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PREFACE

The problems associated with analyzing and managing inte-
grated regional development are multidimensional in character.
They stem from (i) the hierarchical relations of the national
economic system, (ii) conflicting interests within the region,
and (iii) the complex structure of the regional system, whose
components have different development dynamics. To solve these
problems successfully, it is essential to consider the regional
system in a holistic fashion.

Large models of individual components of the regional system
are often used for analyzing particular aspects of regional devel-
opment. Usually, such models are developed independently of each
other. 1If a holistic approach is taken to regional development,
however, these independent models must be linked to form a coor-
dinated system; only in this way can consistent results be pro-
duced. When attempting this linkage certain mathematical and
computer software problems often occur and these problems are
* the subject of this paper. It is the first of a series of arti-
cles focussing on 'software for regional development', whose pur-
pose is to disseminate the results of research on this topic
undertaken at IIASA.

Boris Issaev

Leader

Regional Development
Group

August 1982
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ABSTRACT

This paper describes an approach to analyzing how the
balanced states of a multicriteria model depend on the values
of exogenous parameters. It provides, consistent with the
model criteria, an algorithm that chooses the optimal form
of the Pareto set. As an example, the paper explains the use
of the approach for a regional water-distribution model.
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SUMMARY

The problems of investigating how the equilibrium states
of a system depend on external conditions have been investigated
for centuries. The mathematical theory of sensitivity was
developed and has been used effectively in many applied problems
-in mechanics, physics, and so on.

Recently new problems--close to the traditional ones--have
become of great interest. However, the main feature of these
problems is that their equilibrium points are constrained
extrema, a fact that makes it impossible to use the classical
tools of the theory of sensitivity.

Regional studies have been an important area in which such
problems have arisen. In contrast with the approach to global
problems, the approach to regional problems considers their
interactions with the external environment, which cannot be
changed by processes within the regional system. Therefore,
one of the most important problems in regional analysis is to
study how the optimal states of the regional system depend on
its external conditions.

The regional system, as is the case for any system with
open inputs and outputs, may have its own internal functional
criteria, which, as a rule, are not equivalent to external
(or 'national') criteria. Hence, regional problems have a
multicriteria character. This is why parametric analysis of
multicriteria optimization is an important aspect of regional
studies.

The purposes of this paper are:

o to investigate how the equilibrium states of multi-
criteria models depend on values of their exogenous
parameters;



o to consider the opportunities for finding values of
these parameters that are optimal in some appropriate
sense (such as supplying the Pareto set with a form
that minimizes the 'distance' between the equilibrium
point and the 'ideal' point).

This work is based on many sources; however, I would like
to emphasize the important role of the ideas of the minimax
approach (Fedorowv 1979) and the methods of multicriteria
optimization (Wierzbicki 1979). '



SOFTWARE FOR REGIONAL STUDIES:
ANALYSIS OF PARAMETRICAL MULTI-
CRITERIA MODELS

Alexander Umnov

1. INTRODUCTION

In a qualitative evaluation of the states of a system using
several criteria, we usually find at the first stage of the
investigation those states that are a compromise between all
the evaluations. A point of the Pareto set for a given multi-
objective model can be considered as an example of this compro-
mise. The way in which we proceed at the second stage of the
investigation depends upon its specific aims. However, a problem
that frequently occurs and should be solved at this‘stage is
how these compromise states depend on the values of the model

parameters.

This paper describes a method for determining how the
equilibrium points move as a result of (not necessarily small)
changes to the parameter values. We are then able to find those

values for which the equilibrium point has desirable properties.

The major difficulty associated with the problem is that it
cannot be solved in a direct way using classical methods of
unconstrained optimization or sensitivity analysis. We demon-

strate this with an example.



Let us find a compromise use of a resource unit in a system
describing two technological processes. The production levels

are related to the given volumes of the resource as follows:

IA
e

X, < 1 -u , (1

where u is the volume of the resource for the first process. For
each vector of output, x = || Xy x2|[, there are two criteria for

evaluating its quality:

fo(x) = -xq * 3x2 , (2)

which may be treated conventionally as profits on two different

markets.

Let us specify a multicriteria mathematical model of the

system: for a set of pairs of numbers || Xq3 XZIL subject to:

0 < x1 <u ,

0 %X, <1 -1u ,

2

for a given u, maximize the objectives:

The model is presented in graphic form in Figure 1. Let
* *
f1 and f2 be the optimal (for each criterion) values of the objec-

tives f1 and f2, respectively. It is then obvious that
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As a compromise between these two solutions, we choose a
feasible state for which relative deviations in the values of the
criteria (with respect to their ideal values) are equal and as
small as possible. In other words, it is necessary to minimize
the value of the coefficient of inconsistency u:
f* f f* £ )
1~ £ (x) 5 2(x

* *
abs(f1) abs (f2)

for the set of all feasible x, or to solve the following linear

programming problem.

Minimize, with respect to || u: x1;x21|, the value of

the coefficient of inconsistency u, subject to:
0 < X4 <u ,

2x, - X, z (1 - u)f1 ,

0 <p< 1 . (3)

The solution of problem (3) can easily be found using the follow-

ing arguments (see Figure 2).

For a given u, the set of points that are solutions to the

set of inequalities:

2x1 - X, 2 (1 = y2u ,

-%y4 + 3x2 > (1 - W3(1 - u) ,

0 <x, £u , (4)
0 =< X, <1 -u ,

is on the intersection of the shaded cone with vertex M and the

rectangle OABC. If the value of u is decreased, point M
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Figure 1. A representation of model (1) - (2).
X
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Figure 2. A representation of problem (3).



moves along 0D towards D, which is the point of ideal consis-

tency between f1 and f., {(with u = 0).

2

The minimal value of uy, for which system (4) is still
feasible, is defined by the intersection of 0D and ABC. ©Note
that the line ABC is the geometrical image of the Pareto set
for model (1) - (2).

In solving system (4) with respect to u, Xy and X5 for
different values of the parameter u, we find that problem (3)
is infeasible for all u < 0. For 0 £ u < 3 - /6, it has the

solution:

X, =u
<. = 2u(3 - 2u)
2 3(1T + u)
- 3 - Zq_
H 30T + u)

For 3 - /6 < u £ 1, it has the solution:

. = 3(1 - u2)
17 3(3 - 20) '
x2 =1 -1 ’
- 1 +u
HoF o3 2w

For u > 1, again there is no solution.

If we consider the optimal wvalue of pu as a function of u
(for 0 £ u £ 1) (see Figure 3), it is evident that it has a
minimal value at u* =3 - /6 = 0.5505. The inconsistency here
equals (4 - V/6)/(4V/6 - 6)= 0.4825, so that both criteria of the
model can be up to 51.75% consistent with the vector of the
production level:

| 31(u*) ; xz(u*)H

| 3 - /6 /6 - 2]

144

| 9.5505 ; 0.4495 ||



Figure 3. The dependence of optimal p on u for problem (3).



Finally, it is clear that classical methods of smooth

.. . *
optimization cannot be used to evaluate u because of the non-

*
differentiability of p(u) at u .

In geometrical terms, minimization of the inconsistency
by choosing the values for the exogenous parameters of the
model may be treated as an optimization of the form of the
Pareto set in order to minimize a 'distance' between the set

and the ideal point of consistency.

The metric may be chosen, for example, by letting the
distance between the set of feasible points of the model and

the ideal point D be (see Figure 4).

I'Xj?izll VQX? - X1)2 + (xg - x2)2

(€2
I

D B, 2 D B, 2
‘/(X1 - X1) + (X2 - X2) ’

il

where

B B
Ix® 5 sB1= Jlu; 1-ull and

D D 3+ 3 e - 4
Pl 5 oD = | 2f3u; S duy

Substituting these at S, we find:

S(u) = V&é_%%;ﬁi - W+ (§_%%lﬂ£ - (1 - u))?

It follows that the minimum distance is reached at u = 1.
The optimal form of the Pareto set (in the sense of the chosen

metric) is the segment {0 < x; 15 %, = Q}.

It is obvious that the method demonstrated for model
(1) = (2) is not applicable for problems of real value. The
dependence M (u) cannot be found in an explicit form for most
practical problems. The use of numerical techniques such as
the Tavlor approximation is strongly limited by the undesirable
properties of u(u), which are indefinite for any u and non-dif-

ferentiable for those u where u(u) is defined.
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Figure 4. The dependence of the distance between the Pareto
set and the ideal point on u.

This paper describes a pumerical algorithm that permits us
to solve the problem of parametrical analysis for multicriteria
models. The method is based on changing the initial problem
to an equivalent one (in the sense of the solution), which has
properties that allow us to use any of the classical schemes

of sensitivity analysis.

2. PARAMETRICAL ANALYSIS OF NONLINEAR MODELS

2.1. Statement of the Problem

Let us consider a multicriteria model, the ‘state of which

is described by means of a vector of variables x € E" and a

vector of exogenous parameters u € Q C o



In terms of these vectors the model description is reduced
to a definition of its constraints, delimiting feasible states
of the model

yo(x,w) 20 , s = [1,m and (5)
a set of criteria evaluating the quality of these states:
maximize with respect to x, fk(x,u) , k = [1,N]

We assume that all the functions ys(x,u) and fk(x,u) are suffi-

ciently smooth within their domain of definition.

