
NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

THE USE OF TRANSLATOR IMPLFMEXTATION HETHODS
FOR WRITING NONPROCEDURAL INTERFACES TO
APPLICATION SOFTWARE SYSTEMS

Borivoj Melichar

February 1982
WP-82- 15

Working Papers a re interim reports on work of the International
Institute for Applied Systems Analysis and have received only
limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of its National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

PREFACE

One of the results of advances in computer hardware technology is a
wider use of computers in almost all areas of society. There is a need to
make it possible for many people to use application software systems that
are produced for different areas. For people without data processing
backgrounds it would seem wise to use a nonprocedural interface to these
systems. The implementation of a nonprocedural interface as a part of an
application software system can be facilitated using aspects of the theory
and practice of the translator construction for programming languages.

The purpose of this paper is to introduce programmers who lack
theoretical background and/or practical experience in the area of trans-
lator design and implementation to the relevant aspects of its theory and
practice.

I would like to thank Goeran Fick for inspiring me to do t h s work, Ronald
Lee and Donald Cosiello for th.e many useful and helpful discussions as
well as their comments. Thanks also to Miyoko Yamada for her help in
the preparation of this paper.

CONTENTS

1. INTRODUCTION
2. DEFINITION OF FORMAL LANGUAGES
3. STRUCTURE OF A TRANSLATOR

3.1 C o m p i l e r s and I n t e r p r e t e r s
3.2 B a s i c Structure of C o m p i l e r s a n d I n t e r p r e t e r s
3.3 B a t c h and C o n v e r s a t i o n a l C o m p i l e r s a n d I n t e r p r e t e r s

4. TRANSLATOR WRITING TOOLS AND AIDS

5. APPLICATION OF TRANSLATOR WRITING METHODD TO
WRITING NONPROCEDURAL INTERFACES

6. CONCLUSION
REFERENCES

THE USE OF TRANSLATOR IMPIXMENTATION METHODS
FOR WRITING NONPROCEDURAL INTERFACES TO
AWLICATION SOFTWARE SYSTEMS

Borivoj Melichar

1. rnRODUCTI0N
Advances in microelectronics during the past decade have dramati-

cally decreased the cost of computer hardware. One of the results of the
availability of low cost computers is a potential for much wider use of
computers in almost all areas of society. This development is dependent
on the existence of an easy-to-use interface between the user and the
computer. The manner of an interface between a user and the computer
is mainly determined by the medium used for communication. One basic
media for this communication is alphanumeric text or graphics. More
advanced media for communication (speech, eye movement, hand written
script, brain wave control, etc.) are being researched, but they are not
yet in common use. Here we focus on alphanumeric texts as a med,ium
for user-computer communication.

For different areas of application of computers many application
software systems have been or will be produced. Among others we can
mention some application software systems like:

- computer based text editing and text formatting systems,
- office automation systems,
- information and data base systems,
- decision support systems,

- teleconferencing systems,

- business data processing systems,
- computer aided design systems, etc.

Our concern here is the problem of communication between user and
application software.

Conventionally the user must translate his problem solution from
terms meaningful in his problem domain into the terms of the application
software available to h m . Frequently the manner of application software
use have been dictated by computer considerations rather than by appli-
cation characteristics. In general this translation process involves an
algorithmization of the user's problem requiring the procedural specifica-
tion of numerous details not relevant to the original problem.

With the great diffusion of cheap computer hardware it is expected
that the most rapidly expanding category of users is the category of
users with little or no data processing background. For such people it is
very hard and very time consuming to learn a method of construction and
description of algorithms in programming procedure oriented languages.

Such users, called by Schneiderman (1978) "non-trained intermittent
users" (vs. skilled frequent users) are interested in communicating to the
computer what results should be produced, not how in detail computer
should operate. In other words thls means that it is highly desirable for
such categories of users to communicate with an application software in a
nonprocedural manner.

According to McCracken (19?8), we can characterize non-procedural
languages as follows :

a) The user cannot take any care of storing data. Decisions that
relate only indirectly to the calculation are considered to be
part of the internal functioning of the system. These include
decisions about internal representation of numbers (fixed point,
floating point, octal, decimal), dimensions of quantities that
occur only as intermediate results, input and output formats,
etc. The representation of data is selected by the system itself,
and the description of the data representation with the data.
This is called d a t a independence.

b) The user cannot tell the computer how t o do a process to obtain
desirable results. Rather, he/she tells the computer only what
he/she wants. This means that user input does not involve the
loops and branches which make up most of the computational
steps in a program written in procedural language. The user
cannot even explicitly specify the order in which operation are
to be performed. This we can call contro l independence.

