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PREFACE

One of the principal projects of the Task on Environmental
Quality Control and Management in IIASA's Resources and Environ-
mental Area is a case study of eutrophication management for Lake
Balaton, Hungary. The case study is a collaborative project
involving a number of scientists from several Hungarian insti-
tutions and IIASA (for details see WP-80-187).

Most of the Balaton models to date have focused upon simu-
lating the physical and biochemical processes which determine the
nutrient loading from the watershed and the resulting lake water
quality. This study uses the loading/lake response information
from previous work to identify least cost management alternatives
for improving lake quality. Two approaches to economic optimi-
zation models are developed in generalized form and then applied
to the Balaton problem.
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LAKE EUTROPHICATION MANAGEMENT
OPTIMIZATION MODELING - APPROACHES
WITH APPLICATION TO LAKE BALATON

INTRODUCTION

The problem of management of lake water quality is inher-
ently multiobjective in nature, with at least two types of objec-
tives--one related to maximizing water quality and another for
minimizing cost. 1If, however, the water quality objective can
be quantified in terms of management of a single parameter or
even a single water quality index which combines the (commen-
surate) levels of more than one parameter, the problem can be
formulated mathematically with only a single objective function
by expressing the other objective as a constraint which will be
parameterized (varied over the range of interest). 1In such a
situation, there are several ways of formulating the problem,
each with particular implications in regard to algorithms which
may be appropriate, computational effort required, and depending
on whether or not a two stage simulation/optimization combination

of models is required.

~ Some definitions appropriate to the unavoidable jargon in
this paper will be useful. The distinction between optimization
and simulation models is the conventional one--an "optimization
model" maximizes (minimizes) a constrained formal objective func-

tion while maintaining quantitative functional relationships




among system parameters. The term "simulation model" refers to

a set of functional relationships which, for each run, quantify

the state of the system (that state which is uniquely associated
with the specified value of each "decision variable").

The phrase "input coefficients" refers to constants which
are used to quantify the functional relationships in optimiza-
tion models. The phrase "decision variable" refers to those
parameters which are in some way controllable by management

action.

This paper will include: (1) a brief discussion of possible
model structures, their advantages and disadvantages; (2) an
example of a generalized mixed integer programming (MIP) optimi-
zation model which is self-contained in the sense that it calcu-
lates internally both the management induced changes in nutrient
loading and the lake water quality response; (3) an example of
an all integer (AIP) optimization model which is much simpler
than the MIP model but which requires a simulation model for its
input coefficients; (4) an example of such a management simula-
tion model which calculates nutrient loading changes and result-
ing phytoplankton levels; (5) results of application of both the
simulation and the AIP optimization models to the Lake Balaton

management problem.

The nutrient which is considered limiting to production in
Lake Balaton and which therefore is shown explicitly in the
notation of these models, is phosphorous. The models are also
applicable conceptually for management of other parameters such

as nitrogen, however, in practice this is usually not realistic.

The kinds of management actions considered for reduction
of nutrient loadings include advanced (tertiary) treatment of
municipal sewage and construction of shallow reed ponds near
river mouths. The word tertiary refers here to only phosphorous
removal--not complete advanced treatment. The concept of removal
of phosphorous via reeds involves cutting and removing reeds
annually while still green. There are many uncertainties related
to this concept, including efficiency of P removal (particularly

variability over several years) and cost of constructing and cost



of operating reed projects. Therefore, the efficiencies and
costs used in the Balaton application are only rough (optimistic)

estimates.

The reed ponds are usually, but not always, provided with
an upétream sediment basin. The models presented here calculate
available phosphorous as the sum of POu - P and 20% of particu-
late P. The latter term is approximately the difference between
total and POu

1981). The sediment basins are assumed to remove some fraction

phosphorous (see for example Jolankai and Somlyédy,

of particulate P, while both tertiary treatment and the reed

ponds are assumed to remove a fraction of the POu - P.

The sewage and reed projects are modeled individually. The
simulation model also includes P removal by management of urban
runoff, but only in an aggregated form (total lake sections).
The phosphorous loading data used for the Lake Balaton applica-
tion are completely in accordance with the loading estimate of
Joladnkai and Somlyédy (1981).