*

Let fk be the optimal value of the objective for the follow-

ing mathematical programming problem:

maximize fk(x,u) with respect to x ,

subject to ys(x,u) 20 , s = [1,m] . (6)

We are now able to define the coefficient of inconsistency u

for a feasible state x of model (5) as

f;(u) - fk(x,u)
k

u(x,u) = max *
abs(fk(u))

*
The point x will be used as the equilibrium point, such
that

min
X

*
ui(x ,u) u(x,u)

Note that the use of absolute values allows us to make no

* *
distinction between cases fk(u) > 0 and fk(u) < 0. However,
the case when f; = 0 must be excluded.

According to the definition given above, the procedure for
finding the equilibrium state for model (5) can be viewed in

terms of the following mathematical programming problem:



minimize the value of u with respect to || u; x| ,

subject to y_(x,u) 2 0, s = [1,m, and R (u,x,u) 20 ,
* *

where Rk(u,x,u) = fk(x,u) + uabs(fk(u)) - fk(u) '

k= [1,N] . (7)

This problem is an unusual one because the problem statement

*
includes values of fk(u) defined by the solutions of problems (6).

Now let us consider a problem of parametrical analysis for
model (5). We will examine the dependence of the optimal value

of ¥ on the vector of exogenous parameters u.
*
Suppose that we find a vector u , such  that

* _ argmin

d uER

-k
M (u) ’

*
where Q C EL is a set of considered u. In formal terms, u 1is the

solution of the problem:

minimize the value of p with respect to [|u;x;ull ,

subject to ys(x,u) >0 , s = [1,m] ;

Rk(u,x,u) >0 , k [1,N]

and u €

Although the statements of (7) and (8) appear to be similar,
the latter problem is considerably more complex. First, problem
(7) is linear, if all functions fk and y, are also linear, but
problem (8) is always nonlinear. Second, statement (8) contains
f; (u), which are not defined for all u and are not differentiable,
even if all fk and yg are defined and differentiable. Finally,
the dimension of problem (8) is greater because all components

of u are unknown.

The described approach essentially consists in solving pro-
blem (8) in an indirect way. The following two-level iterative

: , *
scheme is suggested as a means of evaluating u



At each step of this brocess vector u is fixed; this per-
mits us to return to the simpler problem (7). Then using
a special analytical procedure for solving (7) for the given u,
a better approximation of u* is found. TIf necessary, the
process is repeated several times. This approach is described
in detail below. It should be noted that it is impossible to
link components of x and u in a common vector, since this would
create a different problem, which will have another interpre-

tation.

It has already been shown that the methods based on the
Taylor approximation cannot be used directly to solve problems
such as (8), because of the indefiniteness and nondifferentia-
bility of wp(u). To overcome these difficulties, an approxima-
tion of w{(u), fi(u), is used. It has the following
properties:

-- it is uniquely defined for all u € EL;

--— it is differentiable for all u € EL;

-~ it is close to u (u) in the sense of a metric wherever
u(u) 1is uniquely defined.
The main problem is to find this new function ﬁ(u),
which should be convenient for practical use. In the proposed
approach, the approximate solution of problem (7), found by the
Smooth Penalty Function Method --SPFM (Fiacco and McCormick 1968),

is used for ﬁ(u).

2.2. The Smooth Penalty Function Method

The solution of problem (6) by means of SPFM consists

in unconstrained minimization of the auxiliary function

Ek = —fk(x,u) +

I 8

P(T,y (x,0) (9)

s=1

where function P(T,a), usually referred to $ the penalty function,

is defined for all T > 0 and all o and satisfies the relation



lim
T>+0

P(T,a) = 0, o>0

+ ©», o < 0

Following from the known properties of SPFM, point ik(T,u), at

which function (9) has its minimum 1i.e.

argmin
J E (T,x,u) ,

xk(T,u) ” K

exists for all u.

Subject to additional weak constraints on P(T,a) (Fiacco

and McCormick 1968), pointwise convergence will take place:

- *
_Ek(TIXk(T,u) L) W) fk(u) ’
*
where fk(u) exists.

ap o .
g = F(T)’ i.e., the

first partial derivative of P with respect to o depends only on

If, moreover, the P(T,a) is such that

the ratio ao/T, then uniform convergence will also take place:

- *
- e ——
Ek(T,xk(T,u),u) T30 fk(u) ’
for all u, where f;(u) is uniquely defined. 1If, as a result

of theorem (4) (Umnov 1974), the condition gg = F(%) is sufficient

for validating the following Taylor approximation:
- U
xk(T,u) = xk(u) + Ak(u)T + o(T) ’

*
where abs(Ak(u)) < C < +» for those u, where %, (u), the exact

k
solution of (6), is uniquely defined. The rest term of(T) is

treated here in the usual sense:

lim ofT)

Toro T = 0

From the above, we have:

max

| %, (T, ) - x;(u)l < Ty

{abs(Ak(u))} T + abs(o(T)) ,



which proves the fact of uniform convergence.

Note that not all the most frequently used penalty func-
tions satisfy this condition. For example, from the following

set of functions:

a
7T 2 ; +o , a<0 ‘lie , 0 <0 !
exp(—%) ;T exp(—%) i

only the first, second, and fifth have the property.

Now, let us consider the problem of differentiability with
"respect to u of the functions ik(T,u). Let us suppose that

functions fk(x,u), ys(x,u), and P(T,a ) are twice continuously
differentiable. Then xk(T,u) will be implicitly defined by the

eqguation:
grad Ek(T,ik(T,u),u) =0 . (10)

In applying the known "implicit functions theorem' to (10),
we can prove the continuous differentiability of the function

?zk(T,u).

As a result, the functions -Ek(T,i (T,u),u) are continuously
*
differentiable for all u and are close to fk(u) in the domain

of its definition in the sense of uniform convergence.

2.3. The General Scheme of Parametric Analysis for Multicriteria
Models
It is natural to use SPFM to calculate u{u). However,

the direct use of this method in (7) does not give an approxi-

mation of y(u) with desirable properties, because the state-

ment of (7) contains (in contrast to (6)) nonsmooth functions

*

fk(u). Hence, the implicit functions theorem cannot be applied
here.

This difficulty can be overcome by changing the statement of
- *
(7) . Namely, we should substitute -Ek(T,xk(T,u),u) for fk(u) in

the R functions. The implicit functions theorem can now be



applied in so far as ~Ek(T,§k(T,u),u) satisfies all the require-

ments of the theorem.

Naturally, the influence of the error produced by SPFM
should be taken into account. The problem of accuracy will be
considered in detail in section 2.5. Here, we only note that

this small disturbance in (7) does not give any additional dif-

ficulties.

To simplify the notation, we substitute ﬁk(u) for

Ek(T,ik(T,u),u). Let us apply SPFM to the above modification of
(7). We should then minimize the following auxiliary function:
m N
e =up+ L P(T,y.) + I P(T,V,) ’ (11)
- S - k
s=1 k=1
where
Vk = fk(x,u) + u abs (Ek(u)) + Ek(u) .

We will denote the minimum point of function (11) as

fw s x|l and
H ljnl.nx H e (u,x,u) =¢ (T:l.,;iru) = E(Ll)

According to assumptions about the smoothness of functions
£or Yy E,. and P, the point || L ; x|| should satisfy the equation

of stationarity:

T R R

The first component of the vector || u; x|| may be used to
analyze the dependence of the equilibrium state on the vector of
exogenous parameters of the model. However, for practical pur-
poses it is more convenient to use g(u) as the desirable approxima-
tion of u*(u), rather than pn(u). Aan explanation is given below.

~ %
At first, the difference between £(u) and py (u) is also small.



According to a property of SPFM, the absolute value of the sum

N~ 9
[ I e I

P(T,ys) +

P(T,V,)
1 K K

S 1

calculated at the point || §; x|| should be small for all those

u at which the model is still feasible. Morecver, it is possible
to ensure uniform proximity of g(u) to ﬁ(u) in the set of feasi-
bilities of the model.

The main advantage of using € (u) is that it has much greater
values outside the domain of feasibility than [(u). As a result,
the process of minimizing €(u) is simpler than that of minimizing
H(u). This advantage is well demonstrated in Figure 5. In this

case the quadratic penalty function

_ 1 [a - abs (a))2

P(T,a) = 37 ( 2

was used with T = 0.1. Analogous curves with T = 0.01 are shown
in Figure 6. u(u) was defined as equal to 1 outside the domain

of its definition.

In the proposed approach there are no constraints on the use
of a scheme for minimizing E(u) a4s long as this scheme is based on
a Taylor approximation. Methods of linear and quadratic approxi-
mation are frequently used in practice. In these cases, in addi-
tion to the value of &(u), we must calculate values of the first

and second partial derivatives at each point u.

A specific feature of this calculation is that € depends on

u both explicitly and implicitly:
e(w = e(u, (E (u,x (u), k= [1,N1}, x (u), &)

According to the 'chain rule':

T T L;I e [Ex . 1; 3E, axi)
aur aur k=1 aEk aur i=1 °%i Yp
~ n 3;4.
+ &2 L, 5 3€ 3 , for all r = [1,L]
du du - X. Ju
r j=1 J r
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Taking into account that the vectors §k(u) and || u ; x| are
points of stationarity of the auxiliary functions Ek and €,
respectively, we obtain as a result of (10) and (12), which are

in scalar form:

oE

kK _ . _
rxi = 0 r 1 = [1,1’1] ’ k - [11N] I
o€  _ s og _
——_3){] = 0 r J - [1ln] ’ au 0 ! (13)

the following expression for components of gradug:

d

o

, r= [1,L] . (14)

>
IIP1Z

°’)

3__
58

Substituting this expression for Ep and €, we find

@
=
|
@
h
o

!

