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ABSTRACT

We present here classical minimax inequalities as well as more
recent ones, as the Ky Fan inequality and its variants, which

play an important role not only in game theory, but in convex

and non convex analysis.
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MINIMAX THEORY: A SUMMARY

Jean-Pierre Aubin

TWO PERSON GAMES

Let us introduce the two players, Mike and Nancy, who have
to choose "strategies" x and y in "strategy sets" M and N ac-
cording to certain rules which we are about to describe. The
traditional way to ground game theory is to posit that each player
classifies pairs of strategies through a real valued function.
We can think of such a function as a map that associates to each
pair of strategies (x,y) its "cost", measured by a real number.
Since the concept of cost involves the notion of money, which is
quite difficult to master in economics, we prefer to call it a
"loss", So a player uses a loss function £ : MxN->R for defining

the preference preorder on M xN as follows:

(x1,y1) is preferred to (x2,y2) if and only if

(1)
f(X1IY1) __<_ f(leyZ) .

Whatever the relevance of this assumption is, we assume from now
on that Mike and Nancy select their strategies according to the

loss functions fM :MxXN->R and fN : M xN->R respectively.



Definition 1

A pair of strategies (x,y) is said to be a noncooperative

equilibrium of

(2) f (x,y) = min f_(x,y)
M XxeM M
(3) f.(x,¥) = min f (E,y)
N gen N R

So, a noncooperative equilibrium is a situation in which each
player optimizes his own criterion, assuming that the choice of
his partner is fixed. 1In other words, this is a situation of

individual stability.

We consider here the important case of two-person games that

satisfy the condition
(4) ¥x €EM, y EN, fM(x,y) + fN(x,y) =0

So, the loss of Nancy is the gain of Mike and vice versa.

For simplicity, we set

(5) fM(XIY) = f(XIY) ’ fN(ny) H _f(XIY)
# # .
(6) £ (x) := sup f(x,y), v" := inf sup f(x,y)
yEN XEM yEN

(read f-sharp and v-sharp) and

(7) f (y) := inf f£(x,y) ,
XEM
b .
(8) v~ := sup inf f(x,y)
YEN xeM

(read f-flat and v-flat).
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We assume that the behavior of Nancy consists only in being
hurtful to Mike, and that Mike knows it. (Actually, we need

only to assume that Mike believes that Nancy is nasty.) So,
he assigns to each strategy x &M the worst loss f#(x) and he min-
imizes it; the smallest worst loss is egqual to v#. We also

assume that Mike behaves in the same way, so that Nancy assigns
to each strategy y €N the worst gain fb(y) and she maximizes it:
the largest worst gain is egual to vb. Since fb(y) < f#(x) for

all xeM, yeM, we deduce that

(9) vb < v#

#

There are situations where vb is strictly less than v'.

Example

Consider the finite game

M= {1,2}, N={1,2,3}, f is described by the matrix

—
No1oo20 03 |
M Nancy selects columns

Mike selects rows

The entries of this matrix represent the loss of Mike. So,

the biggest losses of Mike are 2 and U4 respectively and thus,

Mike's conservative strategy is the first row and v# = 2. The
least gains for Nancy are respectively -6, =5, -4 and thus, her
conservative strategy is the third column and vb = -4. Let us

try to play that game for ourselves.

First, let Mike implement its conservative strategy (first
row). He expects Nancy to choose the second column. But the
conservative strategy for Nancy is the third column and she ex-

pects Mike to choose the second row. But if Mike is informed of



.

this choice (or guesses it), then we would do better to select
his second row (with a loss of -4) instead of the first one.
Similarly, if Mike chooses his conservative strategy, then Nancy
would do better to play her second row (with a gain of 2) instead
of the third.

This "wheels within wheels" situation illustrates the lack
of noncooperative equilibrium. The absence of noncooperative
equilibria when vb < v# is actually a general fact. The follow-
ing result shows that its existence requires very stringent

conditions.

Proposition 1

The following conditions are equivalent

i) (x,y) is a noncooperative equilibrium
(10) ii) V(le) €M x N, f(EIY) i f(gly) i f(Xr?)
ii1) vt =P = 2% = £

Definition 2

v#, this common value is called the value of the

When vb
game and a noncooperative equilibrium is called a saddle point.

There are examples where saddle points do exist.
A

Example

Consider the finite game

M= {1,2}, N={1,2,3}, f is described by the matrix

N
M 1 2 3

We observe that v = -1 and that the pair of conservative stra-

tegies (1,2) is a noncooperative equilibrium.



