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FOREWORD

The ways in which our society may have to adapt and respond
to changes induced by energy shortages, environmental ceilings,
and food insufficiencies has been the subject of much analysis and
debate during the past decade. 1In all of this flurry of concern
with perceived limits to growth, however, insufficient attention
has been accorded to the effects of a variable that may overshadow
all of the rest in importance: changing population dynamics and
lifestyles and their socioeconomic impacts.

Explosive population growth in the less developed countries
and population stabilization in the more developed nations have
created unprecedented social issues and problems. Social dis-
equilibria and disparities lie at the heart of these, and the pop-
ulation variable plays a fundamental role in their generation
and resolution. The societal ramifications of its changing age
composition, patterns of family formation and dissolution, move-
ments from one region to another, health status and demands for
care, and participation in the labor force will be profound.

Fundamental changes in the "human factor" arise during a
process of societal structural transformation that may be char-
acterized by the intersection of the demographic revolution, the
epidemiological transition, and industrialization. During this
transformation birth and death rates decline, geographical and
social mobility increase, infectious diseases are displaced by
degenerative diseases, and agricultural employment declines in
proportion to that engaged in industry and services. These shifts
introduce temporary imbalances, but they generally lead to long-
term gains in the human condition.
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Rapid social change combined with heterogeneity in populations
in skills and experiences leads to disparities in well-being (e.g.,
income and health) among various subgroups of national populations:
between generations, social groups, and rural/urban sectors. All
too often policies designed to redress such disparities stand a
good chance of worsening them unless consideration is given to
the full range of indirect effects of the policies. Thus it is
vital to understand how structural changes in society create dis-
equilibria, how different disequilibria interact, and how the
response of populations to structural transformation depends on
heterogeneity within the population.

James Vaupel (USA) and Anatoli Yashin (USSR) examine the
impacts of heterogeneity on populations whose members are gradually
making some major transition. Their focus is on human mortality,
but the mathematics they develop is relevant to studies of, for
example, migration, morbidity, marriage, criminal recidivism,
drug addiction, and the reliability of equipment. Vaupel and
Yashin show that the observed dynamics of the surviving population
—the population that has not yet made the transition—will sys-
tematically deviate from the dynamics of the behavior of any of
the individuals that make up the aggregate population. Further-
more, they develop methods for uncovering the underlying dynamics
of individual behavior given observations of population behavior.
These methods will be useful in explaining and predicting demo-
graphic patterns. 1In addition, because the impact of a policy
intervention can sometimes only be correctly predicted if the
varying responses of different kinds of individuals are taken into
account, the methods should prove to be of value to policy analysts.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

The members of most populations gradually die off or drop out:
people die, machines wear out, residents move out, etc. 1In

many such "aging" populations, some members are more likely to
"die" than others. Standard analytical methods largely ignore
this heterogeneity; the methods assume that all members of a
population at a given age face the same probability of death.
This paper presents some mathematical methods for studying how
the behavior over time of a heterogeneous population deviates
from the behavior of the individuals that make up the popula-
tion. The methods yield some startling results: individuals
age faster than populations, eliminating a cause of death can
decrease life expectancy, a population can suffer a higher death
rate than another population even though its members have lower
death rates, population death rates can be increasing even though
its members' death rates are decreasing.
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THE DEVIANT DYNAMICS OF DEATH
IN HETEROGENEOUS POPULATIONS

WHAT DIFFERENCE DO DIFFERENCES MAKE?

Many systems are aggregations of similar objects. Forests
are collections of trees; flocks are congregations of birds or
sheep; cities are amalgams of buildings; plants and animals are
built up of cells. The units in such collections usually have
limited life spans and evolve and change over their life before
they die or are renewed. The units, although similar, are
rarely identical; even two mass-produced automobiles of the same
make and model can differ substantially. In studying populations
of similar objects, however, and in analyzing the impact of inter-
ventions and control policies, the simplifying assumption is often
made that the units are identical. A key question thus is:
what difference does it make to ignore individual differences and

treat a population as homogeneous when it is actually heterogeneous?

This paper addresses some aspects of this general question.
The focus is on patterns over time in aging and life-cycle pro-
cesses and, more specifically, on jumps and transitions in these
processes. Examples abound. Animals and plants die, the healthy
fall ill, the unemployed find jobs, the childless reproduce, and

the married divorce. Residents move out, machines wear out,



natural resources get used up, and buildings are torn down.
Infidels convert, ex-convicts recidivate, abstainers become
addicted and hold-outs adopt new technologies. Regularities
in such processes are studied by researchers in such diverse
specialties as reliability and maintenance engineering,
epidemiology, health care planning, actuarial statistics,
and criminology, as well as by analysts in disciplines such

as demography, economics, ecology, sociology, and policy analysis.

In many collections or populations, some units are more
likely to make a transition than others. Standard analytical
methods largely ignore this heterogeneity; the methods assume
that all members of a population at a given age face the same
probability of change. This paper presents some methods for
studying what difference heterogeneity makes in the behavior

of a changing population over time.

The analytical methods will be illustrated by examples
drawn from the study of human mortality, and, henceforth, the
word "death" will be used instead of the more general terms
"change" and "transition". Readers interested in areas of
applications other than human mortality should associate death
with a more appropriate analogous word like failure, separation,

occurrence, Or movement.

The focus on human mortality implies a focus on the simplest
kind of life-cycle process, i.e., a process with just one transi-
tion that leads to exit. This simplicity permits the effects
of heterogeneity to be clearly shown and readily explained.

The focus on human mortality gives the exposition a concreteness
that fosters intelligibility. Furthermore, it turns out that
the analytical methods yield some stimulating insights and

policy implications when applied to human mortality.

ROOTS OF THE RESEARCH

A small but growing body of research is relevant to the
analysis of differences in the behavior over time of heterogeneous

versus homogeneous populations. Some strands of this research



can be traced back to Cournot's study of judicial decisions

(1838) and Weinberg's investigation of the frequency of multiple
births (1902). Greenwood and Yule's analysis of differences in
accident proneness and susceptibility to illness (1920) was
followed up by Lundberg (1940), Arbous and Kerrich (1951), and
Cohen and Singer (1979). Gini (1924) considered heterogeneity

in female fecundity; Potter and Parker (1964) and Sheps and
Menken (1973) developed this approach. In their influential
study of the industrial mobility of labor, Blumen, Kogan, and
McCarthy (1955) distinguished "movers" from "stayers" and then
considered an arbitrary number of groups with different "prone-
ness to movement"; Silcock (1954) used a continuous distribution
over individuals to describe the "rate of wastage" in labor
turnover. This research on the mobility of labor was generalized
and extended to such related fields as income dynamics and
geographic migration by Spilerman (1972), Ginsberg (1973),

Singer and Spilerman (1974), Kitsul and Philipov (1981), and
Heckman and Singer (1982), among others. Harris and Singpurwalla
(1968) and Mann, Schafer, and Singpurwalla (1974) developed
methods for taking into account differences in reliability among
machines and equipment. Shepard and Zeckhauser (1975, 1977,
1980a, 1980b; Zeckhauser and Shepard 1976) pioneered the analyses
of heterogeneity in human mortality and morbidity; Woodbury and
Manton (1977), Keyfitz and Littman (1980), Manton and Stallard
(1979, 1981a, 1981b) and Vaupel, IHanton, and Stallard (1979a;

Manton, Stallard, and Vaupel, 1981) have made further contributions.

