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FOREWORD 

~ h e ' w a y s  i n  which o u r  s o c i e t y  may have t o  a d a p t  and respond 
t o  changes  induced by energy s h o r t a g e s ,  env i ronmenta l  c e i l i n g s ,  
and f o o d i n s u f f i c i e n c i e s h a s  been t h e  s u b j e c t  o f  much a n a l y s i s  and 
d e b a t e  d u r i n g  t h e p a s t d e c a d e .  I n  a l l  o f  t h i s  f l u r r y  o f  concern  
w i t h  pe r ce ived  l i m i t s  t o  growth,  however, i n s u f f i c i e n t  a t t e n t i o n  
ha s  been accorded t o  t h e  e f f e c t s  o f  a  v a r i a b l e  t h a t  may overshadow 
a l l  o f  t h e  rest i n  impor tance:  changing p o p u l a t i o n  dynamics and 
l i f e s t y l e s  and t h e i r  socioeconomic impac t s .  

Exp los ive  p o p u l a t i o n  growth i n  t h e  less developed c o u n t r i e s  
and p o p u l a t i o n  s t a b i l i z a t i o n  i n  t h e  more developed n a t i o n s  have 
c r e a t e d  unprecedented s o c i a l  i s s u e s  and problems. S o c i a l  d i s -  
e q u i l i b r i a  a n d d i s p a r i t i e s l i e  a t  t h e  h e a r t  o f  t h e s e ,  and t h e  pop- 
u l a t i o n  v a r i a b l e  p l a y s  a  fundamental  r o l e  i n  t h e i r  g e n e r a t i o n  
and r e s o l u t i o n .  The s o c i e t a l  r a m i f i c a t i o n s  o f  i t s  changing age  
composi t ion ,  p a t t e r n s  o f  f ami ly  fo rmat ion  and d i s s o l u t i o n ,  move- 
ments from one r e g i o n  t o  a n o t h e r ,  h e a l t h  s t a t u s  and demands f o r  
c a r e ,  and p a r t i c i p a t i o n  i n  t h e  l a b o r  f o r c e  w i l l  be profound.  

Fundamental changes  i n  t h e  "human f a c t o r "  a r i s e  d u r i n g  a 
p roce s s  o f  s o c i e t a l  s t r u c t u r a l  t r a n s f o r m a t i o n  t h a t  may be char -  
a c t e r i z e d  by t h e  i n t e r s e c t i o n  o f  t h e  demographic r e v o l u t i o n ,  t h e  
ep idemio log i ca l  t r a n s i t i o n ,  and i n d u s t r i a l i z a t i o n .  During t h i s  
t r a n s f o r m a t i o n  b i r t h  and d e a t h  r a t e s  d e c l i n e ,  geog raph i ca l  and 
s o c i a l  m o b i l i t y  i n c r e a s e ,  i n f e c t i o u s  d i s e a s e s  a r e  d i s p l a c e d  by 
d e g e n e r a t i v e  d i s e a s e s ,  and a g r i c u l t u r a l  employment d e c l i n e s  i n  
p r o p o r t i o n  t o  t h a t  engaged i n  i n d u s t r y  and s e r v i c e s .  These s h i f t s  
i n t r o d u c e  temporary imba lances ,  b u t  t h e y  g e n e r a l l y  l e a d  t o  long- 
term g a i n s  i n  t h e  human c o n d i t i o n .  



Rapid s o c i a l  change combinedwithheterogeneityinpopulations 
i n  s k i l l s  and e x p e r i e n c e s  l e a d s t o d i s p a r i t i e s  i n  we l l -be ing  ( e . g . ,  
income and h e a l t h )  among v a r i o u s  subgroups o f  n a t i o n a l  popu l a t i ons :  
between g e n e r a t i o n s ,  s o c i a l  g roups ,  and r u r a l / u r b a n  s e c t o r s .  A l l  
t o o  o f t e n  p o l i c i e s  de s igned  t o  r e d r e s s  such  d i s p a r i t i e s  s t a n d  a  
good chance o f  worsening them u n l e s s  c o n s i d e r a t i o n  i s  g iven  t o  
t h e  f u l l  r ange  o f  i n d i r e c t  e f f e c t s  o f  t h e  p o l i c i e s .  Thus it i s  
v i t a l  t o  unders tand  how s t r u c t u r a l  changes i n  s o c i e t y  c r e a t e  d i s -  
e q u i l i b r i a ,  how d i f f e r e n t  d i s e q u i l i b r i a  i n t e r a c t ,  and how t h e  
r e sponse  o f  p o p u l a t i o n s  t o  s t r u c t u r a l  t r a n s f o r m a t i o n  depends on  
h e t e r o g e n e i t y  w i t h i n  t h e  popu l a t i on .  

James Vaupel (USA) and A n a t o l i  Yashin (USSR) examine t h e  
impac t s  of  h e t e r o g e n e i t y  on p o p u l a t i o n s  whose members a r e  g r a d u a l l y  
making some major  t r a n s i t i o n .  T h e i r  f o c u s  i s  on human m o r t a l i t y ,  
b u t  t h e  mathematics  t h e y  deve lop  i s  r e l e v a n t  t o  s t u d i e s  o f ,  f o r  
example, m i g r a t i o n ,  morb id i t y ,  ma r r i age ,  c r i m i n a l  r e c i d i v i s m ,  
d rug  a d d i c t i o n ,  and t h e  r e l i a b i l i t y  o f  equipment.  Vaupel and 
Yashin show t h a t  t h e  obse rved  dynamics o f  t h e  s u r v i v i n g  p o p u l a t i o n  
- the  p o p u l a t i o n  t h a t  h a s  n o t  y e t  made t h e  t r a n s i t i o n - w i l l  sys -  
t e m a t i c a l l y  d e v i a t e  from t h e  dynamics o f  t h e  behav io r  o f  any o f  
t h e  i n d i v i d u a l s  t h a t  make up t h e  a g g r e g a t e  p o p u l a t i o n .  Fu r the r -  
more, t h e y  deve lop  methods f o r  uncover ing t h e  unde r ly ing  dynamics 
o f  i n d i v i d u a l  behav io r  g iven  o b s e r v a t i o n s  of  p o p u l a t i o n  behav io r .  
These methods w i l l  be  u s e f u l  i n  e x p l a i n i n g  and p r e d i c t i n g  demo- 
g r a p h i c  p a t t e r n s .  I n  a d d i t i o n ,  because  t h e  impact  o f  a  p o l i c y  
i n t e r v e n t i o n  can  sometimes on ly  be c o r r e c t l y  p r e d i c t e d  i f  t h e  
v a r y i n g  r e sponse s  o f  d i f f e r e n t  k i n d s  o f  i n d i v i d u a l s  a r e  t aken  i n t o  
accoun t ,  t h e  methods shou ld  p rove  t o  be  o f  v a l u e  t o  p o l i c y  a n a l y s t s .  

Andrei  Rogers 
Chairman 
Human S e t t l e m e n t s  
and S e r v i c e s  Area 



ABSTRACT 

The members of most populations gradually die off or drop out: 
people die, machines wear out, residents move out, etc. In 
many such "aging" populations, some members are more likely to 
"die" than others. Standard analytical methods largely ignore 
this heterogeneity; the methods assume that all members of a 
population at a given age face the same probability of death. 
This paper presents some mathematical methods for studying how 
the behavior over time of a heterogeneous population deviates 
from the behavior of the individuals that make up the popula- 
tion. The methods yield some startling results: individuals 
age faster than populations, eliminating a cause of death can 
d e c r e a s e  life expectancy, a population can suffer a higher death 
rate than another population even though its members have lower 
death rates, population death rates can be increasing even though 
its members' death rates are decreasing. 
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THE DEVIANT DYNAMICS OF DEATH 
IN HETEROGENEOUS POPULATIONS 

WHAT DIFFERENCE DO DIFFERENCES MAKE? 

Many systems are aggregations of similar objects. Forests 

are collections of trees; flocks are congregations of birds or 

sheep; cities are amalgams of buildings; plants and animals are 

built up of cells. The units in such collections usually have 

limited life spans and evolve and change over their life before 

they die or are renewed. The units, although similar, are 

rarely identical; even two mass-produced automobiles of the same 

make and model can differ substantially. In studying populations 

of similar objects, however, and in analyzing the impact of inter- 

ventions and control policies, the simplifying assumption is often 

made that the units are identical. A key question thus is: 

what difference does it make to ignore individual differences and 

treat a population as homogeneous when it is actually heterogeneous? 

This paper addresses some aspects of this general question. 

The focus is on patterns over time in aging and life-cycle pro- 

cesses and, more specifically, on jumps and transitions in these 

processes. Examples abound. Animals and plants die, the healthy 

fall ill, the unemployed find jobs, the childless reproduce, and 

the married divorce. Residents move out, machines wear out, 



natural resources get used up, and buildings are torn down. 