In a non-procedural language the computational process is specified
by the desired result and this specification is data and control indepen-
dent. In practice, however, some vestiges of control or data dependen-
cies remain. The languages in which the computational process is speci-
fied by the desired result and this specification is in a limited manner
control or data dependent are often called non-procedural oriented
languages.

Melichar (1981) describes an annotated classification of available
types of text oriented non-procedural communication languages between
the users and application software. Non-procedural languages are classi-
fied as follows:

a) answerlanguages,
b) command languages
c) query languages,
d) natural like languages,

e) special purpose languages, and
f) two-dimensional positional languages.

Because of the great variety of complexity of the non-procedural
languages from the point of view of the implementation, we shall divide
these languages into the following three groups:

1. %vial languages , the structure of which is very simple. Exam-
ples of such languages are binary language, menu selection sys-
tems, or other simple answer languages.

2. Formal Languages like command languages, query languages or
special purpose languages, which can be uniquely defined by for-
mal systems. A definition of such a language has two parts:
- definition of syntax, and
- definition of semantics.

3. Natura l languages , the structure of which is very complex. A
definition of them consists of:
- syntax definition,

- semantics definition, and

- semantics interpretation with respect to a world model.

Here, we shall deal with methods for the description and implemen-
tation of the formal language in te r face . The reason for that is that trivial
languages are very simple and it is not appropriate to use sophisticated
methods for their implementation. On the other side, the implementa-
tion of the natural language interface needs different approach than one
described here.

An application software system with non-procedural user interface is
shown on the following figure (Figure 1).

The non-procedural interface in Figure 1 we can comprehend as a
translator from a user's non-procedural language into an internal pro-
cedural language of the system. This internal language involves state-
ments or instructions that are used for calling of individual procedures of
an application software to perform operations desired by a user. The
application software is usually the library of procedural programs written
in some procedural programming language.

Figure 1. Application software system

USER

h

It is often true that many application software products are not writ-
ten by programming specialist familiar with the current state of the pro-
g r a m i n g technology, but by experts in the application areas, whose pro-
gramming skills are secondary to their main purpose. The result is that
the application procedures are not separated from the user interface. In
such a system the code describing these two terms are mixed altogether.
But there are several good reasons for separating the application
software from the user interface:

- I t is the first step to divide complex programming task into the
two simpler subtasks.

- It is possible to use for the implementation of the user interface
available tools (see below).

- Often it is desirable to have different interfaces for different
classes of users. A casual user has different requirements than
the intensive user.

Application
software
library of
procedural
programs

@'

- The requirements for a user interface are not stable over time.
Individual users evolve from casual to intensive mode, and vice
versa. This means that it is necessary to change user interface
without changing application software.

- The application software itself might be changed in time due to
the change of computer architecture or a new development in
the application area.

As soon as the user interface is separated from application software
it is possible to implement it as a translator. Therefore it is possible to
use for the user interface implementation, methods and tools already
developed for the translators of programming languages implementation.

Since the late 1950's there has been a considerable interest in
development of theoretical and methodological tools useful for a descrip-
tion of formal languages and for a description of a process of translation.
This interest has been provoked by compiler writers who have been imple-
mented programming languages like FORTRAN, ALGOL, etc.

NON-PROCEDURAL
INTERFACE 4 *

As a result of the effort exerted many theoretical issues have
appeared during the 1960's and 1970's. The most important theories of
our concern here are

- theory of formal languages,
- formal methods for description of semantics,
- theory of automata, and

- theory of translation.

These theoretical advances facilitate the description of formal
languages and description of a process of translation from one formal
language into another.

Though the theoretical development was motivated and its results
are used mainly in the field of programming (procedural) languages,
there is a possibility to use known techniques in the design and imple-
mentation of nonprocedural interface as well.

The theories mentioned above facilitate not only the description of a
language or a process of translation. The important issue is the fact that
a formal description of a language can be directly converted into an algo-
rithm of analysis of sentences in this language. In the same way, the for-
mal description of a translation process can be converted into an algo-
rithm of the translation.

The latter issue is the basis for an automatic construction of transla-
tors. If we have a description of the translation process, we can automati-
cally convert the formal description of the translation into a translator by
means of a special program, called constructor. The role of the construc-
tor is shown in the following figure (Figure 2).