This rich body of research indicates that there is a core
of mathematical methods that can be usefully applied to the
analysis of heterogeneity in such diverse phenomena as
accidents, illness, death, fecundity, labor turnover, migration,
and equipment failure. These sundry applications and the varied
disciplinary backgrounds of the researchers make it hardly
surprising that key elements of this common core of mathematics
were independently discovered by several researchers. Further
progress, however, surely would be accelerated if the wide
applicability of the underlying mathematics of heterogeneity

were recognized.



A UNIFYING QUESTION

Building on this body of research and, most directly, on
Vaupel, Manton, and Stallard (1979%a), this paper addresses a
basic question: how does the observed rate of death, over time,
for a cohort of individuals born at the same time relate to
the probability of death, over time, for each of the individuals
in the cohort. This question provides a unifying focus for
developing the mathematical theory of the dynamics of heterogeneous
populations. It is also a useful question in applied work
because researchers usually observe population death rates but
often are interested in individual death rates, for three main
reasons. First, the effect of a policy or intervention may
depend on individual responses and behavior. Second, individual
rates may follow simpler patterns than the composite population
rates. And third, explanation of past rates and prediction of
future rates may be improved by considering changes on the

individual level.

It turns out that the deviation of individual death rates
from population rates implies some surprising and intriguing

results. Individuals "age" faster than populations. Eliminating
a cause of death can decerease life expectancy. A population can
suffer a higher death rate than another population even though
its members have lower death rates. A population's death rate
can be increasing even though its members' death rates are

decreasing.

The theory leads to some methods that may be of use to
policy analysts in evaluating the effects of various interventions,
e.g., a medical care program that reduces mortality rates at
certain ages; Shepard and Zeckhauser (1981b) develop and dis-
cuss some methods of this kind. The theory also yields predic-
tions that may be of considerable interest to policy analysts.
For example, in the developed countries of the world, death
rates after age 70 and especially after age 80 may decline
faster—and at an accelerating rate—than now predicted by
various census and actuarial projections. As a result, pres-
sures on social security and pension systems may be substantially

greater than expected.



MATHEMATICAL PRELIMINARIES

Let @ be some set of parameters w. Assume that eachvparam—
eter value characterizes a homogeneous class of individuals and
that the population is a mix of these homogeneous classes in

proportions given by some probability distribution on Q.

Denote by pw(x) the probability that an individual from
homogeneous class w will be alive at age x and let uw(x) be
the instantaneous age-specific death rate at age x for an

individual in class w. By definition,

uo(x) = —[dpw(X)/dX] / P, (x) (1a)

Similarly, let p(x) be the probability that an arbitrary
individual from the population will be alive at age x. That
is, let p(x) be the expected value of the probability of sur-
viving to age x for a randomly chosen individual at birth.
Alternatively, p(x) can be interpreted as the expected value
of the proportion of the birth cohort that will be alive at

age X. The cohort death rate, u(x), is then defined by:

w(x) = -[dp(x)/dx] / p(x) (1b)

Throughout this paper, superscript bars will be used to denote
variables pertaining to expected values either for a randomly
chosen individual at birth or, alternatively, for the entire

cohort.

Suppose that all the individuals in a population were
identical and that their chances of survival were described
by p(x). Then, it turns out that p(x) would be the same as
p(x). Thus, a cohort described by p(x) could be interpreted
as being a homogeneous population comprised of identical
individuals each of whom had life-chances given by p(x) = p(x).
This remarkable fact means that researchers interested in

population rates can simplify their analysis by ignoring



heterogeneity; this simplification has permitted the development
of demography, actuarial statistics, reliability engineering,

and epidemiology.

For some purposes, however, the simplification is inadequate,
counter-productive, or misleading. For example, sometimes
researchers are interested in individual rather than population
behavior, sometimes patterns on the individual level are simpler
than patterns on the population level, and sometimes the impact
of a policy intervention can only be correctly predicted if the
varying responses of different kinds of individuals are taken
into account. That is, sometimes individual differences make
enough difference that it pays to pay attention to them: a
variety of specific examples are given later in this paper.
Furthermore, it turns out that the complexities introduced by
heterogeneity are not intractable; indeed, the mathematical

methods presented in this paper are fairly simple.

The expected proportion of the entire population that is
alive at time x and that will die in the period from x to x+1
is given by the formula

q(x) )
q(x) =

When u(x) is small and does not change significantly in the
period from x to x+1, then

g(x) = u(x) (2b)

Consequently, u(x) is often intuitively interpreted as describing
the probability of death.

Because of their instantaneous nature, death rates like
u(x) and uw(x) are often more mathematically convenient than
probabilities like g(x) or other statistics such as life expec-
tancy or life-span fractiles: the mathematical methods of

this paper will be derived largely in terms of death rates.



As might be expected, the rate of death is commonly used in
various applications and has numerous aliases, including hazard
rate, mortality rate, failure rate, occurrence rate, transition
rate, rate of wastage, force of mortality, force of separation,
force of mobility, conditional risk, death intensity, transition

intensity, intensity of migration, and intensity of risk.

BASIC MATHEMATICAL FORMULATION

In mortality analysis, the adjective "heterogeneous"”
usually implies that individuals of the same age differ in their
chances of death. As in many other problems involving relative
measurement, it is useful to have some standard or base line
to which various individuals' death rates can be compared. Let
v ({x) be this standard, base-line death rate: how values of
L(x) might be chosen will be discussed later. The "relative-
risk" for individuals in homogeneous class w at time x will be

defined as
z(x,0) = W (x)/u(x) (3)

It is convenient to use u({x,z) to denote the death rate at time

x of individuals at relative-risk z. Clearly,

u(x,z) = zu(x) (4)
Thus,

w(x) = u(x,1) (5)

The standard death rate u(x) can therefore be interpreted as
the death rate for the class of individuals who face a relative-

risk of one.

This formulation is simple and broadly applicable. More
importantly, it yields a powerful result that is central to the

mathematics of heterogeneity. Let fx(z) denote the conditional



density of relative-risk among survivors at time x. As
shown in the Appendix, the expected death rate in the population,
U(x), is the weighted average of the death rates of the individ-

uals who comprise the population:

(oo}

U(x) =J pi(x,z)f_(z)dz (6)
0

X

Since z(x), the mean of the relative-risk values of time x, is

given by:

it follows from (4) that
n(x) = W(x)z(x) (8)

This simple result is the fundamental theorem of the mathe-
matics of heterogeneity, since it relates the death rate in the
population to the death rates for individuals. The value of
H(x) gives the death rate for the hypothetical "standard"
individual facing a relative-risk of one; multiplying u{x) by
z gives the death rate for an individual facing a relative-risk
of z. The value of z(x) gives the average relative-risk of the
surviving population at time x. In interpreting this it may be
useful, following Vaupel, Manton, and Stallard (1979%a), to view
z as a measure of "frailty" or "susceptibility". Thus, z(x)

measures the average frailty of the surviving cohort.

