NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

ON THE GEOMETRY OF EMERGENCY SERVICE
MEDICAL PROVISION IN CITIES

G. Hyman
L. Mayhew

April 1982
WP-82-23

Working Papere are interim reports on work of the
International Institute for Applied Systems Analysis
and have received only limited review. Views or
opinions expressed herein do not necessarily repre-
sent those of the Institute or of its National Member

Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria



THE AUTHORS

Leslie Mayhew is an IIASA research scholar working within the
Health Care Task of the Human Settlements and Services Area.
He is on leave from the Operational Research Unit of the
Department of Health and Social Security, UK.

Geoffrey Hyman is an independent consultant in the field of urban
and regional planning from the United Kingdom.

-ii-



FOREWORD

The principal aim of health care research at IIASA has
been to develop a family of submodels of national health care
systems for use by health service planners. The modeling
work is proceeding along the lines proposed in the Institute's
current Research Plan. It involves the construction of linked
submodels dealing with population, disease prevalence, resource
need, resource allocation, and resource supply.

This paper considers a set of methods for the planning and
monitoring of emergency medical services in large cities and for
the allocation of resources =-- vehicles, manpower, and eguip-
ment -- to facilities in the system from a geometrical view-
point. The premise for the approach taken is that wvariations
in weather and traffic conditions, the general complexity of
the road systems in cities, and the risk of accidents occurring
pose real problems for authorities who seek to provide a con-
sistent and efficient service to the general public, but who

find traditional analytic methods of dealing with these problems
deficient.

Related publications in the Health Care Systems Task are
listed at the end of the paper.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

The enormity of many cities today poses special problems
for authorities supplying emergency medical services. The
scale of the emergency system and variations in the operating
conditions rule out some of the traditional methods developed
to deal with the complexities involved. 1In cities the pro-
vision of services is affected not only by the daily varying
locations of the populations at risk, but also by the pre-
vailing traffic and weather conditions that can hinder am-
bulance access to the site of an incident or to a treatment
facility. The controlling authorities of these services never-
theless like to maintain the highest possible levels of ser-
vice given the available resources. They are interested in
knowing which facilities to open and when, what resources and
staffing levels are required, and what the long- and short-
term implications of changing operating conditions and of other
unforeseen circumstances are on operating standards. This paper
presents research into a set of methods that are designed to
assist in finding solutions to these problems or, at least, in
understanding how to deal with them. The methods are based on
the efficiency of movement in cities, particularly the time it
takes to access different locations in different traffic condi-
tions, and on the likelihood of incidents occurring at different
times of the day. Initial results are presented based on the London
area, but the main conclusions are transferrable to many other
cities of comparable scale. The distinguishing feature of the
methods is that they are based on a type of non-Euclidean geo-
metry that arises from the generalized profiles of the average
speeds of traffic flow in cities.
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ON THE GEQMETRY OF EMERGENCY SERVICE
MEDICAL PROVISION IN CITIES

1. INTRODUCTION

The enormity of many cities today poses special problems
for authorities supplying emergency medical services. These
problems are being studied by the Health Care Task at IIASA,
and this paper presents some of the intermediate results.
Specifically, it describes the development and trial applica-
tion of a body of geometrical methods for use in long-term
planning and routine operation of accident (A) and emergency
(E) services in cities. Geometry seems well-suited to analyze
such systems. For example, an ambulance is dispatched from
a depot (a point) to the site of an accident or emergency
(another point), and from there the patient is taken to an
emergency treatment centre (a third point). The full journey
cycle and its constituent parts needs to be completed within a
reasonably short time: to reach the patient, to get the patient
to the hospital, and to free the ambulance for response to an-

other call.

The geometry of movement by ambulances in cities is not
the simple geometry of Euclid, found in school text-books,
where the quickest route between two points is a straight line.
It becomes more complicated because of the need to minimize
journey times. Travel speeds, however, vary between differ-

ent locations due to traffic congestion and differences in



road patterns, (Raitt 1981; Cantwell et al. 1973). Thus, the
directional behavior of ambulances will depend on local condi-

tions in each part of the city.

1.1 The Ambulance Velocity Field

In the geometry used to model the movement of ambulances,
however, an important simplification can be made. That is,
there is no need to pay close attention to the detailed road
networks in the city and the routes that drivers take: rather,
we are more concerned with factors such as the location of
emergency facilities, the range of operation and geographical
coverage of ambulances, typical journey times, and the alloca-
tion of resources. It suffices to base our analysis on local
average velocities of ambulances, varying across the urban area.
Functions describing such velocity variations are called velo-
eitty fields (Angel and Hyman 1976).

An alternative to the use of velocity fields might be
to employ models of the road networks. However, this would im-
pose far greater data processing requirements than geometrical
methods, and could only be considered worthwhile at a very

local scale of enquiry.*

1.2 Scope of the Paper

In the next section, we discuss the geographical factors
affecting the operation of accident and emergency systems in
large cities, introduce the idea of time standards for ambulance
journeys, and give a checklist of practical problems to which
the methods could be addressed.

In section 3, we present preliminary maps of ambulance
journey times and show how they can be used to identify
possible inefficiencies in emergency coverage and to spot

areas where coverage appears to be weak. We then discuss the

*The London region, for example, has over 56,000 listed roads.
Even if the network were reduced to include only the major
roads, the data requirements would still be very large and
many approximations would be needed.



construction of more sophisticated and realistic geometrical

models to determine ambulance journey times.

In section 4, the basic geometrical theory is described,
with mathematical details being given separately in the

appendices.

In section 5, we describe methods for the determination
of optimal geographical arrangements for facilities and apply

these methods to the Greater London Council (GLC) area.

In section 6, the case study for Greater London is
further developed. Density functions are estimated for patient
caseloads as they vary over the urban area. The relationship
between the ambulance travel time standard and the number of
facilities required is derived; the number of facilities
required to maintain time standards across the city is deter-
mined; the expected levels of patient caseloads at individual
facilities are given; and the typical sizes of patient catchment
areas are evaluated. Finally methods are described for deter-
mining the effects of closing a single facility on time

standards and on the patient caseloads of nearby facilities.

2. THE OPERATION OF ACCIDENT AND EMERGENCY SYSTEMS IN CITIES

The functioning of accident and emergency services is
affected not only by the patients requiring treatment and the
resources available to the service, but also by the level of
operating standards and by external conditions. We shall
consider the implications of the following criterion for
resource allocation. This is to configure treatment facilities
geographically, so that practically every location of an
accident in a city can be expected to be serviced by an
ambulance within an acceptable time. Manpower, vehicles,
medical equipment, and other resources are then to be allocated
to each facility in accordance with their expected patient

caseloads.



The expected patient caseload at individual facilities
varies predictably by time of day, on weekends, and by time of
year. These variations are partly due to the varying geographi-
cal locations of the populations at risk (e.g. commuters,
shoppers, schoolchildren), but more importantly to the varying
risk of accidents occurring. Figure 1, reproduced from
Anderson (1978) shows the average daily variation in emergency
calls. It can be seen that during the period 2:30 am. to 6:30 am.
the number of calls seems to be about one third the average level
over 24 hours. Clearly, such variations need to be recognized
in the allocation and scheduling of the resources avaiiable

at individual emergency facilities.