Infidels convert, ex-convicts recidivate, abstainers become 

addicted and hold-outs adopt new technologies. Regularities 

in such processes are studied by researchers in such diverse 

specialties as reliability and maintenance engineering, 

epidemiology, health care planning, actuarial statistics, 

and criminology, as well as by analysts in disciplines such 

as demography, economics, ecology, sociology, and policy analysis. 

In many collections or populations, some units are more 

likely to make a transition than others. Standard analytical 

methods largely ignore this heterogeneity; the methods assume 

that all members of a population at a given age face the same 

probability of change. This paper presents some methods for 

studying what difference heterogeneity makes in the behavior 

of a changing population over time. 

The analytical methods will be illustrated by examples 

drawn from the study of human mortality, and, henceforth, the 

word "death" will be used instead of the more general terms 

"change" and "transition". Readers interested in areas of 

applications other than human mortality should associate death 

with a more appropriate analogous word like failure, separation, 

occurrence, or movement. 

The focus on human mortality implies a focus on the simplest 

kind of life-cycle process, i.e., a process with just one transi- 

tion that leads to exit. This simplicity permits the effects 

of heterogeneity to be clearly shown and readily explained. 

The focus on human mortality gives the exposition a concreteness 

that fosters intelligibility. Furthermore, it turns out that 

the analytical methods yield some stimulating insights and 

policy implications when applied to human mortality. 

ROOTS OF THE RESEARCH 

A small but growing body of research is relevant to the 

analysis of differences in the behavior over time of heterogeneous 

versus homogeneous populations. Some strands of this research 



can be traced back to Cournot's study of judicial decisions 

(1838) and Weinberg's investigation of the frequency of multiple 

births (1902). Greenwood and Yule's analysis of differences in 

accident proneness and susceptibility to illness (1920) was 

followed up by Lundberg (1940), Arbous and Kerrich (1951), and 

Cohen and Singer (1979). Gini (1924) considered heterogeneity 

in female fecundity; Potter and Parker (1964) and Sheps and 

Menken (1973) developed this approach. In their influential 

study of the industrial mobility of labor, Blumen, Kogan, and 

McCarthy (1955) distinguished "movers" from "stayers" and then 

considered an arbitrary number of groups with different "prone- 

ness to movement"; Silcock (1954) used a continuous distribution 

over individuals to describe the "rate of wastage" in labor 

turnover. This research on the mobility of labor was generalized 

and extended to such related fields as income dynamics and 

geographic migration by Spilerman (1972), Ginsberg (1973), 

Singer and Spilerman (1974), Kitsul and Philipov (1981), and 

Heckman and Singer (1982), among others. Harris and Singpurwalla 

(1968) and Mann, Schafer, and Singpurwalla (1974) developed 

methods for taking into account differences in reliability among 

machines and equipment. Shepard and Zeckhauser (1975, 1977, 

1980a, 1980b; Zeckhauser and Shepard 1976) pioneered the analyses 

of heterogeneity in human mortality and morbidity; Woodbury and 

Manton (1977), Keyfitz and Littman (1980), Kanton and Stallard 

(1979, 1981a, 1981b) and Vaupel, Hanton, and Stallard (1979a; 

Manton, Stallard, and Vaupel, 1981) have made further contributions. 

This rich body of research indicates that there is a core 

of mathematical methods that can be usefully applied to the 

analysis of heterogeneity in such diverse phenomena as 

accidents, illness, death, fecundity, labor turnover, migration, 

and equipment failure. These sundry applications and the varied 

disciplinary backgrounds of the researchers make it hardly 

surprising that key elements of this common core of mathematics 

were independently discovered by several researchers. Further 

progress, however, surely would be accelerated if the wide 

applicability of the underlying mathematics of heterogeneity 

were recognized. 



A UNIFYING QUESTION 

Building on this body of research and, most directly, on 

Vaupel, Manton, and Stallard (1979a), this paper addresses a 

basic question: how does the observed rate of death, over time, 

for a cohort of individuals born at the same time relate to 

the probability of death, over time, for each of the individuals 

in the cohort. This question provides a unifying focus for 

developing the mathematical theory of the dynamics of heterogeneous 

populations. It is also a useful question in applied work 

because researchers usually observe population death rates but 

often are interested in individual death rates, for three main 

reasons. First, the effect of a policy or intervention may 

depend on individual responses and behavior. Second, individual 

rates may follow simpler patterns than the composite population 

rates. And third, explanation of past rates and prediction of 

future rates may be improved by considering changes on the 

individual level. 

It turns out that the deviation of individual death rates 

from population rates implies some surprising and intriguing 

results. Individuals "age" faster than populations. Eliminating 

a cause of death can d e c r e a s e  life expectancy. A population can 

suffer a higher death rate than another population even though 

its members have lower death rates. A population's death rate 

can be increasing even though its members' death rates are 

decreasing. 

The theory leads to some methods that may be of use to 

policy analysts in evaluating the effects of various interventions, 

e.g., a medical care program that reduces mortality rates at 

certain ages; Shepard and Zeckhauser (1981b) develop and dis- 

cuss some methods of this kind. The theory also yields predic- 

tions that may be of considerable interest to policy analysts. 

For example, in the developed countries of the world, death 

rates after age 70 and especially after age 80 may decline 

faster-and at an accelerating rate-than now predicted by 

various census and actuarial projections. As a result, pres- 

sures on social security and pension systems may be substantially 

greater than expected. 



MATHEMATICAL PRELIMINARIES 

Let R be some set of parameters o. Assume that each param- 

eter value characterizes a homogeneous class of individuals and 

that the population is a mix of these homogeneous classes in 

proportions given by some probability distribution on R. 

Denote by po(x) the probability that an individual from 

homogeneous class w will be alive at age x and let pw(x) be 

the instantaneous age-specific death rate at age x for an 

individual in class w. By definition, 

Similarly, let p(x) be the probability that an arbitrary 

individual from the population will be alive at age x. That 

is, let p(x) be the expected value of the probability of sur- 

viving to age x for a randomly chosen individual at birth. 
- 

Alternatively, p(x) can be interpreted as the expected value 

of the proportion of the birth cohort that will be alive at 
- 

age x. The cohort death rate, ~ ( x ) ,  is then defined by: 

Throughout this paper, superscript bars will be used to denote 

variables pertaining to expected values either for a randomly 

chosen individual at birth or, alternatively, for the entire 

cohort. 

Suppose that all the individuals in a population were 

identical and that their chances of survival were described 

by p(x). Then, it turns out that p(x) would be the same as 

p(x). Thus, a cohort described by p(x) could be interpreted 

as being a homogeneous population comprised of identical 

individuals each of whom had life-chances given by p(x) = p ( x ) .  
This remarkable fact means that researchers interested in 

population rates can simplify their analysis by ignoring 



heterogeneity; this simplification has permitted the development 

of demography, actuarial statistics, reliability engineering, 

and epidemiology. 

For some purposes, however, the simplification is inadequate, 

counter-productive, or misleading. For example, sometimes 

researchers are interested in individual rather than population 

behavior, sometimes patterns on the individual level are simpler 

than patterns on the population level, and sometimes the impact 

of a policy intervention can only be correctly predicted if the 

varying responses of different kinds of individuals are taken 

into account. That is, sometimes individual differences make 

enough difference that it pays to pay attention to them: a 

variety of specific examples are given later in this paper. 

Furthermore, it turns out that the complexities introduced by 

heterogeneity are not intractable; indeed, the mathematical 

methods presented in this paper are fairly simple. 

The expected proportion of the entire population that is 

alive at time x and that will die in the period from x to x+l 

is given by the formula 

When y(x) is small and does not change significantly in the 

period from x to x+l, then 

- 
Consequently, y(x) is often intuitively interpreted as describing 

the probability of death. 

Because of their instantaneous nature, death rates like 
- 
y(x) and y (x) are often more mathematically convenient than 

W 

probabilities like q(x) or other statistics such as life expec- 

tancy or life-span fractiles: the mathematical methods of 

this paper will be derived largely in terms of death rates. 



As might be expected, the rate of death is commonly used in 

various applications and has numerous aliases, including hazard 

rate, mortality rate, failure rate, occurrence rate, transition 

rate, rate of wastage, force of mortality, force of separation, 

force of mobility, conditional risk, death intensity, transition 

intensity, intensity of migration, and intensity of risk. 

BASIC MATHEMATICAL FORMULATION 

In mortality analysis, the adjective "heterogeneous" 

usually implies that individuals of the same age differ in their 

chances of death. As in many other problems involving relative 

measurement, it is useful to have some standard or base line 

to which various individuals' death rates can be compared. Let 

p(x) be this standard, base-line death rate: how values of 

P(X) might be chosen will be discussed later. The "relative- 

risk" for individuals in homogeneous class w at time x will be 

defined as 

It is convenient to use p(x,z) to denote the death rate at time 

x of individuals at relative-risk z. Clearly, 

Thus, 

The standard death rate p(x) can therefore be interpreted as 

the death rate for the class of individuals who face a relative- 

risk of one. 