UNCHANGING FRAILTY

The relationship over time of u(x) versus p(x) is deter-
mined by the trajectory of z(x). The simplest case to study
is the case where individuals are born at some level of relative-

risk (or frailty) and remain at this level all their lives.



In this case, the only factor operating to change E(x) is the
higher mortality of individuals at higher levels of relative-
risk; thus, this pure case most clearly reveals the effects of
differential selection and the survival of the fittest. Although
most of this paper addresses this special case, some generaliza-
tions are discussed near the end of the paper. It turns out

that the mathematics derived for the special case also holds

for a broader range of assumptions, so that the special case

is less restrictive than it may seem at first.

Imagine a population cohort that is born at some point in
time. Let fo(z) describe the proportion of individuals in the
population born at various levels of relative-risk z; fo(z)
can be interpreted as a probability density function. Assume
that each individual remains at the same level of z for life.

For convenience, the mean value of fo(z) might as well be taken

as 1, so that the "standard" individual at relative-risk 1 is

also the mean individual at birth. As before, let u(x,z2) and

U (x) be the death rates of individuals at relative-risk z and

of the standard individual. Let H(x,z) be the cumulative "hazard"

experienced from birth to time x:

X
H(x,z) = J v(x,z)dx (9)
0
Clearly,
H(x,z) = zH(x) (10)

The probability that an individual at relative-risk z will

survive to age x is given by

p(x,z) = p(x)” = e (11)
Consequently,
£.(z) = fo(z)e'ZH(X) / J £, ye ZH(X) 4 (12)
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where the denominator is a scaling factor equal to p(x), the

proportion of the population cohort that has survived to age X.
Thus,

Differentiating (13) with respect to x yields

z (14)

where oi(x) is the conditional variance of z among the popula-
tion that is alive at time x. Since u(x) > 0 and Og(x) >0,
the value of dz(x)/dx must be negative. Therefore, as might

be expected, mean relative-risk declines over time as death
selectively removes the frailest members of the population.
This means that u(xX) increases more rapidly than p(x): indivi-

duals "age" faster than populations.

If u(x) > 0, all x, then

Z(x) » z(x') iff x < x' (15a)
and

p(x) < p(x') iff x < x!' (16)
Consequently,

Zlp ' @)1 < Zlp  (3')] iff p < B (15b)

where 5_1(5) is the inverse function of p(x), and p and p' are
two specific values of the survival function. That is, mean
relative-risk declines monotonically not only with age (or

time) x but also with the proportion surviving p.
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HOW u DIVERGES FROM 1

The magnitude of the divergence of u(x) from u(x) depends
on the distribution of relative-risk. Several researchers in
different fields, including Silcock (1954), Spilerman (1972),
Mann, Schafer, and Singpurwalla (1974), and Vaupel, Manton,
and Stallard (1979a), have discovered that the gamma distribution
is especially convenient to work with, since it is one of the
best known non-negative distributions, is analytically tractable,
and takes on a variety of shapes depending on parameter values.
If the mean relative-risk at birth is one, then the gamma prob-

ability density function at birth is given by:

£ (z) = k2K 1e k2 /o 1k (17)

0(
where k, the so-called shape parameter, is (when the mean is one)
equal to the inverse of the variance, 62. When k equals one,
the distribution is identical to the exponential distribution;
when k is large, the distribution assumes a bell-shaped form

reminiscent of a normal distribution.

If relative-risk at birth is gamma distributed with mean
one, it can be shown (see Vaupel, Manton, and Stallard 1979a)
that

X_
j p(x)dx
2 2— 2
E(x) = E(x)O = e_O H (x) = e_O 0 (18)
and that
Z(x) =1/ [1 + 02H(x)] - (19)

Thus the relationship of p(x) to u(x), as determined by z(x),
can be determined by the cumulative hazard for either the
population or the standard individual. In the special case

where 02

equals one, the value of z(x) falls off with p(x),
the proportion of the cohort that is surviving. It also can

be shown (Vaupel, Manton, and Stallard 1979) that fx(z) is
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gamma distributed, with a mean of z(x) and a shape parameter

equal to the same value of k as at birth.

These results for the gamma distribution with mean one
at birth are easily generalized to the case of any mean z(0)

at birth. Formula (18) then becomes

z(x) = z(0)p(x) (18")
and formula (19) becomes
Z(x) = 2(0) / [1 + ¢%Z(0)H(x)] (197)

There is, however, little reason to use this generalized form-

ulation. Let

z'(x) = z(x)/z(0) (20a)

and
p(x)/z(0) (20b)

=

"

~
I

This simple and harmless transformation converts formulas (18")
and (19') back to (18) and (19). Furthermore, as indicated
earlier, the standard death rate L (x) might as well be associated

with the mean individual at birth.

Instead of working with a gamma distribution, it might
seem more natural to assume that there is some normally distributed

risk factor w that determines relative-risk z:
zZ = W (21)

It turns out that if w is normally distributed with mean zero
and any variance 02, then z will be gamma distributed with a
shape parameter of one-half. Thus, nothing is to be gained by
working with the normal distribution with mean zero rather than

with a gamma distribution.
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In the "mover/stayer"” model developed by Blumen, Kogan,
and McCarthy (1955), individuals fall into two groups with
relative-risk 24 and 2, The value of z, can be assumed equal
to zero, but more generally z, can simply be taken as less
than Zy. Using equation (13), it is not difficult to confirm

that when mean relative-risk at birth is one,

(22)

Consequently, z(x) will start at a value of one when X is zero
and will fall off to a value of z, as the individuals at

relative-risk Z, die off at a relatively rapid rate.

Another distribution of interest may be the uniform dis-
tribution, stretching from 1 -a to 1+4+a, with o £ 1. 1In this

case, it is possible to show that

QH (x) ~aH (x)
Z(x) = 1 - a(% + e > + ] (23)
e

aH(x) _ e—aH(x) H(x)

In deriving this result, it is helpful to realize that z(x)
can be considered to be a function of H and that the equation

for z(H) can be expressed as

z(H) = [df*(H)/dH] / f*(H) (24)

*
where £ (H) is the Laplace transform of fo(z). Formula (23)

implies that z(x) approaches 1 -a as x increases.