Formal
description
of translation
from language A
to language B

Text in
language A

Translator
CONSTRUCTOR from A

TRANSLATOR
from A Text in

language B

Figure 2. The role of constructor

The development of constructors of translators proceeded in parallel
with the development of theoretical basis. The constructors of transla-
tors or their parts are called compiler- compilers or translator writing
systems. These systems, primary intended for the implementation of
classical translators of programming languages, have proved useful in
implementation of a wide variety of application software products as well.

As mentioned above application software systems are written very
often by experts in the application area in question. Therefore it is prob-
able that these application programmers have no or little background in
the field of the translator design and implementation. Nevertheless the
application programmers can use existing tools for translator writing or
to ask computer science specialist for a help. In order to start the use of
translator writing tools or to start discussion with the computer science
specialist the basic knowledge will be helpful.

In the sequel therefore we discuss some basic aspects of the descrip-
tion of formal languages, description of a translation process, basic struc-
tures of translators, and finally the principles of translator writing tools.
The material is discussed in an informal and tutorial manner. The
detailed description of the matter in question is possible to find in many
books (Gries 1971, Hopcroft and Ullman 1969, Aho and Ullman 1972,1973,
Lewis, Rosenkrantz and Stearns 1976, Aho and Ullman 1977, Backhouse
1979, Barrett and Couch 1979).

2. DEFINITION OF FORMAL LANGUAGES
Input to a non-procedural interface (input text) can be viewed as a

string of characters chosen from some alphabet. Definition of which
string of characters represents a valid input text is given by rules. These
rules are called the syntaz of the language. It is well known that it is
often very difficult to state concisely and precisely what strings are valid
input strings, just as it is hard to state which sentences of the particular
natural language (for example in English) are proper and which are not.
Those languages where their syntax can be uniquely and precisely defined
by syntax rules are called formal languages.

A notation called a grammar is used for the specification of the syn-
tax of formal languages. This notation has a number of advantages as a
method for the syntax specificati.on:

- A grammar gives a concise and easy to understand syntactic
specification for statements, groups of statements, or sentences
of a particular formal language.

- A grammar describes a structure of texts or sentences that is
useful for its translation or interpretation.

- A grammar can be used. as a base for description of the meaning
of statements or sentences of the languages.

- A grammar is often part of the input used by a constructor to
produce translator.

In the following we shall use term s e n t e n c e for a valid user input to
an interface.

Once we have defined the syntax of a language, we must specify what
is the 'meaning' of each syntactically well formed string in the language.
The rules that give specification of meaning of strings in a language are
called the s e m a n t i c s .

There are essentially four approaches to define semantics:
- operational or interpretative approach, considering an inter-

preter that executes some string as program on the abstract
machine,

- axiomatic approach, considering the input-output relation of a
string as a program,

- denotational or mathematical approach, considering definition
of mathematical objects relevant and rules given for translating
the string to these mathematical objects,

- translational approach, considering the translation of string into
some target language whose semantics we already understand.

The last approach seems to be most natural to our purpose, for non-
procedural interface description and implementation.

Often for a given language several different specifications exist
(Bo c hrnan 1979):

- specification used during the design of the language,
- specifkcation that describes the implementation of the language

in terms of translator, '

- specification for the user of the language, as written in a user
manual.

Often, only the syntax is formally defined in each specification by use
of a grammar. Unfortunately, it is very hard to find a specification of
semantics that is suitable for all purposes.

Translational grammar and attribute grammars are examples of for-
mal systems, which are popular for semantics specification using the
translational approach.

Let us briefly review the notion of a grammar. The English sentence

THE CAT ATE THE MOUSE

has a syntax structure that might be visualized in diagram form as in the
following figure (Figure 3).

A sentence diagram like this is called p a r s e t r e e . It describes syntax,
or structure of a sentence by breaking it into its constituent parts. To
describe this structure we have used new symbols~arnes of syntactic
constructs, e.g., <sentence>, <direct object>, etc. These symbols,
enclosed in corner brackets, are called non- t e r m i n a l s y m b o l s ,

THE CAT ATE THE MOUSE

Figure 3. Parse tree

One of them is called sentence symbol or start symbol. This symbol
is used as a name of all sentences in a language. In our example this
symbol is <sentence>, in programming languages it is often usually the
symbol <program>. The sentence itself is composed of basic words (THE,
CAT, ATE, THE, MOUSE), which are called tenninal symbols . The parse
tree of the sentence also indicate that the <sentence> is composed of a
subject followed by a <predicate>, the <subject> is composed of an <arti-
cle> followed by a <noun>, etc. We can write such r u l e s in the following
form:

<article> -+ THE

<noun> --, CAT

<noun> --, MOUSE

<verb> --, ATE

From this point of view we can agree that grammar consists of the

1. definitionofthesetofnon-terminalsymbols,

2. definition of the set of terminal symbols,
3. definit ionofthesetofrules,and

4. determination of the sentence symbol from the set of non-
terminal symbol.