Q)
c
R
I
c
H
ot

m 9y
_k, §p 2B ¢t r=[1,L] , k= [1,8] |,

where all derivatives are calculated at point ik‘ Similarily,

for || p: x||
e _ T oap s Tap
Yr s=1 aYs aur k=1 Vk aur
and finally
3¢ 9P _
F T 3v. (1 + usign(E,)) '
OEk k k
where
1, for a > O
sign (a) = 0, for a =

-1, for a <



Following from (14), it is not necessary to know the sensi-

tivity matrices

~

3u au ! au
r r r

to calculate the first partial derivatives of ge(u), but we

must predetermine points ik and || n; xl|.

By means of similar modifications, we can obtain expressions
for the second partial derivatives of the function €(u). We

present the results without a detailed explanation.

N 2 IX. 2 A
28 _ 8%, % ot 3, e B
= 5 u
aurauq aurauq =1 8ur8Xj Buq Uy oh q
N 2 E N E N
+ I 5-3—5_ 355 + I Py §2€ + §2€ u
1=1 %Up9Ey duy o p=q [ 8up | BB U, 3E M 9%
N g -82€ axi . g a2E BEt
i=1 aEkaxi auq =1 aEkaEt auq (15)
2 2 -
Lo 2%, 3 " atki)
— N ’
3Ek auraaq =1_8ur3xi 3 q

for all r = [1,L] and g = [1,L]

This means that we must have sensitivity matrices for
xk(u), u(u) , and x(u) in order to evaluate components of the

hessian of E(u), but only those of the first order.

Elements of these matrices can be found from systems of
linear equations resulting from the differentiation of (10) and
(121 with respect to components of u. For example, for
| S

Ju
r

’

2 -
—3 Ek axkj o 3°E .
1 X . 9%. Bur - 9x. ou ¢ 1 (1,nl (16)
o T (1,1,

k = [1IN] ’

| so s

]

where point x = x



“ 3ﬁ agl”
Analogously, for AT ,
r
326 aﬁ + 2 328 axj _ 82€ , i=1[1,n1 ,
axlau aur 5=1 3~:i3x:l aur axlaur
(17)
o2c i, D oa%e %Xy ek , r=1[1,L] ,
8uax. 3u Jpsu
au? %r  g=1 OHEH Wy
where point || n x| .

Since it is possible to calculate for all points u the values
of £(u), the components of its gradient, and its hessian, we are

able to implement any constrained optimization algorithm to solve
the problem: minimize €(u), subject to u € Q.

The method for tackling this problem is chosen on the basis

of its specific features, i.e. on the properties of functions

fk(x,u) and yS(x,u).
2.4. An Example

Let us demonstrate the approach described above for the case

of the simple model (1) -(2).‘ Auxiliary functions (9), con-

structed by means of the quadratic penalty function, are

E1 = —2x1 + X, + W(T,x1,x2) ’

3]
H

2 X,‘ - 3X2 + W(T,X.l,xz) ’

where

- ‘% - 2
T % x) = ;L(X1 abs(x1))2 . 1 X, abs(x2)
rere2 2T 2 2T 2

S

(x1-u+abs(x1—u))2 ] X,=1+u-abs (x,-1+u)2
2 2T 2

It is easy to prove that, for u € (0,1), E{(u) = =-2u - 2.5T and
Ez(u) = -3 + 3u - 5T take place.



The iterative procedure for minimizing € (u) may be started at
a feasible point, u = 0.1, for example. Auxiliary function (11)

at this value of the parameter is

the penalty coefficient T will be taken as 0.01 (see Figure 6).

Having completed all the necessary calculations, we find
-that for u = 0.1:

xy = [l0.12;~0.01] ; x, =] -0.01;0.93]
E, = -0.225 ; E, =-2.75 ;
X, = 0.1146 ; ¥, = 0.1984 0= 0.8242
and, finally, € = 0.8391
The derivative at this point is
3¢ 1,4 1,0~ on a ~ = o,
e o -F(xymu) + w(1-0) (2x1-x2+(1—u)E1(u))—ﬁ
1 ~ A A ~ Bﬁz
+ (-1 (X +3%,+ (1-W B, (w) 55~

Substituting specific values, we have

>

%G ~ =1.4599 + 0.1758(-0.8756) (-2) + 0.1758(-0.2920)3
= -1.3060 ’
because
3E 3E
1 _ 2 _
—aT— 2 and Tu_—3

This indicates that we should increase u to minimize e (u).
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Let us take a new approximation of u, such that the structure

of the set of active model constraints will be changed. First,

this occurs at u = 0.54, when the constraint x2 < 1 - u becomes
active. Hence u = 0.54 may be a new test case. At this point
%= ll0.56;-0.01] ; %, = [l -0.01;0.u3] ;
E1 = =1.105 ; E2 = -1.430

Auxiliary function (11)

2 2

1 1 2, 1 _ =
E = |y + 7T(x1—u) + ET(x2—1+u) + 7T(2X1-X2+(1 p)E1)

1 = 2
+ ﬁ(—x1+3x2+ (1-w) EZ)

‘Minimizing (11) with respect to |[u;x||, we get

~

x, = 0.5499, ’A‘z = 0.4608 , . = 0.4162 , & = 0.4233.

The first partial derivative of € at u = 0.54 will be

~ JE

g_a S 2 (Hym1+u) + %(1—3) (221—§2+(1—ﬁ)é1(u)>-3—u1—
1 ) o o, (18)
+ T(1-u)(-x1+3x2+(1—u)32(uH7iT
In numerical terms this will be
%% = -0.9879%9 + 0.0788 + 0.5838(-0.6085) {(-2)
+ 0.5838(~0.2291)3 = ~-0.5999

At this iteration, we use the Newton method to increase the
accuracy. We should make a preliminary calculation of elements

of the hessian using (15).

From (16):
324 IR .
E N L B



and therefore all expressions

2 -
o Ek axki

1 Ju_9dx. Jdu
r i

2

3 Ek

du_odu
r g

n
+ I
i=

are equal to zero. From (17) we find that

| 22535 = || -0.0829; 0.5091; ~0.4192]|

Substituting in (15), we have
2

>

Q2

|

= 62.90 at the point u = 0.54

N

ou

According to the Newton method, a better approximation of

argmin € (u) is given by

u 922)
2 ’

au

u=u_ - (&
o Ju

where uo is the test point. Therefore,

(-0.5999)

u=0.54 - —£5.90

= (0.5495

To check the error made here, calculate the gradient of e

for the new u, using formula (18). We then have
X,(u) = 0.5548 ; %,(u) = 0.4568 ; p(u) = 0.4754;
and € - g.022 .
au

Finally, notice that the minimum of e(u) is approximately at
u = 0.54956, i.e. the result might be acceoptable.

2.5. Accuracy of the Approach

In the proposed approach we minimize €(u) instead of u(u),
subject to u € Q. However, c(u) differs slightly from u(u),

because of the principal properties of SPFM. We should evaluate

the results of this error.

It should be noted that subject to the use of the penalty
function P(T,a), which satisfies the property described in section
2.2, page 12, the value of the error will be proportional to T.

This provides us with a basis for making an initial evaluation.



Figure 7 presents values of u - ﬁ (curve 1), u - € (curve 2) for
T = 0.01 and u - u (curve 3), u - € (curve 4) for T = 0.001.

This error has an influence on the iterative procedure
for minimizing e(u) and distorts the final results, i.e.

produces the difference between u* and ﬁ, where

¥ _ argmin

u =) U(u) 1
and

~  _ argmin 2

u = &q € (u)

Its influence on the procedure for minimizing E(u) is only
interesting from a theoretical point-of-view because of the
iterative nature of the procedure, 1In other words, there is no
accumulation of errors in the stepwise process. Only a few
characteristics of the process will depend on T: for example,
the total number of iterations required. For some cases, it may
be reasonable to increase the value of . abs(e(u) - p{u)) in order
to achieve a better convergence for the process of minimizing
e(u) .

In
practice, the level of computational effort required to do this should be
reasonable. For example, it may take into account the accuracy

éf the initial data in the model.

. : A %
It is more important to determine the value of [[u-u”|

The approach permits us, at least theoretically, to find
* -
u using u and by analyzing the dependence of the auxiliary
function (11) on T.