Although formulas for z (x) have not been derived for other
distributions, the value of z(x) can generally be readily
computed, to a close approximation, by applying numerical
methods to equation (13). The values in Table 1 for the

Weibull and lognormal distributions were calculated in this way.
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Table 1 is designed to show how p(x) diverges from u(x)
given different initial distributions of relative-risk with
different variances. The table presents values of u(x)/u(x),
which equals the inverse of z(x). The results are presented
for different values of p(x), the proportion of the initial
population that is surviving: presenting the results for values
of p(x) rather than for values of x is convenient since assump-
tions about the rate of aging over time (i.e., about how u(x)
changes with x) do not have to be made. The table indicates
that p(x) can be substantially greater than u(x) when only a
fraction of the population is alive: even when the variance
in relative-risk is only 0.1 (compared with a mean level at
birth of 1), u(x) is 30 to 50 percent higher than u(x) when 5
percent of the population is surviving. As the table demon-
strates, the degree of divergence of u(x) from H(x) depends on
both the form of the initial distribution of relative-risk and

the variance of this distribution.

Table 1. The divergence of u from u.

Values of u/ﬁ-when 5} the proportion of the cohort

Variance and form L. .
surviving, is:

of distribution

of relative-risk 1.00 .75 .50 .25 .10 .05
02 = 0.1
Gamma 1.00 1.03 1.07 1.15 1.26 1.35
Weibull 1.00 1.03 1.08 1.17 1.34 1.49
lognormal 1.00 1.03 1.07 1.14 1.23 1.30
2=
Exponential® 1.00 1.33 2.00 4.00 10.00 20.00
lognormal 1.00 1.27 1.64 2.30 3.33 4,24
2 =2
Gamma 1.00 1.78 4.00 16.00 100.00 400.00
Weibull 1.00 1.70 3.32 9.56 36.10 99.01
lognormal 1.00 1.49 2.23 3.46 5.61 7.65
2
aNote: when 0 = 1, the gamma and Weibull distributions are identical to

the exponential distribution.
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THE SHAPE OF THE AGING TRAJECTORY

Although Table 1 and equations (18), (19), (22), and (23)
provide information about the amount of divergence between u(x)
and W (x), analysis of the shape of u(x) and U (x) requires some
assumptions about how one of these two curves increases with x.
If relative-risk at birth is gamma distributed with mean 1 and
variance 02, then the correspondence between four different
formulas for u(x) and u(x) is given in Table 2. Figures 1la-d
depict how the curves for u(x) and u(x) diverge in these four
cases. The table and figures clearly demonstrate that the pat-
tern of individual aging can radically differ from the observed

pattern of aging in the surviving cohort.

Table 2. 1Individuals age faster than cohorts.

When z is gamma distributed with variance 02 at birth:

1f the value of }(x) Then the value of ﬁ(x) is
is given by: i given by:
2
a a/ (1 + ctax)
ax a/ (1 + O2ax2/2)
b
ae " ae®* /11 + 0%a (™ - 1)/b]
b
2
bx J0"b bx
ae e ae

— / 2
NOTES: If u(x) = ax, then u(x) reaches a maximum of va/20" when x =
¢2/a02. If U(x) = aebx, then as x > ©, H(x) - b/02. If U(x) =
aebx (i.e., follows a Gompertz curve), then the ratio of H(x) to

E(x) can be expressed as a double-exponential equation:

X
EOO _—
H(x)



4}

(&) ulx)=a (b) uix) =ax

a wdx)

porg AN porp
lx)

uix)

_9L_

Figure 1. Patterns of divergence. Examples (a)-(d) depict the trajectories of u(x) and
u(x) that correspond to the algebraic expressions presented in Table 2.
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THE DISTRIBUTION OF LIFESPANS

Although the discussion so far has focused on the divergence
of u from U over time, comparisons of individual versus cohort
behavior in heterogeneous populations could also be expressed
in terms of other statistics. Consider, for example, the frac-
tiles of the distribution of lifespans or, equivalently, the
distribution of age of death. Table 3 presents some of these
fractiles for a population and for individuals. Fractiles for
the standard individual are given for three levels of hetero-
geneity, as measured by 02; fractiles are also presented for
individuals at three levels of relative-risk z. The calculations
assume that relative-risk is gamma distributed with mean one
at birth and that the observed death rate for the population
is given by a Gompertz function, aebx, with a = 0.00012 and
b = 0.085. The table indicates that the distribution of life-
spans in a population is more spread out than the distribution
of possible lifespans for an individual. 1In particular, the
right-hand tail of the distribution is shorter for individuals,
especially for robust individuals and when variance in hetero-

geneity is high.

MORTALITY CONVERGENCE AND CROSSOVER

For many pairs of populations, mortality rates converge
and even crossover with age. For example, US blacks have lower
mortality than US whites after age 75 or so (Shepard and Zeck-
hauser 1980b; Manton and Stallard 1981a). In 1980, Puerto Ricans
had a longer life expectancy at age 65 than the residents of
any other country or area for which statistics were available
(Vaupel 1978). In most developed countries, male and female
death rates converge in old age. Nam, Weatherby and Ockay (1978)
present statistics on this and a variety of other convergences

and crossovers.
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Table 3. The distribution of lifespans.

Age at which the probability of being Length of

alive equals: right-hand tail,
.75 .50 .25 .10 .ol .ool X 001~ *.50
For entire cohort 62.6 72.9 81.1 87.0 95.2 100.0 27.1
For individuals:
z =1
02 = .1 62.4 72.5 80.3 85.8 92.9 96.7 24.2
02 =1 61.1 69.7 75.6 79.3 83.6 85.8 16.1
a? = 10 53.8 58.8 61.9 63.8 66.0 67.2 8.4
02 =1
z = .1 80.8 85.8 88.9 90.8 93.1 94.2 8.4
z =1 6l1.1 69.7 75.6 79.3 83.0 85.8 A 16.1
z = 10 35.9 45.7 53.3 58.8 65.8 69.7 24 .0

NOTE: See text for discussion and explanation of underlying assumptions.

These convergences and crossovers of population death rates
may be artifacts of heterogeneity in individual death rates.
Let r(x) denote the ratio of death rates for the standard

individual in population 2 versus 1:

r(x) = uz(X)/u1(X) (25a)

Similarly, let r(x) denote the ratio of the population death

rates:

r(x) = 11‘2<x)/ﬁ1 (x) (25b)

For simplicity, assume that the ratio is constant over time on

the individual level, so that individuals at any level of
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relative-risk in the second population are always r times more
likely to die than corresponding individuals in the first popu-

lation:
rix) =r > 1, all x (26)

Further assume that relative-risk is gamma distributed in the
two populations with mean 1 and variances 02, and og at birth.