During the course of the day not only does the risk of
accidents vary but also the time it takes ambulance drivers
to reach a patient and deliver him to a treatment facility
varies, due to changes in prevailing traffic conditions. These
factors affect the numbers of facilities that need to be open
in order to meet travel time standards and the numbers of
ambulances and drivers that need to be available. Unforeseen
shortages of staff and equipment further affect the daily
operation of the emergency service, which should be sufficiently

flexible to cope with these contingencies as well.

2.1 Ambulance Travel Time Standards

Despite the problems of varying operating conditions,
the controlling officers of well-organized emergency services
will usually have a set of standards that they would like to
maintain (e.g., see Groom,1975). A typical form of such standards
would be the times that ambulances take to respond to emergency
calls and deliver the patients to suitable nearby places of treat-
ment. The determination of the treatment facility is generally
up to the ambulance drivers, but it would usually be the nearest
facility, due consideration being given to traffic conditions
and other factors. Rigorous time standards may not be imposed
in all cases, and medical priorities may be applied when

resources are stretched. Nevertheless, it would still be
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expected that a substantial proportion of all emergency cases
would receive treatment within suitable times, related to the

experience gained in operating the service.

2.2 A Checklist of Problems for Study

In order to aid the discussion, it is useful to start
with a checklist of problems that the proposed techniques
might be adapted to solve in practical situations. These
problems can be classed according to their significance in the
long~-term planning of A and E services, and to their day-to-day

operation and monitoring applications. The problems posed are:

1. To determine the appropriate subset of facilities
that will enable an imposed set of standards to
be achieved everywhere in a city for a given set
of operating conditions, taking into account size
limitations at each facility (long-range planning)

2., To determine the local effects on caseloads and
standards of adding or subtracting particular
facilities from the set of facilities and to link
such effects to staff availability (day-to-day
operations and contingency planning)

3. To determine whether services are adequate to deal
with major incidents such as fires, plane, or train
crashes (long-range and contingency planning)

4. To undertake the routine monitoring of the system
in a command and control environment to check that
standards are being maintained and that there are
sufficient resources available in each location
(day-to-day operations)

5. To determine optimum configurations of facilities
at given standards to provide benchmarks for
evaluating the overall efficiency of existing
facility distributions

6. To make recommendations on the approximate number of
drivers, ambulances, doctors, and nurses needed on
duty at each facility under different operating
conditions and standards by day and night (long-
range planning)

One important source of information for helping to resolve

such problems are the returns filed by ambulance drivers.



These contain data on ambulance journey times and have previously
been used in the analysis of the operation of the London

Ambulance Service (Anderson 1978).

3. AMBULANCE TRAVEL TIMES AND ISOCHRONE MAPS

Important graphical aids to decision making are provided
by maps based on ambulance travel times. From such maps
many inferences relating to the problems in the checklist can
be made (see also section 6). First, it is necessary to define
an isochrone: the locus of points that ean just be reached
in a given time from a specified point. Such points may be
ambulance depots or treatment facilities. If this time is
an operating standard, then clearly all points within an
isochrone can be reached within this standard. Conversely,
points outside such an isochrone cannot be reached within

the operating standard.

3.1 The Geographical Coverage of Emergency Facilities

The rings of isochrones show a potential observer the
degree of geographical coverage obtained with a set of facili-
ties and a particular time standard. Where two isochrones
overlap, there is a duplication of coverage of the enclosed
area; where there is no enclosing isochrone the area is not
covered within the operating standard. Thus, an observer can
easily detect areas where there could be unnecessary duplica-
tions of services as well as locations that cannot be served

within specified time standards.

In Figure 2 we present four computer-drawn maps of the
Greater London Council (GLC) region, with selections of the
principal emergency treatment facilities plotted.* Around each

*Facilities are plotted only if they are not located within the
isochrones of neighboring facilities (algorithm available).

The method provides a general indication of the optimum numbers
needed, but not exactly which ones.
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Kilometres

W= 3.0
p =0.50
o0 A =0. 167 |

1
0.

Kilometres

90 facilities

W= 5.0
1 =0.50
A =0.167 [*%

(a)

66 facilities

(c)

Figure 2 (continued).
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facility is drawn an isochrone for a 10-minute travel time in-
terval. A velocity field has been used to create these maps
in which VvV, the average velocity, is presumed to increase with

the power p of the distance r from the city centre. That 1is,

V(r)= urP (0 <p < 1) (1)

In this equation, the velocity is lowest near the city centre

to take account of the higher traffic congestion normally

found there. This is why, in each case, the central isochrones
enclose smaller areas than the peripheral ones. (For techni-
cal details of the derivation of isochrones see mathematical

note 1.0 of the Appendix.) The parameters w and p in equation

(1) are the controls in the model that are used to simulate the
background operating conditions. They are responsible for the
substantial differences in coverage observed in the four examples,

despite the same value for the time interval, A, in each case.

The form of the velocity field also influences the shape
of the isochrones. 1In the cases considered here, they are
mostly off-centred circles, flattened on the side nearest the

city centre (see Mayhew, 1981). Occasionally, because of the
steep decline in velocity in the locality of the city centre,

the isochrones in this model will be distorted into other shapes.

3.2. First Estimates of the Numbers of Facilities Required

‘

Figure 2(b), with V=10r%, and Figure 2(c), with V=5r%,
are both fairly close to more recent estimates of the ambulance
velocity field for London. They indicate that there are more
than sufficient treatment facilities to give a reasonable level
of coverage within the ten-minute standard but suggest that
patches of poor provision could exist in parts of south and
east London. In Figure 2(c), there are 66 facilities; from
1976 data, however, 89 facilities in, and around the edge of,
the study region treated more than 1000 new cases, while 111
reported some sort of activity. It would be expected that
some facilities be held in reserve for use in adverse opera-

ting conditions or for the scheduling of different opening hours,
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although we have not touched on this problem so far. 1In sec-
tions 5.4 and 6.3, where the more recent estimates of the ve-
locity field are used, it is indicated that 77 facilities,
optimally located, would be needed during the daytime and

50 at night, when there is hardly any road congestion. In-
terestingly, there are just 77 ambulance depots in current

operation, many less than the number of treatment facilities.

4. THE GEOMETRICAL THEORY

In this section the general geometrical theory behind the
approach is developed. (Readers interested only in the appli-
cation to emergency services can turn to section 6.) The the-
ory is based on the work by Angel and Hyman (1976) and Mayhew
(1979, 1981). To introduce it, we start with the problem of
determining journey times between points in a city. To each
point is assigned a velocity that is independent of direction
and varies continuously from one point to another. The travel

time X on any path between the points A and B is
B
ds
. (2)

We seek the smallest value of this integral, and hence the
quickest journey time. This is a problem in the calculus of

variations*,and it gives rise to a function X of the form,

A= A(XAI YAI XBI YB: a1l"'lan) (3)

where x and x are the coordinates of A and B and where

a¥a BYB
a1,...,an are the parameters of V(x,y), the velocity field.
If Xgr¥p

held constant, equation (3) describes an isochrone around the

are allowed to vary while the remaining terms are

*In fact the problem being considered is closely related to
the famous brachistochrone problem (Bpaxioto¢ = shortest,
xpduo¢ = time), solved in the late 17th century, which gave
rise to the basic techniques in this field. Koo (1977,

p. 172) gives a short account of this.
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point (xA,yA). By considering A as the location of the facil-
ity, A as the time standard, the isochrone around the facility
can be mapped. Empirically, it is necessary to parameterize
the function V(x,y) under varying operating conditions by
determining the values of aqs.-,a,- While rough estimates
could be obtained from general traffic survey data, it is better
to use data on the actual journeys reported routinely by the
ambulance drivers. These may then be disaggregated into differ-

ent times of the day or year as desired.