In the general case, we have
e(T,u) = e(r,8,(E  k=01,81},%(T,Q),0(T,Q))

The equation of stationarity may be used to define the implicit
function G(T):
grad e(T,u) =0 |, (19)

which, by virtue of the assumptions made and the properties
of SPFI4, satisfies
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lim =~ Uk
T-+0 W(T) = 0
On the other hand, functions fk’ Ygr and P are such that
U(T) can be described by means of the Taylor formulae:

~

Q(T+AT) = a(T) + A‘Tu"r + o(AT)

Proceeding to the limit AT+ - T, we find that

* A AT
u = u(T) - TuT + o(T)

Naturally point
u = u(T) - Tu,, (20)

. . ¥
may be taken as a new approximation of u

-According to the principal property of the Taylor approxi-
mation, value abs(u1-u*) is proportional to T2, which means
an improvement in the accuracy. Umnov (1974) demonstrates that
the sequential use of (20) produces a series of points {ul}l that

*
convergences to u

In practice the use of (20) is equivalent to the problem
of finding ul), i.e. the derivative of the implicit function
U(T) with respect to T. From the implicit functions theorem

it follows that components of u% satisfy the system of linear

equations:
L 2~ 22
o ~ 37 ¢
r = _(uy)_ = - =, q=[1,1] . (21)
r=1 aurauq T'r auan

The matrix of the system has elements defined by (15).

Below, we give expressions for the right-hand-side only.

~
-

0% _ 2% T 8% %54 3% sy
au 3T au_ 3T j= 1 Bupaxy aT 3u_au T
N 2 J3E N 3E 2 ,

+ L 9 & Ly s K 9 & _

1 Bur 8Ek8T (22)




A 2 . N 2 E
+ 2% au + ; 2% % + § o2& e
2 2 -
R s axki)
8Ek auraT i=13uraxi 9T

Partial derivatives 3T ' 37 ¢ and T can be found from the

system of linear eguations, which are formed by differentiating
(10) and (12) with respect to T.

n 3%E 3% . 3°E
L o a}}{c 3];3 = " 3% }gT' ' i=101mnl (23)
j=1 9% 3% i

where all coefficients are calculated at point X

Kk*
Analogously
e an, B 8% 5 o
3xlau a j=13xiaxj aT 9X.aT
, 1= 1[1,n1,(24)

2. . X.

2% su, 3 2% ¥ _ 3%

3u 3 j=1 Buaxj 3T dusT

subject to all derivatives being calculated at point || a; ;H .

Let us demonstrate the procedure for model (1) - (2).

We take u = 0.5495, which was found in section 2.4. At this

point we have

“
—_

I
o
w
w
=
(o}

~
">
N
Il
o
.
4=
v
o
(e}
~
=
i

0.4154

From (23)

=
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and, from (24),

%y (61 . 4 38 - 0.7122
7 = 0.4619 , = =cC.6749 , 2p=0.
Since the set of active constraints of model (1) - (2)

does not change during the step from u = 0.54 to u = 0.5495, and

function E(T,u) is piecewise-quadratic with respect to u, we

2A
may take ﬁ—% = 62.90.
du
32t o
From (22), we find TOT 6.4904., Note that this 1s not

very difficult when the expressions within parentheses in (22)
equal zero. Substituting these data in (21), we get u% = -0.1032,

*
and, hence, a new approximation of u :

u=nu - Tu) = 0.5495 - 0.01(-0.1032) = 0.5505

*
which is close enough to u = 3-Y6 = 0.5505. If necessary,
process (21) - (22) may be repeated several times until a

desirable level of accuracy is achieved.

2.6. Generalization of the Approach

The proposed method for optimizing the vector of exogenous
parameters of a multicriteria model has been considered for the
case where it is necessary to find the best consistency of the
criteria. But this approach can also be applied to other schemes
for finding the equilibrium point. For example, it is possible

to introduce weight coefficients to evaluate the relative impor-
tance of the unit of inconsistency of each criterion for the

decision makers.

In this case the second group of constraints for problem

(7) may be formulated as follows:
* *
Ry (wyx,u) = £, (x,u) + pwpabs (£ (v)) - £ (w) 20 ,

where Wy > 0 are the weight coefficients



The model can also be supplied with additional constraints on

the feasible values of criteria at the point of equilibrium.

In a more general case, it would be possible to state pro-

blem (7) in terms of a vector coefficient of inconsistency:
g A YRR

The equilibrium point will be defined, for example, as an extreme

Foint of the functional ¢(u1,u2,.. ), subject to, perhaps, several

A
N

additional constraints on components of u. Note that in this

case the equilibrium point might not be a Pareto one. Hence,

the geometrical interpretation of the approach will be different,
but its theoretical basis will not be changed.

The practical use of the parametric analytical scheme is not
s o. constrained by the need to avoid the use of those models
in which at least one of f: is close to zero. For such a case
a reconstruction of the model is recommended. But this should
be done carefully because the additidén of a constant in

fk(x,u) may change the equilibrium point.

Finally, note that there is an opportunity to use the
approach to find consistent solutions for a system of single
criterion mathematical models. Not only does the criterion
of each model differ, but the sets of constraining functions

also differ.

Let us suppose that the Kkt model is

maximize . fk(xk,u) ,

n
with respect to X € K

v

subject to Yieg (¥per @) 0, s=0ml ,

where ny is the number of variables for the kth model, and u is
the vector of exogenous parameters, which is common to all N

models.

This problem may be reduced to the problem under analysis

by linking all X into a new common vector of variables. The



increase in the dimensions of the model that takes place will
not introduce difficulties, since all auxiliary functions are
separable with respect to x
dently.

X and they can be minimized indepen-

A more detailed description of the problem is given in
Umnov (1980) .

3. PARAMETRICAL ANALYSIS OF LINEAR MULTICRITERIA MODELS

3.1. Preliminary Notes

Despite its theoretical simplicity, the approach is rather
difficult to apply. The main obstacle is that SPFM is relatively
ineffective for solving problems such as (6). To overcome this
difficulty we can take advantage of the fact that in the approach
only the result of using SPFM is important, but not its conver-
gence properties. Therefore, we may try to replace SPFM by a more
effective algorithm (or a combination of algorithms), which allows

us to achieve the same results.

In this section we will consider a special case of linear
models with exogenous parameters in free terms of constraints
(5) only. Moreover, the application of the approach will be
described for a specific model, a regional model of water
resources allocation for Ska&ne, Sweden. Thus, we can simplify

the evaluation of the usefulness of the method.

3.2. Regional Model of Water Resources Allocation

The proposea approach is used to find states with the best
consistency for the Model of Water Resources Allocation (MWRA).
This model, which was developed for the south-west Sk&ne region in
Sweden (Andersson et al. 1979) by the 'Resources and Environment Area'
of IIASA, is used to evaluate the impacts of different water supply

molicies, subject to certain economic and environmental constraints.

A scheme of the water supply system for Sk3ne is shown in
Figure 8. In MWRA it is assumed that the main source of water
for the region is the Kavlinge River, which flows through Lake

Vomb to the Baltic Sea. Lake Vomb also serves as a partially
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controlled water reservoir. 1In considering the general water
balance of the region, ground water and precipitation are also
included. The regional water supply is needed for servicing the
town of Malmé, for agricultural production in three areas of the
region, and for maintaining ecovlogical equilibrium in the
regional water system. From an envirommental point-of-view, the
state of the water supply system is defined by its pollution

level.

Non-natural sources of pollution are Malmd and the
agricultural areas. The pollution level depends both on the
technologies and area of land used in the production process.

The state of the system is characterized by the values of
two water flows at points k and A (see Figure 8), by the volumes
of water used for agricultural purposes and stored in the reser-
voir, by the pollution concentration, and finally by the volume
of agricultural production. The following constraints, which
define the feasible states of the model, are included:

-~ the balance conditions for nodes of the water supply
system;

—-- the need to satisfy upper and lower bounds for water
flows to the sea and the town, and for the Vvolume of

water stored in the reservoir;

-- the technological relations between the volume of fer-
tilizer, the volume of water, and the areas of land
used for agricultural production;

—~- water circulation in the natural system, i.e. water
inputs and losses;

-~ constraints on the total area of land available for

agriculture in all areas of the region.

The quality of the state of the system is evaluated using
the following criteria:

-- maximization of the volume of agricultural production
for all areas;:

-- maximization of the volume of water remaining at the end of
the growing season;




data:
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maximization of the water flow to the town;
maximization of the water flow to the sea;

minimization of the pollution flow to the sea.

Formally, MWRA is described in terms of the following

s = << N3 (]
4 S

the area of land available for agriculture in

area j (j = [1,31);

the area of land in area j in which technology i is
used (in the version of MWRA described in this paper
seven types of technologies were considered);
kth normative coefficient, related to a unit of land
characterizes technology i in area j (five types
of coefficients were used:

- real yields per unit of land (k=1),

- required water volume (k=2),

- volume of fertilizer required (k=3),

- water loss (k=4),

- fertilizer loss (k=5));
volume 5f water in the reservoir at the beginning
of the growing season;
volume of water in the reservoir at the end of

the growing season;

the length of the growing season;

the volumetric flow rate of water supply to the
town;

the volumetric flow rate of water from Lake Vomb;
the volumetric flow rate of water to the sea;

the volumetric flow rate of pollutants from the lake;
the volumetric flow rate of pollutants to the sea;
the maximal acceptable level of pollution in the
water flow to the sea;

the volume of agricultural production from area j;
the volume of water used in area j for agricultural
purposes;

the volume of fertilizers used in area j;
the volume of water returned to the system from
area j;

the volume of fertilizers entering the water system

from area j;



q, - the difference between the water volumes entering
and leaving the water system by means of natural
exchange at control point n (see Figure 8);

o - the coefficient representing the removal of pollu-
tants throuch natural processes within the lake;

L ~ the concentration of natural pollutants in the

water at control point n.

The constraints defining feasible states of the model are given

below.