Let
_ 2 2
p = 02/01 (27)

Then it follows from formulas (8) and (19) that at birth

¥(0) = r(0) =r (28a)
but as x increases

r(x) +~ 1/p (28b)

Depending on the value of p, i.e., on the ratio of the
variances in relative-risk, r(x) can either increase or decrease.
If p > 1, then r(x) will fall to a value less than one. This
means that although, on the individual level, uz(x) is always
r times higher than u1(x), the cohort death rate u2(x) will
start out higher than u1(x) and will end up below 51(x). The

crossover point will occur when

—_ _ o - 1

(%) = P /% (29)
where 51(x) is the proportion of population 1 still surviving
at age x. For example, if r = 2 and p = 1.5, the crossover
will occur when 51(x) = 0.5, Figure 2 depicts the trajectory
of r versus r(x); Table 4 presents some specific numerical

results.
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Figure 2. Patterns of mortality convergence and divergence.
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Table 4. A mortality crossover.

x Wy u, TVATH Ky M, My /by
(6] .00010 .00020 2.00 .00010 .00020 2
20 .00073 .00144 1.96 .00074 .00148 2
40 .00518 .00899 1.74 .00546 .01092 2
60 .02877 .03092 1.07 .04034 .08069 2.
70 .05233 .04075 0.78 .10966 .21933 2.
90 .08902 .04851 0.54 .81031 1.62062 2.
o - - .50 - - 2.

ASSUMPTIONS :

In calculating this table, which illustrates how an observed crossover in
death rates in two populations may be an artifact of heterogeneity, it was

assumed that relative-risk is gamma distributed with mean one and O? =1
and G; = 2. Furthermore uz(x) = 2u1(x), all x, where ul(x) = .OOOle'lx.

Empirical data on convergences and crossovers in mortality
rates can be used to estimate the degree of heterogeneity in
relative-risk in a population. If some assumption is made about
the distribution of relative-risk (e.g., that it is gamma dis-
tributed) and about the relationship of u1(x) to u2(x) (e.g.,
that one is a constant multiple of the other), then estimates
of the variance in heterogeneity can be calculated. Vaupel,
Manton, and Stallard (1979b) and Manton, Stallard and Vaupel
(1981) applied this method to various cohorts of the four pop-
ulations of male and female Swedes and US whites. The results
suggest that for these populations, the variance in heterogeneity

is roughly one.
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GERONTOLOGICAL FAILURES OF PEDIATRIC SUCCESS

Heterogeneity slows observed rates of progress in reducing
population death rates at older ages. Essentially, reductions
in death rates at younger ages permit frailer individuals to
survive to older ages. This influx of frailer individuals
serves as a brake or counter-current on reductions in mortality
rates at the older ages; Vaupel, Manton, and Stallard (1979a)
and Shepard and Zeckhauser (1980b) recognize this.

As a simple illustration, divide life into two parts—

youth and old age, say—at age Xqe Suppose that a proportion

E(xo) of each birth cohort used to survive to age X but that

OI
because of some pediatric advance, E'(xo) > E(xo) now survive.

Because z increases monotonically with p, z(x,) will increase.

0

Consequently, if the values u({x), x > x remain the same, the

0’

values of U(x), x > x will also increase. Thus, if observed

'
death rates at youngeg ages are reduced to low levels, further
progress will add fewer and fewer additional persons to the
ranks of the elderly. Thus, progress in reducing population
mortality rates will not be slowed to the extent it previously

was.

It follows from equation (8) that

du (x) /dx _ du(x)/dx + dz (x) /dx
n(x) U (x) z (x)

(30a)

Up until now this paper has focused on a single cohort aging
through time; thus x represents both age and time. Generaliza-
tion to the case of multiple cohorts is straightforward: let
u(a,y), u(a,y), and z(a,y) be the values of u, u, and z for a
cohort of age a in year y. Then, fundamental theorem (8) can

be rewritten as

u(a,y) = u(a,y)z(a,y) (8")

and it follows that
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a,y)/da _ du(a,y)/3a _ dz(a,y)/3a (30b)
(a,y) u(a,y) z(a,y)

= |~

and that

dula,y) /3y _ dula,y)/3y , 3z(a,y)/dy (30¢)
u(a,y) wia,y) z(a,y)

Both equations are interesting, but for the purposes of studying
the dynamics of mortality progress over time, the second equa-

tion is the relevant one.

Let

du(a,y) /oy
u(a,y)

ﬂa(y) (31a)

and

T y) = - auia,y)/ay (31b)
u

(a,y)

Thus, T and T are measures of the rate of progress in reducing
individual and population death rates. Equality (30c) can be
rewritten as

az(aIY)/ay (32)
z(a,y)

When individuals remain at the same level of relative-risk for
life, progress in reducing individual death rates will reduce
" the value of the negative term in this formula: at any age

a the value of z(a,y) will approach 1 as y increases and the
value of 3z(a,y)/dy will approach zero. This is easy to see
in the special case where relative-risk is gamma distributed

at birth with a mean and variance of 1. Then,

z(x) = p(x)

SO
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3z (a,y) /3y _ 3p(a,y) /3y

z(a,y) pla,y)

The proportion surviving at any age a will clearly approach 1

as progress in reducing death rates continues. Furthermore,

the change in the proportion surviving will approach zero.

Equation (32) consequently indicates that as progress in

reducing individual death rates continues,

wa(y) > ﬂa(y) ' any a

(34)

Since progress in reducing death rates permits frailer individ-

uals to survive to older ages,
dz(a,y)/%a < 0

But, of course,
z(a,y) > 0

Therefore,

T (y) < T (y) any

(35)

(36)

In short, the observed rate of progress in reducing the

population death rate at any age a will
approach over time the rate of progress
death rates at age a. Table 5 presents
concerning Fa(y) when m_(y) is constant

3 depicts the pattern of these results.

be less than but will
in reducing individual
some numerical results

for all a and y:; Figure
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Table 5. The acceleration in observed rates of progress in
reducing mortality rates.

Observed rate of progress ﬁka,y) when age a =

Year
% 20 40 60 80
0 .00986 .00894 .00528 .00131
40 .00991 .00927 .00626 .00184
80 .00994 .00950 .00714 .00252
120 .00996 .00966 .00788 .00334
o .01000 .01000 .01000 .01000

NOTE: It is assumed that the rate of progress on the individual level is
0.01,

(Bu(a,y)/3y)l / u(a,y) =m=0.01 , all a,y

Furthermore, z is assumed to be gamma distributed with mean one

and variance one at birth, and u(a,0) = .OOOZe'la.

The pattern shown in Figure 3 is roughly the pattern
actually observed in the United States, Sweden, and other
countries over the course of this century. Thus, the observed
acceleration of progress in reducing mortality at older ages
may be, at least in part, an artifact of heterogeneity. To
the extent this is true, death rates after age 70 and especially
after age 80 may decline faster in the future than now predicted
—and at an accelerating rate. The various implications of an
increase in the size of the elderly populations, including the
pressures it would place on pension systems, are discussed by
Arthur (1981).
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Figure 3. Trajectories of progress.
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WHEN PROGRESS STOPS

Suppose progress has been made over a number of Years
in reducing individual mortality rates and then, suddenly,
the progress stops so that the mortality rates henceforth
remain constant. In the succeeding years (i.e., as y increases),
the value of p(a,y), the proportion of the original birth
cohort surviving to age a in year y, will increase and then
level off. The increase in p(a) will result from the aging
of the younger cohorts that have experienced lower death rates
because of the previous progress. Since, as noted earlier,

z is a monontonically increasing function of p, it follows that

Z will increase as well. The value of u(a,y), any a and vy,
will be constant—that is what no progress means. But
wla,y) = ula,y)z(a,y) (8")

Thus, E(a,y) at any age a will increase over time.