Once we have a grammar, the rules of the grammar can be used to
der i ve orproduce a sentence by the following scheme.

We start with the sentence symbol and find a rule with this sentence
symbol to the left of --, and rewrite it as the string to the right of 4. In
our example

Thus we are replacing a non-terminal symbol by one of the strings of
which it may be composed, e.g., with the string on the right hand side of
the rule with nonterminal in question on the left hand side of it. Repeat-
ing this process yield to the der i va t ion like:

<subject> <predicate>

<article> <noun> <predicate>

THE <noun> <predicate>

THE CAT <predicate>

THE CAT <verb> <direct object>

THE CAT ATE <direct object>

THE CAT ATE <article> <noun>

THE CAT ATE THE <noun>

THE CAT ATE THE MOUSE

Note that at each step of the derivation one can replace any non-terminal
symbol. The terminal symbols are not replaced.

The grammar in this example describes one sentence of English only.
The purpose of a grammar is to describe all sentences of a language with
a reasonable number of symbols and rules. It is even possible to describe
languages with an infinite number of sentences. Let us have a grammar
with the following rules:

and with the non-terminal symbols <digit> and <number>. The sentence
symbol is <number>. The terminal symbols are 0 and 1. This grammar
describes an infinite set of binary numbers.

Now let us proceed to the specification of semantics. As we have
stated above, semantics consists of a specification of the meaning of a
sentence of the language. Here we shall consider a translational
approach of the semantics specification.

The simplest method of the translational semantics specification is
an association of semantic actions with each syntactic construct. These
semantic actions, often called semantic routines (Gries 1971), output
actions (Aho and Ullman 1977), etc., may involve the computation of
values for internal variables of the translator, the invocation of some pro-
cedure to perform particular operation, etc.

To formalize this way of semantics specification we can use notion of
the translational grammar. (transformational grammar).

The translational grammar is a natural extension of a grammar.
Having a grammar, we obtain a translational grammar in the following
way:

- we define the set of output symbols, and
- we permit output symbols to appear on the right hand side of

grammar rules.

The following example shows the translational grammar which
describes the translation of expression from infix notation to postfix nota-
tion.

This grammar have the following six rules:

<expression> -3 <expression> + <term> ADD

<expression> 4 <term>

<term> -3 <term> <factor> MPY

<term> * <factor>

<factor> -3 (<expression>)

<factor> J a A

Note that these rules are composed of:

non-terminals: <expression>, <term>, <factor>,

terminals: +, *, (,), a

output symbols: ADD, MPY, A.

The sentence symbol is <expression>.
Similar to the earlier grammar, we can generate sentence via a

derivation.
In our example of the translational grammar we can write among

others the following translational derivation:

<expression> => <expression> + <term> ADD

=> <term> + <term> ADD

=> <factor> + <term> ADD

=> a A + <term> ADD

=> a A + <factor> ADD

The resulting string is a mixture of input and output symbols. We obtain
the input string by dropping the output symbols. In our case the input
string is a + a. Similarly, to obtain output string we must drop the input
symbols. Therefore the output string is A A ADD.

It means that the translation of the input string, a + a is the output
string, A A ADD. In this way we may obtain output string corresponding to
each well formed input string.

The translational grammar describes translation often called string-
to-string translation. It is a special case of more general formal systems
for description of string-to-string translation like for example syntax
directed translation schemes or pair grammars.

Use of this types of formalisms to describe process of translation
have some limitation. For example, let us suppose that output symbol
represents an invocation of some procedure. From the discussion above
it follows that t h s procedure has no parameters. This shortcoming may
be eliminated using attributed translational grammars (or attributed
transformational grammars) (Lewis, Rosenkrantz and Stearns 1976).

An attributed translational grammar is translational grammar each
symbol of which (non-terminal terminal, or output symbols) has a certain
number (it may be zero) of attributes. The determination of the attribute
values is realized by semantic rules which are associated with the transla-
tional grammar rules.