Land-use constraints in area j are

where m, is the number of technologies in use.

The dependence of agricultural production on the technolo-
gies used is described by

Yt = Z
jk i=

; Fkii*is
The water balance constraints for all nodes of the system are:

-— for the lake

s =S5+ T(é1 + qz) - T(Zk + Zm) R TR ST
S <s<s , and

Z2. s 2 < .

where S , S, z.. and Em are the lower and upper

bounds for S and Zm, respectively;

- for the river

1

1
+ ?(Y + Y 27

Va = % + q, + o

y 3y 320

v, =< VA ’

where V, is the lower bound for V,.
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the following relations should be valid:

Y22 + Y32 < T(Zk + q3)

Finally, there is a set of constraints defining the

environmental characteristics of the system:

-- the flow of pollutants from the lake,

— 1 .
Wi = (1 = 00 gy + byap + 7¥5) s

-- the flow of pollutants to the sea,

1
Wy = 7(¥p5 + Y3g) + ¥gay + uyqy + W

and

—- the limiting constraint representing the concentration of

pollutants in the sea,

<
WA < aAVA .

The set of criteria can also be formulated as follows:

maximize Y11 .
maximize Y ,
21
maximize Y ,
maximize s ,
maximize Z ,
maximize V ,

minimize W

Some Examples of Problems Solved with the Use of MWRA

Numerical data for one version of MWRA are given in Table

!

In this version it is assumed that the values of Aj’ akij



Table 1. The parameter values of MWRA.
1 2 4 g 6 7 Dimen—
sSion
k j
1 0 4 5.5 8 4.5 6.8 9.5
2 0 4 5.5 9.2 4.5 6.8  10.8 fif/
3 0 4 5.5 9.2 4.5 6.8 10.8
2 1 0 0.3 0.3 0.3 0.55 0.55 0.55 3 3
2 0 0.3 0.3 0.3 0.55 0.55 0.55 mh::‘~
3 0 0.3 0.3 0.3 0.55 Q.55 0.55
31 0 0 80 150 0 80 150
2 0 0 80 180 0 80 180 -ig/
3 0 0 80 180 0 80 180
4 1 0 0.06 0.06 0.06 0.11 0.11 0.11 33
2 0 0.03 0.03 0.03 0.055 0.055 0.055 liﬁ? /
3 0 0.06 0.06 0.06 0.11 0.11 0.11
5 1 0 ) 12 22.5 0 12 22.5
2 ) 0 12 27 0 12 27 Eg/
3 0 0 12 27 0 12 27
A, = 3,000 ha
1 3
A2 = 2,500 ha T = 2,590 (10" sec)
A = 2,300 ha
3 ¢ = 0.9
S = 33, 3
g, = 1.5 Z = 2(10"m” /10" sec)
2 3 . .33, 3
(m”/sec = 10 m /10 sec) - 33
q3 = 0.8 S = 30,000 (107m™)
= 0.7
9y s, = 130,000 (10°n°)
33
wl = wz = 1l(kg/10°m") 3 33
Gy = 10(g/m” = kg/10°m")
33
¢3 = 2(kg/107m") - 33 3 3
VA = 6(l0m /10~ sec”)

l.5(kg/103m3)




So, §, §, T, Zm[ Zml VAI l\bnl an
(i.e. they are parameters of the model). We have tried to find

¢, and aA are predetermined

values for some of the above parameters, so that there is an

acceptable degree of consistency among the criteria.

Table 2 gives the results of calculations made with the
help of MWRA for the scheme (6) - (8). The case considered was
for a growing season with a normal level of precipitation and

with the following exogenous parameters:

s = 21. 10%m3
3

z. = 1 m~/sec ,

v, = 7 m3/sec

_A_

The consistency achieved was 23.1%, Table 2 presents the
optimal Zalues for criteria f;(u) (see the column 'Ovt value')
and fk(x ,1) (see the column 'Value'). The values of the model
variables for the equilibrium point are also given in Table 2.

If the exogenous parameter: values are changed, the equilibrium point

for the model will change. For example, for values
s = 15 - 10°p3
Z = 1.5 m3/sec
_m— . . o
3
YA = 6 m /sec ,
the consistency equals 0.45. The variables used in this case

are shown in Table 3. These two examples demonstrate that a
variation in the exogenous parameters of MWRA may significantly
change both the equilibrium point and the consistency of the

criteria.

A more interesting example of the dependence of the con-
sistency on the exogenous parameters is shown in Figure 9. 1In
this figure a piece-wise linear approximation of the dependence
of the coefficient of consistency on both the volume of water S in
the lake at the end of the period and the avefage level of preci-

pitation g during this neriod. In examining Figure 9, we find



Table

2. State of MWRA for S

EXOGENOUS CONSTRAINTS:

Final quantity of water in the lake= 21000.00(10008¢cub.m)

Capacity of natural water sources
Minimal flow to Malmo
Minimal flow to the sea
Concent.level of poll. in the sea
List of criteria:
flow to the sea,

yields, water in

1.00( to norm.)
1.00(cub.m/sec)
7.90(cub.m/sec)
10.00( g/cub.m )

the lake, flow to Malmo;
fiow of pollution to the sea

RESULTS: Min.inconsistency = 76.97%
# of eriterion Value Opt.value Consist.Z
1 max 5477.82497 23733.30477 23.1
2 max 5369.29934 23263. 10502 23.1
3 max 5179.31893 22439.99315 23.1
4 max 21000. 00000 21711.99914 96.7
5 max 1.00000 1.27490 78.4
6 max 7 . 00000 7.27490 96.2
7 min 9.94286 5.62000 23.1
Technology Area | Area 2 Area 3
# ha ha ha
1 2315.27 1622.57 1005.17
2 9. 519.81 1294.83
3 9. 0. 0.
4 684.73 357.61 Q.
S 0. 0. Q.
6 0. 9. 0.
7 0. 9. 9.
Area | Area 2 Area 3
Yield ( ton ) 5477.825 5369.299 5179.319
Water in. (1000cub.m) 205.418 263.228 388.449
Water out. 4] .084 26.323 77.690
Fertil.in.( ton )} 192,709 64.370 0.
Fertil.out. 15. 406 9.656 a.

Water in the lake

Flow out the 1lake

Flow into the sea
Flow to Maimo
Pollution out the lake
Pollution to the sea

21000 .900( 1000cub .m)
5.711(cub.m/sec)
7.000 (cub.m/sec)
1.000(cub.m/sec)
3.565(g/sec)
9.943(g/sec)



Table 3. State of MWRA for S =15, 2z

EXOGENOUS CONSTRAINT

Final quantity of water in the Lake=

Capacity of natural
Minimal flow to Mal
Minimal flow to the
Concent.level of po

List of criteria: %

RESULTS: Min.incons
¥ of eriterion

max 12897.

|

2 max 12218.
3 max 11249,
4 max 19678.
S max 1
6 max 6.
7 min 8.
Technglogy

NOUNBWN—

Yield ¢ ton )

Water in. (1090cub.m)
Water out.
Fertil.in,.( ton )}
Fertil.out.

Water in the lake

Flow out the lake

Flow into the sea
Flow to Malmo
Pollution out the lake
Pollution to the sea

S:

water sources
mo

sea

11. in the sea

ields, water in the lake,

15060 .00 (1000cub .m)

1.00( to norm.}
1.50(cub.n/sec)
6.00(cub.m/sec)
19.00( g/cub.m )

flow to Malmo,

low to the sea, flow of pollution to the sea

istency = 54.77%
Value Opt.value

23293 28500 . 00009
43035 270900 . 00009
95592 24840 .00000
60633 23006 .99914

. 50000 2.00000

00000 9.09151
69676 5.62000

Area |
ha

9.
1205.54
0.

9.
{794 .46
0.

0.
Area |
12897.232
1348.616
269.723
9.

Q.

19678 .606 (1000cub.

Consist.?

4S.
8S.
75S.
66.
4S.

WOONLWW

Area 2
ha

0.
9.
Q.
9.
2346.28
Q.
153.72
Area 2
12218.439
1375.000
137.500

27.669
4.150

m)

5.369(cub.m/sec)
6.900(cub.m/sec)
1.500 (cub.m/sec)

2.970(g/sec)
8.697(g/sec)

Area 3
ha
0.
0.
0.
9.
2158.58
0.
141.42
Area 3
11240.956
1265. 000
253.000
25.456

3.818



precipitation and the remaining water in the
lllll



that for values of S and g satisfying the set of constraints

0.5 g< 2.0 ,
15.0 < § < 25 ,
§ < 20.9q - 18.8 ,

where q is defined as the ratio of the current level of precipi-

tation to the average level, the consistency is relatively high:

U5% - 50%. For the other S and q, the consistency is much lower,

or MWRA is infeasible. In other words, the model forecasts that
there exists a minimal value for the remaining water in the lake,
when a consistency of about 40% can be achieved for a given q.

This minimal value of S is equalled approximately by

S.in = 20.9q - 18.8

Finally, let us consider a graphic interpretation of
another problem of optimizing the consistency. Suppose that

we choose values for the three exogenous parameters of the

model:

-- the lower limit of the flow to the town;
-- the lower limit of the flow to the sea; and
-- the lower level of the remaining water in the lake

at the end of the growing season.