1. MODEL STRUCTURE ALTERNATIVES

Consider the following possible formulations for lake water
quality management models (ST = subject to):

Min: Cost

ST: Nutrient Loading < Standard Problem 1la
or

Min: Cost

ST: Lake Quality > Standard Problem 1b

Max: Reduction in Nutrient Loading

ST: Cost < Budget Problem 2a
or

Max: Lake Quality

ST: Cost < Budget Problem 2b

Min: Deviation from Nutrient Loading Goals

ST: Cost < Budget Problem 3a
or

Min: Deviation from Lake Quality Goals

ST: Cost < Budget Problem 3b

The first two formulations (Problem 1a and 1b) are useful

for river basin management problems, where regulatory agencies



have set absolute standards for pollution residual loadings or
for quality indicators (such as dissolved oxygen), in various
reaches of a river, or standards for any point load such as
sewer treatment plant effluent. This kind of standard implies
an infinite cost for any violation of the standard. Neverthe-
less such standards became very widespread in the US and other
developed countries during the 1970's thereby generating a need
for river basin planning models formulated as problem l1a or 1b.
Examples of such models which use an AIP algorithm as the opti-
mizing tool include: Liebman and Marks (1968); Finney, et al.
(1977); and Ijjas and Kindler (1978). An example of this type
of model using a dynamic programming (DP) algorithm is Zukovs
and Adams (1980). The latter publication however, employs a
penalty cost for violation of the standard (the standard being
treatment of 100 percent of sewer flow).

The notion of minimizing cost subject to a set water quality
standard has a definite advantage in terms of simplifying an
optimization model. Specifically, the level of either loadings
or quality indicators (or both), after management actions, are
constants rather than variables. This is important, since it
eliminates many calculations within the optimization model.
Therefore, a very simple AIP model is possible in which the 0,1
variables indicate.which level of treatment is required at each
management alternative to achieve a known increment of quality
improvement, the sum of which will meet the standard. It should
be noted, however, that the increments of improvements are
usually "known" only via output from a simulation model. The
elimination of continuous variables is even more important

(necessary) in a DP formulation.

Now consider lake water quality management, specifically
eutrophication management rather than river reach quality manage-
ment. In many aspects the modeling problems are the same as for
the river. However, it is much more difficult to set a rational
loading standard. The longer term implications of lake nutrient
loading, wind/sediment and temperature dynamics and particularly
the longer time required for response to management actions make

the setting of absolute standards (problem l1a or 1b) very



unproductive. Indeed, the setting of a desired standard will
most likely produce a problem with no feasible solution. A much
more useful formulation in the lake eutrophication setting is
either the minimization of deviations from loading or lake gqual-
ity goals subject to realistic budget constraints (problem 3a or
3b), or which is mathematically essentially equivalent, minimiz-
ing loading or maximizing lake quality subject to budget con-
straints (problem 2a or 2b)--the only difference being the trivial
exercise of explicitly calculating the deviation from an array of
constants representing goals. That is, the difference between
problems 2 and 3 is trivial if the optimization model is capable
of handling continuous variables. If an all integer algorithm

is to be used, then the formulation of problems 3a or b is not
possible. 1In fact, although formulation 2b is possible for an
AIP algorithm, the very cumbersome operations involved in gener-
ating the coefficients virtually dictate either an MIP algorithm
or a simpler surrogate for lake quality such as weighting the
components of the problem 2a objective function in order to simu-
late the problem 2b objective. The latter approach will be dem-
onstrated in this paper.

The difference between the "a" and "b" formulations is that
"a" does not include the submodel which translates the rate of
nutrient loading (kg per day of available phosphorous for exam-
ple) into some indicator of lake quality chlorophyll, biomass
or phytoplankton phosphorus for example. Here the latter will
be used since it is a state variable of the available lake model
(see van Straten 1980; Leonov 1980). 1If.a lake is essentially
homogenous in terms of water quality, the problem "a" form of
model may be adequate, since minimizing nutrient loading then
becomes almost synonymous with maximizing water quality (except
for possible differences in weighting of seasons). However, for
an application such as Lake Balaton, where there are large gra-
dients in both water quality and water volume among various
sections of the lake, the two forms of objective function will
produce radically different allocations of management resources

(with problem "b" being the proper formulation).



