. It was suggested that in the case of arbitrary distri-
butions we could proceed by approximation through discretization,
obtaining a sequence of approximate solutions through successive
refinements of the discretization. This was originally proposed
by P. Kall [48] and P. Olsen [49] for recourse problems and by
G. Salinetti [50] for chance-constraints. Although approximation
through discretization will be the prominent theme of this sec-
tion, it is by no means the only possibility, see for example [51]
where it is suggested that the distribution functions be approxi-
mated by piecewise linear distribution functions, or [52] where
the multivariate distribution is approximated by linear combina-
tion of lognormal univariate distributions, and also the resource-
ful applications of stochastic programming [53]1, [54], [55] and
[56] where it is the structure of the problem itself that is
approximated.

As in Sections 1 and 2 we start with a brief study of

K = {x

| v

0|P[A(w)x > b(w)] > a1} ,

= {x > 0|P[x € x(w)] > a°} .

{v

Let us assume that there exist matrices A and A+ and vector b

and b+ such that for all w
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+ - +

(3.1) AT < A(w) <A and b < b(w) <b ,
(3.2) no row of (A,b) is identically zero for all
Ae (A, A and be [b ,b] ,
(3.3) the interior of « = {x > 0|A" x > b"} is nonempty.

Then it is easy to construct sequences of random matrices A;(')
and A:(-), and vectors b;(-) and bt(-) taking on only a finite
number of values (discretely distributed), satisfying the same

bounds as A(+) and b{+), and such that the sequences are monotone

with

{(A;(') ’ b;(')) ;, v=1... 1 increasing
and

{A:(d) , b:(°) , V= 1,000} decreasing,

both sequences converging uniformly to (A(*), b(*)). Relying on
the results for the almost sure convergence of measurable multi-
functions and the properties of perturbed polyhedra, G. Salinetti

[49] proves the following:

(3.4) THEOREM. Suppose A(+) and b(*) satisfy conditions (3.1)-
(3.3) and the sequences {(At(°) , b:(-)) , v=1,... 1 and

{(A;(°) ' b;(-)) , V=21,... 1} are constructed to have the mono-
tonteity and uniform convergence properties indicated here above.

Then the sets defined by
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=~
1l

~
b
\4

> 0[P[A (w)x > Db (w)] > o}

and

=~

n
b
v

o
> OlP[AV(w)x >b (w] > a }
determine monotonic sequences of sets, with the K;V converging
+ .
from below and the K,, converging from above to K-
Recall that a.sequence of subsets {Sv,v =1,...} of R" is said to

converge to a set S if

S = {lim xvixv € s, for all v}

= {1lim x

klxk € SVk for all k, for some subseguence

(v }}

The efficiency of this approximation scheme depends clearly
on the choice of the discretizations but also, presuming that
these approximations are part of an overall iterative procedure,
on the possibility of using already available bases to simplify
subsequent calculations. At this time there are no computational
results available that allow us to verify the practicality of
this approximation scheme.

Approximation of the recourse problem, more specifically the
function ¢, in particular through discretization has been exten-
sively studied, in particular by K. Marti [57], [45], and
W. Romisch [58] in addition to P. Kall and P. Olsen already
mentioned earlier. Following another line of attack B. Van

Cutsem [59] initiated the use of set-convergence to study the
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convergence of the solutions of stochastic linear programming.
Eventually this, as well as developments in many other areas of
Nonlinear Analysis, led to the theory of epi-convergence which
provides a unifying framework for the approximation of optimiza-

tion problems.

Let {f;fv;v = 1,... } be a collection of lower semicontinuous
functions defined on R© and with values in R = [-,®]. The
seqguence {£Y,v = 1,... } is said to epi-converge to f if for all

X € Rn, we have

(3.5) lim inffv(x ) > £(x) for all {x_,v =1,... } converging to x ,
VY > oo v —_ \Y]

and

(3.6) there exists {xv,v = 1,...} converging to X such that

. v
llI\I)l_}osoupf (x\)) < f(x) .