The chosen values provide MWRA with the best consistency

for the given criteria, subject to
+VvV,) +S=¢C , (25)

where C is & giveh constant. .In this case we will solve

the problem

min fm}i(n u(x)} -,

ucQ

using the notation of (8).
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In Figure 10 a pilecewise linear approximation of the value
of (1-™iM | (x))100% is shown for C = 4.10’ m>. The exogenous

parameters V Zm’ and § are linked by equation (25). Hence,

AI

it is sufficient to consider the dependence of {I on V, and gm.

In Figure 10 only feasible points are considerﬁd.

I+t can be concluded that the consistency changes within a
range of approximately 22% to 33%. Hence, the search for

the optimal points may provide useful information for decision-
making processes. This can be also proved by comparing Tables
4, 5, and 6, which contain the solutions of MWRA for different
values of S, yA, Zm

3.4. Determining the Optimal Values for the Exogenous
Parameters of MWRA

Let us consider the procedure for determining the optimal
values for the exogenous parameters of linear models, which
are described by functions fk(x,u) and ys(x,u) of the following
form

n
fk(xru) = 51 ckixi ’ k = [1,N] ; and

(26)

- L n
y_ (x,u) = p + X p_.u. + I a s = (1,m]

Note that by using the free term of ys(x,u) as a linear function
of u, there will not be a significant loss of equality.

A quadratic penalty function P(T,a) is chosen:

abs(a))2 (27)

P(T,a) = %f(a-z

It has continuous derivatives for all T > 0. Let us assume that
all auxiliary functions are minimized by an algorithm that uses
only the values of the functions and their gradients.

As has already been shown, determination of the optimal

values for the exogenous parameters consists in minimizing the



Consistency as R

Figure 10.
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The dependence of the consistency on V_  and 2.

A
(All flows are in m3/sec.)



Table 4. State of MWRA for YA = U4 and Zm =

EXOGENQUS CONSTRAINTS:

Final volume of water in the lake
Capacity of natural water sources

Minimal flow to Mal

mo

Minimal flow to the sesa

Concent.level of poll.

in the sea

28550.00(1000cub .m)
1.00( to norm.)
1.99 (cub.m/sec)
4.00(cub.m/sec)
10.090( g/cub.m )

List of c¢riteria: yields, water in the lake, flow to Malmo,

flow to the sea,

RESULTS: Min.inconsistency = 73.27

# of eriterion
1 max 6866.
2 max 6662.
3 max 6493.
4 max 28550.
5 max 1
6 max 4,
7 min 9.
Technology
#

NOUnhWN—

Yield ( ton )

Water in. (1090cub.m)
Water out.
Fertil.in.( ton )
Fertil.out.

Water in the lake

Flow out the lake

Flow into the sea

Flow to Malmo
Pollution out the lake
Pollution to the sesa

Value Opt.value Consist.Z
85981 25589.99357 26.8
26434 24827 .54946 26.8
86487 24199.99315 26.8
00000 30000 .00000 95.2
. 00000 1.35985 73.5
00000 4.,35985 91.7
73192 5.62000 26.8
Area | Area 2
ha ha
2141.64 1254.22
0. 922.87
Q. Q.
858.36 322.91
Q. 0.
Q. 9.
9. Q.
Area 1 Area 2
6866 .860 6662.264
257.507 373.735
51.501 37.373
128.754 58.124
19.313 8.719
28550.000 (1006cub . m)
2.780(cub.m/sec)
4.000(cub.m/sec)
1.8909(cub.m/sec)
3.716(g/sec)
9.732(g/sec)

flow of pollution to the sea

Area 3
ha

676.53
1623.47

[SXORTOTOX )

Area 3

6493. 865
487.040
97.408



Table 5. State of MWRA for V

EXOGENOUS CONSTRAINTS:

Final volume of water in the lake
Capacity of natural water sources

Minimal flow to Malmo
Minimal flow to the sea

Concent.level of poll.

List of criteria:

RESULTS:

# of criterion

NOWNDWN—

max
max
max
max
max
max
min

Technology

#

NOUW D WN—

in the sea

yields, water in
flow to the sea,

Min.inconsistency = 77.6%

4727.
4832.
4891 .
26260.
1
S.
9.

Yield ( ton )

Water in.

(1

Water out.
Fertil.in.( ton )
Fertil.out.

000cub .m)

Water in the lake

Flow out the lake

Flow into the sea
Flow to Malmo
Pollution out the lake

Pollution

t

o the sea

= 5 and 2, = 1.

26260.00(1800ctb .m)
1.00( to norm.)
1.00(cub.m/sec)
5.00(cub.m/sec)

19.09( g/cub.m )

the lake,

Value Opt.valzue Consist.Z
099371 21066.63811 22.4
14924 21534.78562 22.4
64953 21799.99315 22.4
009000 26891.99914 97.6
. 00000 1.24402 80.4
00000 5.24402 95.3
97894 5.62000 22.4
Area | Area 2
ha ha
2409.11 1771.53
0. 359.58
Q. 0.
590.89 368.89
0. 0.
0. 9.
0. 0.
Area | Area 2
4727.094 4832. 140
177 .266 218.542
35.453 21.854
88.633 66.401
13.295 9.960
26260 .000( 1000cub.m)
3.689(cub.m/sec)
5.000{cub.m/sec)
1.000{cub.n/sec)
3.483(g/sec)
9.979(g/sec)

flow to Malmo,
flow of pollution to the sea

Area 3
ha

1077.09
1222.91

OOOO®

Area 3

4891.650
366.874
73.375
0.
9.



Table 6.

EXOGENQUS CONSTRAINTS:

Final volume of water in the
Capacity of natural water so
Minimal flow to Malmo
Minimal flow to the sea
Concent.level of poll. in th
yields, wa
flow to th

List of ecriteria:

RESULTS: Min.inconsistency =
of eriterion Value
1 max 1799. 19675
2 max 1839. 17890
3 max 2069.97626
4 max 22825.00000
S max 1.,00000
6 max 6.50000
.72 min 9.57326

Technology Area

# ha

1 2775.

2 0.

3 0.

4 224,

S 0.

6 0.

7 Q.

Area

Yield ( ton ) 1799.

Water in. (1000cub.m) 67.

Water out. 13

Fertil.in.( ton ) 33.

Fertil.out. 5

Water in the lake 22825.

Flow out the lake

Flow into the sea

Flow to Malmo
Pollotion out the 1ake
Poliution to the sea

W~

State of MWRA for v

46

000 ( 1900cub .m)

.049(cub.m/sec)
.500(cub.m/sec)
.099(cub.m/sec)
.165(g/sec)
.573(g/sec)

A = 6.5 and gm = 1.
lake = 22825.00(100Qcub.m)
urces = 1.00( to norm.)
= 1.90(cub.m/sec)
= 6.58(cub.m/sec)
e sea = 190.00( g/cub.m )
ter in the lake, flow to Malmo,
e sea, flow of pollution to the sea
70.3%
Opt.value Consist.”Z
6066 .63811 29.7
6201 .45229 29.7
6976.63382 29.7
23006 .99914 99.2
1.07027 93.4
6.57027 98.9
5.62000 29.7
1 Area 2 Area 3
ha ha
10 2300.09 1991.47
9. 147.96
0. 0.
90 199.91 160.57
0. Q.
9. 0.
0. 0.

1 Area 2 Area 3
197 1839.179 2069.076
470 59.973 92.559

.494 5.997 18.512
735 35.984 28.902
.960 5.398 4,335
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function ¢ (u), which can be obtained from (11) by substituting

a and x for L and x.

Components of the gradient of ¢ in the general case are

defined by (14). But this formula can be simplified for MWRA
by taking into account (26) and (27). At first, we have
f 3y
k _ S _
3o - 0 and sa_  Psr
r r
Hence,
TR Ul
aur s=1 2T sr
N V, - abs(V,) 3F
k k A = k
+ E 5T (1 + usn.gnEk)gu— ,
k=1 r

u_ k(}-z) = Izr:l sk 0
aur Eur k s=1 2T sY
where Yex = ys(Xk,u)
Finally, we find
€ _ ? Yg — abs(yg)
u s=1 2T Psr
(28)
N V, - abs(V,) my, - abs(y,)
k k A~ = tk tk’,
+ I (1 + usignk,) & P,
k=1 2T k £=1 2T tk
for all r = [1,L]

Therefore, in order to use the algorithm for minimizing E(u),
we must find vectors ik and || p:;x||. The values of §sk’ Ek’

Yor Vir and ¢ are easily calculated because their form is

expliEit.
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3.5. Modeling the Smooth Penalty Function Method

A method for solving the problem is considered to be

effective if it allows the solution to be found with a rea-

sonable level of computational effort on the part of the user.

SPFM, which forms the theoretical basis for the proposed
approach, 1is not very effective for most practical problems.
For the models described by functions (26), more effective
algorithms can be used. In the case of MWRA a scheme based
on the combined use of two algorithms was implemented. This

scheme is outlined below.

The problem of minimizing each of the auxiliary func-
tions (9) and (11) is divided into two stages. First, the
linear problem (6), or (7), is solved by means of a standard
simplex procedure. At the second stage the following qua-

dratic problem is solved.

Minimize with respect to || ik;akH

n W t abs(wks)>2
2 I

subject to

for all s € A

(29)

The set A contains indices of these constraints for problem (6),

*
which are active at point Xy r i.e., for all s € A,

*
ys(xk,u) <0
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*
k
of (6), or is the point at which the nfeasibility of (6) has been

must be valid independently of whether x; is the optimal point

found.