2. SELF CONTAINED OPTIMIZATION MODEL
2.1. Model Description--Problem 3a

A mixed integer programming version of a model in a form
appropriate to problem 3a has been developed and applied to the
Balaton problem. That application will not be reported here,
however, a detailed description of the model and its notation
is given in Appendix A. The following description merely sum-

marizes the structure of the model.

The objective function minimizes the weighted sum of devia-
tions from nutrient reduction goals in the ith lake section and
the kth season, for all i and k. A discussion of how one might
determine relative weighting of such goals (if indeed relative

weights need to differ at all) will be presented later.
The constraints include five types as follows:

a. Calculate deviations from goals as: I Removal (kg/day)
+ Dev. from Goal = I Initial Loads - Goal.

b. Force load treated by reed projects to zero if the
project is not built.

c. Define load reaching each reed project as a function
of upstream sewer treatment. _

d. Limit P removed by sewer projects to the appropriate
fraction of either the P load or capacity of the treat-
ment unit selected, whichever is smaller.

e. Limit total of investment and operating costs to the
budget available.

The most natural form of a model which expresses these
constraints mathematically involves the product of two vari-
ables in the cases of both (b) and (d); however, such variables
were separated (a necessary condition for linearity between dis-
crete steps) by using various 0,1 manipulations as explained in
the Appendix. Both the sewer and reed type management actions
are represented by 0,1 type variables (don't build,'build deci-
sions) while continuous variables are required to represent
(1) deviations from goals, (2) load actually treated by sewer
projects, and (3) loads reaching the lake edge as impacted by



both management activities and river reach effects. The model
allows an arbitrary number of seasons, management projects and

lake sections.

2.2. Secondary Sewage Treatment

The phosphorous management models presented here are based
upon the assumption that the sewer line and secondary treatment
locations and capacities will be predetermined exogenously. In
the case of Lake Balaton this will apparently be accomplished
by a very detailed planning model (SZTAKI 1980). This means that
effluent quantities are fixed by considerations such as region-
alization related to pipelines and secondary treatment plants
(in which economies of scale are substantial) and which there-
fore can be treated as constants in regard to tertiary projects
(in which scale effects are very minor). If one wished to in-
clude secondary treatment alternatives in this model it would
be conceptually very simple to add a new set of integer vari-
ables and related costs and to use constraints that require
secondary treatment capacity to be not less than phosphorous
removal capacity. This would ensure that no tertiary unit is
constructed without a related secondary plant of appropriate
capacity. However, the other additional constraints necessary
to make optimal decisions on design of the secondary treatment
would produce a totally intractable model. Since tertiary treat-
ment cannot be accomplished without previous secondary treatment
of all effluents, and since secondary treatment is an order of
magnitude more costly than phosphorous removal, there is a very
low probability that tertiary unit decisions could change the
optimal configuration of secondary projects. It is therefore
very logical to decompose the overall problem into separate
secondary and tertiary models.

2.3. Investment Timing Considerations

The model presented previously does not include investment
timing decisions related to future growth in phosphorous loads.
In the case of Lake Balaton (as well as most other lake envi-

ronments one can imagine) investment timing considerations are



almost irrelevant. The reasons for this are primarily related
to: (1) the necessity for tertiary unit capacities to be not
less than secondary treatment capacities and, (2) the fact that
economies of scale are very minor for tertiary units (thereby
almost eliminating any benefit of a temporary excess capacity).
The optimal strategy would therefore seem to be to provide treat-
ment for initial period capacities in an optimal way (with either
tertiary or reed projects or both) and then simply add tertiary
units as needed, to match future additions in secondary capacity.
Very short lead times are required for construction and such
decisions can best be made as future growth rates are observed

rather than guessed at.