This formulation is simple and broadly applicable. More 

importantly, it yields a powerful result that is central to the 

mathematics of heterogeneity. Let fx(z) denote the conditional 



density of relative-risk among survivors at time x. As 

shown in the Appendix, the expected death rate in the population, 
- 
p(x), is the weighted average of the death rates of the individ- 

uals who comprise the population: 

Since z(x), the mean of the relative-risk values of time x, is 

given by : 

it follows from (4) that 

This simple result is the fundamental theorem of the mathe- 

matics of heterogeneity, since it relates the death rate in the 

population to the death rates for individuals. The value of 

~ ( x )  gives the death rate for the hypothetical "standard" 

individual facing a relative-risk of one; multiplying p(x) by 

z gives the death rate for an individual facing a relative-risk 

of z. The value of z(x) gives the average relative-risk of the 

surviving population at time x. In interpreting this it may be 

useful, following Vaupel, Manton, and Stallard (1979a), to view 
- 

z as a measure of "frailty" or "susceptibility". Thus, z(x) 

measures the average frailty of the surviving cohort. 

UNCHANGING FRAILTY 

The relationship over time of c(x) versus p(x) is deter- 

mined by the trajectory of z(x). The simplest case to study 

is the case where individuals are born at some level of relative- 

risk (or frailty) and remain at this level all their lives. 



In this case, the only factor operating to change z(x) is the 

higher mortality of individuals at higher levels of relative- 

risk; thus, this pure case most clearly reveals the effects of 

differential selection and the survival of the fittest. Although 

most of this paper addresses this special case, some generaliza- 

tions are discussed near the end of the paper. It turns out 

that the mathematics derived for the special case also holds 

for a broader range of assumptions, so that the special case 

is less restrictive than it may seem at first. 

Imagine a population cohort that is born at some point in 

time. Let f (z) describe the proportion of individuals in the 0 
population born at various levels of relative-risk z; fo(z) 

can be interpreted as a probability density function. Assume 

that each individual remains at the same level of z for life. 

For convenience, the mean value of fo(z) might as well be taken 

as 1, so that the "standard" individual at relative-risk 1 is 

also the mean individual at birth. As before, let y(x,z) and 

y(x) be the death rates of individuals at relative-risk z and 

of the standard individual. Let H(x,z) be the cumulative "hazard" 

experienced from birth to time x: 

Clearly, 

The probability that an individual at relative-risk z will 

survive to age x is given by 

P(X,Z) = P ( ~ ) Z  = e 
-zH (x) 

Consequently, 



where the denominator is a scaling factor equal to p(x), the 

proportion of the population cohort that has survived to age x. 

Thus, 

Differentiating (13) with respect to x yields 

dz (x) 2 
dx = -P (x) a, (x) 

L 
where a (x) is the conditional variance of z among the popula- 

Z 2 tion that is alive at time x. Since p(x) > 0 and aZ (x) > 0, 

the value of dz(x)/dx must be negative. Therefore, as might 

be expected, mean relative-risk declines over time as death 

selectively removes the frailest members of the population. 

This means that p(x) increases more rapidly than y(x): indivi- 

duals "age" faster than populations. 

If P (x) > 0, all x, then 

- 
z (x) z Z(xl) iff x < X I  

and 
- 
p(x) < F(xl) iff x < X I  

Consequently, 

--I - 
where p (p) is the inverse function of p(x), and p and p1 are 
two specific values of the survival function. That is, mean 

relative-risk declines monotonically not only with age (or 

time) x but also with the proportion surviving F. 



HOW y DIVERGES FROM 

The magnitude of the divergence of y (x) from p ( x )  depends 

on the distribution of relative-risk. Several researchers in 

different fields, including Silcock (1954), Spilerman (1972), 

Mann, Schafer , and Singpurwalla ( 1 974) , and Vaupel , Manton, 
and Stallard (1979a), have discovered that the gamma distribution 

is especially convenient to work with, since it is one of the 

best known non-negative distributions, is analytically tractable, 

and takes on a variety of shapes depending on parameter values. 

If the mean relative-risk at birth is one, then the gamma prob- 

ability density function at birth is given by: 

where k, the so-called shape parameter, is (when the mean is one) 
2 equal to the inverse of the variance, o . When k equals one, 

the distribution is identical to the exponential distribution; 

when k is large, the distribution assumes a bell-shaped form 

reminiscent of a normal distribution. 

If relative-risk at birth is gamma distributed with mean 

one, it can be shown (see Vaupel, Manton, and Stallard 1979a) 

that 

and that 

Thus the relationship of y(x) to p(x), as determined by z(x), 

can be determined by the cumulative hazard for either the 

population or the standard individual. In the special case 

where o2 equals one, the value of z(x) falls off with p(x), 

the proportion of the cohort that is surviving. It also can 

be shown (Vaupel, Manton, and Stallard 1979a) that fx(z) is 



gamma distributed, with a mean of z(x) and a shape parameter 

equal to the same value of k as at birth. 

These results for the gamma distribution with mean one 

at birth are easily generalized to the case of any mean z(0) 

at birth. Formula (18) then becomes 

and formula ( 1 9) becomes 

There is, however, little reason to use this generalized form- 

ulation. Let 

and 

This simple and harmless transformation converts formulas (18') 

and ( 19 ' ) back to ( 18) and ( 19) . Furthermore, as indicated 

earlier, the standard death rate p(x) might as well be associated 

with the mean individual at birth. 

Instead of working with a gamma distribution, it might 

seem more natural to assume that there is some normally distributed 

risk factor w that determines relative-risk z: 

It turns out that if w is normally distributed with mean zero 

and any variance 02, then z will be gamma distributed with a 

shape parameter of one-half. Thus, nothing is to be gained by 

working with the normal distribution with mean zero rather than 

with a gamma distribution. 



In the "mover/stayer" model developed by Blumen, Kogan, 

and McCarthy (1955), individuals fall into two groups with 

relative-risk zl and z2. The value of zl can be assumed equal 

to zero, but more generally zl can simply be taken as less 

than z2. Using equation (13), it is not difficult to confirm 

that when mean relative-risk at birth is one, 

- 
Consequently, z(x) will start at a value of one when x is zero 

and will fall off to a value of z, as the individuals at 

relative-risk z2 die off at a relatively rapid rate. 

Another distribution of interest may be the uniform dis- 

tribution, stretching from 1 - a  to 1 +a, with a I 1. In this 

case, it is possible to show that 

- aH(x) + -aH (x) 
z(x) = 1 - at 

aH(x) - -aH (x) 

In deriving this result, it is helpful to realize that z(x) 

can be considered to be a function of H and that the equation 

for T(H) can be expressed as 

- 
z (H) = [df* (H)/~H] / f* (H) (24) 

* 
where f (H) is the Laplace transform of fo (z) . Formula (23) 

implies that z(x) approaches 1 - a  as x increases. 

Although formulas for z(x) have not been derived for other 

distributions, the value of T(x) can generally be readily 

computed, to a close approximation, by applying numerical 

methods to equation (13). The values in Table 1 for the 

Weibull and lognormal distributions were calculated in this way. 



Table  1 i s  de s igned  t o  show how p ( x )  d i v e r g e s  from F ( x )  

g iven  d i f f e r e n t  i n i t i a l  d i s t r i b u t i o n s  o f  r e l a t i v e - r i s k  w i th  

d i f f e r e n t  v a r i a n c e s .  The t a b l e  p r e s e n t s  v a l u e s  o f  p ( x ) / v ( x ) ,  

which e q u a l s  t h e  i n v e r s e  o f  z ( x ) .  The r e s u l t s  a r e  p r e s e n t e d  

f o r  d i f f e r e n t  v a l u e s  o f  p ( x ) ,  t h e  p r o p o r t i o n  o f  t h e  i n i t i a l  

p o p u l a t i o n  t h a t  i s  s u r v i v i n g :  p r e s e n t i n g  t h e  r e s u l t s  f o r  v a l u e s  

of  p ( x )  r a t h e r  t h a n  f o r  v a l u e s  of  x  i s  conven i en t  s i n c e  assump- 

t i o n s  abou t  t h e  r a t e  o f  ag ing  over  t i m e  ( i . e . ,  abou t  how p ( x )  

changes  w i t h  x)  do n o t  have t o  be made. The t a b l e  i n d i c a t e s  

t h a t  p ( x )  can  be s u b s t a n t i a l l y  g r e a t e r  t h a n  y ( x )  when on ly  a  

f r a c t i o n  o f  t h e  p o p u l a t i o n  i s  a l i v e :  even when t h e  v a r i a n c e  

i n  r e l a t i v e - r i s k  i s  on ly  0.1 (compared w i t h  a  mean l e v e l  a t  

b i r t h  o f  I ) ,  p ( x )  i s  30 t o  50 p e r c e n t  h i g h e r  t h a n  r ( x )  when 5  

p e r c e n t  o f  t h e  p o p u l a t i o n  i s  s u r v i v i n g .  A s  t h e  t a b l e  demon- 

s t r a t e s ,  t h e  deg ree  o f  d ive rgence  of p ( x )  from y ( x )  depends on 

bo th  t h e  form of  t h e  i n i t i a l  d i s t r i b u t i o n  o f  r e l a t i v e - r i s k  and 

t h e  v a r i a n c e  of  t h i s  d i s t r i b u t i o n .  