The attribute translation grammar describes an a t t r i b u t e d bransla-
tion. I t means that with an a t t r ibu ted i n p u t s t r i n g is associated an a t t r i -
bu ted ou tpu t stTi7Lg. For example consider the input string

w h e r e a, +, are input symbols and X, Y, Z are values of the attributes of
the a's. The following output string may be associated with that input:

MPY (Y,Z,Rl) ADD(X,Rl,R2),

where MPY and ADD are output symbols and X, Y, Z , R1 and R2 are values
of their attributes.

Note that ADD (a,b.c) can be interpreted as the instruction to a com-
puter to add a to b and store the result in c, for example.

Attributed translational grammars are formal systems for transla-
tional semantics specification with respect to syntax specification using
context free grammars. Other formal methods to describe translational
semantics are discussed in Riedewald (1978).

3. STRUCTURE OF A TRANSLATOR

3.1 Compilers and Interpreters
A trans la to^ is a program which processes a source t e z t written in a

source Language with a procedure known as compilation or interpreta-
tion. Therefore we can divide translators into two main groups:

1. compilers, and
2. interpreters.

Figure 4. shows the principle of the compiler.

source object
text program

COMPILER

Figure 4. Principle of compiler

The compiler reads the source text and translates (transforms) it
into an equivalent object program written in the object language. The
object language is usually specific to a particular machine or a particular
class of machines. Hence during the compile time the compiler produces
an object program. The actual execution (or running) of the object pro-
gram occurs a t a run- time.

This means that the running of the object program, e.g., reading of
input data, execution and producing an output data, is activity performed
at another time than at the compile time.

Figure 5 shows the principle of the interpreter.

The interpreter reads the source text, analyzes it and performs the
operations prescribed by the statements of the source text. This activity
is called an interpretation of the source program.

During the interpretation of the source text input data are read and
output data are produced immediately during interpretation. No object
program is produced by the interpreter.

Figure 5. Principle of interpreter

input data

source text
L, INTERPRETER

output data,
results

v

In the context of developing nonprocedural interfaces we may
develop either compilers or interpreters. In the case of using an inter-
preter as a nonprocedural interface, the corresponding operations or
procedures are performed during processing of a user input. In order to
repeat these operation later, the input text must be interpreted again.1f
the original input text is not stored the user must type this input text
again. In contrast to the interpreter, the compiler produces an object
program which can be run immediately and also may be stored for
further use. The object program is composed of instructions or state-
ments for calling individual procedures or programs of the library of pro-
cedural programs.

3.2 Basic Structure of Compilers and Interpreters
Existing compilers and interpreters display a wide variety of internal

structures. Despite t h s variety there are many common features.
The compiling process (performed by compiler) can be divided into

four logical steps:
1. lexical analysis,

2. syntax analysis,
3. semantics analysis, and

4. object code generation.

We can consider the structure of the compiler according to this clas-
sification as in Figure 6.

Lexical analyzer is the simplest part of the compiler. It reads char-
acters of the source text and creates basic symbols like numbers, names,
reserved words, delimiters, etc. At the same time lexical analyzer skips
characters which are meaningless for the further processing, for example
spaces, line characters, comments, etc.

The further role of the lexical analyzer is a transformation of the
source text symbols into an internal machine form. The source text sym-
bols are then represented by integer numbers, generally in binary form.

This is generally done to simplify further analysis of the source text
by permitting subsequent parts of the compiler not work with strings of
characters of variable length but with integer having a constant length.

The output of the lexical analyzer is a string of symbols. This s tr ing
of syrnboLs is the input to the q n t a z analyzer , This analyzer checks to
see if the input text is written correctly acc0rdin.g to the syntactic rules.
At the same time the syntactic structure is determined and is usually
outputed from the syntax analyzer in the form of a derivation t ree .

During the semantic analys is the semantic correctness is deter-
mined. In addition the input to the object program generator is prepared.

An object program generator creates the output of the compilation
process(eman object program.

source program

v .-
LEXICAL ANALYZER

SYNTAX ANALYZER

4
SEMANTICS ANALYZER

+
OBJECT CODE GENERATOR

object program

v

Figure 6. Structure of the compiler.

Similar to the compiling process we can divide process of the
interpretation into four parts:

1. lexical analysis,

2. syntax analysis,
3. semantics analysis, and
4. interpretation.

We can consider the structure of the interpreter as shown in Figure
7 .

The first three parts of the interpreter are essentially the same as
those in the compiler. The fourth part, the interpretation part, is the
only different part of the interpreter.