It is evident that problems (10) and (29) are similar.
This may be proved by substituting ys(ﬁk,u) for Taks and the
specific expression for P(T,a). The form of (29) is more suited to
the calculations, since the components of the gradient of the

auxiliary function have the simple form

)2 (30)

Ny —

gradu Ek = - z psr(wks + abs (w

r =N ks

To find Ek and §ks it is not always necessary to solve (29).
From theorem 4 (Fiacco and McCormick 1968), it follows that if
problem (6) is feasible and rows {asi’ i = [1,n]} are linearly
independent for s € A, then the optimal solution of (29) is the
optimal vector of the dual variables for problem (6), where T is

sufficiently small.

For the case where it is possible to recognize the linear
independency of {asi, i=1[1,n]l}, s €A, values of E
can be calculated by

and v
k st

s ot
Yrs = "*Wks 7
(31)
. n * T 0 £ 2
By =L Si%y 3 LG
i=1 s=1

* .
where w 1s the dual optimal vector for problem (6).

For all other cases problem (29) must be solved. The
effort required to do this, however, will not be too great, if

- * -
the point X is equal to X and if all w are zeros at the first

ks
iteration. Moreover, problem (29) does not contain all functions

ys(x,u), but only those for s € A. All the above conclusions also

apply to problem (12).

In practice, it is sometimes reasonable to extend the set

A, in order to increase the reliability of the scheme. We-

will include in A all s for which



*
£ + ys(xk’u) <0

is valid, where € > 0 is a small parameter. This avoids the
introduction of errors. It is preferable to evaluate Ek and
§ks by means of (29) in some cases of uncertainty, since the
statement of (29) is independent of whether or not (6) is fea-
sible. This is well illustrated by Figure 11, which shows the

dependence of € and 1 on V, in MWRA, subject to

A

It was found that the solution of a modification of problem (7)

is opfimal for YA < 7.1 and infeasible for Uy > 7.1. However,
from e(V,) in Figure 11, we can see that the model is infeasible
even for Vo = 6.65, becauvge inapprooriate tolerance parameters were chosen.

*
In this case the use of wk

evaluate Ek and §ks might destroy the convergence of the minimi-

in (31) instead of solution (29) to

zation of £(u).

To conclude, it can be seen that the linkage described
above enables us to create an effective method possessing
- all the desirable properties of SPFM. This method can be
used for any model described by (26), or even for certain

more complex models.

3.5. Some Practical Applications of the Approach Using MWRA

The analytical method proposed for the multicriteria model
MRWA was implemented by the Regional Development Group of IIASA
on the VAX/1178 computer, under the UNIX operating system.
During development of the required software, the main effort was:
devoted to achieving maximal efficiency through the use of highly
efficient standard subroutines. Since VAX/1178 is a virtual

machine, it has the capacity for storing a large volume of
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intermediate data and the total operational time required may
thus be reduced. The main element of the software system com-
pleting the approach is the MINOS program package (Murtagh
and Saunders 1980) for solving the linear problems (6) and a
modification of (7), and the nonlinear and, generally speaking,
nonconvex problem:

minimize g(u) ,

(32)
subject to u € Q

The set  was defined in an explicit way as a system of
constraints on the components of vector u. Therefore, in accor-
dance with the procedures for using MINOS, it is sufficient
for the normal run solving (32) to be able to calculate € (u) and
gradu € at any point u. It has been already shown that € (u)

and components of gradu € may be found from (6), (7), and (29).

We have seen that the recursive use of MINOS presents a dif-
ficult problem. For this reason we have decided to organize the
solution procedure for (32) as an independent run supplied with all
the necessary information. The solution procedures for (6), (7},
and (29) consist of another run, which begins only when required.
Having obtained wvalues for £€(u) and the components of gradu §,
control is returned to the first procedure, which lies dormant
during operation of the second. The amount of time required
for operating the second procedure is the greatest, because
the dimensions of problems (6), (7), and (29) are considerably
larger than those of (32). To reduce user time, runs for (6),
(7), and (29) commence with the optimal solution obtained at the
preceding step. We illustrate the operational features of the

method with three examples.

Table 7 presents the results of running the procedure for
optimizing the exogenous parameters of model (1) - (2).
These parameters were considered in this case to be independent.
The penalty function P(T,a) was quadratic and the region of fea-

sibility Q was defined by the system of constraints:

o
\

=2 0.1 ,
(33)

<
v

o
+
<
1A



Table

Iteration

(%] 9
1 1
2 0
3 %)
4 (%)
S %]
6 (5]

Iteration

7 %)
8 (5]

Iteration

“n
QOO0 OOOOOOO®

Iteration

21 0
22 7]
Iteration
23 0
24 5}
Iteration

25 Q

7. The numerical results of running the main procedure
for model (1) - (2) using the square penalty
function.
v v E grad E(u) grad E(v)

l
. 200000000 0 .800000000 0.718931580 -0.869239520 0.236521180
.069239520 9.563478820 1.376846797 13.452038796 12.92660684 |
.6346 19760 0.681739410 0.464301275 -0.293817978 0.271295500
.851929639 0.622609116 0.435709547 0.204558680 -0.284875032
. 792854923 0.638683421 0.419051122 0.169010419 -0.217169949
.751737215 0.649871601 0.425172426 -0.231862062 0.263711706
. 783957636 0.641104384 0.4179998109 0.019063932 -0.034147126

2
. 774652696 0.671742430 0.425609705 -0.225521343 0.255528537
. 783583500 0.642336286 0.417882957 -0.004726925 -0.005092015

3
.788395014 0.646431070 0.417839759 -0.0070790349 -0.002145127
.807641070 0.662810206 0.4176748SS -0.016468163 0.009666693
.884625293 0.728326748 1.055047621 11.240801813 11.352448354
.826887126 0.679189341 0.419368663 0.581744126 0.629161232
.817264098 0.670999774 0.417597112 -0.02]1180952 0.015586327
.822075612 0.675094557 0.417559412 -0.023540689 0.018549402
.824481369 0.677141949 0.417672612 0.137610419 0. 182363552
.822731727 0.675652937 0.417554332 -0.023862640 0.018953621
.823267443 0.676108852 0.417550194 -0.024125542 0.019283694
. 823670655 0.676452001 0.417547838 -0.012057811 0.031797759
.823580182 0.676375004 0.417547783 -0.024279030 0.019476394
.823625418 0.676413503 0.417547519 -0.020409129 0.023396372
4
.830483446 0.680888533 0.423946700 1.130582527 1.135204454
.823644213 0.676425766 0.417547462 -0.172548562 0.026443233
s .
.826629684 0.673335048 0.417704033 0.061322460 -0.085067610
. 824329900 0.675715907 0.417532156 -0.000006417 0.000008697
6
.824330139 0.675715663 0.417532156 -0.000000003 0.000000003



Note that the problem described in section 2.1 has Q as

u >0 ,
v >0 '
u+ v =1

The quadratic penalty function was also employed to prevent
violations of (33). The optimal solution was achieved in six
iterations, during which twenty-five values for € (u) gradu €
were calculated. 1In contrast to the results obtained for the
case described in section 2.4, the function €(u) was found to

be nonconvex within Q.

The above example is illustrated in Figure 12 in which the
dots represent test points and circles are optimal points
for the six iterations. 1In this example, all components of the
gradient of € (u) were continuous but not smooth functions. The
problem was alsc solved using a 'cubic' penalty function, which
grants smoothness to the gradient:
= 2 (lel - af3

P(T:G) —ﬁ( > .
Table 8 presents the numerical results of this run. Note that
the objective function was also modified in (29).

In the third example an algorithm with a projection-gradient
approach was used to retain || u; v || within Q. The convergence
achieved for this case was better than for the other two

examples. The results are shown in Table 9.

Finally, let us consider MWRA. Figure 13 shows the
results of solving problem (32) for MWRA. The test points
marked were considered to be the best approximations for each
iteration. In Figure 13 the trajectory for running the optimi-
zation procedure is shown. The value of the penalty coefficient

T is equal to 0.1. The set @ was defined for the case as

2.5 £ v, < 8

0.5 < 2

IA
[N]
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v
1.5 1
u > 0.1
\V > 0.2
1.0 u+ v £ 1.5
0.5 1
|
u
1 } e
T ¥ T L v T —>
0 0.5 1 1.5

Figure 12. A graphic representation of the results of main
procedure for model (1) - (2) using the square
penalty function.