4.1 The City Pattern

The choice of velocity field will depend on the geographical
characteristics of the city and its pattern of major roads.
Here we give illustrations based on two major city patterns:
radial and linear. The first consists of cities, with a dominant
central focus like a business district, that radiate outwards
in all directions. Examples in this class besides London could
possibly include Paris, Vienna, Rome, Budapest, Warsaw,and Moscow.
The second and smaller class of city is the type that develops
linearly, instead of radially, along a highway, river, estuary,
or coastline. Examples of such cities might be New York,

Marseilles, and Brighton and Merseyside (England).

A particularly good example is the city of Genoa, an
important, large port in Northern Italy. Points east-west
along the coast in Genoa are connected by a modern highway,
but inland access is greatly restricted by a patchwork of
narrow, twisting streets and alleys that gradually merge into

the mountains, which rise directly behind the city.

The distinction between linear and radial cities is,
however, to some extent artificial. Most cities contain
aspects of both: thus, New York and Marseilles also have
strongly developed focal business districts and some radiating
suburbs. 1In practice, therefore, more detailed prior data
analysis will be required before deciding on the appropriate
way to model a particular case. This will often require that
different sections of simple local Qelocity patterns are com-

bined to give the degree of accuracy desired.
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4.2 Radially Symmetric Cities

If velocities in a city are functions of the radius r,
the distance from the centre, the city is said to be radially
symmetric. For these cases, there exist several classes of
analytic forms for the equations of isochrones. These forms
have been found helpful and realistic in building a velocity

field for London, the city studied later in the paper.

4.3 Time Surfaces

A time surface can be imagined as a portion of the physi-
cal surface of the city that has been transformed into another
surface on which shortest paths (geodesics) correspond to gquick-
est paths in the city. Four examples of such surfaces are the
plane, cylinder, cone and sphere. It is shown in Angel and
Hyman (1976) and in the Appendix mathematical note 1.0 that these

surfaces correspond respectively to the following four fields:

Plane: V(r) = constant (&)
Cylinder: V(r) = wr (5)
Cone: V(r) = wrP (0 < p < 1) (6)
Sphere: V(r) = ar® + b (7)

In these equations, w, p, b and a denote fixed parameters.

Figure 3 shows how shortest paths on the time surface are

transformed into quickest paths, for a point south of the
city centre, in the cases of the velocity fields described

by equations (4) and (5). For equation (4),straight lines on the
time surface, a plane, are simply transformed into straight
lines in the city (Figure 3a). The geometry of the time

surface is purely Euclidean, and the quickest times are pro-

portional to straight line distances.

For eguation (5), shortest paths on the surface of the
cylinder between two, non-centrally located points are trans-

formed into curves that spiral around the city centre (Figure 3b)
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to minimize the delays caused by traffic congestion. The
equations of the paths and journey times are derived in mathe-

matical note 1.4.

4.4 Linear Cities

Time surfaces have not yet been constructed in the case of
linear cities. However, simple analytic solutions can be

obtained for the following two cases

a - bx (8)

Exponential: V(x) = ae-bx (9)

Linear: V{(x)

by using variational techniques to solve the minimization
problem in equation 2 (see also mathematical note 2.0). The

parameters in these models are a and b.

Figure 4a shows the linear velocity profile (equation 8)
of a hypothetical coastal city. The coast runs from west to
east along the y~-axis. On this axis velocities are a maximum,
corresponding to V = a.* To the north, inland along the x-axis,
velocities decrease linearly with distance from the coast. At
x=a/b, the velocity is zero (see Figure 4b). Quickest paths be-
tween nearby points can be constructed with a ruler and compass
as follows. First construct the perpendicular bisector between
the desired origin A and destination B. The intersection with
the line x = a/b (where V = 0) is the centre of a circle that
passes through the two points. This circle is the required
guickest path. For distant points, the circular arcs meet the
coast and continue smoothly along it, as seen in the diagram.
The isochrones for this field are also easily constructed (see

mathematical note 2.0).

*
To the south the sea produces a discontinuity in the velocity
field.
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M v=a—bx
t 0<x<ab
~
-
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(0,0)

(a) A three-dimensional profile of a linear velocity '
field, V = a-bx. The y-axis represents the coastline.

(a/b,0)
v=0
A B
f w/
(0,0) > = v=a
— Y/

(b) Quickest paths bend in the direction of the coast,
which is served by a fast-access highway. Paths
like CD join smoothly onto this highway, and then
leave it smoothly.

Figure 4. A hypothetical linear city.
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4.5 Segmentation of the Ambulance Velocity Field

More general examples of velocity fields combine sections
of different fields when one alone cannot provide an adequate
description of the velocities of travel in the whole city. A
condition for paths crossing two glued sections has been dis-~-
‘cussed by Zitron (1974) and Braake and Zitron (1980). They required
that the gradients of the paths be equal at the point of contact.
This can be related to the more general Weirstrass-Erdman condition
(Hadley and kemp 1971:40). Figure 5 shows an example of a candidate
guickest path for a radially symmetric city in which velocities
out to distance R from the centre are constant(Vf=Vo); thereafter,
they increase linearly according to V=wr, such that at R,VO=wR.
Through the central section, the path is a straight line AB. These
points are joined smoothly by paths in the outer section, which

are sections of logarithmic spirals (CA and BD).

c

D

Figure 5. A radial city in which V=V (0<r<R) and thereafter in-
creases accordinq to V=ur. The diaqram shows a possible

?giﬁ¥est path CD across the city (adpated from ZzZitron,
7 .
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4.6 Geographical Obstacles to Ambulance Travel

Apart from the case of coastal cities, discontinuous
velocity fields also occur when there are obstacles to travel
that must be avoided. Here, three types of obstacles are inves-
tigated: (i) line barriers, such as rivers; (ii) open expanses,
such as parks, water reservoirs, airports, and industrial areas;

and (iii) linear obstructions such as railway lines.

The difference between the first and the third type of
barrier arises from the density of crossing points. If there
are sufficient bridges, then the effect might be represented
by a continuous reduction in local velocities as the obstruc-

tion is approached.

Figure 6, for example, shows two linear fields glued
side by side on to a thin strip of constant velocity represent-
ing a type (iii) linear obstruction. Paths such as AB are
then generated consisting of two circular arcs, meeting along
a common tangent. A complete treatment of this example
indicates possible bifurcations of routes, so that two optimum
paths can exist between two points. These paths meet along
a line, forming cusps in the pattern of quickest paths. This
pattern is shown in Figure 7, in which the constant strip

has been shrunk to have an infinitesimal width.

In contrast to this example, Figures 8 and 9 show two
cases of the first two types of barriers, a river and an open
expanse, in which path discontinuities are seen to be inevit-
able. 1In Figure 8, two routes are shown to cross the river
via bridges A or B. This causes the isochrones to contain
cusps on the opposite bank. Points to the left of the curve
joining the cusps are reached quickest via the bridge A. The

curve of cusps is in fact an hyperbola (mathematical note 3.1).

For the open expanse in Figure 9, each vertex A,B,C of
the obstruction is the starting point for a change in the
pattern of the isochrones for areas that lie in the shadow
of the origin, O. The isochrones intersect on the far side
of the barrier and a similar curve of cusps to the bridge

example is generated.
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(0’0

(a) A profile of the velocity field, where the
strip between X4 and x, represents the ob-
Sstruction.