Tab l e  1 .  The d ive rgence  o f  p from y. 

Variance and form Values o f  p / c  when 6, t h e  p ropor t i on  of t h e  cohor t  
su rv iv ing ,  i s :  

of d i s t r i b u t i o n  
of r e l a t i v e - r i s k  1 .OO .75  . 50  . 2 5  .10 .05 

Gamma 
Weibull  
lognormal 

Exponent ia l  a 

lognormal 

Gamma 1 .OO 1 . 7 8  4 . 0 0  1 6 . 0 0  100.00 4 0 0 . 0 0  
Weibull  1 .OO 1 . 7 0  3 . 3 2  9 . 5 6  3 6 . 1 0  9 9  .01 
lognormal 1 .OO 1 . 4 9  2 .23  3 .46  5 . 6 1  7 . 6 5  

a 2 
Note: when 0 = 1, t h e  gamma and Weibull  d i s t r i b u t i o n s  a r e  i d e n t i c a l  t o  
t h e  exponen t i a l  d i s t r i b u t i o n .  



THE SHAPE OF THE A G I N G  TRAJECTORY 

Although Table 1 and equa t ions  ( 1 8 ) ,  ( 1 9 ) ,  ( 2 2 ) ,  and ( 2 3 )  

provide in format ion  about  t h e  amount of d ivergence between p ( x )  

and r ( x ) ,  a n a l y s i s  of  t h e  shape of p ( x )  and r ( x )  r e q u i r e s  some 

assumptions about  how one of t h e s e  two curves  i n c r e a s e s  wi th  x .  

I f  r e l a t i v e - r i s k  a t  b i r t h  i s  gamma d i s t r i b u t e d  wi th  mean 1 and 

va r i ance  oL , then  t h e  correspondence between f o u r  d i f f e r e n t  

formulas f o r  p ( x )  and F ( x )  i s  given i n  Table 2 .  Figures  la-d 

d e p i c t  how t h e  curves  f o r  p ( x )  and p (x) d ive rge  i n  t h e s e  fou r  

c a s e s .  The t a b l e  and f i g u r e s  c l e a r l y  demonstra te  t h a t  t h e  pa t -  

t e r n  of  i n d i v i d u a l  aging can r a d i c a l l y  d i f f e r  from t h e  observed 

p a t t e r n  of ag ing  i n  t h e  s u r v i v i n g  c o h o r t .  

Table 2 .  I n d i v i d u a l s  age f a s t e r  than c o h o r t s .  

When z is gamma distributed with variance oL at birth: 

If tne value of V(x) Then the value of r ( x )  is 
is given by: given by: 

2 
NOTES: If u(x) = ax, then r(x) reaches a maximum of Ja/2o when x = . - -  

bx - 2 
If p(x) = ae , then as x + p (x) + b/u . If r(x) = 

bx 
ae (i . e . , follows a Gompertz curve) , then the ratio of v (x) to 
- 
p(x) can be expressed as a double-exponential equation: 



Figure  1 .  P a t t e r n s  of d ivergence .  Examples ( a )  - (d)  d e p i c t  t h e  t r a j e c t o r i e s  of  p (x )  and 
p ( x )  t h a t  correspond t o  t h e  a l g e b r a i c  exp res s ions  presen ted  i n  Table 2 .  





THE DISTRIBUTION OF LIFESPANS 

Although the discussion so far has focused on the divergence 

of y from over time, comparisons of individual versus cohort 

behavior in heterogeneous populations could also be expressed 

in terms of other statistics. Consider, for example, the frac- 

tiles of the distribution of lifespans or, equivalently, the 

distribution of age of death. Table 3 presents some of these 

fractiles for a population and for individuals. Fractiles for 

the standard individual are given for three levels of hetero- 
2 geneity, as measured by 0 ; fractiles are also presented for 

individuals at three levels of relative-risk z. The calculations 

assume that relative-risk is gamma distributed with mean one 

at birth and that the observed death rate for the population 

is given by a Gompertz function, aebx, with a = 0.00012 and 

b = 0.085. The table indicates that the distribution of life- 

spans in a population is more spread out than the distribution 

of possible lifespans for an individual. In particular, the 

right-hand tail of the distribution is shorter for individuals, 

especially for robust individuals and when variance in hetero- 

geneity is high. 

MORTALITY CONVERGENCE AND CROSSOVER 

For many pairs of populations, mortality rates converge 

and even crossover with age. For example, US blacks have lower 

mortality than US whites after age 75 or so (Shepard and Zeck- 

hauser 1980b; Manton and Stallard 1981a). In 1980, Puerto Ricans 

had a longer life expectancy at age 65 than the residents of 

any other country or area for which statistics were available 

(Vaupel 1978). In most developed countries, male and female 

death rates converge in old age. Nam, Weatherby and Ockay (1978) 

present statistics on this and a variety of other convergences 

and crossovers. 



Table 3. The distribution of lifespans. 

Age at which the probability of being Length of 
alive equals: right-hand tail, 

For entire cohort 62.6 72.9 81.1 87.0 95.2 100.0 27.1 

For individuals: 

NOTE: See text for discussion and explanation of underlying assumptions. 

These convergences and crossovers of population death rates 

may be artifacts of heterogeneity in individual death rates. 

Let r (x) denote the ratio of death rates for the standard 

individual in population 2 versus 1: 

Similarly, let a x )  denote the ratio of the population death 

rates: 

For simplicity, assume that the ratio is constant over time on 

the individual level, so that individuals at any level of 



relative-risk in the second population are always r times more 

likely to die than corresponding individuals in the first popu- 

lation: 

r(x) = r > 1, all x (26) 

Further assume that relative-risk is gamma distributed in the 
2 two populations with mean 1 and variances o , and a; at birth. 

Let 

Then it follows from formulas (8) and (19) that at birth 

but as x increases 

Depending on the value of p, i.e., on the ratio of the 

variances in relative-risk, r(x) can either increase or decrease. 

If p > 1, then a x )  will fall to a value less than one. This 

means that although, on the individual level, p2(x) is always 

r times higher than p1 (x) , the cohort death rate u2 (x) will 
start out higher than ul(x) and will end up below C1(x). The 

crossover point will occur when 

where El(x) is the proportion of population 1 still surviving 

at age x. For example, if r = 2 and p = 1.5, the crossover 

will occur when Fl(x) = 0.5. Figure 2 depicts the trajectory 

of r versus a x ) ;  Table 4 presents some specific numerical 

results. 



Figure 2. Patterns of mortality convergence and divergence. 
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Table  4 .  A m o r t a l i t y  c r o s s o v e r .  

ASSUMPTIONS : 

I n  c a l c u l a t i n g  t h i s  t a b l e ,  which i l l u s t r a t e s  how an observed crossover  i n  
dea th  r a t e s  i n  two popula t ions  may be an a r t i f a c t  of he t e rogene i ty ,  it was 

assumed t h a t  r e l a t i v e - r i s k  is  gamma d i s t r i b u t e d  with mean one and o2 = 1  
2 

1  . l x  
and 0 = 2 .  Furthermore p (x )  = 2p1 (x)  , a l l  x ,  where p1 ( x )  = .0001e . 

2 2 

Emp i r i c a l  d a t a  on convergences  and c r o s s o v e r s  i n  m o r t a l i t y  

r a t e s  can be used t o  e s t i m a t e  t h e  deg ree  o f  h e t e r o g e n e i t y  i n  

r e l a t i v e - r i s k  i n  a  p o p u l a t i o n .  I f  some assumpt ion i s  made abou t  

t h e  d i s t r i b u t i o n  o f  r e l a t i v e - r i s k  ( e . g . ,  t h a t  it i s  gamma d i s -  

t r i b u t e d )  and abou t  t h e  r e l a t i o n s h i p  of  p 1  ( x )  t o  p2  ( x )  (e . g . ,  

t h a t  one  i s  a  c o n s t a n t  m u l t i p l e  o f  t h e  o t h e r ) ,  t h e n  e s t i m a t e s  

o f  t h e  v a r i a n c e  i n  h e t e r o g e n e i t y  can be c a l c u l a t e d .  Vaupel ,  

Manton, and S t a l l a r d  (1979b) and Manton, S t a l l a r d  and Vaupel 

(1981) a p p l i e d  t h i s  method t o  v a r i o u s  c o h o r t s  o f  t h e  f o u r  pop- 

u l a t i o n s  o f  male and female  Swedes and US wh i t e s .  The r e s u l t s  

s u g g e s t  t h a t  f o r  t h e s e  p o p u l a t i o n s ,  t h e  v a r i a n c e  i n  h e t e r o g e n e i t y  

i s  roughly  one .  