However, if some situation occurred where an investment
timing model did appear useful (for example, if municipal efflu-
ents were not the most important and fastest growing parameter)
then the model presented could be easily transformed to add this

capability as follows:

1. Add a time subscript (t) to all decision variables;

2. add necessary rows to iterate over t planning periods
as well as k seasons;

3. change phosphorous load constants to reflect growth in
sewered population in the new rows;

4. change both investment and operating cost coefficients
to represent appropriate present worth quantities;

5. add constraints to restrict the implementation of a
particular reed project to a single time period (not
needed for tertiary facilities since there is no limit

on number of units).

For most lakes this would produce a large model which may
well be intractable. The computations could be reduced very
substantially (for problem 3a) by decomposing the model into
small problems (four in the Balaton case) each representing one
section of the lake. The model decomposes easily since it al-
ready includes separate objective function terms for each lake
section (each i). The only portion of the model then requiring
modification would be the budget row. A separate budget will




be required for each i. The only difficulty with the decomposi-
tion is the loss of ability to allocate the total lake budget
among lake sections in a guaranteed optimal manner. However,
such decomposition works only for the reduced loading objective
(3a), not for the lake quality objective (3b) which requires

quantification of the interaction between lake sections.

2.4, Deviation from Lake Quality Goals--Problem 3b

In order to transform the previous problem into a form which
minimizes deviation from lake quality goals rather than phospho-
rous loading goals, it is necessary to add to the model a series
of equations representing the lake production response to phos-
phorous loading (and change the objective function to minimize
deviation from these new goals). For this purpose lake ecolog-
ical models (see, e.g., for Lake Balaton, van Straten 1980,
Leonov 1980) are required. Such models would describe the tem-
poral and spatial changes in the lake's water quality under given
environmental conditions. However, the use of such a detailed
model directly in a management optimization framework is not a
realistic task (van Straten and Somlyédy 1980). From the point
of view of policy making, the day to day quantities are not use-
able. Rather, the knowledge of some average or typical values
(yearly or seasonal averages, yearly or summer peak, etc.) as a
function of the nutrient load are required. Within the frame of
an ongoing study and with the use of the detailed lake water
quality models, Somlyddy and Eloranta (forthcoming) found that
this relationship can be modeled satisfactorily by a linear
transformation matrix as follows:

+ A (AL) , (1)

C = C0

where C, and C are the initial (without management), and final

0
(with management) levels of lake water quality respectively;

A is a matrix indicating fractional improvement in water quality
in the lake sections due to management induced changes in phos-—
phorous loadings in each lake section. (ALik = sum of the first
three terms in equation (A1)). Details of this transformation

will be demonstrated in connection with the simulation model.
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3. ALL INTEGER MODELS

3.1. Maximize Reduction of Nutrient Loading or Maximize

Water Quality--Problems 2a and 2b

The previous MIP models (problems 3a and 3b) were presented
as examples of phosphorous management model forms which can be
operated without accompanying management simulation models. The
resulting numerous constraints include many continuous variables
representing loadings and goal deviations at various locations
which change as a function of the configuration of selected reed,
sediment, and tertiary sewer projects. It is possible, however,
to construct a combination of simulation and optimization models
which provide at least an equivalent amount of information but
in a more convenient form and which require much less computa-
tional effort for the optimal solution search. Such optimization
models will now be presented. The related simulation model will
be presented in Section 4.

Max: ZILI AL, (2)

ijk Wik %ij

ijk
ST: I X4 < (1 =1,...,1) (3)
j=*
g? Cijxij < Budget . (4)

This model maintains the same subscript notation (lake section

i, project j, season k) as the previous model but other notation
as follows: the Xij are 0,1 decision variables, indicating one
or more tertiary sewer projects or a reed project or some com-
bination of both. For example, if a sewer project (A) is located
upstream from a potential reed project (B), an Xij variable will
be defined for each possible combination of these projects (A
only, A + B, B only). The cij represents the sum of investment
and operating costs (present worth). The ALijk are constants
representing seasonal changes in available phosphorous load due

to operation of project Xij'