- Y

(b) A gquickest path between A and B.

Figure 6. A type (iii) linear obstruction such as

railway line.
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@)

Figure 9. A type (ii) obstacle ABC: The journey
origin is O. A curve of cusps through
D divides quickest routes as in Figure 8.
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5. THE OPTIMUM GEOGRAPHICAL COVERAGE OF FACILITIES

It may be the objective of the operating authority to
locate facilities so that, for a set of given conditions, no
destination is greater than a fixed travel time standard from
a facility. The gquestion then arises: what is the minimum
number of facilities required to achieve this goal? We con-
sider a radially symmetric city in which (i) facilities are
free to locate anywhere; (ii) there exists a time surface;
and (iii) there are no barriers to travel. The area of the
time surface is independent of the number and location of
facilities. To cover this area with the minimum number of
facilities, we want the maximum area to be served by each
facility, provided the areas served by different facilities
do not overlap. The radius of each such area must not exceed
the time standard. Thus, we seek to cover the time surface
with service areas that do not overlap and each of which has

maximum area for a given radius.

5.1 Tessellations on the Plane

Let us first consider the case in which the velocity of
travel is uniform, so that the time surface is a plane.
Regular figures maximize the ratio of area to radius (mathe-
matical note 4.1). Thus, the optimum pattern of facilities
is a regular tessellation on the plane. There are three possi-
bilities: equilateral triangles, squares,and hexagons (see also
mathematical note 4#.1). Of these, the hexagon has the maximum
ratio of area to radius, and is thus the most efficient.*
For velocities varying continuously the time surface is not
a plane but the geometry of the region around a point is

locally Euclidean, so that the optimum covering will be locally

*Hexagonal market areas also appear for the same reasons in
"Dle Zentralen Orte in Slddeutschland" (Christaller 1933),
which deals with the geographic organization of settlements
in a region. See also Tobler (1963) who comments on this,
and touches on some of the problems discussed later.
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described by a tessellation of regular hexagons. Distortions
to this pattern will take place over larger areas as equal-
sized hexagons on the time surface correspond to unegqual areas

of the city.

5.2 Tessellations on the Cylinder, Cone, and Sphere

If the velocity field is V = wr, the time surface is a
cylinder, and the city can be optimally covered with a constant
number of facilities around each ring of constant radius (see
mathematical note 4.2). 1If the velocity field is V = wrP,
the time surface is a cone. Hexagonal tessellations will only
fit on the cone for restricted values of p. There are 13
possible values: O,l 11 23 1,1 43> 11 2. The cases 0 and
1 correspond to the plane and cylinder already discussed.

The cases where 1 < p £ 2 correspond to inverses of the cones
0 < p < 1 (see mathematical note 4.3). Unless p is less than
unity the number of facilities required diverges as the city
centre is approached. 1In the rest of this section, we confine
attention to the cases where p is less than unity. For these
values of p, the conical tessellations can be constructed by
cutting sectors out of a plane hexagonal tessellation and
gluing the cut edges back together.

If the velocity field is V = ar2 + b the time surface is

a sphere. It is impossible to fit a hexagonal tessellation
onto the entire sphere (see mathematical note 4#.4). 1In
practice only a portion of the sphere would need to be covered,
so this is not a serious restriction. However, it is of
theoretical interest to investigate tessellations that are
efficient covers of the entire sphere. The two best examples
are the dodecahedron and the trunctated icosahedron. The
former is a regular Platonic solid, which contains 12 pentagonal
faces. The latter is a solid with 12 pentagonal faces and 20
hexagonal faces (often used in the construction of soccer
balls). However, these could only form solutions to problems

of optimum facility coverage if the velocity field V = ar2 + b
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and the time standard happen to be scaled in suitable propor-

tions (see mathematical note 4.5).

Figure 10 is a photograph of all the tessellated surfaces
described so far. Figure 11 shows the tessellations after
they have been transformed to the physical surface of the city.
(For details of the transformation, see mathematical note 1.0).
The scale of the tessellations depend on the form and param-
eters of the velocity field, and the time standard X. Table

1 gives the values of the parameters chosen for these examples.

Table 1. Key to the tessellations.

Velocity field Time standard

Figure No. (km/hour) (hours) Surface
11.1 17.0 0.229 plane
11.3 27.0 r1/6 0.096 cone
11.4 15.0 rl/3 0.119 cone
11.5 8.0 r1/2 0.164 cone
11.6 4.5 r2/3 0.242 cone
11.7 2.5 rs/6 0.475 cone
11.2 1.5~ 0.155 cylinder
11.9 o,77r2 + 5.0 0.167 sphere
11.8 0.31r2 + 5.0 0.169 sphere

5.3 Notes Concerning the Tessellations

There are a number of points to note about the previous

tessellations.

1. To simplify the construction, the boundaries of
the catchment areas are shown as straight lines.
While this is an adequate approximation at our
scale of inquiry they should more correctly be

shown as curves.
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The tessellations transformed to the physical surface

of the city.

Figure 11.
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2. In the cylindrical transformation (V = yr), the
number of facilities is constant in each ring, so
that the number of facilities per unit area diverges
at the city centre. Since the demand for A and E
services is finite it would be impossible to maintain

such a pattern near the centre.

3. PFor the conical transformations (V = wrp, including
the plane as a special case), the shape of the central
facility catchment polygon depends on the value
of p. The possible shapes are:

P central catchment polygon
0 hexagon
1/6 pentagon
1/3 square
1/2 triangle
2/3 biangle*
5/6 monoangle

The number of facilities packed around the city centre
increases in successive rings. It varies with

p according to 6n(1 - p) where n is the ring (n =

1 ... ) and where the first ring is that touching

the central polygon.

4. For the two examples shown of the spherical transforma-
tion (V=ar +b), the tessellations are either all pentagons
or a mix of pentagons and hexagons. In all such cases, the
facility antipodal to the central facility cannot be shown
as it is located at infinity. When the tessellations con-
sist of mixed figures, as in the case of the "soccer ball",

time standards X are not uniformly achieved —'APentagon

being less than A . THe dotted line shown is the
Hexagon
image of the equator of the time surface.

These illustrations show that it is possible to construct
optimal patterns for the location of emergency facilities to
meet a consistent ambulance travel time standard when the
ambulance speeds vary across the city. The most flexible

class of velocity field was seen to be particular types of

*biangle = €2

monoangle = O
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power-law variations of velocity with distance from the
city centre. These are associated with conical time
surfaces and, unlike the examples given for the sphere, are
not subject to scale restrictions. Furthermore,the conical
time surfaces can be exactly covered with hexagons at all

locations apart from the city centre.

To construct a more realistic ambulance velocity field
for London, it will be necessary to glue together parts of
cones with different power-law variations, as described in

the section 5.4.

Later in section 6 the London velocity field will be used
to show how the number of facilities required varies with the
ambulance travel time standard. 1In these calculations we
will assume that hexagonal areas are an adequate approximation

to the local shapes of tessellations on the London time surface.