I source
program

/ LEXICAL ANALYZER I

1 SYNTAX ANALYZER I

1 SEMANTICS ANALYZER /
input data output data,

INTERPRETATION -
results

Figure 7. Structure of the interpreter

3.3 Batch and Conversational Compilers and Interpreters

Another subdivision of translators is into

1, batch, or
2. interactive

ones.
Batch translators are used in computer systems where a user has

indirect access to a computer. In such a system user can neither influ-
ence the way of computation or interpretation nor intervene in case when
error occurs. This means that the whole program must be prepared
before starting translation.

In operating systems which enable direct access to the computer an
interactive translator can be used. In such systems user can intervene
during translation or can directly correct errors if they occur using a ter-
minal.

Now we shall discuss the structures of interactive compilers and
interpreters.

The principle of interactive interpreter can be described as follows:
The source text is read from a terminal, checked on syntactic and

sem.antic correctness, and then is either immediately interpreted or
stored and interpreted just after the user's request. In the latter case
the user can request interpretation of one statement, part of the stored
text, or the whole input text.

The interactive interpreter is composed usually of two main parts:

1. control part, and
2. interpretative part.

The control part of the interactive interpreter has the following basic
functions:

1, to perform reading of the input text,

2. t o ensure checking of the correctness of input text using the
interpretative part,

3. to store the input text or ensure direct interpretation of the
input text, and

4, to ensure interpretation of stored text.

Figure 8 shows the structure of an interactive interpreter.

control of
interpretation

A

results, answers

Figure 8. Structure of an interactive interpreter

input
statements

v

messages
for user

CONTROLPART 4

j r

input
statements
for checking

4

INTERPRETATION PART
CHECK~NG OF STATEMENT)

statements
for storing

STORED STATEMENT(S)

input data
(if applicable)

statements for
interpretation

v r V
INTERPRETATIVE PART

INTERPRETATION OF STATEMENTS)

The interpretative part of the interactive interpreter has two func-
tions:

1. checking of statements, e.g., to perform the lexical, syntax and
semantics analysis, and

2. immediate interpretation of the checked statement or interpre-
tation of the stored statements.

The reason for performing both functions by the interpretative part
of the interactive interpreter is, that lexical, syntax and semantics
analysis are parts of the interpretation of the statement.

An interactive interpreter is advantageous namely in the case when
we use a particular input text only once. An interactive interpreter does
not produce an object program equivalent to the source text. This is a
disadvantage in situations when the input text is used many times. An
example of the use of one input text more than one time occurs in com-
munication with a data base. In this case it is often desirable to use the
same query which can be very complex. In case when we want to use an
input text more than once to communicate with computer, it is better to
use an interactive compiler producing an object program.

Interactive compilers are often called incremental compilers,
because the object program is not created continuously as with batch
compilers, but i t is produced by increments. The increment is obviously
the object program corresponding to one source statement or other sim-
ple part of the source text.

The incremental compiler, in contrast to the interactive interpreter,
is composed of two parts:

1. control part, and
2. compilation part.

There are following two variants of the incremental compilers:
1. Compilation of the source statement is performed just after its

input, provided that this statement is correct.
2. The source text of the statement is stored and compilation is

performed just before execution of the statement.

The control part has in the former case the following functions:
a. During the input of the source statement the compilation part is

called to perform checking and compilation of the input state-
ment. At the same time changes in other statements are per-
formed which are evoked by the context relations with the com-
piled statement. The object program created is stored for
further use.

b. When the user wants to execute the object program, the control
part ensures it.

c. If the user wish to output the object program, the control part
using the increments compiled, creates complete object pro-
gram. Ths object program is executable independently on the
compiler.

In the latter case, e.g. when incremental compiler compiles each
statement just before execution, the control part has the following func-
tions:

a. During the input of the source statement the compilation part is
called to check the input statement. If errors do not occur, the
source statement is stored.

b. During the execution of the program the control part ensures
the compilation of statements which should be executed.
Created increments of the object program are stored, and in the
case when the statement is executed again the stored object
program is used for t h s execution.

If the user ask t o create an object program, the control part using
the increments compiled previously creates a complete object program.
Such an object program can be executed independently on the compiler.

4. TRANSWLTOR WFtITING TOOLS AND AIDS
The implementation of translators is becoming easier due to the

development of new methods mainly during the last two decades.
Nevertheless, the implementation of a good translator is still a nontrivial
task. Since 1960's there has been considerable interest to use a computer
to reduce effort needed to construct a good translator. The result is that
numerous software tools, called compiler-compilers or translator writing
systems was developed for the translator implementation. These systems
are mainly used for the implementation of translators of programming
languages. But very soon was found that the translator in~plementation
tools are useful for the implementation of some parts of a wide variety of
application software products as well. Especially they are useful for con-
structing of the user interfaces of application software systems
(Rosenthal 1980).