When the Wik terms are all set at unity, the model repre-
sents problem 2a (maximization of P load reduction). However,

as will be demonstrated for the Balaton application, a solution
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which minimizes loading of P for the entire lake is very differ-
ent from a solution for maximizing lake quality (the real objec-
tive). Therefore, the problem 2a can be converted to 2b by using
the Wik
in proportion to their importance in improving water quality.

as coefficients which weight various P load reductions

Although it is theoretically possible to produce Wik which ex-
plicitly represent water quality in mg/l of some lake production
indicator (as does problem 3b, via equation (1)), the calculations
necessary for determining these coefficients are simply prohibi-
tive. The basic difficulty is that lake quality is a function
of the residual P load-~-not P removed (AL). On the other hand,
the parameter which is functionally related to the Xij decision
variables is AL~-not the residual after management. Therefore,
for a model -to simulate actual lake quality it is necessary to
calculate both AL and residual P (as does the MIP model). This
is not possible in the AIP framework without generating simula-
tion model output for literally every possible combination of

management alternative.

However, as a surrogate for explicit water quality calcula-

tions, the ALi. can be weighted as follows:

jk
Wik = LPi,k/voli ’ (5)
where LP. k= the initial lake production indicator before man-
r

agement, and voli is water volume of lake section i. The volume
term is necessary to capture the dilution effect of loads to

each lake section. The existing water lake production term indi-
cates that changing the quality of a lake section that already
has good quality (1QW'LPi,k) is less important (and more diffi-
cult) than in a section with poor quality. This derivation of
Wi,k implies linearity in the AL~-LP relationship which obviously
does not exist. However, over the small ranges of lake quality
usually involved, the resulting error should not be serious since
what is desired is a relative ordering of project impacts--not

actual water quality.

Finally, the Xi=* Xij in equation (3) represents illegal

combinations of projects located on a single tributary such as
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those which duplicate the same project. Definition of an Xij
for all mathematically possible combinations could produce a

large problem if some watersheds have many individual projects.
However, one can avoid this problem by common ‘sense aggregation
of some smaller projects and elimination of improbable configu-

rations.

It should be noted that the decision variables do not in-
clude an % subscript for capacity as did the sewer projects in
problem 3a. This is not required since the simulation model
selects a unique capacity for each alternative (the smallest
capacity which is > the estimated sewage flow) and the proper

cost and nutrient removal level for that capacity.

4. SIMULATION MODEL OF MANAGEMENT ALTERNATIVES
4.1. Some Preliminary Truisms

A principal contrast between simplex based optimization
models and simulation models is that the former solves the com-
plete system of equations simultaneously (through many iterations
but always simultaneously), while the latter solves the system of
equations sequentially. The simulation approach therefore is
amenable to model conceptualization via a flow chart of sequen-
tial tasks, each of which uses as input data, quantities pro-
duced during some previous step (hence Figure 1). Optimization
models of course accomplish a similar end product via the inter-
dependence among equations, but there the sequential process is
related to iteratively changing trial values of decision vari-
ables to determine extreme values of some objective rather than
performing a physically meaningful sequence of calculations
driven by a particular (selected) level of each decision vari-

able--as do most simulation models.

Another optimization/simulation contrast is related to the
much greater programming flexibility inherent in the latter.
For example, a combination of "if" statements and "do loops"
provide much more flexibility than a combination of inequalities
and 0,1 "tricks" to make certain parameter values conditional

upon given management decisions.
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On the other hand, a simulation model run produces output
for only a single trial value of decision variables, and there-
fore can be used to "optimize" only heuristically by many runs
(which is to say it cannot optimize at all in the strict mathe-
matical sense). It is not surprising, therefore, that many
complex optimization problems are solved by a combination of
simulation/optimization models in order to achieve the advan-
tages of both tools. A recent example is Finney, et al. (1977).
The usual purpose of the simulation model in such a situation
is to provide input data for the optimization model. However,
several runs of a simulation model with decision variables
varied over an intuitive range of interest can provide important
insight regarding the system and therefore can be of great value
independent of the optimization model. |

4.2. Model Description

The simulation model flow chart is given in Figure 1. There
is no attempt to give details such as actual equations in the
figure since the complete program (including subscript values
for the Lake Balaton application} is given in Appendix B. The
program is well documented both in terms of notation definition
and comments on the purpose of each series of calculations imme-

diately preceding the calculations.