GERONTOLOGICAL FAILURES OF PEDIATRIC SUCCESS 

~ e t e r o g e n e i t y  s lows observed r a t e s  of p r o g r e s s  i n  r educ ing  

p o p u l a t i o n  d e a t h  r a t e s  a t  o l d e r  age s .  E s s e n t i a l l y ,  r e d u c t i o n s  

i n  d e a t h  r a t e s  a t  younger ages  pe rmi t  f r a i l e r  i n d i v i d u a l s  t o  

s u r v i v e  t o  o l d e r  age s .  Th i s  i n f l u x  of  f r a i l e r  i n d i v i d u a l s  

s e r v e s  a s  a  b rake  o r  c o u n t e r - c u r r e n t  on r e d u c t i o n s  i n  m o r t a l i t y  

r a t e s  a t  t h e  o l d e r  age s ;  Vaupel,  Manton, and S t a l l a r d  (1979a) 

and Shepard and Zeckhauser (1980b) r e cogn i ze  t h i s .  

A s  a  s imple  i l l u s t r a t i o n ,  d i v i d e  l i f e  i n t o  two p a r t s -  

youth  and o l d  age ,  say-at  age  xo .  Suppose t h a t  a  p r o p o r t i o n  
- 
p ( x o )  of  each  b i r t h  c o h o r t  used t o  s u r v i v e  t o  age  x  b u t  t h a t  

- 0  ' 
because  of some p e d i a t r i c  advance,  p '  (x0)  > P ( x O )  now s u r v i v e .  

Because i n c r e a s e s  monoton ica l ly  w i t h  p, z ( x  ) w i l l  i n c r e a s e .  0  
Consequent ly ,  i f  t h e  v a l u e s  p ( x ) ,  x  > x  remain t h e  same, t h e  

0  ' 
v a l u e s  of E ( x ) ,  x  > x  w i l l  a l s o  i n c r e a s e .  Thus, i f  obse rved  

0 ' 
d e a t h  r a t e s  a t  younger ages  a r e  reduced t o  low l e v e l s ,  f u r t h e r  

p r o g r e s s  w i l l  add f e w e r  and fewer additional pe r sons  t o  t h e  

r anks  o f  t h e  e l d e r l y .  Thus, p r o g r e s s  i n  r educ ing  p o p u l a t i o n  

m o r t a l i t y  r a t e s  w i l l  n o t  be slowed t o  t h e  e x t e n t  it p r e v i o u s l y  

was. 

I t  fo l l ows  from e q u a t i o n  ( 8 )  t h a t  

Up u n t i l  now t h i s  pape r  h a s  focused  on a  s i n g l e  c o h o r t  ag ing  

th rough  t i m e ;  t h u s  x  r e p r e s e n t s  b o t h  age  and t i m e .  Genera l i za -  

t i o n  t o  t h e  c a s e  o f  m u l t i p l e  c o h o r t s  i s  s t r a i g h t f o r w a r d :  l e t  
- 

p ( a , y )  , E ( a , y )  , and z ( a , y )  be  t h e  v a l u e s  of p ,  p, and z f o r  a  

c o h o r t  o f  age  a  i n  y e a r  y .  Then, fundamental  theorem ( 8 )  can 

be r e w r i t t e n  a s  

and i t  fo l l ows  t h a t  



and t h a t  

Both e q u a t i o n s  a r e  i n t e r e s t i n g ,  b u t  f o r  t h e  purposes  of  s t udy ing  

t h e  dynamics of  m o r t a l i t y  p r o g r e s s  ove r  t i m e ,  t h e  second equa- 

t i o n  i s  t h e  r e l e v a n t  one.  

L e t  

and 

Thus, n and a r e  measures o f  t h e  r a t e  of  p r o g r e s s  i n  reduc ing  

i n d i v i d u a l  and p o p u l a t i o n  d e a t h  r a t e s .  E q u a l i t y  (30c)  can  be 

r e w r i t t e n  a s  

When i n d i v i d u a l s  remain a t  t h e  same l e v e l  of  r e l a t i v e - r i s k  f o r  

l i f e ,  p r o g r e s s  i n  r educ ing  i n d i v i d u a l  d e a t h  r a t e s  w i l l  reduce  

t h e  va lue  o f  t h e  n e g a t i v e  t e r m  i n  t h i s  formula :  a t  any age  

a  t h e  v a l u e  o f  z ( a , y )  w i l l  approach 1 a s  y  i n c r e a s e s  and t h e  

v a l u e  of a z ( a , y ) / a y  w i l l  approach ze ro .  Th i s  i s  ea sy  t o  see 

i n  t h e  s p e c i a l  c a s e  where r e l a t i v e - r i s k  i s  gamma d i s t r i b u t e d  

a t  b i r t h  w i t h  a  mean and v a r i a n c e  o f  1 .  Then, 



The p r o p o r t i o n  s u r v i v i n g  a t  any age  a  w i l l  c l e a r l y  approach 1 

a s  p r o g r e s s  i n  r educ ing  dea th  r a t e s  c o n t i n u e s .  Fur thermore ,  

t h e  change i n  t h e  p r o p o r t i o n  s u r v i v i n g  w i l l  approach ze ro .  

Equat ion (32)  consequen t ly  i n d i c a t e s  t h a t  a s  p r o g r e s s  i n  

reduc ing  i n d i v i d u a l  d e a t h  r a t e s  c o n t i n u e s ,  

S ince  p r o g r e s s  i n  reduc ing  d e a t h  r a t e s  pe rmi t s  f r a i l e r  i n d i v i d -  

u a l s  t o  s u r v i v e  t o  o l d e r  a g e s ,  

But ,  o f  c o u r s e ,  

There fore ,  

I n  s h o r t ,  t h e  observed r a t e  of p r o g r e s s  i n  reduc ing  t h e  

popu la t i on  d e a t h  r a t e  a t  any age  a  w i l l  be less than  b u t  w i l l  

approach ove r  t i m e  t h e  r a t e  of  p r o g r e s s  i n  reduc ing  i n d i v i d u a l  

d e a t h  r a t e s  a t  age  a .  Table  5 p r e s e n t s  some numerical  r e s u l t s  

concerning % ( y )  when n a ( y )  i s  c o n s t a n t  f o r  a l l  a  and y ;  F igu re  

3  d e p i c t s  t h e  p a t t e r n  of  t h e s e  r e s u l t s .  



Table  5 .  The a c c e l e r a t i o n  i n  observed r a t e s  of  p r o g r e s s  i n  
r educ ing  m o r t a l i t y  r a t e s .  

Observed rate of progress when age a = 
Year 

Y 20 40 60 80 

NOTE: It is assumed that the rate of progress on the individual level is 
0.01, 

Furthermore, z is assumed to be gamma distributed with mean one 
1 a and variance one at birth, and p (a,O) = .0002eS . 

The p a t t e r n  shown i n  F i g u r e  3 i s  rough ly  t h e  p a t t e r n  

a c t u a l l y  obse rved  i n  t h e  United S t a t e s ,  Sweden, and o t h e r  

c o u n t r i e s  ove r  t h e  c o u r s e  of  t h i s  c e n t u r y .  Thus, t h e  obse rved  

a c c e l e r a t i o n  of p r o g r e s s  i n  reduc ing  m o r t a l i t y  a t  o l d e r  age s  

may b e ,  a t  l e a s t  i n  p a r t ,  an a r t i f a c t  of  h e t e r o g e n e i t y .  To 

t h e  e x t e n t  t h i s  i s  t r u e ,  d e a t h  r a t e s  a f t e r  age  70  and e s p e c i a l l y  

a f t e r  age  80 may d e c l i n e  f a s t e r  i n  t h e  f u t u r e  t h a n  now p r e d i c t e d  

-and a t  an  a c c e l e r a t i n g  r a t e .  The v a r i o u s  i m p l i c a t i o n s  of  an 

i n c r e a s e  i n  t h e  s i z e  of  t h e  e l d e r l y  p o p u l a t i o n s ,  i n c l u d i n g  t h e  

p r e s s u r e s  it would p l a c e  on pens ion  sys tems ,  a r e  d i s c u s s e d  by 

Ar thu r  ( 1 9 8 1 )  . 