THE MINIMAX THEOREMS

We recall that a function f is inf-compact if its lower
level sets {x|f(x) <A} are relatively compact and that f is lower

semicontinuous if its lower level sets are closed.

Theorem 1 (lop-sided minimax). Let M and N be convex subsets

of vector spaces, M being supplied with a topology. We assume

that

i) Wy eN, x> f(x,y) is convex and lower semicontinuous

(11)
ii) 3 Yo EN such that x-+f(x,y0) is inf-compact

and that

(12) ¥x €M, y->f(x,y) is concave .

Then £ has a value (vb = v#) and there exists x €M such that
sup f(x,y) = vP. .
yeN

As a corollary, we obtain the von Neumann minimax Theorem (see

von Neumann and Morgenstern (1944)).

Theorem 2 (minimax). Let M and N be convex subsets of vector

spaces, supplied with topologies. We assume that

i) ¥y €N, x~+>£f(x,y) is convex and lower semicontinuous

(13)
Lii) Iy, EN such that x-+f(x,y0) is inf-compact

and

i) wxeM, y+>£f(x,y) is concave and upper semicontinuous

(14)

ii) fx, EM such that y-+f(x,y0) is sup-compact.

Then there exists a saddle point (x,y) €M xN.



MIXED STRATEGIES

We already observed that games with finite strategy sets
may not have values. In order to apply the minimax theorem, we
can convexify the strategy sets. Namely, let N :={1,...,n} and
M:={1,...,m} be finite sets. Mike's loss function f is defined
by the matrix of losses f£(i,j), 1€N, JEM. We regard elements

of the simplexes

n m
n n m m _
(15) 8§87 := {XEJR+|i§1xi=1J> , S == {y€R+|j£1yj—1} '

as the probabilities on N and M respectively. We extend the

function f to the function f defined on s x g™ by

£01,3) %y, .

n
(16) B(x,y) := 7} ]

Theorem 2 implies the following corollary.

Corollary 1. Assume that the strategy sets are finite. Then

there exist x€S™ and Fes™ such that

m — A — — ——
vxes”, yesT, tx,y) < £(x,y) < Bx,y) .
A
J. von Neumann proposed to interpret elements x €s™ and
y<ESm as "mixed strategies"”. In this framework, a player does

not play a strategy, but all strategies and chooses only the
probabilities. A justification for the use of mixed strategies
is the protection a player obtains by disguising his objectives
to his partner. By playing all strategies with a given prob-
ability, his partner cannot guess the strategy that he will

implement.

RELAXATION OF THE COMPACTNESS ASSUMPTION

The compactness assumption we made in Theorem 1, and, sub-
sequently, in the lop-sided minimax Theorem 2, happens to be too
strong in many problems. We shall relax it when M is a subset of

a Banach space.
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We consider two Banach spaces X and Y and a function f from

XXY to R := [-»,+0]. We set

(17) M:= {xeX|¥y €Y, £(x,y) < +o}
and

(18) N := {yey|vxex, f(x,y) >-«}

We shall say that M xN is the domain of £.

We assume that M and N are nonempty; we set:
(19) f is the restriction of £ to M xN .

Thus, f maps M XN to IR.

We begin by stating a corollary to Theorem 1 that uses the

~% *
conjugate functions fy from X to ]-»,+x] defined by

~%

(20) f_(p) := sup [<p,x>-’f(x,y)] .
Y x€X
We set
K * Kk
(21) Dom fy := {p€X |fy(p) < 4>}

Corollary 2. We assume that X is a reflexive Banach space

supplied with its weak topology. Theorem 1 remains true when we

replace assumption (11)ii) by assumption

~rk
3y, €N such that 0 € Int (Dom fy ) (for the
0

(22) N
strong topology of the dual X ).

A

Assumption (22) can be considerably relaxed, as the follow-

ing theorem shows.

Theorem 3 (relaxed lop—sided minimax Theorem). Let X and Y

be reflexive Banach spaces and f be a function from X xY to IR

whose domain M xN is nonempty. We assume that
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(23) ¥y €N, x->f(x,y) is convex lower semicontinuous,
that
(24) ¥xeM, y~ f(x,y) is concave upper semicontinuous,
and that
~ %

(25) 0€Int( VY Dom f ) (for the strong topology)

N Y

Yy
Then £ has a value v := vb = v# and there exists x €M such that

sup £(x,y) = v. (See Aubin (1979), chapter 13.)
YEN A

PLAYING DECISION RULES

Let M and N be the strategy sets of Mike and Nancy and f be
Nancy's gain function. She can use it to assign to each decision

rule CN :M>N a gain defined by

(26) f¥(c ) := inf f(x,C.(x)) .
N xeM N

This represents the worst gain she can expect using the decision

rule CN' assuming that Mike's behavior is noncooperative.