Johnson (1980) points that usage of available tools for software con-
struction proved to be very successful and has the following advantages:

- The resulting products are produced quickly.
- They are likely to work correctly.
- They are often quite flexible and adaptable as application

change.
- Inter-machine portability is often enhanced by using tools.
- Tool usage encourages a natural modularity in the resulting pro-

gram.
- Using tools constructed by expert programmers get the use

expert algorithms.

Further advantage is that user of the tool n.eed not have a detailed
knowledge of theoretical disciplines which is the tool based on. Though it
must be mentioned that some basic knowledge is helpful.

From the point of view of application software and user interfaces, we
can add the following advantages (Rosenthal 1980):

- The code defining the operations of the application is separated
from the code defining the user interface. The application
operations are defined by a library of procedural subroutines.
The user interface is defined by an input language specification.

- The user interface (translator of input language) is generated
automatically from the specification of the input language and
the programmer is forced therefore to specify this language for-
mally, which assis ts both design and documentation. The latter
is important, since the specification can be read by the user.

Research and development of translator writing tools is still continu-
ing. In spite of many useful and results in this field, there is no
satisfactory system for construction the translator as a whole. Some pro-
jects of t h s type are in progress as for example the Production-Quality
Compiler-Compiler project (Leverett e t al. 1980).Translator writing tools
for construction of different parts of translator are generally available.
There exist constructors for construction of lexical analyzers (Lesk 1979),
constructors for syntax analyzers called parser generators (Johnson and
Lesk 19?8), constructors for syntax analyzers combined with semantic
analyzers (Mueller 1977, Koster 1979).

The methods of automatic construction of object code generator are
still in research (Graham 1980, Cattell 1980).

Figure 9 is a box diagram of the most of translator writing systems
and translators generated' By them.

The translator consists of a skeleton translator and a set of tables
which it uses. The tables contain all the necessary information used by
the skeleton translator. These tables are generated by the translator
writing system on th.e base of description of the source language and the
specification of the translation from the source language into the object
language.

The skeleton translator is composed of some number of universal
algorithms. These algorithms are designed to provide different tasks in
the translator, e.g.,.lexical analysis, syntax analysis, code generation, etc.

5. APPLICATION OF TRANSLATOR WRITING METHODS TO WRITING
NONPROCEDURAL INTERFACES

The task of the design and implementation of an application software
system we propose to divide into some number of subtasks:

- The definition of the input language of the user interface.
- The decision about interface being com.piler or interpreter.
- The definition of the internal language of the system.
- The separation of the user interface from the application part of

the system.

SOURCE TEXT OBJECT CODE

Figure 9. Translator writing system

* -

SOURCE LANGUAGE

- The implementation of a library of application programs.
- The definition of the translation.
- The implementation of the user interface.

TABLES

SPECIFICATION OF

The definition of the input language is generally the first step of
implementation of the application software system. If the decision is,
that the input language will be a formal language (see classification
above), it is very useful and helpful to use a grammar for the description
of this input language syntax. Once a grammar of the input language is
written, it is possible to define semantics of each syntactic construct, e.g.
meaning of each one. This may be done using natural language, because
the formal methods of semantics description are not so simple and easy
to understand like grammars for the description of the syntax.

The decision if the system should be either a compiler or an inter-
preter depends on the demand if one input text should be used many
times like a "program". Compiler can produce an object program, whch
is possible to run more effectively than to process input text again.

SKELETON TRANSLATOR

Definition of an internal language of the system means the definition
of the list of subroutines or subprograms in the application library and
the way to call them. In the case of a compiling system this internal
language is the object (target) language.

F

TRANSLATION

4

DESCRIPTION

t

-

TRANSLATOR WRITING
SYSTEM

The separation of the user interface from the application part of the
system is the principal argument. This separation makes possible to use
different approaches for the implementation of the user interface and the
application library. Further reasons for such a separation were listed
above. But in real situations is sometimes very hard to decide what
should be a part of the interface and what should be a part of the appli-
cation library. For example the check if the datum like 1 August 1981 is
meaningful, e.g., the number of a day is less or equal to 31 in August and
the year must be inside the time span between 1900 and 2100, can be
done by the interface or by the application subroutine for processing
dates.

The library of application programs can be written in some program-
ming language using methods as usual in an application area.