Older 
ages 

(log scale) 

Figure 3. Trajectories of progress. 



WHEN PROGRESS STOPS 

Suppose p r o g r e s s  ha s  been made o v e r  a  number o f  y e a r s  

i n  r educ ing  i n d i v i d u a l  m o r t a l i t y  r a t e s  and t h e n ,  sudden ly ,  

t h e  p r o g r e s s  s t o p s  s o  t h a t  t h e  m o r t a l i t y  r a t e s  h e n c e f o r t h  

remain c o n s t a n t .  I n  t h e  succeed ing  y e a r s  ( i . e . ,  a s  y  i n c r e a s e s ) ,  

t h e  v a l u e  of p ( a , y ) ,  t h e  p r o p o r t i o n  o f  t h e  o r i g i n a l  b i r t h  

c o h o r t  s u r v i v i n g  t o  age  a  i n  y e a r  y ,  w i l l  i n c r e a s e  and t h e n  

l e v e l  o f f .  The i n c r e a s e  i n  p ( a )  w i l l  r e s u l t  from t h e  ag ing  

of  t h e  younger c o h o r t s  t h a t  have expe r i enced  lower  d e a t h  r a t e s  

because  o f  t h e  p r e v i o u s  p r o g r e s s .  S i n c e ,  a s  no t ed  e a r l i e r ,  
- 
z i s  a  mononton ica l ly  i n c r e a s i n g  f u n c t i o n  o f  p t  it f o l l o w s  t h a t  
- 
z w i l l  i n c r e a s e  a s  w e l l .  The v a l u e  o f  p ( a , y ) ,  any a  and y ,  

w i l l  be c o n s t a n t - t h a t  i s  what no p r o g r e s s  means. But 

- 
Thus, p ( a ,  y )  a t  any age  a  w i l l  i n c r e a s e  ove r  t i m e .  

I n  s h o r t ,  c u r r e n t  m o r t a l i t y  r a t e s  f o r  p o p u l a t i o n s  a r e  

lower t h a n  t h e  m o r t a l i t y  r a t e s  t h a t  would p r e v a i l  i f  c u r r e n t  

m o r t a l i t y  r a t e s  f o r  i n d i v i d u a l s  p e r s i s t e d .  I f  h e a l t h  p r o g r e s s  

s t o p s ,  d e a t h  r a t e s  w i l l  r i se .  Th is  i m p l i e s  t h a t  e s t i m a t e s  o f  

" c u r r e n t  l i f e  expec tancy"  a r e  t o o  h igh .  These e s t i m a t e s  a r e  

based on c u r r e n t  p o p u l a t i o n  d e a t h  r a t e s ,  b u t  t h e y  a r e  supposed 

t o  r e p r e s e n t  what l i f e  expec tancy  would be i f  h e a l t h  c o n d i t i o n s  

remained unchanged. Vaupel ,  Manton, and S t a l l a r d  (1979a) i n d i c a t e  

how t h e  c o r r e c t  v a l u e  o f  c u r r e n t  l i f e  expec tancy ,  a d j u s t e d  f o r  

t h e  e f f e c t s  o f  h e t e r o g e n e i t y  and p a s t  h e a l t h  p r o g r e s s ,  might  

be c a l c u l a t e d .  F i g u r e  4 and Tab le  6  compare t h e  p a t t e r n s  of  

LI ( a , y )  and c ( a , y )  when h e a l t h  p r o g r e s s  s t o p s .  

I f  p r o g r e s s  i n  reduc ing  y a c c e l e r a t e s  and d e c e l e r a t e s  ove r  

t i m e ,  t h e  obse rved  t r a j e c t o r y  o f  w i l l  be bumpy and might  

show p e r i o d s  o f  a p p a r e n t  n e g a t i v e  p r o g r e s s :  t h i s  phenomenon 

might  u n d e r l i e  t h e  i n c r e a s e  i n  d e a t h  r a t e s  observed i n  t h e  

Uni ted  S t a t e s  i n  t h e  mid and l a t e  1 9 6 0 ' ~ ~  fo l l owing  a  r e l a t i v e l y  

r a p i d  d e c r e a s e  i n  t h e  1950 ' s .  
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Figure 4. When progress stops. 
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Table 6. When progress stops. 

1 a 
ASSUMPTIONS: p(a,O) = .0002ee 

p(a,y) = p(a,~)e-'O~~, y I 80 

p(a,y) = p(a180), Y > 80 

INDEPENDENT COMPETING RISKS 

Suppose there are several causes of death and that an 

individual can be at different relative-risks for the different 

causes. Let zi denote the level of relative-risk for cause of 

death i and let pi(x,zi) be the death rate from cause i at time 

(or age) x for individuals at relative-risk z i ' As before, 

define zi such that 

Assume that an individual's relative-risk for any cause of 

death is independent of his or her relative-risk for any other 

cause of death. Then, as shown in the Appendix, a straightforward 

generalization of fundamental theorem (8) yields: 

and 



where Ei represents the population death rate from cause i and 
where z.(x) is the mean relative-risk from cause i among the 

1 

individuals surviving to time x. The values of zi(x) for any 

cause of death i can be calculated on the basis of f (z.), the 0 1 

distribution of zi at birth, and pi(x), the death rate from 

cause i: 

I 
-iX zipi (t) dt 

zifo(zi) e 
0 dzi 

- 
zi(x) = 

0 

-iX zipi (t) dt 

fo (zi) e 
0 dzi 

Thus, the dynamics of mortality from any specific cause of 

death can be studied without knowing the death rates and dis- 

tributions of relative-risks for other causes of death. 

Suppose that the zits are gamma distributed with mean 1 
2 

and variances oi. (As before, the means might as well be set 

equal to 1, as in that case the "standardM individual at 

relative-risk 1 will be the mean individual at birth.) Then 

equation (1 9) generalizes to: 

where 

Furthermore, equation (18) generalizes to: 

where Fi(x) is the proportion of the population that would sur- 

vive to age x if i were the only cause of death: 



Pi (x) = e 0 

The formulas for the uniform distribution (23) and the two-point 

distribution (22) similarly generalize. 

Thus, the case of independent, competing risks is almost 

as easy to analyze as the simpler case of a single cause of 

death. In a sense, the competing risk case adds another layer 

or dimension of heterogeneity as now individuals not only differ 

from each other but they also differ within themselves in sus- 

ceptibility to various causes of death. 

Patterns of aging for individuals can be compared with 

observed patterns of aging for the surviving cohort in much the 

same way when there are several causes of death as there were 

in the case of a single cause of death. Figure 5 presents an 

example. The mortality curve shown i n ' ~ i ~ u r e  5, which is plotted 

on a log scale, is intriguing because it resembles the observed 

mortality curve in most developed countries: mortality falls 

off after infancy, begins increasing again after age 7 or so, 

rises through a hump roughly between ages 15 and 30, and then 

at older ages increases more or less exponentially. Figure 5 

was generated by assuming there were three causes of death. 

For individuals, the incidence of the first cause is constant, 

the incidence of the second cause increases exponentially and 

the incidence of the third cause increases according to the 

double-exponential form that produces, on the population level, 

an observed exponential increase. 

Just as mortality convergences and crossovers for two 

populations may be artifacts of heterogeneity, convergences 

and crossovers for two causes of death may also be artifacts 

of heterogeneity. In the earlier discussion of population 

crossovers, the subscript i denoted population 1 or 2-e.g., 
- 
'i was the death rate for population i. The mathematics is 

equally valid if the subscript i denotes cause of death 1 or 2. 

So, for example, cause of death 2 might be twice as likely as 

cause of death 1, at all ages, for all individuals. If the 



F i g u r e  5. A p o p u l a t i o n  m o r t a l i t y  curve  produced by t h r e e  
cause s  o f  d e a t h .  The t h r e e  independent  c ause s  o f  
d e a t h  a c t ,  on t h e  i n d i v i d u a l  l e v e l ,  a s  f o l l ows :  

2  p l ( x )  = 0.02 and z i s  gamma d i s t r i b u t e d  w i t h  o  = 1 1 
500; p2 ( x )  = 0 . 0 0 0 0 1 e . ~ ~  and z i s  g a m a  d i s t r i b u t e d  

2  

w i t h  o2 = 200; p3 (x )  = aebX e x p [ a ( e  2  
2  bX - l ) / b o j l r  

a  = 0.00015, b  = 0.08, and z 3  i s  gamma d i s t r i b u t e d  
2  w i t h  o3 = 1 .  



v a r i a n c e  i n  z 2 ,  however,  i s  g r e a t e r  t h a n  t w i c e  t h e  v a r i a n c e  i n  

z l ,  t h e n  t h e  obse rved  r a te  o f  d e a t h  i n  t h e  s u r v i v i n g  c o h o r t  

from c a u s e  2  w i l l  approach  and e v e n t u a l l y  f a l l  below t h e  obse rved  

r a t e  f o r  c a u s e  1 .  