5.4 The Optimum Geographical Coverage of Facilities in London

A variety of statistical sources were used to estimate
the velocity field for London for purposes of presenting the
initial results. They were the average distance travelled
per patient per year by ambulances in London in 1977; the average
time from the scene of an accident or emergency to the treat-
ment facility; the variation in distance separating existing
treatment facilities; and general traffic data for London.
From these sources two velocity fields were derived: one
assumed to operate during the day and evening and the other

at night. They are as follows:

1. Day and Evening

V(r) = 8.8 0 £r <4 (10)
V(r) = 4.4 r1/2 4 < r £ 15 (11)
V(r) = 1.13 r 15 < r < 25 (12)
V(r) = 28 r 2 25 (13)
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where V is expressed in kilometres per hour and r in

kilometres.

2. Night
V(r) = 16.95 0 £r <15 (14)
Vv(r) = 1.13 r 15 < r £ 25 (15)
V(r) = 28.0 r 2 25 (16)

The daytime field has a constant velocity for the first
4 km from the centre. Between 4km and 15km it rises in propor-
tion to the square root of distance from the centre. From 15
km to 25 km it rises in direct proportion to distance from the
city centre. Beyond 25 km the velocity field is constant.
Where the local sections join, at 4 km, 15 km;and 25 km the

velocity varies continuously.

The nighttime field also has a constant velocity in the
central area, but this velocity is greater than the daytime
central velocity and the central section reaches out as far
as 15 km. Beyond 15 km the nighttime field is the same as
the daytime field.

The time surface for the daytime field, apart from the
central constant section, was tessellated on a scale that
corresponded to a ten-minute maximum journey time. This cor-
responds approximately to the actual average times achieved
in London from the incident sites to the treatment centres
as estimated from Anderson (1978). The total number of treat-
ment facilities that we located within the Greater London
Council area was 77, somewhat larger than the number (64)

quoted in Anderson.*

The resultant surface is shown in Figure 12. To align
the hexagons exactly the conical section of the surface has
been deformed into a 3-sided pyramid and the cylindrical
section into a 3-sided prism. On either side of the edges

of the prism, the hexagons are unavoidably squashed into

*In fact Anderson excludes several facilities that reported accident and emergency
services in 1976, though he notes (p.41l) that in all, 10l hospitals were involved
to some degree. Our data showed that 89 facilities treated more than 1000 cases

in 1976, while 111 reported some sort of activity in, and on the edge of, the
Greater London Council region.
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"siamese twins" as is also apparent from Figure 12. The plane cor-
responding to the outer constant velocity section of the field,
is glued onto the sides of the prism in three separate sections,
again to ensure the correct alignment of the hexagons. This
induces three spokes of diamond-shaped catchment areas where

the plane sections connect. The occurrences of "siamese twins"
and "diamond spokes" are examples of unavoidable local inef-
ficiencies in the tessellations that become apparent when
sections of different fields are glued together. However,

the positions of the "inefficiencies" is in practice indeter-
minate, since there is no unique alignment procedure. The

pattern of facilities obtained for London is shown in Figure 13.

The outer uniform velocity section of the velocity field
joins on to the outer ring, but has not been included as it
falls outside the GLC boundary. Thus, the diamond-shaped
areas are absent. The "siamese twins" effect, however, is
observed in the two outermost rings, involving six pairs of
facilities. Because in the three-dimensional surface the cone
and cylinder had to be distorted into three-sided figures,
we observe some local "stretching' of catchments along radials

halfway between the "siamese twins".

6. APPLICATIONS OF THE MEIHODS IN PRACTICE

In this section some illustrative outputs are discussed,
broadly pertaining to the checklist of problems in section 2.2.
For convenience, attention is focused only on the locations
of the treatment facilities, although a similar analysis of
ambulance depots or of both types of facility together could

also be made.

6.1 Definitions

The first step is to define measures for facilities and

caseloads of an A and E system distributed over an urban area.



-33-

Figure 13. The optimal locations and catchment areas of
treatment facilities for the London area given
the estimated ambulance velocity field and a
time standard of 10 minutes.
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These measurements can depend on distance r from the city centre,

the time t of the day and on the time standard » of the service.

1. D(r,t): the density of population

2. h{(r,t): the daily probability of generating an acci-
dent or emergency per capita

3. C(r,t): the expected number of accidents and emer-
gencies per unit area.

It follows that:

C(r,t) = h(r,t)D(r,t) (17)

Further define:

4. A(r): the area of a 1-kilometre wide ring (= 27r
X 1)

5. N(r,t|A): the smoothed number of facilities in a
1-kilometre wide ring given A, the required
time standard

6. P(r,t): the expected number of accidents or emer-

gencies per day in a 1-kilometre wide ring

We also have the identity:

P(r,t) = A(r)C(r,t) (18)

We also define:

7. o(r,t|x): the catchment area of an optimally located
facility

An approximate estimate for ¢ is given by:

o(r,t|h) = v(r,0)% 3 /3 (19)
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where V(r,t) is the local velocity and the remaining terms

give the size of a hexagonal catchment area on the time surface.

8. M(r,tlk): the average daily number of patients per
facility by time of day, for a given travel
time standard

It follows from definitions 4, 5, and 7 that

N(r,E|0) = st (20)

from 3, 4, and 5 that

e el = AECLE
and from 3, 4, and 6
R
P(R,t) = J A(r)C(r,t)dr (22)

0

where P(R,t) is the total expected number of patients generated

out to distance R from the city centre.

6.2 Estimation of the Density of Patient Caseloads

For purposes of presenting the trial illustrations, a crude
estimation of caseload density C(r,t) was made for the time
periods t corresponding to the velocity field for London
described in section 5.2. Annual caseloads at each treatment
facility were regressed on distance r and the result divided
by 365 to give the average daily rate. A negative exponential

model gave the most satisfactory result. It was:

C(r,*) = 17.9 exp (-0.1589r) (23)

where * denotes the sum over all time periods during one day.
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Figure 1 shows that the nighttime caseloads are approximately
one-third of the average level over 24 hours. Thus, equation (23)

was partitioned into the following:

C(r,t 5.96 exp(~0.1589r) (24)

1)

and C(r,t 20.22 exp(-0.1589r) (25)

5)

where t1 is of 4 hours duration (2:30 a.m. to 6:30 a.m.) and
t2 is of 20 hours duration (6:30 a.m. to 2:30 a.m.). It can
be seen that these equations neglect any geographical redis-

tribution of cases between day and night.

~

©.3. The Trade-off between Time Standards and the Nubers
of Facilities
The first illustration given by the approach is a trade-
off analysis to ascertain how many facilities in the city are
required to meet different time standards A for the day and
night operation of the services. This number is estimated

by dividing the area of the London time surface by the area

3 2
of each hexagon, 7/§A . The results of the trade-off analysis
are shown in Figure 14. It shows two curves: one for the
day and one for night. A 1is on the horizontal axis and the

number of facilities is on the vertical axis.

Both curves indicate that the number of facilities
required varies inversely with the square of the travel time

standard. The daytime curve can be described by the equation
2
N = 7700/A (26)

where the travel time is quoted in minutes. If the time
standard was 10 minutes, then a minimum of 77 accident and
emergency facilities need to be open during the day. At night,

the number of facilities required is described by the equation
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Figure 14. Variations in the number of treatment facili-

ties with operating time standards, A, by day
and night. The curves show the minimum number
of facilities necessary to completely cover
the London area at a given time standard.
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N = 5000/A° (27)

For a travel time standard of 10 minutes the minimum number of

facilities is as low as 50.