In short, current mortality rates for populations are
lower than the mortality rates that would prevail if current
mortality rates for individuals persisted. If health progress
stops, death rates will rise. This implies that estimates of
"current life expectancy" are too high. These estimates are
based on current population death rates, but they are supposed
to represent what life expectancy would be if health conditions
remained unchanged. Vaupel, Manton, and Stallard (1979a) indicate
how the correct value of current life expectancy, adjusted for
the effects of heterogeneity and past health progress, might
be calculated. Figure 4 and Table 6 compare the patterns of

p(a,y) and u(a,y) when health progress stops.

If progress in reducing u accelerates and decelerates over
time, the observed trajectory of u will be bumpy and might
show periods of apparent negative progress: this phenomenon
might underlie the increase in death rates observed in the
United States in the mid and late 1960's, following a relatively

rapid decrease in the 1950's.
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Table 6. When progress stops.

y H(60,y) U(60,¥)
0 .08069 .04264
20 .06606 .03817
40 .05409 .03384
60 .04428 .02972
80 .03625 .02588
81 .03625 .02595
90 .03625 .02635
o .03625 .02662
ASSUMPTIONS: 1i(a,0) = .0002e" 2
Wa,y) = u(a,0)e %, v < 80

ufa,y) = u(a,80), y > 80

INDEPENDENT COMPETING RISKS

Suppose there are several causes of death and that an
individual can be at different relative-risks for the different
causes. Let z; denote the level of relative-risk for cause of
death i and let ui(x,zi) be the death rate from cause i at time
(or age) x for individuals at relative-risk z, - As before,

define zi such that

—_ —_ 1
Assume that an individual's relative-risk for any cause of
death is independent of his or her relative-risk for any other
cause of death. Then, as shown in the Appendix, a straightforward

generalization of fundamental theorem (8) yields:

uy (x) = ui(X)Ei(X) (8'a)

and
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—— n —
W(x) = ) W.(x) (8'b)

where Ei represents the population death rate from cause i and

where Ei(x) is the mean relative-risk from cause i among the

individuals surviving to time x. The wvalues of Ei(x) for any

cause of death i can be calculated on the basis of fo(zi), the

distribution of z; at birth, and ui(x), the death rate from

cause 1i:

-/% z u (t)dt

o 0 iti

{ ZifO(zl) € dz

z, (x) =2 . (137)
-/ z,u, (v)dt
o 0 ivi
J fo(zl) e dz
0

Thus, the dynamics of mortality from any specific cause of
death can be studied without knowing the death rates and dis-

tributions of relative-risks for other causes of death.

Suppose that the zi's are gamma distributed with mean 1
and variances oi. (As before, the means might as well be set
equal to 1, as in that case the "standard" individual at
relative-risk 1 will be the mean individual at birth.) Then

equation (19) generalizes to:

Z, (0 =1/ [1 +02H (x)] (19")

where X
H, (x) = f u; (t)dt (37)

0

Furthermore, equation (18) generalizes to:

2
_ — 9y
z.(x) = pi(x)

i (18")

where §i(x) is the proportion of the population that would sur-

vive to age x if i were the only cause of death:



Bi(x) = e (38)

The formulas for the uniform distribution (23) and the two-point

distribution (22) similarly deneralize.

Thus, the case of independent, competing risks is almost
as easy to analyze as the simpler case of a single cause of
death. 1In a sense, the competing risk case adds another layer
or dimension of heterogeneity as now individuals not only differ
from each other but they also differ within themselves in sus-

ceptibility to various causes of death.

Patterns of aging for individuals can be compared with
observed patterns of aging for the surviving cohort in much the
same way when there are several causes of death as there were
in the case of a single cause of death. Figure 5 presents an
example. The mortality curve shown in Figure 5, which is plotted
on a log scale, is intriguing because it resembles the observed
mortality curve in most developed countries: mortality falls
off after infancy, begins increasing again after age 7 or so,
rises through a hump roughly between ages 15 and 30, and then
at older ages increases more or less exponentially. Figure 5
was generated by assuming there were three causes of death.

For individuals, the incidence of the first cause is constant,
the incidence of the second cause increases exponentially and
the incidence of the third cause increases according to the
double-exponential form that produces, on the population level,

an observed exponential increase.

Just as mortality convergences and crossovers for two
populations may be artifacts of heterogeneity, convergences
and crossovers for two causes of death may also be artifacts
of heterogeneity. In the earlier discussion of population
crossovers, the subscript i denoted population 1 or 2—e.g.,

Ei was the death rate for population i. The mathematics is
equally valid if the subscript i denotes cause of death 1 or 2.
So, for example, cause of death 2 might be twice as likely as

cause of death 1, at all ages, for all individuals. If the
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Figure 5. A population mortality curve produced by three
causes of death. The three independent causes of
death act, on the individual level, as follows:
u1(x) = 0.02 and Z is gamma distributed with oy =
5007 u,(x) = 0.00001e" ¥

with oé = 200; uy(x) = aeP¥

a=0.00015, b = 0.08, and z
with og = 1.

and z., is gamma distributed

2
exp[a(ebx - 1)/b0§],

3 is gamma distributed
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variance in Zy however, is greater than twice the variance in
Zq then the observed rate of death in the surviving cohort
from cause 2 will approach and eventually fall below the observed

rate for cause 1.

What will be the effect of progress in reducing individual
death rates on observed progress in reducing deaths in surviving
cohorts? For any specific cause of death, the mathematics will
be the same as outlined in the section on progress above.
Furthermore, in the case being considered here of independent
causes of death, progress in reducing one cause of death will
have no effect og ui(x) or ﬁi(x) for any other cause of death
i. Since everyone has to die of something, the number of people
eventually dying from other causes will increase but the death

rates u; and ﬁi will not change.

CORRELATED CAUSES OF DEATH

When causes of death are not independent but are correlated
with each other, the mathematics becomes more complicated.

The fundamental equations

T, (x) = ui(X)Ei(X) (8'a)

— n —
H(x) = ) W;(x) (8'b)

are still valid, but now the value of Ei(x) depends on the death
rates and distributions of relative-risks er correlated causes

of death:

0 00 00 - x)-z. H,(X)-...-2z H (%
J J e J z,.f (z, 6,z z ) e lel( ! 2 2( ! n ( )dz dz dz
itotT1r T2t n 1772°°°"""n
;(x)zoo (0]
i 00 400 Q -z, H, (x)-z. H,(Xx)-...-2 H (x)
J J .o J £f (z,,2,, z ) e 1l 22 non dz.dz dz
o "1'72 '“n 1772
o O O
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where, as before,

As a simple example, consider the following special case.
Suppose that there are two causes of death and that, as in
the "mover/stayer" model, there are two kinds of people. Let
u1(x) and uz(x) be the death rates from cause 1 and 2 for the
standard individual in the first group and let u%(x) and ué(x)
be the rates for the second group. Finally, suppose the rates

are interrelated as follows:

0 < ui(x) < u1(X) ' all x (40a)

and

'(x) =0 , all x (40b)

Thus, the second "robust" group does not die from cause 2 and

faces a lower death rate than the first group from cause 1.