It is easy to verify that (3.5) actually implies

i i fka
llﬂaén (xk) > £(x)

for any subsequence of functions {ka,k = 1,... } and sequence
{xk,k = 1,... } converging to x. The name epi-convergence comes
from the fact that the fv epi~-converge to f if and only if the
sets epi fv converge to epi f, where epi h is the epigraph of the
function h,

n+1

epi h = {(x,a) e R" |a > h(x)} .
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Our interest in epi-convergence stems from the following

properties [60]:

(3.7) THEOREM. Suppose a sequence of lower semicontinuous func-—

tions {fv,v =1,... } epit-converges to £. Then 7f for some

Vk
sequence {f T,k = 1,... }

v
X k}

: Vk Yk .
x € argmin i = {x|f “(x) < inf f

and x = 1lim Xy it follows that

koo
X € argmin f ,

A%

and inf £ = 1lim inf £ k. Moreover, i1f argmin f # ¢ and inf £
koo
18 finite, then inf £ = lim inf £V 2f and only <f
o

X € argmin f
implies that there exist sequences {EV >0, v=21,...1with
lim e = 0 and {x_,v = 1,... } converging to X such that for all Vv
eV v

. v o_ v . v
x, € € ~argmin £~ = {x[£7(x) .< inf £~ + ev} .

To use this in the context of stochastic programming, recall

that the function Q is given by the following expression

2(x) = E{Q(x,w)} = SO(x,w)P (dw)
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and approximating the probability distribution P by Pv yvields
the function Qv defined by

(3.8) 0" (x) = JQ(x,0)P (dw) .

In what follows we take the Pv and P to be distributions defined

on the sample space of (g(<), p(+), T(+)) and identify w with
(g{w), p(w), T(w)). In order to bypass some technical difficulties
we shall assume that the support of the Pv and P are contained in

a bounded set S, certainly not a significant practical restriction.

(3.9) THEOREM. Suppose {Pv,v =1,... } 28 a sequence of proba-
bility measures that converge in distribution to P (= weak con-

vergence). Then for all x € K, the functions {Qv,v =1,... }

2
epi-converge to Q. Among other things, <t follows that for all

Vi X 28 an optimal solution to the problem:
find x € K that minimizes cxX + Qv(x)

*
and x is a cluster point of the sequence {x ,v = 1,... }

*
then x solves:
find X € K that minimizes cx + Q(x)
PROOF. For any x € K, the function

w Q(x,w)
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is continuous [13, Proposition 7.5] and thus also bounded on S,
from which we have that for every x € K2,

lim QY (x) = Q(x) ,

as follows from the theory of weak convergence of probability
measures, cf. Portemanteau theorem. Thus condition (3.6) for
epi~-convergence is fulfilled.

The function x —=Q(x,w) is (finite) Lipschitz on K Thus

2.

with Lipschitz constant L (w), we have
[Q(x,w) = Q(xy,0) | < L(w) + dist(xy,x,)

for any pair Xq1X, in K2. Actually L(w) can be chosen independent
of w[13, Proof of Theorem 7.7]. Let {Xv’v =1,... } be any

sequence of points in K2 that converges to x € K We get

-
Q(x,w) - L - dist(x,xv) < Q(xv,w) .

Integrating both sides with respect to Pv yields

0"(x) - L » dist(x,x) < Q"(x)

and hence

0(x) = lim 9”(x) - L - lim dist (x,x,)

o Yo
= 1lim inf (QY(x) - L - dist (x,x,))
\)—)oo

| A

lim inf QY (x ) ,
Vo v
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which gives us (3.5) and thus completes the proof of the epi-

convergence of the functions Qv to Q. The remaining assertions
directly follow from the definition--the epi-convergence of the
Qv to 9, implies the epi-convergence of c +*+ Qv to c* '+ Q--and

Theorem 3.7. O

From the Lipschitz bound used in the proof of Theorem 3.9,
it is actually possible to obtain an estimate of the rate of
convergence. For example, P. Kall [48] shows that if only p

and T are random, then
(3.10) [0(x) - 0°(x)| <v J lp(w) - T(wxl [P - P (dw) |
where l+l indicates the vector norm and

y = max [det V|V is an invertible submatrix of W] .

This is somewhat better than the constant L that appears in the
proof of the theorem. It allows us to compute an a priori bound,
but in order to get a good approximation bound via (3.10) one
needs a discretization with extremely fine mesh which would
render the approximate problem (2.8) extemely large. This is why
another approach is advocated.