What w i l l  be t h e  e f f e c t  o f  p r o g r e s s  i n  r e d u c i n g  i n d i v i d u a l  

d e a t h  rates on obse rved  p r o g r e s s  i n  r e d u c i n g  d e a t h s  i n  s u r v i v i n g  

c o h o r t s ?  For  any s p e c i f i c  c a u s e  o f  d e a t h ,  t h e  mathemat ics  w i l l  

b e  t h e  same as o u t l i n e d  i n  t h e  s e c t i o n  on p r o g r e s s  above.  

Fur the rmore ,  i n  t h e  c a s e  b e i n g  c o n s i d e r e d  h e r e  of  independen t  

c a u s e s  o f  d e a t h ,  p r o g r e s s  i n  r e d u c i n g  one  c a u s e  of  d e a t h  w i l l  

have no e f f e c t  on p i ( x )  o r  x  f o r  any o t h e r  c a u s e  o f  d e a t h  

i. S i n c e  everyone  h a s  t o  d i e  o f  something,  t h e  number  o f  p e o p l e  

e v e n t u a l l y  d y i n g  from o t h e r  c a u s e s  w i l l  i n c r e a s e  b u t  t h e  d e a t h  

r a t e s  pi and " w i l l  n o t  change.  

CORRELATED CAUSES OF DEATH 

When c a u s e s  o f  d e a t h  are n o t  independen t  b u t  are c o r r e l a t e d  

w i t h  e a c h  o t h e r ,  t h e  mathemat ics  becomes more compl ica ted .  

The fundamenta l  e q u a t i o n s  

and 
n 

are s t i l l  v a l i d ,  b u t  now t h e  v a l u e  o f  z . ( x )  depends on t h e  d e a t h  
1 

ra tes  and d i s t r i b u t i o n s  o f  r e l a t i v e - r i s k s  f o r  c o r r e l a t e d  c a u s e s  

o f  d e a t h :  



where, a s  be fo re ,  

A s  a  s imple  example, cons ide r  t h e  fol lowing s p e c i a l  c a s e .  

Suppose t h a t  t h e r e  a r e  two causes  of dea th  and t h a t ,  a s  i n  

t h e  "mover/stayer" model, t h e r e  a r e  two k inds  of  people .  Let  

p1 ( x )  and p 2  ( x )  be t h e  dea th  r a t e s  from cause 1 and 2 f o r  t h e  

s t anda rd  i n d i v i d u a l  i n  t h e  f i r s t  group and l e t  ( x )  and LI; ( x )  

be t h e  r a t e s  f o r  t h e  second group. F i n a l l y ,  suppose t h e  r a t e s  

a r e  i n t e r r e l a t e d  a s  fo l lows:  

0 < u ~ ( x )  < L I ~ ( X )  I a l l  x  ( 4  0a 

and 

p; ( x )  = 0 a l l  x  

Thus, t h e  second " r o b u s t "  group does n o t  d i e  from cause  2 and 

f a c e s  a  lower d e a t h  r a t e  than  t h e  f i r s t  group from cause 1 .  

Let  ~ ( x )  denote  t h e  p ropor t ion  of  t h e  t o t a l  popula t ion  

t h a t  i s  i n  t h e  f i r s t  group,  a t  t ime x .  The observed dea th  

r a t e  f o r  t h e  f i r s t  cause  of dea th  w i l l  be 

and t h e  observed d e a t h  r a t e  f o r  t h e  second cause  of d e a t h  w i l l  

simply be 

Suppose some p rog res s  i s  made i n  reducing t h e  inc idence  

of t h e  second cause  of dea th .  Then t h e  observed d e a t h  r a t e  

from t h e  f i r s t  cause  w i l l  i n c r e a s e .  This  observed d e a t h  r a t e  

i s  t h e  weighted average of  t h e  dea th  r a t e s  f o r  t h e  f i r s t  and 

second groups.  I f  d e a t h  r a t e s  f o r  t h e  f i r s t  group a r e  reduced 

( a s  a  r e s u l t  of p rog res s  a g a i n s t  t h e  second cause  of d e a t h ) ,  



more o f  t h i s  group w i l l  s u r v i v e .  The v a l u e  of ~ ( x )  w i l l  i n c r e a s e  

and s i n c e  p ( x )  exceeds  p '  ( x )  . t h e  v a l u e  o f  Fl ( x )  w i l l  a l s o  1 1 
i n c r e a s e .  The v a l u e  of IT ( x )  , by t h e  way, is  g iven  by:  

A more g e n e r a l  s i t u a t i o n  i n  which cause s  o f  d e a t h  a r e  

c o r r e l a t e d  c a n  be d e s c r i b e d  a s  f o l l ows .  L e t  z O ,  ..., zn be 

independen t  r e l a t i v e - r i s k s  w i t h  mean 1 .  L e t  t h e  d e a t h  r a t e  

f o r  a n  i n d i v i d u a l  be g i v e n  by: 

where - z  i s  t h e  v e c t o r  o f  r e l a t i v e - r i s k s  f o r  t h e  i n d i v i d u a l  and 

w i s  a  weight  such t h a t  i 

The b a s i c  i d e a  i s  t h a t  an i n d i v i d u a l ' s  r i s k  from any s p e c i f i c  

c ause  of  d e a t h  i depends on a  g e n e r a l  r e l a t i v e - r i s k  ( o r  " f r a i l -  

t y " )  f a c t o r  z0 and a  s p e c i f i c  r e l a t i v e - r i s k  f a c t o r  zi. 

I t  can  be r e a d i l y  shown t h a t  

I f  t h e  z ' s  a r e  gamma d i s t r i b u t e d  w i t h  mean one and v a r i a n c e s  
2 

oi l  t hen  

and 



If w > 0, then reducing the incidence of cause of death 
j 

j will increase (x) . This increase in To (x) will, if wi > 0, 
result in an increase in the observed incidence of cause of 

death i. Indeed, if H . (x) is reduced by 6 then Ki (x) will 
J j 

increase by: 

6 .w.w.p. (x) 
3 3 1 1  

In short, when relative-risks from different causes of 

death are positively correlated, progress against one cause of 

death may lead to observed increases in the rates of other 

causes of death. 

WHEN INDIVIDUALS' RELATIVE-RISKS CHANGE PROPORTIONATELY OVER TIME 

So far it has been assumed that an individual is born at 

some level of relative-risk and remains at that level for life. 

Clearly, however, individuals' relative-risk levels may in some 

situations change significantly over time. Sometimes this 

change is caused by factors, such as improvements in living 

conditions or progress in medical technology, that may affect 

individuals proportionately to their current relative-risk 

levels. That is, for all individuals, 

where z(x) is an individual's relative-risk at time x and ~ ( x )  

measures the intensity of the change. Alternatively, the value 

of z (x) could be given by 

where z 0  is an individual's relative-risk at birth and g(x) 

measures the cumulative change. The values of ~ ( x )  and g(x) 

are related by 



Because 

it follows that 

Let 

lJ' (XI = q(x)lJ(x) 

The function pl(x) can be interpreted as describing the trajec- 

tory of death rates for the standard individual under the changing 

conditions described by g(x). Then, the fundamental equation 

becomes 
- 
l~ (XI = l ~ l  (XI F1 (XI (8") 

where, analogously to previous formulas, 

In short, by combining the function g (x) with l~ (x) , all the 
mathematical apparatus derived earlier can still be applied. 

As shown in the Appendix, g(x) could describe a stochastic 

process. After a particular realization of g(x) is known, then 

the equations above would hold. Before g(x) is known, the 

equations hold for expected values: if 



where g(x) is the conditional expectation of g(x) as defined 

in the Appendix, and if z and g(x) are independent, then the 

expected mortality curve r(x) is given by 

where zl(x) is given, as before, by formula (13) and where 
- - 
~ ( x )  may be considered a conditional expectation of the observed 

mortality rate r(x) , as discussed in the ~ppendix. 

DEATH AND DEBILITATION 

In some situations death may be associated with some ill- 

ness or catastrophe that not only kills some people but that 

also weakens the survivors. To model this kind of correlation 

between death and debilitation, suppose: 

for all individuals in the population. Thus, the greater the 

cumulative death rate, H(x), has been, the frailer each of the 

surviving individuals will be. 

Since equation (52) is just a special case of equation 

(48b), equations (51), (8") and (13") can be used to analyze 

this situation. For illustrative purposes, it is sufficient 

to consider a simple, concrete instance. Suppose, for example, 
2 that z 0  is gamma distributed with mean one and variance 0 . 

And suppose that ~ ( x )  is constant and equals c at all ages x. 

Then, 
'l 

If the debilitating effect is small relative to the selection 

effect of heterogeneity-specifically, if a is less than or 

equal to 0'-then y(x) will decline with age and approach zero. 