If road traffic conditions were to continue to worsen, so
that, say, ambulance travel speeds would be reduced by 10 percent,
there would be either a 2-minute increase in minimum journey times
or there would need to be a 20 percent increase in the number of

facilities available.
6.4 Variation in the Density of Emergency Facilities by Location

The second illustrative output is a plot of N(r,t]k), the
smoothed number of facilities, during the day and night, at
distance r from the city centre, for three time standards AX:

9, 10,and 11 minutes. It is seen in Figure 15 that the resultant
variation is very lumpy with significant breaks occurring at

the gluing joints of the velocity fields. Between 4 kms and

15 kms, the number of facilities is constant during the day

(D). This is because this part of the city is covered by

the cylindrical section of the London time surface (see section
5.4). A smaller number of facilities is required at night (N),
within 15 km of the centre because of the higher average
velocities in operation. The consequences of varying standards

on different parts of the city are thus indicated by the diagram.

6.5 Variation in Patient Caseload by Location

The third illustration in Figure 16 shows how the expected
caseload at each facility, M(r,t|x), varies with distance from
the city centre for A equal to 9,10, and 11 minutes. Daytime activity
(D) everywhere exceeds night activity (N), with the latter at a
particularly low level outer locations. It would be interesting
to evaluate the effects on standards and caseloads of reducing
the nighttime coverage in outer London. A lower time standard
reduces the number of facilities required but increases the

caseloads at individual facilities.
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6.6 Variation in Catchment Area by Location

The sizes of catchment areas varies with the time standard
and with local average velocities. From Figure 17, it is seen
that the size of catchment areas, because of the increased
velocities, also increases with distance from the city centre.
At night central catchments are larger, because of higher

central area velocities.

6.7 Geographical Coverage with Fixed Facilities

In spite of the existence (section 5) of optimal solutions
to the coverage problem, authorities must work in the short run
with a fixed set of facility locations. There is a need to
devise computer algorithms that can identify, from the existing
set of facilities, the minimum number of centres necessary to
cover the city without gaps for a particular time standard.
Such algorithms have been investigated by Toregas et al. (1971)
and Toregas and Revelle (1973).

6.8. The Effects on Time Standards and Caseloads of the
Closure of a Single Facility

In a typical set of schedules, different facilities will
be open at different times. Also, facilities sometimes
unexpectedly have to close due, for example, to staff shortages.
Geometrical methods can be used to simulate the effects in
caseloads and time standards by an analysis of a "Dirichlet"”
region around each facility. A Dirichlet region bounds the
area around a point, such that all other points within that
area are closer to the point than to any other point (regular
hexagons are examples of equi-area Dirichlet regions). Each
region, analogous to a catchment area, is generated by joining
up the>perpendicular bisectors between neighboring points.

When a facility is withdrawn from service, the Dirichlet regions
are reconstituted, as is shown in Figure 18, and the areas
formerly served by the closed facility are reallocated to the
adjacent facilities. If travel speeds are assumed to be constant

locally, this then yields an estimate of the impact on caseloads



*sojnulIw || pue ‘Ql ‘e FO spIlepuels L2uWIjl
usatb ‘ (a) Aep pue (N) 3IUDBIN ‘sportaad swr13 om3 IO
I93uL20 A3TO Syl wOIF I 90URISTP Y3 TM AJTTTIORI pPoO3edIO]
ATTewt3ido ue jJo eale JUSBUYDILD 9Y3 UT ISLIIDUT OYI °/| °2InbTJ

S9IFPWOTTY I {2I3ud) A3ITD WOIF 2ouUeISIQ

OS 8 92 vz ¢ 0Oz 8. 9L #L ¢L O 8 9 ¢+ T O
t t : t + —t t —t t t ' t t 0
6
ox/
- _ HlnllN‘||I|||| 1oz
m< o 1l
1oy
109
los
400_‘

(NA‘1)S



-43-
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Figure 18. The local effect of withdrawing a facility X on
catchment areas of neighboring facilities &,B,
C,D, and E.
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at the neighboring facilities. These estimates are obtained by
multiplying the local caseload density by the reallocated areas.
Examination of the positions of the vertices of the newly formed
Dirichlet region similarly yields the effect of the reallocation

on travel time standards.

7. CONCLUSIONS

In this paper we have outlined a geometrical theory of
emergency service medical provision in cities. The theory was
developed around the need for ambulance journeys to be made
within acceptable time standards given limited facilities for
treatment and varying urban traffic conditions. It was shown
how simple maps for ambulance journey times can be constructed
and used to pinpoint areas where coverage appears to be weak

or where there are possible duplications of provision.

From our initial estimates (section 3.7), it was shown
that there are probably more than sufficient treatment facili-
ties to cover the London region, at a ten-minute time standard,
although poor coverage may occur in one or two places. In sec-
tions 5.4 and 6.3, more accurate estimates showed that the minz-
mum number of facilities to cover this region was 77 during the
day and 50 at night. The current number of ambulance depots,
77 (unlike that number of treatment facilities), seems about
right, therefore, though these depots will not, of course, be
optimally located: thus, more may be needed. This aspect has
still to be studied.

In section 5, a geometrical theory for the optimal loca-
tion of accident and emergency facilities was developed. This
was used to construct benchmarks for determining the minimum
numbers of facilities that are required to cover any urban re-
gion. These minimum numbers were seen to be strongly dependent
on ambulance travel time standards, while their geographical
configuration was linked closely to prevailing traffic condi-
tions. This finding highlights the need for controlling au-
thorities to monitor the times actually achieved by ambulances,

both on a regular basis and in geographical detail.
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At any time the configuration of facilities will be im-
perfect as it takes a long time to implement decisions to in-
vest in new facilities. Thus inefficiencies are bound to be
present, and some areas are bound to be receiving a less favor-
able provision of emergency facilities than other areas. As
traffic conditions in urban areas deteriorate, due to increased
road congestion, more and more areas could experience worsening
emergency cover. The scope for greater economy in facility
provision could thus be eclipsed by the increased risk of
deaths occurring because ambulances are unable to get patients
to places of treatment in time. It thus seems to be imperative
that the best possible use is made of information concerning
ambulance journey times, as these provide natural measures
for monitoring the changing conditions affecting the services.
A regular monitoring of ambulance times will then provide a
basis for determining priorities in the allocation of resources

within the accident and emergency system.
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APPENDIX: MATHEMATICAL NOTES

1.0 Radially Symmetric Fields

We are given a polar coordinate system, (r,8), for the
urban plane in which a velocity field, V(r), has been defined;
and a cylindrical coordinate system, (p,z,¢), for the space in

which the time surface is located.

By theorem 3.1 in Angel and Hyman (1976:45), the following

changes of variable,

o =8 (1.1)

o= % (1.2)
and

z = J Viz [2rvg_‘r’ - r2<%>2:|!5 dr + C (1.3)

define a transformation

Ty ¢ (£,0) > (0,2,9)

48~
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This transformation maps travel time on any path P on the urban
plane into the length of the image of that path, TV(P).

COROLLARY 1.1 The time surface of the velocity field

Vir) = wr, where w ts a constant, is a cylinder.