Table 8.
model (1) -

#p . u v
Iteration |

o 0 .200000000 0 .800000000
1 1.071664578 0.563406884
2 0.635832290 0.681703442
3 0.853748433 0.622555163
4 0.794717145 0.638577836
5 0.746294068 Q.651721156
6 0.785341157 0.641122730
Iteration 2

7 0.784260656 0.647756339
8 0.785302345 0.641361007
Iteration 3

9 0.787224642 0.642939971
10 9.794913828 0.649255826
11 0.825670571 0.674519247
12 0.816732020 0.667177179
13 0.8230501809 0.672366872
14 0.824881289 Q.673870935
15 0.825409326 0.674304662
16 0.825539949 0.674411954
17 0.825605260 0.674465601
18 0.825572604 0.674438777
19 0.825577281 0.674442619
20 0.825575978 0.674441549
Iteration 4
21 0.825879671 0.674504334
22 0.825593634 0.674445199
Iteration S
23 0.845711252 0.649468299
24 0.825704263 0.674307849
25 0.825681411 0.674336220

Iteration

26 Q.

6
825681402

0.674336219

56 -

0.714869718
.40453686 |
. 460262307
.431586406
.414881332
.423470582
. 413649544

OO~

.414246530
.413648634

[\

.413642330
.413617171
.413519640
. 413546481
.413526215
.413520360
.413518673
.413518256
.413518298
.413518158
.413518156
.413518156

COOPCOOROIOP

.413524443
.413518132

o0

. 422568334
.413517758
0.413517731

[SXW]

9.413517731

grad E(u)

-0.871664578
13.688761696
-0.290699650
0.206177332
0.1824758868
-0.232045511
0.002464129

-0.133848672
-0.,002786224

-0,002901178
~0.003405187

0.013583464
-0.004827848
-0.005227335
-0.005346919
-0.005381538
-0.005389930

0.091691918
-9.004253857
-0.003492252
-0.003639533

0.036525553
-0.901304509

0.204028337
0.000341704
0.000001 197

-0 .000000002

The results of running the main procedure for
(2) using the cubic penalty function.

grad E(v)

0.236593116
13. 164194548
0.272851742
-0.282216329
-0.228146756
0.265611462
~-0.007038797

0.159147681
-0.00062 1506

-0.000460874
0.000172031
0.021665931
0.001949246
0.002472368
0.002622518
0.002662907
9.002673517
0.009764884
0.003814357
0.004666640
0.004429167

0.036776944
0.006309919

-9.26566680
-0.001642334
0.000000935

0.000000902




Table 9.
approach.
£p u
Iteration 1
1 9 . 290000060 0
2 9.886908741 (%)
3 0.763817028 0
4 0.787197483 (%}
S 0.783506835 (%)
Iteration 2
6 0.778194085 (%)
7 0.783318279 0
8 9.783267131 0
9 0.788261865 (%)
10 0.808240798 (%]
11 0.824216631 0
Iteration 3
12 0.824303922 (%)
Iteration 4
13 0.824304957 (%)

The minimum water volume possible in the

S =

40 - 2.29(2
~m

From Table 10

solution to the problem:

|

2.5

1.8

30

. 800000000
.613091259
.646584670
.640222819
.64 1227049

.663999976
.642035291
.642254533
.646344146
.662702597
.675783369

.675696078

.675695043

57

The numerical results of running the main procedure
for model (1) - (2)

using the projection-gradient

OO0

OOOOO®

.718931580
. 445553466
. 421538945
.418119630
.417899312

.422831819
.417885811
.417885166
.417840891
.41766732S
.417532505

.417532261

.417532261

+ V.) .

-A

-Q.
-0.

-9

-Q.
-0.

-0

-0.

-0

grad E(u)

869239520
.200549398
226466790
.073715000
.011455157

.223129076
003433487
007472815
.007413647
007203636
.007065115

.004609555

.004580436

-0.

-9.
-0.

-0.
-Q.

-0

-0.
-0.

grad E(v)

.236521178
294832486
.262839002
100851265
024860499

.256832079
006676667
001743353
.001728078
001641986
001545963

.004544872

.004580434

lake was defined as

we are able to evaluate the exact (local)

668122

14

In Table 11 the state of MWRA for the

the exogenous parameters 1is described.

ovtimal values of
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Figure 13. A graphic representation of the results of running
the main procedure for MWRA (T = 0.1).

4. CONCLUDING REMARKS

In this paper the method discussed has been considered
as a tool for improving the consistency of model criteria.
However, the dependence of the equilibria states on the
values of the exogenous parameters may also be used for
improving the consistency of a set of mathematical sub-

system models representing a complex system.

The problem of model linkage is based on an approach dis-
cussed in Umnov (1975) and (1979) for the case where there
exists a common criterion for the system of models. The
approach discussed here may be considered as a method for
linking models with diverse criteria measured in different

units. For example, MWRA can be divided into three submodels:

-~ submodel of water dynamics,

-- submodel of environmental impacts,

-- submodel of agriculture.

Each submodel has the water input volume as an exogenous
parameter and the criterion value measuring the quality of

the model states as its output. Thus, we have a system of



Table 10.

#p U
Jteration 1
1 0.700000004+91
2 0.69555741d+01
3 90.67778704d4+01
4 0.64900822d+01

.lteration 2

5 0.64449065d+01
6 0.62642036d+01
7 ©.55413921d+01
$ 0.26501460d+01
9 0.48185805d+01
10 0.41926074d+01
11 0.37012981d+01
12 0.39949954d+01
13 9.38745399d+61
14 ©.38023113d+01
15 0.38515702d+01
16 9.38580293d+01
17 ©.38571265d+01
18 0.385712654+01

Iteration 3
19 90.38571292d4+01
20 0.38571268d+91
21 ©.38571266d4+01
Iteration 4
22 0.25000000d4+01
[teration S
23 0.25000000d4+01

Iteration 6

24 0.250000004+01

COO®

OO0

[SXoES)

The results of

. 10000600d+01
.95643816d4+00
.78219079d+00
. S00000004+00

.50000000d+00
.50000000d +00
. 500000004 +00
.50000000d4+00
. 500000004 +00
. 500000004 +00
. 500000004 +00
. 500000004 +60
. 500000004 +90
. 500000004 +00
. 500000004 +00
.50000000d+00
. 500000004 +09
. 500000004 +00

.52714820d+00
.503038954+00
.50097630d+00

. 185708714+01

. 185664154+01

. 18566410d+01
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running the

OO0 OOOOOOOOOO

[SXEW

.94603224d+00
.94215905d+00
.92674064d+00
.90210146d4+00

. 900055004 +00
.891749674+00
.85615808d+00
. 19356799d+02
.81617291d+00
.77677370d4+00
. 107083674+01
.763424474+00
. 755036004 +00
.79281882d+00
.75429374d+00
.75390403d+00
.753893464+00
.753893464+00

.754995024+00
.753930224+00
.753879354+00

.701814794+00

.701812124+00

.70181212d+00

main procedure for MWRA.

1O 100100 I oo

grad E(u)

.444259174-91
.445441424-01
.437501334-01
.45175721d-01

.454260264-01
.46522249d-01
.52068101d-01
.31901598d4+02
.58982369d-01
.67330543d-01
.40924162d+01
.68595045d4-91
.70765746d4-01
. 141975794+01
. 144081324 +00
.23410870d-01
.45364897d4-07
. 10901585d-06

.70961990d~-01
.726130444-01
.253526484-01

.631139684d-01
.51564543d-01

.515513394d-01

ll|ll®®l®®|®®®‘

[SESFORN]

.435618434-0
.435299984-0
.42050392d4-90
.42007092d-0

grad E(v)

.42032535d-01
.42169727d4-091
.429979654-01
.31901598d4+02
.440472424-91
.452209444-01
.412590094+91
.436275514-91
.43886321d-01
. 14488438d4+01
.171418974+00
.37065162d-02
.27148199d-01
.271481664-01

.43949549d-01
.455247354-01
.177541904~-02

.115801824-01

. 13076689d-04

.26549118d-97
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Table 11. The state of MWRA for the optimal value of
the exogenous parameters.

. EXOGENQUS CONSTRAINT

Final volume of water in the lake
Capacity of natural water sources

Minimal flow to Mal
Minimal flow to the
Concent.level of po

List of criteria:

S:

mo
sea

11, in the sea

yields, water in the lake,

flow to

'3360?
1

.00 (1099cub.m)
.00( to norm.)
.87(cub.m/sec)
2.50(cub.m/see)
[0.00( g/cub.m )

flow to Maldo,

the sea, flow of polilution to the sea

RESULTS: Min.inconsistency = 67.9%

# of criterion

1 max 8§921.

2 max 7499,

3 max 7370.

4 max 30000.

S max 1

6 max 2.

7 min 9.
Technology

NOUNLEWN—

Yield ( tonr )

Water in. (190Qcub.m)
Water out.
Fertil.in.( ton )
Fertil.out.

Water in the lake

Flow out the lake

Flow into the sea
Flow to Malmo
Poliution out the lake
Pollution to the sea

Value Opt.value Consist.Z
24442 27014.51507 33.0
18131 22708. 16843 33.0
43615 22318.49608 33.0
00000 30000.. 90000 100.0
.86682 2.00000 93.3
56000 2.93318 85.2
38406 5.62000 33.0
Area | Area 2
ha ha
1884.84 973.81
9. 1258.05
0. 0.
1115.16 268.14
9. Q.
Q. .
Q. Q.
Area 1 Area 2
8921.244 7499. 101
334.547 457.858
66.909 45.786
167.273 48.265
25.091 7.240
30000.900(1900cub.m)
1.330(cub.m/sec)
2.500(cub.m/sec)
1.867(eub.m/sec)
3.939(g/sec)
9.384(g/sec)

Area
ha

3

457 .39
1842.61

OOV

Area 3

7370.436
552.783
119.557

2.
Q.



models with diverse criteria that describe various processes

within the region. Hence, the linkage problem can be defined
as one of finding optimal values for the exogenous parameters
such that an optimal degree of consistency between the models

can be achieved.
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