On the other hand, if a exceeds a2, then L(x) will initially 



rise above the level c, but will then start to decline, will 

fall below c when 

and will eventually approach zero. Thus, if a is big enough, 

the debilitation effect will dominate for a few years until the 

selection effect of heterogeneity takes over. 

A RANDOM WALK THROUGH RELATIVE-RISK 

Factors such as further education, increasing income, 

decreasing alcohol consumption, increasing cigarette consumption, 

and other changes in life style, living conditions, work environ- 

ment and so on may gradually alter any particular individual's 

relative-risk (or "frailty") level relative to other individuals' 

levels. Suppose that the process is the usual kind of random 

walk known as a Wiener or Brownian-motion process. In this 

kind of process, the change in an individual's relative-risk 

at any instant in time is proportional to the individual's level 

of relative-risk. Furthermore, the cumulative change over an 

interval of time is proportional to the length of the interval. 

More exactly, 

where w(t) is a Wiener process independent of z 0  and b(t) is 

some deterministic fl~nction such that 

As shown in the Appendix, if T denotes time of death, then 



where (x) is defined, as before, by equation (1 3) . Thus, 

remarkably, the mathematical apparatus developed above for the 

special case of unchanging individual relative-risks also holds, 

in terms of expected observed mortality r(x), for the more 

general case where the relative-risk level of each individual 

is gradually changing according to a random walk process. 

However, the calculation of the conditional mathematical expec- 

tation on the right-hand side of the formula (8"") requires 

more sophisticated methods of estimation based, for example, 

on the theory of random point processes (Yashin 1970, 1978; 

Snyder 1975; ~r6maud 198 1 ) . 
The three kinds of change in relative-risk discussed above 

-deterministic proportional change for all individuals, 

stochastic proportional change for all individuals, and inde- 

pendent random walks for each individual-can be combined 

with obvious changes in the mathematics. 

CONCLUSION 

"Individuals"-whether people, plants, animals, or machines 

-differ from one another. Sometimes the differences affect the 

probability of some major transition, such as dying, moving, 

marrying, or converting. If so, the observed dynamics of the 

behavior of the surviving population-the population that has 

not yet made the transition-will systematically deviate from 

the dynamics of the behavior of any of the individuals that make 

up the population. Most of the examples and terminology of this 

paper were drawn from the study of human mortality, but the 

mathematics can be applied to various kinds of heterogeneous 

populations for such purposes as explaining population patterns, 

making inferences about individual behavior, and predicting or 

evaluating the impact of alternative control mechanisms, policies, 

and interventions. 



Among t h e  i n t e r e s t i n g  r e s u l t s  d i s c u s s e d  i n  t h i s  s t u d y  a r e :  

- I n d i v i d u a l s  a g e  f a s t e r  t h a n  p o p u l a t i o n s .  ' 

- Observed m o r t a l i t y  convergences  and c r o s s o v e r s ,  b o t h  

between p o p u l a t i o n s  and between c a u s e s  of  d e a t h ,  may 

be  a r t i f a c t s  o f  h e t e r o g e n e i t y .  

- P r o g r e s s  i n  r e d u c i n g  m o r t a l i t y  a t  younger a g e s  o r  from 

some c a u s e s  o f  d e a t h  may i n c r e a s e  m o r t a l i t y  a t  o l d e r  

a g e s  o r  from o t h e r  c a u s e s  o f  d e a t h .  

- Slow b u t  a c c e l e r a t i n g  r a t e s  o f  m o r t a l i t y  p r o g r e s s  i n  

o l d  a g e  may be  a n  a r t i f a c t  o f  h e t e r o g e n e i t y ,  w i t h  a  

s i g n i f i c a n t  consequence:  t h e  e l d e r l y  p o p u l a t i o n  may 

be  s u b s t a n t i a l l y  l a r g e r  i n  t h e  f u t u r e  t h a n  c u r r e n t l y  

p r e d i c t e d .  



APPENDIX 

1 .  Proof of ForrnuZa ( 6 1  

Let f (z) be the probability density function of frailty z 

and let T be the random death time. Denote by cp(tlz) the condi- 

tional probability density of death time T when frailty z is 

given. Note that 

where y(x) is the age-specific death rate for the "standard" 

individual with frailty z = 1. Using the notation g(t,z) for 

the joint probability distribution function of death time T 

and frailty z we get, multiplying f (z) and cp(t 1 z) , 

According to the definition of y(x) 



where h(x) is the probability density function for death time T. 

Note that 

Using the expression for ~(tlz) we have for F(x) : 

Noting that according to the formula for ~(tlz) 

the formula for r(x) may be rewritten as follows 

Denoting by fx(z) the conditional probability density 

function of z when event {T >x) is given and noting that according 

to Bayes formula 

P(T > x z ) f  (z) 
fx(z) = P(T>x) 

we have for F(x) 

completing the proof. 



2 .  C o m p e t i n g  R i s k  C a s e  

L e t  f r a i l t y  z  b e  t h e  v e c t o r  z  = ( z l r z 2 ,  ..., z n ) .  Denote  

by Ti t h e  random d e a t h  t i m e s  c a u s e d  by f r a i l t y  z i t  i = 1 , 2 ,  ..., n ,  

a n d  l e t  T  = m i n i l i t  i = 1 , 2 , . . . , n } .  Note  t h a t  t h e  d e n s i t y '  

f u n c t i o n  o f  T  when f r a i l t y  z  i s  g i v e n  i s  

Note t h a t  f rom t h i s  f o r m u l a  it f o l l o w s  t h a t  

A s  i n  t h e  s c a l a r  c a s e  n o t e  t h a t  

- d  - P  (T I X )  
1-I ( x )  = dx 

P ( T  > x )  

Deno t ing  by f ( z )  t h e  d e n s i t y  p r o b a b i l i t y  f u n c t i o n  o f  v e c t o r  

z = ( z l , . . . , z n )  w e  h a v e  

o r  u s i n g  t h e  f o r m u l a  f o r  c p ( t l z )  

N o t i n g  t h a t  



where f x ( z )  i s  t h e  c o n d i t i o n a l  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  o f  

v e c t o r  f r a i l t y  2 = z  l I . . . I z n )  when t h e  e v e n t  IT  > X I  i s  g iven ,  

w e  g e t  f o r  c ( x )  

where 

I t  i s  very  impor t an t  t o  know when z ^ .  ( x )  c o i n c i d e s  w i t h  z i ( x ) ,  
1 

where zi = E { z i l T i > x }  i s  t h e  c o n d i t i o n a l  f r a i l t y  which was 

d e f i n e d  b e f o r e .  For t h i s  purpose  n o t e  t h a t  t h e  random e v e n t  

I T  > x }  may be r e p r e s e n t e d  a s  

n - 
The e q u a l i t y  zi ( x )  = z i ( x )  means t h a t  

The l a s t  e q u a l i t y  may t a k e  p l a c e  on ly  i n  t h e  c a s e  when f r a i l t y  

z  f o r  any i does  n o t  depend on T j  # i t  i ,]  
j '  

= 1 , 2 , . . . , n .  i 

3 .  The Proof  o f  t h e  Formula f o r  r ( x )  

Assume t h a t  t h e  fo l l owing  r e p r e s e n t a t i o n  f o r  t h e  age- 

s p e c i f i c  m o r t a l i t y  r a t e  P ( x , z )  i s  v a l i d  

where g ( x )  i s  some i n t e g r a b l e  random f u n c t i o n  which i s  indepen- 

d e n t  of  z  and t a k e s  v a l u e s  on t h e  r e a l  l i n e .  According t o  t h e  

d e f i n i t i o n  of  ( x )  



Let the symbol E denote the operation of averaging with 
Q 

respect to measure Q which is defined in the space of functions 

g (x) . Then for (x) we can write 

where f(z) is the probability density function of z. 

It is not difficult to see that 

Since variables z and g(x) are independent, the formula for 
- - 
y (x) may be rewritten as follows 

or using the previous notation 

- - 
!J (x) = !J (x) Z(x)T(x) 

4. Frailty as a Solution of Stochastic Differential Equations 

Assume that frailty z (t) is governed by the following 

stochastic differential equation 

where z (0) does not depend on w (t) and 



The solution of this equation may be found in the following 

way. Apply the stochastic differentiation formula (Ito formula) 

to the function y (t) = In z (t) (Liptzer and Shirjaev 1977) . 
We have 

and consequently for z (t) 

z (t) = z (01 exp 

where 
- 
g(x) = E[g(x) \ T  >x) 

I t  t I b(s)dw(s) - b2 (s)ds 

0 0 , 

Denoting by g (t) = exp 

0 0 i 

ling that y(x,z) = z(O)g(x)y(x), we see from section 3 of the 

Appendix that 

t t 1 b (s) dw (s) - I b2 (s) ds a and recal- 
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