Approximating a convex function f from R"™ into R can be done
in many ways, but if in addition we seek to obtain upper and
lower bounds on the infimum of this function one is naturally led
to proceed via outer- and inner-linearization of the function f£f.

The infimum of outer- and inner-linearization providing
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respectively the desired lower and upper bounds. For @, the
question is how to choose the sequence Pv so that the approxima-

tions are of outer or inner type.

outer

slope e af(x*) —
I

!
I
!
I
!
T
’

X

3.10 FIGURE: Inner/Outer Linearizations of f.

We only consider the case when p and T are random and ¢ is
fixed. (The case q random must be dealt with separately, for
the properties to exploit in that case, consult [13, Section 7].)

Again, identifying w with (p(w), T(w)), we have that the function
wF—>Q(x,w)

is a convex (polyhedral) function for all x [13, Proposition 7.5].
Let SY = {s h=1,...,H") be a finite partition of Z, the
support of the distribution of p(-) and T(:), and define Pv as

follows:
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_ v
Py(8) = X{h|wl\ies} P(Sy)
where
wy = (pp s Tp) = EL((+) , T()|(pP(w) , T(w) € 8§}

The distribution Pv is thus a discrete distribution whose proba-

bility mass points are the conditional expectation of (p(¢), T(*))

Vv

h for h = 1,...,Hv.

given S
3.11 PROPOSITION. Suppose the sequence of distribution {Pv,v = 1,00,
are defined as here above through partitions {s¥,v = 1,... } such

v+1

that S 18 a refinement of Sv, T.€.,

v . . . .
Then {Q°,v = 1,... } Zs a sequence of monotone increasing functions

such that for all v
Q" <@

PROOF. The result follows from the convexity of Q(x,+) through

Jensen's inequality. Indeed we always have

[ QxwP (dw) = Q0x,u) < S 0(x,w)P(dw)
V

v
Sh Sh

from which we get
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0” (x) = 1,04 Q(x,w)P(8p) < Iy fs\) Q(x,w)P(dw) = Q(x)
h

To see that Qv < Qv+1 simply repeat the argument using again the

convexity of Q(x,+) to obtain

v+1
v+1 P(Sk ) . O
{kISk 5.} P (Sy)

Clearly if the approximating functions are defined as in
Proposition 3.11 such that the P, converge in distribution to P
and there is a bounded sequence {xv,v = 1,... } such that

X € argmin cx + Qv(x) ’

Vv xeK

*
then any cluster point x of the sequence solves the problem
find x € K that minimizes cx + Q(x)

Moreover, the sequence {cxv + Q(xv) = z,

gr V= 1,... } is

monotone and

(3.12) iiﬁ z, = infxeK(cx + 0(x))

All of this follows directly from Theorem 3.9 and Proposition (3.11).
A. Mandansky [61] was the first to use Jensen's inequality to

obtain a lower bound for the infimum; see also [62] for a careful
treatment of the nonlinear case. The use of conditional expectations
to refine these bounds is due to P. Kall [48] and C. Huang, W. Ziemba

and A. Ben-Tal [63].
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Proposition (3.11) may seem to suggest that better lower
bounds for the infimum of the stochastic program requires a
global refinement of the partition of . But clearly it really
suffices to choose the refinement so as to improve the approxi-
mation of § in the neighborhood of the infimum. How to achieve
this while relying only on a rough partition, is still an open
question. The same question needs to be raised in the context
of deriving upper bounds that we discuss next.