The model, as presented, handles a problem with four lake
sections (see Figure 2), three seasons, 18 potential sewer
projects, nine reed projects, and urban runoff projects aggre-
gated by lake sections; however, these quantities and even types

of projects can easily be modified.

Results of an example model application will be presented

and discussed later.

5. MODEL APPLICATIONS TO THE LAKE BALATON PROBLEM
5.1. MIP Model

The model presented in Section 2 was applied to Lake Balaton
as a two season model with 17 potential tertiary sewer projects

and nine reed projects. In addition to these 26 integer variables,
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the model had 56 continuous variables and 96 constraints. It
produced solutions for various levels of budget, generally with-
in a few seconds of CPU time, but took over four minutes CPU at
one budget level on a CDC system with the APEX-III MIP algorithm.

The model seemed to produce reasonable solutions but results

will not be presented here for the following reasons:

1. A more detailed analysis of phosphorous loading data
(Jolédnkai and Somlyédy 1981) subsequently produced
significant changes in the input data, some management
project configurations, and also motivated a change in
the simulation and AIP model structure from two to
three seasons.

2. At the present time, the MIP model has not been modified
to include these changes since additional changes are
expected when the results of the secondary sewer region-
alization model are available.

3. Since the results of the MIP and AIP models will not be
directly comparable until both are revised to the same
problem structure and data, only the simulation and AIP
model results will be reported here. The two latter
models are based upon the P loading data in Jolénkai
Somly6dy (1981).

5.2. Simulation Model
5.2.1. Loading Data and Management Alternatives

The version of the Balaton problem which was modeled is dis-
played in Figure 2. Each location marked Tij is both a source
of P and a potential tertiary sewer project. Regionalization-
type alternatives will be added later upon availability of the
secondary sewage treatment study results (SZTAKI 1980). Point
sources with avg. P < 2 kg/day are not identified as potential
projects but are aggregated as a single load in each lake sec-
tion. Each locatiop‘marked Rij is both a river tributary source
of phosphorous and a potential reed project. Other small trib-
utaries which contribute very minor P loads are aggregated in

the model as a single source for each lake section in order to
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maintain the total estimated loading, but are not subject to

management.

The reed ponds (and related sediment basins) are assumed to
be located and sized as suggested in VATI (1979). The tertiary
sewer project loads are mostly from municipalities but include
some animal farms. The point sources and their average P loads
are identified in Table 1. The reed projects and estimated areas

and loads are given in Table 2.

In addition to the point loads treatable by sewer projects
and the point and non-point loads treatable by reed projects,
Joldnkai and Somlyédy (1981) quantify three other types of loads
as follows: (1) urban runoff, (2) non-point load flowing directly
to the lake, and (3) atmospheric loads. These are included in

the simulation model as shown in Table 3.

The river reach effect upon reduction (or occasional in-
crease) in POu - P load is modeled as a ratio of total (unman-
aged) loads at upstream sewer project locations to those measured

at reed project locations. These data are given in Table 4.

Assumed efficiencies for P removal for various management

activities are as follows:

Seasons

Jul-Aug May,Jun, Sep Oct-Apr

Facility (1) (2) (3) Type of P
Tertiary Sewer .90 .90 .90 POu

Reed Lake .95 .85 0 POu
Sedimentation .8 .8 .8 Particulate
Urban R.O. .8 .8 .8 Particulate
Urban R.O. .95 .85 0 PO4

The model includes management alternatives for only the
urban runoff component of these loads; however, the total load-

ings are needed for proper lake response calculations.
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Table 1. Tertiary sewer projects.