Let m(x) denote the proportion of the total population
that is in the first group, at time x. The observed death

rate for the first cause of death will be
u1(X) = W(X)u1(X) + [1 - W(X)]u;(X) (41a)

and the observed death rate for the second cause of death will
simply be

My (x) = 1, (%) (41b)

Suppose some progress is made in reducing the incidence
of the second cause of death. Then the observed death rate
from the first cause will increase. This observed death rate
is the weighted average of the death rates for the first and
second groups. If death rates for the first group are reduced

(as a result of progress against the second cause of death),
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more of this group will survive. The value of 7 (x) will increase

'(x), the value of u,(x) will also

1 1
increase. The value of w(x), by the way, is given by:

and since p1(x) exceeds |

I Tuy (0 +, () ]ae
T(x) = e — (42)
- [u1<t)+u2(t)]dt -/ Wi (t)de

m(0) e 0 + [1 - m(O)] e 0

A more general situation in which causes of death are
correlated can be described as follows. Let ZgreeerZy be
independent relative-risks with mean 1. Let the death rate

for an individual be given by:

by (x,2) = [wizg + (1 = wy)z Ty (x) (43)

where z is the vector of relative-risks for the individual and

W is a weight such that
0 sw, <1, i=1,...,n (44)
The basic idea is that an individual's risk from any specific

cause of death i depends on a general relative-risk (or "frail-

ty") factor 2 and a specific relative-risk factor Z, -

It can be readily shown that
My (x) = [wizo(X) + (1 - wi)zi(X)]ui(X) (45)

If the z's are gamma distributed with mean one and variances

Gi, then

—_ 2 n

2o (x) =1/ [1 + of iZ1 wiH, (x)] (46a)
and

zi(x) =1/ [1+ Of(1 - w)H (x)] , 1i=1,...,n (46b)
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If wj > 0, then reducing the incidence of cause of death
j will increase zo(x). This increase in zo(x) will, if w, > 0,
result in an increase in the observed incidence of cause of
death i. Indeed, if Hj(x) is reduced by dj’ then ﬁi(x) will

increase by:
3¥3¥its () 47)

2
1 Hk(x)wk)(1 + 95

2
1+go

i~
jus]
5
£
|
o
b

e~

k

In short, when relative-risks from different causes of
death are positively correlated, progress against one cause of
death may lead to observed increases in the rates of other

causes of death.

WHEN INDIVIDUALS' RELATIVE-RISKS CHANGE PROPORTIONATELY OVER TIME

So far it has been assumed that an individual is born at
some level of relative-risk and remains at that level for life.
Clearly, however, individuals' relative-risk levels may in some
situations change significantly over time. Sometimes this
change 1is caused by factors, such as improvements in living
conditions or progress in medical technology, that may affect

individuals proportionately to their current relative-risk

levels. That is, for all individuals,
dz (x) _ _ _
% = —9¢(x)z(x) , z(0) = z, (48a)

where z(x) is an individual's relative-risk at time X and ¢(x)
measures the intensity of the change. Alternatively, the value

of z(x) could be given by
z(x) = g(x)z, (48Db)
where zZ is an individual's relative-risk at birth and g (x)

measures the cumulative change. The values of ¢(x) and g(x)

are related by
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-/* e(t)dt

g(x) =e 0 (49)
Because

nix,z) = zp(x)
it follows that

nlx,z(x)] = zog(x)u(x) (50)
Let

u'(x) = ¢(x)u(x) (51)

The function n'(x) can be interpreted as describing the trajec-
tory of death rates for the standard individual under the changing

conditions described by g(x). Then, the fundamental equation

becomes

W(x) = u'(x)z'(x) (8")

where, analogously to previous formulas,

" /¥ ur(t)dt
J zfo(z) e 0 dz
- 0
Z'(X) = "
_ - X L (t)dt (13™)
0
J fo(z) e
0

In short, by combining the function g(x) with p(x), all the

mathematical apparatus derived earlier can still be applied.

As shown in the Appendix, g(x) could describe a stochastic
process. After a particular realization of g(x) is known, then
the equations above would hold. Before g(x) is known, the

equations hold for expected values: 1if

u'(x) = g(x)u(x) (51")
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where g(x) is the conditional expectation of g(x) as defined
in the Appendix, and if z and g(x) are independent, then the

expected mortality curve i(x) is given by
i(X) = p'(x)z'(x) (8"")

where z'(x) is given, as before, by formula (13) and where
?(x) may be considered a conditional expectation of the observed

mortality rate u(x), as discussed in the Appendix.

DEATH AND DEBILITATION

In some situations death may be associated with some ill-
ness or catastrophe that not only kills some people but that
also weakens the survivors. To model this kind of correlation

between death and debilitation, suppose:
z(x) = 20[1 + aH(x)] (52)

for all individuals in the population. Thus, the greater the
cumulative death rate, H(x), has been, the frailer each of the

surviving individuals will be.

Since equation (52) is just a special case of equation
(48b), equations (51), (8") and (13") can be used to analyze
this situation. For illustrative purposes, it is sufficient
to consider a simple, concrete instance. Suppose, for example,
that z, is gamma distributed with mean one and variance 02.
And suppose that p(x) is constant and equals c at all ages x.

Then,

2
- C + 0C%x
u(x) = 5 5 2 o (53)
1 + 0% x + 0%acx“/2

If the debilitating effect is small relative to the selection
effect of heterogeneity—specifically, if o is less than or

equal to 02——then u(x) will decline with age and approach zero.

2

On the other hand, if a exceeds ¢“, then u(x) will initially
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rise above the level ¢, but will then start to decline, will

fall below c¢ when

2

X -0
2

(54)
a0

and will eventually approach zero. Thus, if o is big enough,
the debilitation effect will dominate for a few years until the

selection effect of heterogeneity takes over.

A RANDOM WALK THROUGH RELATIVE-RISK

Factors such as further education, increasing income,
decreasing alcohol consumption, increasing cigarette consumption,
and other changes in life style, living conditions, work environ-
ment and so on may gradually alter any particular individual's
relative-risk (or "frailty") level relative to other individuals'
levels. Suppose that the process is the usual kind of random
walk known as a Wiener or Brownian-motion process. In this
kind of process, the change in an individual's relative-risk
at any instant in time is proportional to the individual's level
of relative-risk. Furthermore, the cumulative change over an
interval of time is proportional to the length of the interval.