Proof. From (1.2) and (1.3),

_ 1
P=Eg (1.4)
and
dr 1 r
Z—JH-I-C_Gln(r_) (15)
0
where r, is the radius corresponding to z = 0. p is independent

0
of z, and the time surface is thus a cylinder of radius % that

extends over the complete z axis, from z = -« (corresponding

tor =0) to 2 = +o (r = «),

COROLLARY 1.2 Journey time A in the field V(r) = wr is

r.\2 X
Apy = % [ln(%) + (8, - e1)2] (1.6)

Proof. Open a cylinder along a generator and lie it flat

given by

on the ground. From the definition of a time surface, the
minimum travel time between two points is the length of the

straight line connecting them. Thus,

%
A2 = [(22 - 21)2 + (¢, - ¢]/w)2] (1.7)

where (&,21,¢1), (%,22,¢2) are the coordinates of the points
on the cylinder. Substituting (1.1) and (1.5) in (1.7) and

simplifying, we obtain:
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r,\2 %
Ay = & [1n(%) + (6, - e1)2] (1.6)

the required result.

COROLLARY 1.3 A4n isochrone in the field V(r) = wr is
given by

%
r, = r, exp<x2w2 - (8, - e1)2) (1.8)

Proof. To obtain the isochrone, simply rearrange (1.6)

so that r,
tion of the facility and ), the time standard, and allowing 82

becomes the subject. By letting (r161) be the loca-

to vary, the desired isochrone may be plotted.

COROLLARY 1.4 The equation of the quickest path in the
field V(r) = wr is given by

In r = m6 + C (1.9)
where m and C are constants.

Proof. The equation of a straight line between two points

(¢1/w,z1) and (¢2/w,zz) on an opened cylinder is

z=A+W¢ (1.10)

where A is a constant. From (1.1) and (1.5)

(1.11)

-]

3

[a}
c>|H
S——
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>
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Letting A+ 1Inr, =C (1.12)

) rz)
and % a2 (1.13)
(6, = 84) (r1

I
3
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two constants depending on the origin (r1,61) and destination

(r2,62), equation (1.12) becomes
In r = m8 + C (1.9)
Equation (1.9) describes a logarithmic spiral that radiates

outwards from a specified origin. A diagram showing quickest

paths in r,6 coordinates is given in Figure 3b in the text.

COROLLARY 1.5 The time surface of the veloeity field

Vir) = wrP (0 < p < 1), where w is a constant, i1s a cone.

Proof. See Angel and Hyman (1976), Corollary 3.2.

COROLLARY 1.6 Journey time in the field V(r) = wrP is
gtven by

_ 1 2-2p 2-2p 1
M2 T a0y )T T2 2r

Proof. See Angel and Hyman (1976), Corollary 3.3.

COROLLARY 1.7 A4n isochrone in the field V(r) = wrP based
at (rl,el), 18 given by

r, = jm cos[(1 - p)612]

L (1.11)
1-p

: Vo?a2(1 - p) - mBil (1 - p)o,,]

- 8

(1-p)
where m = r, p , B = 62 7°

12

Proof. Equation (1.11) may be rearranged into the
standard form



-52-

0 = ax“ + bx + ¢ (1.12)

where a = 1

b = ~-2m cos[(1 - p)e12]

2 2

c=m? - w? 221 - py?

1-p _ % = ~b £ /b2 ~ bac

Now r2 >a

(1.13)

Substituting for a, b,and ¢ in (1.13) and simplifying gives
(1.11), the required result (see also Mayhew, 1981).

COROLLARY 1.8 The time surface of the velocity field V =
ar2 + b, where a and b are positive constants, is a Sphere

of radius % that satisfies

2
(z__) + 2 = L (1.14)
W

where w2 = 4ab. (1.15)

Proof. See Angel and Hyman (1976), Corollary 3.4.
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2.0 Linear Fields

For a city where V is a function of x, V(x), it is shown
in Angel and Hyman (1976:22) that the differential equation of

the minimum time or quickest path is

%{1= (1 _I;Vzvz)% (2.1)

where K is a constant of integration.

THEOREM 2.1

ax - > (2.2)
vi1 - x“v
Proof.
dy = KV
dx= |1 -Kk2v2
Figure 2.1. Interpretation of equation (2.1)
with definition of 8.
_ds
dx = v (2.3)

where A is the journey time.



-5~

From Figure 2.1
@)% = (@2 + (ay)? = 1 (2.4)

From equation (2.3) and (2.4), therefore

2
dy
1+ (dx) ] (2.5)

From equation (2.1), we get

2.2
d_x)z =1+ L“] (2.6)
\dx \Y 1 - K°V

Hence

= = (2.2)

THEOREM 2.2 The veloeity field

a >0, b<o
V(x) = a - bx (2.7)

0 < x < a/b
has circular quickest paths that satisfy the equation

x - ami+ y-0f= - (2.8)
Kb

Proof. First observe that

Y =S¥ = = - 25 (2.9)
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Using (2.1) and (2.7), the differential equation of the quickest

path is obtained

dy KV

V1 - K2V

Make the substitu;ion (see Figure

sin 8 = KV

Then

2.1)

éy_=d_yd_v=(_ Sine)(cose
de dv dé b cos 9 K
Integrating, we obtain
cos ©
y=-pgx *°€
' X

Lo w2

B bk +C

2.2 2.2

Thus b’K2(y - €)% = 1 - K%V

Substituting for V from (2.7) and rearranging, we get

(x - a/b)2 + (y - )% =

where (2.8) describes a circle of radius _L

(a/b,C).

1

b2g2

)

_ sin ©

bK

with a centre

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.8)



-56-

COROLLARY 2.2.1. The minimum path between (x ) and (xB,

A9
Yg/ is a circular arc which satisfies the equation in Theorem

2.2 and has parameters

2 2 2 2
Xp * Yp ~ Xg <~ Y

C = 5w v (2.16)
A T Ya B~ YB

=
I

and b/[(xA - a/b)2 + (yA - C)Z:IJ5 (2.17)

Proof. From Theorem 2.2, we see that the minimum path

satisfies both the equation

(v, - O% + (x, - a/b)? = - (2.18)
b"K
and the equation
(yg = OF + (x5 - a/m)? = 1 (2.19)
b"K
Eliminating K between these equations gives us
(2Cc - Xp = xB)(xA - xB) = =(2C - Ya ~ yB)(yA - yB) (2.20)
From which we obtain
2 2 2
C = (2.16)

2, _ _
Xp T Y¥p T Xp T Yp
2(xA

as required. The equation for K in the statement of the corol-

lary is obvious, completing the proof.
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The Set of Minimum Paths

By a suitable choice of origin, the linear velocity field

can be written in the form V(x) = wx. From theorem 2.2, we
observe that the set of minimum paths through (xA,yA) is the
family of circular arcs with centres on the line x = 0. If

these arcs are extended to form complete circles, they all

pass through the image point (-x Thus, they form co-

A'YA)'
axial circles. The isochrones are the orthogonal trajectories
of these circles,and they also consist of circular arcs but
with centres on the line y = yp- To obtain travel times and

isochrones for this field we make use of the following theorem.

THEOREM 2.3 The minimum traqvel time between (xA,yA) and
(XpsYg) in the field V(x) = wx is given by
2 2 2
x5+ xy t (g - YR)
t=%ch1|:B b= A ] (2.21)
A" B
Proof.
Y
P
X
®
A
Q
Figure 2.2. An isochrone in the velocity
field V(x) = wx.

First consider travel along y = in Figure 2.2.