The definition of the translation depends on the definition of the
input language and on the definition of the internal language of the . sys-
tem. There is possible to use some formal systems to describe transla-
tion. As examples we mentioned above translational grammars and attri-
buted translational grammars. The complexity of translation may vary
from trivial cases to very complex ones. According to the complexity of
the translation we must select an appropriate method of the translator
implementation. This aspect is not discussed here because it needs an
additional theoretical background.

If we use a particular translator writing system to implement user
interface, we must describe the translation in terms of the system used.
Roughly speaking, the use of translator writing system has an impact on
decisions made in almost all stages of an application software system
design.

As may be seen from the discussion above, the design and implemen-
tation of an application software system is mainly intellectual work. Only
the implementation of an application 1i.brary and user interface is possi-
ble to support by software systems like compilers of programming
languages for the application library implementation or translator writing
systems for the user interface implementation. For the other subtasks of
design and implementation of application software system listed above is
no efficient way to support them by a computer. They must be supported
by the experience of the designer only.

6. . CONCLUSION
Understanding of the translator construction for programming

languages has increased substantially during the past two decades. Now
it is possible to construct automatically reasonably good lexical and syn-
tactic analyzers. Progress has also been made in the area of an
automatic construction of semantic analyzers and code generators.

Most of methods used in automatic construction of different parts of
translators is based on the notion of a grammar. Therefore the notion of
a grammar is basic for the understanding of almost all methods of the
translator construction. The methods of the formal description of seman-
tics and methods of the description of a translation process are based on
the notion of a grammar.

Despite the fact that translator writing systems was primary
included for automatic construction of translators of programming
languages, they can be used for implementation of non-procedural user
interfaces as well.

At present there exists a large number of software systems, whch
can be used to make the task of a user interface implementation easier.
For example, in Sweden (Carlsson and Guningberg 1980) more than ten
software systems for writing interactive interfaces are available.

The results of the last two decades effort in developing the theoreti-
cal basis for translator construction and the experiences with the practi-
cal translator implementation are collected in many books. Some of
them are (Gries 1971, Hopcroft and Ullman 1969, Aho and Ullman 1972,
1973, Lewis, Rosenkrantz and Stearns 1976, Aho and Ullman 1977, Back-
house 1979, Barrett and Couch 1979).

Aho, A. V. and J.D. Ullman. 1977. Principles of Compiler Design. Reading,
Massachusetts: Addison-Wesley.

Aho, A. V. and J. D.Ullman. 1972 and 1973. The Theory of Parsing, Trans-
lation and Compiling. (Vol. 1. Parsing, Vol. 11. Compiling). New Jersey:
Englewood Cliffs.

Barrett, W. A. and J. D. Couch. 1979. Compiler Construction: Theory and
Practice.

Bochrnann, G. V. 1979. Semantic Equivalence of Covering Attribute
Grammars. International Journal of Computers and Information Sci-
ences 8(6):523-539.

Cattell, R. G. G. 1900. Automatic Derivation of Code Generators from
Machine Description. ACM Trans. on Programming Languages and
Systems 2(2): 173-190.

Graham, S. L. 1980. Table-Driven Code Generation. Computer 13(8):25-
37.

Gries, D. 1971. Compiler Construction for Dgital Computers. New York:
Wiley.

Hopcroft, J. E. and J. D. Ullman. 1969. Formal Languages and their

Relation to Automata. Reading, Massachusetts: Addison-Wesley.

Johnson, S. C. and M. E. Lesk. 1978. UNlX Time-Sharing System:
Language Development Tools. Bell System Technical Journal
57(6):2155-2175.

Lesk, M. E. 1979. LJ3X-A Lexical Analyzer Generator. UNIX Programmer's
Manual 2, Section 20, New Jersey: Murray Hill.

Leveret, B. W. et al. 1980. An Overview of the Production4juality Com-
pilerompiler Project. Computer 13 (8): 38-49.

Lewis, P. M. 11, D. J. Rosenkrantz and R. E. Staerns. 1976. Compiler Design
Theory. Reding, Massachusetts: Addison-Wesley.

McCracken, D. D. 1978. The Changing Face of Application Programming.
Datamation 24 (November 15):25-30.

Melichar, B. 1981. Nonprocedural Communication between Users and
Application Software. RR-81-22. Laxenburg, Austria: International
Institute for Applied Systems Ananysis.

Riedewald. 1978.

Rosenthal, D. S. H. 1980. Tools for Constructing User Interfaces. Com-
puter Aided Design 12(5):223 227.

Scheidermann, B. 1978. Improving the Human Factor Aspects of Data
Base Interactions. ACM Transactions on Database Systems 3(4):417-
439.