Note that this definition is consistent with the definition
of the worst gain yielded by a strategy y, regarded as a constant

decision rule x »y:

£2(3) := inf £(x,7) = inf £(x,3(x)) .
xeEM XEM

Consequently, if CN is a set of continuous decision rules con-

taining the set N of constant decision rules,

vb := sup inf f(x,y) < sup fb(CN)

YEN xXEM CNGCN
(27)
< inf sup f(x,y) := v#
XEM yEN

Symmetrically, Mike assigns to each decision rule CM : N ->M the

worst loss



#

(28) £7(Cy) = sup £(Cy(y),y) .

yeN
If CM is a set of continuous decision rules containing the set
M of constant decision rules, we have

(29) W < int fhy < v

c
CM CM
We shall present a set of assumptions (weaker than the assump-

tions of Theorem 2) under which

inf f#(CM) - sup fb(CN) i

€
CM € CM CN CN

Theorem 4. Let M be a topological space, N be a convex sub-
set of a topological vector space and f be a function from M xN

to IR. Let us suppose that

i) 3y, EN such that x-+f(x,y0) is inf-compact

(30)

ii) ¥y €EeN, x~>£f(x,y) is lower semicontinuous
and that
(31) ¥xeM, y-—+f(x,y) is concave.

Let CM := C(N,M) and CN:=C(M,N) denote the set of continuous
decision rules of Mike and Nancy. Then there exists x €N such
that

sup f(x,y) = ot
f Y
= inf sup £ (Cy, (y),y)
(32) < CMGCM yEM v
L = sup inf £(x,Cg(x))
cNEECN XEN

(See Aubin (1979), chapter 7.)
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This is a very powerful theorem, equivalent to the Brouwer fixed
point Theorem and all the many eguivalent results of nonlinear
analysis. A conseguence of it is the very important Ky Fan's
inequality (Ky Fan (1972)). It happens that it is a more versa-
tile tool of nonlinear analysis than the Brouwer or Schauder
fixed point theorems or the Kakutani fixed point theorem. (See
Aubin (1979), chapters 8, 9 and 15.)

Theorem 5 (Ky Fan). Let K be a compact convex of a topolog-

ical vector space and ¥?: K xK>IR be a function satisfying
i) ¥y €K, x> P(x,y) is lower semicontinuous

(33)
ii) v¥x €K, y-» ¢x,y) is concave.

Then there exists x €K satisfying

(34) sup P(x,y) < sup ¥(y,y)
y€EK Y€K

THE FINITE TOPOLOGY

Still, despite their apparent generality, assumption (33)1i)
of Ky Fan's Theorem is not satisfied in several instances. We
shall replace it by another set of assumptions involving the
finite topology, which is not generally a vector space topology,
but which is stronger than any vector space topology. Let N be

a convex subset of a vector space.

We associate with any finite set K := {y1,...,yn} of n
elements Y of N the map BK from s" to N defined by

n
n ——
(35) YA ES , By (A) &= zxiy

The finite topology on a convex subset N is the strongest topology
for which the maps BK are continuous when K ranges over the family

S of finite subsets of N. N

So, a map C from N, supplied with the finite topology, to

a topological space M is continuous, if and only if
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(36) ¥K €S, the maps CBK from S” to M are continuous.

Also, any map C from a topological space M to N of the form

I ~>8

(37) C(x) = By P(x) =

1

1

where E is a continuous map from M to Sn, is continuous from M
to N supplied with the finite topology. Any affine map from a
convex set M to a convex set N is continuous when they are both

supplied with the finite topology.
We begin by generalizing Theorem 4.

Theorem 4 bis. Theorem 4 holds true when N is supplied with

the finite topology.

We now present an inequality due to Brézis-Nirenberg-
Stampacchia (1973) which is very useful in the theory of mono-

tone operators.

Theorem 6 (Ky Fan's inequality for monotone functions).

Let KCX be a convex subset of a topological vector space and

P: KxK+>IR be a function satisfying

r 1) ¥y€EK, x-»> ¥Y(x,y) is lower semicontinuous

for the finite topology

ii) ¥x€K , vy~ ¥x,y) is concave and upper

semicontinuous

~

We also assume that
(39) 3 yg €K such that x->P(x,y0) is inf-compact

and that ¥ is "monotone" in the sense that

i) v¥y€K, Ply,y) <0

(40)
ii) ¥x,y€K, ¥(x,y) + Ply,x) >0 .
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Then there exists X €K such that

(41) sup P(x,y) < 0 .
vyEK -
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