Ya
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A X
SIS Y
wx w

y wXx xA
A
_ -wt
Thus xP = Xpe
_ wt
and xQ = Xpe

The isochrones are circles of the general form

2 2 _ 2
where
X. - X
- _9 P _
r = 5 = Xp sh (wt)
X, + X
_ 7 Q _
and x0 = > Xa ch(wt)
Hence,
- 2 _ 2 _ .2 2
X Xp ch(wt)) + (y yA) = X, sh” (wt)

Thus, rearranging

2 2 2
Ch_1[x + XA + (y - yA) ]

2xAx

t =

1
w

as required.

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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COROLLARY 2.3.1 The equation of the isochrones in the
field V(x) = wx is given by

- _ L2 _ 2
Y = Ya + VEXAX ch (wt) X X (2.31)

Proof. This result is obtained simply by making y the
subject of equation (2.30).

THEOREM 2.4 The minimum path in the field V(z) = ae~b%
18 given by
-1 -bx
y =- 08 (ake ), ¢ (2.32)
Proof. From (2.1)
dy . ___KVv (2.1)
dx )
1 - KV
dy - dy /4dv _ _ dy
av dX/ X dx/bV (2.33)
_ -K (2.30)
b1 - k2v?
Let
v = co; Y (2.35)
dv _ _ sin ¢
so that E = K (2.36)
dy _ dy dv _ _ dy sin ¥ (2.37)
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which from (2.34) and Figure 2.1 gives

dy _ 1
=3 (2.38)
Thus, y = % +C (2.39)
_ cos-1(aKe_bx) + C (2.40)

b

THEOREM 2.5 The minimum journey time in the field V(x) =
-bx

ae 18 gtiven by
A = ePXV1 - kZ2a2e72PX /5 (2.41)
Proof.
S= /Ty (2.42)

From Theorem 2.1, therefore

re-d J dv (2.43)
2 2.2

Let vV = coi v (2.44)
dv _ _ sin y
= = (2.45)

Therefore,
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A = % [ sin /K ay
cos2 .
) sin Y
K
= K| _dv__
b 2
cos
Hence A= E_E%E_E
From Figure 2.1, therefore
\ = kY1 - k2v?
- bKV
and so A= ebe1 - Kzaze_Zb%/gb

3.0 Geographical Obstacles to Travel

The River Problem

D(x,y)

Figure 3.1. Two routes across a river PQ between
O and D.

(2.46)

(2.47)

(2.48)

(2.49)

(2.41)
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Consider Figure 3.1. PQ is the river, O and D are the
origin and destination, and A and B are the bridge locations.
Assume a constant speed of travel. Then travel from O to D

takes the same time via either bridge when

d1 + d2 = d3 + du (3.1)
Let du - d1 = ¢, then
£ = d2 - d3 (3.2)

2

= sz + y2 - sz + (y - Yq) (3.3)

Thus x2 + y2 = 62 + x2 + (y - y1)2 + 2€V§2 + (y - y1)2 (3.4)

Simplifying and ordering the terms,

2

he®x™ + b(e” - yf)y2 + “y1(y? - Ay = (e -5)

The equation (3.5) 1is a hyperbola when |y1| > €. This
inequality will be satisfied unless D lies on either extension
of the line segment AB joining the bridges. 1In this case Y, =€

and the equation becomes x = 0; y € 0 or y 2 Yqr which describes
the two extensions of the line segment AB.



-63-

4.0 Tessellations

4.1 Optimal Tessellations

The area of any polygon drawn inside a circle so that
the vertices touch the circumference is maximized when all the
sides of the polygon are equal. Furthermore, this area
increases with n, the number of sides. We are looking, there-
fore, for a regular polygon that has the maximum number of
sides with which to fill a plane without any overlap. The
number of polygons needed will then be a minimum for any given
radius. To determine the plane tessellations we let k be the
number of regular n-gons meeting at a point. The angle made

by each n-gon at the join is then 27/k. The internal angle

of a regular n-gon equals m - (27/n). Equating, therefore:
2n _ . _ 21
T =7 5 (4.1)
we get
_ 2k
n—m)— (4.2)

The only values of k that give integer values of n are 3, 4,
and 6, as is easily verified. These correspond to a hexagon,
square and triangle, respectively. Because a hexagon has the
most sides, it is, by the first argument, the required regular

figure.

4.2 Tessellating the Cylinder

There are two possible orientations of a pattern of
regular hexagons that fits exactly around the circumference
of a cylinder. If A is the radius of each hexagon then under -
one orientation the pattern repeats itself in intervals of
v3A, in the opposite orientation the interval of repetition
is 3A. 1In either case the circumference of the cylinder is

21/w. An exact fit for the tessellation will occur when this



T

circumference equals an integer number of interval of repeti-

tion. We therefore need to satisfy either the condition
(1) 2wA//§ is an integer

or the condition
(ii)27X/3 is an integer

according to the orientation selected.

When transformed back to the city the circumferences of
the cylinder correspond to radii, so that the number of facili-

ties required is the same on each ring around the city centre.

‘4.3 Tessellations on the Cone

The total number of p-cones that admit exact hexagonal

tessellations is thirteen, namely:

The maps on the urban plane for the field V = wi® are the
inverses of maps for the field V = w*rz—p. To show this,

consider two maps from the same cone. From equation (1.2),

1

r = (wp)1_p p # 1 (4.3)
1
r* = (w*p)1—q qg # 1 (4.4)
Then
1 1 2-(prq)

rr* = wT-p w*1_q p(1—p)(1_q) (4.5)
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)1'9 (4.6)

Hence r = ( )1-p ol (4.7f

We need only to construct the seven basic maps, for 0 < p = 1,
and can get the other six from the last equation. The

cylinder, p = 1, is a special case and is self-inverse.

4.4 Tessellating the Sphere with Pentagons and Hexagons

The sum of the angles meeting at a point cannot exceed
2m radians. The angle of a regular pentagon is 3w/5. Thus,
no more than three faces can meet at a vertex. We therefore

deduce the following theorem.

THEOREM 4.1 Any tessellation on the surface of a sphere
using only pentagons and hexagons requires at least twelve

pentagons.

Proof. Let p denote the number of pentagons and h the
number of hexagons. For a tessellation on the sphere, let £
be the number of faces, r the number of vertices and e the
number of edges. The total number of faces is given by

f=h+p (4.8)

Each hexagon has six edges, each pentagon five edges and each

edge is shared by two faces, so

e = (6h +5p)/2 (4.9)
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Each hexagon has six vertices and each pentagon five vertices.

At least three faces meet at each vertex, hence
v £ (6h + 5p)/3 (4.10)
The Euler characteristic of a sphere is equal to two, so that

f +v-e= 2

Hence (h + p) + (6h + 5p)/3 - (6h + 5p)/ 2 = 2 (4.11)

Therefore, p 2 12 as required.

4.5 Scaling Restrictions for the Spherical Tessellations

Dodecahedron

The area of a pentagon of radius ) is 5 sin54° cosSMOAZ x

2.38A2. The surface area of the dodecahedron is thus 28.5A2.

The area of the spherical time surface, for V = ar2 + b, is

Um/4ab. For these to have similar scales we require é% X 28.5x2.
This formula was used to calculate the parameters for Figure 11.8

in the main text.

Truncated Icosahedron

The area of a hexagon of radius X is Eiz Az b 2.60X2.
The area of an adjacent pentagon of edge length X is
E——E%Béii Az z 1.72A2. The surface area of the truncated
icosahedron, with twelve pentagons and twenty hexagons, is
thus 72.6A2. The scaling restriction is thus,
I~ 72.6)2

This formula was used to calculate the parameters for Figure 11.9

in the main text.
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