Upper bounds on Q are obtained through inner linearizations

as indicated in Figure 3.10. The basic idea is the following.
Again with w = (p(w) , T(w)), we have that wr—=Q(x,w) is convex,
and finite valued on ® when x € K2. Let us suppose that E is

bounded and denoted by ext Z, the extreme points of its convex
hull,-con E. Since Q(x,*):is . convex on con % which is bounded, it

follows that its supremum is attained at some extreme point of

con Z, say ex € ext EZ. We get
(3.13) Qx) = JO(x,w)P(dw) < Q(x,e )
If x1,...,xv are a collection of points in K2 and e1,...,ev are
the corresponding extreme points of Z that yield the preceding
inequality, we get that for all x € con (x1,...,xv), the convex
hull of x1,...,xv
(3.14) 0(x) < Min [JY_. A o(xt,el) [TaY A, > 0]

' - 1=7 "1 ! 1=1 " "1 =

The bounds can be substantially improved by considering parti-

tions of =, Let S = {Sh, h =1,...,H} be a partition of Z with
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with e n the extreme point of the convex hull of Sh at which
r

Q(x,+) attains its supremum. Then, for x € K2

(3.15) Q(x) < Jpoq Q(x,e, )P(S)

Using this bound rather than (3.13) naturally yields an improved
version of (3.14).

These bounds, due to P. Kall and D. Stoyan [35], can be much
sharpened when the function Q has separability properties. Once
again we start with the fact that Q(x,*) is convex to obtain

Q(x,w) < f Q(x,e)u (de)

exts

where My, is a probability measure on ext I such that
feu (de) = w ,

i.e., such that the convex combination (generated by uw) yields

w. Thus, we have
(3.16) Qx) < Jo J yxezQ(xse)u (de)P(dw)

The problem with this bound, generally much tighter than (3.14),
or even the improved version resulting from (3.15), is that it
is usually quite difficult to find a manageable expression for

n, as a function of w. Expect if, for example,

Q(x,w) = }:Pf___.] Qi(xlwi) '
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where for all i =1,...,M
wik—%> Qi(x,wi):R - R .
Then
JO(x,w)P(dw) = Z?=1 fQi(x,wi)Pi(dwi)

where Pi is the marginal distribution of W, . We can find an
expression for the bound (3.16) by obtaining bounds for each
Qi(x,-) separately. Let oy and Bi respectively be the upper and
lower bounds of the support of ws s recall that : was assumed to
be bounded. By convexity of Qi(x,-) we have for every w; € [ai,B.]

1

(3.17) Q5 Gerwg) = (1= 2, 00; (xsay) + Ay, 0 (6, y)

where Awi = (wi - OLi)/(Bi - ai). Integrating the above on both

sides with respect to Pi’ and summing over i, we get

(3.18)  Qx) < §Y_ [Eiiffi 0; (xyog) + E04T% Qi(x’Bi)]

"l O A0 Pl N
Bl 1 Bl 1

In stochastic programming one refers to this inequality as the
Edmundson-Madansky inequality. A refinement of this bound can

be detained by breaking up

-

[ai,Bi] into subintervals, say [a.,B?] and for each

|_l

one rewriting (3.17) using the extreme points of the subinterval.
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With m, denoting the conditional expectation of ws when
k ,k _ k k . . .
wy € [ai,Bi) and Py = Pi[ai,Bi), by integrating and summing we get

k k
R, = m. m., —-o.
i ik k ik 71 k
(3.19) Q(x) < Ei Zk Pik[——TBk_a Q; (x,ay) + —————Bk_ak 0 x,B)1 .
i~% i~%3

A. Madansky [61] was the first to suggest the use of (3.18), the
refinement is due to C. Huang, I. Vertinsky and W. Ziemba [64],
see also [35] where the connection with the theory of partial
ordering of distribution functions is exhibited. Another way to
obtain these inequalities, which loads them with a rich inter-
pretation, is through the minimax approach to stochastic program-
ming investigated first by M. Isofescu and R. Theodorescu [65]
and developed by J. Dupaéova [66], [67] where stochastic programs
are viewed as games against nature: the inf is with respect to x
and the sup with respect to a given class of distribution func-
tions. She obtains (3.18) as the result of considering for the
class of distributions those satisfying given moment conditions [68].

If the function w > Q(x,w) 1s concave, which would be the
case if only g is random. Then inequality (3.19) and that of
Proposition (3.11) are simply reversed.

The preceding results yields basically a priori bounds, but
they can also be exploited in the design of algorithmic procedures
using the points generated by the algorithm to construct parti-
tioning schemes, ... Other bounds that can be exploited in various
situations, a posteriori bounds have been suggested by
A. Williams [69], K. Marti (45] and J. Birge [70], cf. [71] for

a recent compilation as well as further developments.
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