More exactly,

dz(t) = z(t)b(t)dw(t) , z(0) = z

where w(t) is a Wiener process independent of z, and b(t) is

0
some deterministic function such that

[oe]

2

b (t)dt < = (56)

[
J
0
As shown in the Appendix, if T denotes time of death, then

_ _ X X
W(x) = u(x)z(x) E{exp [{ b(s)dw(s) - %‘J b(s)ds] | T >x (8"")
o) 0
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where z(x) is defined, as before, by equation (13). Thus,
remarkably, the mathematical apparatus developed above for the
special case of unchanging individual relative-risks also holds,
in terms of expected observed mortality i(x), for the more
general case where the relative-risk level of each individual
is gradually changing according to a random walk process.
However, the calculation of the conditional mathematical expec-
tation on the right-hand side of the formula (8"") requires
more sophisticated methods of estimation based, for example,
on the theory of random point processes (Yashin 1970, 1978;
Snyder 1975; Brémaud 1981).

The three kinds of change in relative-risk discussed above
—deterministic proportional change‘for all individuals,
stochastic proportional change for all individuals, and inde-
pendent random walks for each individual—can be combined

with obvious changes in the mathematics.

CONCLUSION

"Individuals"—whether people, plants, animals, or machines
—differ from oné another. Sometimes the differences affect the
probability of some major transition, such as dying, moving,
marrying, or converting. If so, the observed dynamics of the
behavior of the surviving population—the population that has
not yet made the transition—will systematically deviate from
the dynamics of the behavior of any of the individuals that make
up the population. Most of the examples and terminology of this
paper were drawn from the study of human mortality, but the
mathematics can be applied to various kinds of heterogeneous
populations for such purposes as explaining population patterns,
making inferences about individual behavior, and predicting or
evaluating the impact of alternative control mechanisms, policies,

and interventions.
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Among the interesting results discussed in this study are:

— Individuals age faster than populations,.

— Observed mortality convergences and crossovers, both
between populations and between causes of death, may
be artifacts of heterogeneity.

— Progress in reducing mortality at younger ages or from
some causes of death may increase mortality at older
ages or from other causes of death.

— Slow but accelerating rates of mortality progress in
0old age may be an artifact of heterogeneity, with a
significant consequence: the elderly population may
be substantially larger in the future than currently

predicted.



APPENDIX

1. Proof of Formula (6)

Let f£(z) be the probability density function of frailty z
and let T be the random death time. Denote by ¢(t|z) the condi-
tional probability density of death time T when frailty z is
given. Note that

t
-z J L (x)dx
e(tz) = zu(t) e
where U (x) is the age-specific death rate for the "standard"”
individual with frailty z = 1. Using the notation g(t,z) for
the joint probability distribution function of death time T
and frailty z we get, multiplying f(z) and e(t]|z),

gl(t,z) = £(z)e(t]|z)

According to the definition of u(x)

-43-
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where h(x) is the probability density function for death time T.

Note that

h(x) = I g(x,z)dz = J f(z) p(x|z)dz
0 0

Using the expression for ¢(t|z) we have for u(x):

-z % u(t)dt

J zu{x) e 0 f(z)dz
0

P(T > x)

Noting that according to the formula for ¢(t]z)

-z /X u(t)dae

P(T >x|z) = e 0

the formula for u(x) may be rewritten as follows

u(x) j P(T > x|z)f(z)dz
0

H(x) =
P(T > x)

Denoting by fx(z) the conditional probability density
function of z when event {T >x!} is given and noting that according

to Bayes formula

£ (z) = P(T>x|z)f(z)

X P(T > x)
we have for u(x)
H(x) = p(x) [ zf (z)dz = uw(x)E(z|T >x)
0

completing the proof.
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2. Competing Risk Case

Let frailty z be the vector z = (z1,22,...,zn). Denote

by Ti the random death times caused by frailty Z: i=1,2,...,n,
and let T = min{Ti, i=1,2,...,n}. Note that the density
function of T when frailty z is given is

t

1 z; 6 ui(x)dx

i

[Wavle]

n

e(t|z) =( ) Z-ui(t)) e

\ i
L 1=1

Note that from this formula it follows that

)
s

X
iZ z: é pi(t)dt

P(T >x|z) = e

As in the scalar case note that

d

uix) = ST E

Denoting by f(z) the density probability function of vector

z = (21""’Zn) we have

!
J FxP(T <x|z)f(z)dz
0

P(T > x)

or using the formula for ¢(t|z)

- % oz, /My wat
[so] 1=1 0
J (Z zlui(x)) e f(z)dz
- 0 1
n(x) =
P(T > x)
Noting that
n X
—i§1 z.l 6 ui(t)dt
e f(z) = £ (2)
X
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where fx(z) is the conditional probability density function of
vector frailty z = (z;,...,z,) when the event {T >x} is given,

we get for u(x)

H(x) = ] ou(x)zy (x)

where

2i(x) = E{zilT >x}

It is very important to know when Ei(x) coincides with Ei(x),
where z, = E{z;|T, >x} is the conditional frailty which was
defined before. For this purpose note that the random event
{T > x} may be represented as

n
{T>x} = n A{T, >x}
i=1
The equality gi(x) = Ei(x) means that
E(z;|n{T; >x}) = E(z|T; >x)

1

The last equality may take place only in the case when frailty
z, for any i does not depend on Tj’ i #1i, 1i,3 =1,2,...,n.
3. The Proof of the Formula for u(zx)

Assume that the following representation for the age-

specific mortality rate u(x,z) is valid
uix,z) = zg(x)u(x)
where g(x) is some integrable random function which is indepen-

dent of z and takes values on the real line. According to the

definition of ﬁ(x)



I

dP (T > x)

e S

Let the symbol E_ denote the operation of averaging with

Q

respect to measure Q which is defined in the space of functions
g(x). Then for ﬁ(x) we can write

- -z /® g(s)u(s)ds

EQ J zg (x) e 0 f(z)dz
H = ulx) —2 -
w =~z J g(s)u(s)ds
EQJ e 0 f(z)dz

0

where f£(z) is the probability density function of z.

It is not difficult to see that

H(x) = u(x) E(zg(x)|T >x)

Since variables z and g(x) are independent, the formula for

i(x) may be rewritten as follows
H(x) = u(x) E(z|T >x) E[g(x)|T >x]
or using the previous notation

(x) = u(x)z(x)g(x)

= |

4. Frailty as a Solution of Stochastic Differential Equations

Assume that frailty z(t) is governed by the following

stochastic differential equation

dz(t) = z(£)b(t)dw(t) , z(0) > 0

where z(0) does not depend on w(t) and
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t
J b2 (t)dt < «
0

The solution of this equation may be found in the following
way. Apply the stochastic differentiation formula (Ito formula)
to the function y(t) = 1ln z(t) (Liptzer and Shirjaev 1977).

We have

and consequently for z(t)

t 1 t 5
z(t) = z(0) exp J b(s)dw(s) - > J b® (s)ds
0

t 1 t 2
exp J b(s)dw(s) - vl J b®(s)ds; and recal-

0 0
z(0)g(x)u(x), we see from section 3 of the

Denoting by g(t)

ling that u(x,z)
Appendix that

[
N|
%
Q

3
=

3

H(x)

where

Ql
X
[
&
Q
X
=

v
X
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