Locations Table 3 Number Source " Avg. P

(?ij) in Jolé&nkai & Somlyd&dy Type¥* (kg/4d)
T11 20 M 34.7
T12 23 ID 81.9
T13 24 ID 3.5
T14 25 ID 8.1
T21 1 ID 28.9
T22 . 18 ID . 15.6
T23 21 D 6.0
T24 27 ID 2.3
T31 2 ID 1.3
T32 3 M 8.5
T33 4 M 21.2
T34 5 M 7.4
T35 8 ID 2.8
T36 17 D 6.2
T41 11 D 38.3
TU42 12 D 11.0
T43 13 D 33.2
T4Y 14 D 3.0
other sec. 1 2.6
other sec. 2 j =7 in 1.0
other sec. 3 sim. model 3.9
other sec. 4 4.3
“ 331.7
* M = Mixed (fish ponds drained directly or indirectly)
D = Direct to lake (not tributary)
ID = Load to lake via tributary
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Table 3. Non-tributary type loads (kg/day average).

Urban R.O. Non-point Atmosphere
Lake
Section TP POu - P TP POu - P TP POu - P
1 12.8 1.5 11.3 1.4 10.3 4.1
2 35.4 4.1 21.0 2.8 41.1 16.4
3 38.5 4.4 32.2 4.6 53.0 21.2
4 73.8 8.5 14.5 1.7 66.7 26.7

Table 4. River reach coefficients.

Seasons

Lake Tributary
Section R(i,j) 1 2 3

R11 0.58 0.71 0.95
2 R21 1.0 1.0 1.0
" R22 1.0 1.0 1.0
" R23 1.0 1.0 1.0
" R24 1.0 1.0 1.0
3 R31 0.41 0.41 0.41
" R32 1.0 1.0 0.5
" R33 0 0 1.2
" R34 1.0 1.0 0.24
" R35 0.53 0.53 0.53
" R36 1.0 1.0 1.0
4 ' R41-R4Y 1.0 1.0 1.0

The model converts annual loadings to seasonal averages by
using the seasonal factors shown in Figure 3. These values are
identical to those given by Joldnkai and Somlyddy, except for
the mixed sewage pattern where mass balance is maintained but
the October fishpond release peak load is necessarily distributed
uniformly over season 3. This load is very minor relative to
other sources, and therefore did not appear to justify a four-

season model.
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The tentative values used for equation (1) to transform the
reduction in available P to lake quality response (in terms of

phytoplankton phosphorous) were:

C1k CO1k .7 .1 0 0? AL1k
C2k _ CO2k . .15 1.0 . 0 ALZk
C3k CO3k .15 1.0 .1 AL3k
Cle COle i 0 .15 1.0- ALﬂk

in which in the COi values of phytoplankton were:

k
k
i 1 2 3
1 27 23 17
2 15 13
3 11 9
4 7 6

The costs calculated by the model are based upon unit costs
as follows (the word "tertiary" as used here refers only to
chemical precipitation of phosphorous, not complete advanced
treatment). The costs are based upon SZTAKI (1980) and upon

personal contacts with staff of various Hungarian agencies.

Tertiary Sewer Treatment:

Constant

Capacity Cost

(kg/day) (10% Forints) Operating Cost

<7 .3‘\ 70 forints/kg/day

7 to 21 .5 @ 20% discount

21 to 42 1.0 = 350 for./kg/day
present worth

42 to 63 1.5

> 63 2.0‘/
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Reed Projects (including sediment):

Size Investment Cost Operating Cost
Large 105 for./hectare 4¢(10%) for./hec./yr.
Medium 1.5 (10°) ® 20% = 2(10*) /hec.

(present worth)
Small 2.5 (10°%)

5.2.2. Results of the Simulation Model

The simulation model output can best be analyzed by examin-
ing a series of runs, each of which had a different management
activity configuration. The parameters of interest (phyto-
plankton P and P loading changes) will be presented graphically.

Figure 4 shows predicted improvement in phytoplankton P if
all sewer projects were built and then incremental improvements
were made, if all reed projects were added and finally if urban
runoff projects were also added. This truly expensive scenario
(build everything) suggests the technically possible upper limits
on water quality improvement. Since the urban runoff projects

produce only insignificant improvement, it seems clear that:

1. There is no justification for an expensive investiga-
tion of possible management of urban runoff projects
since this rather optimistic preliminary calculation
suggests no significant impact is possible. This is
not to say that problems will not be caused by urban
runoff. However, such problems require a local solu-
tion--not a lake model.

2. There is no point in considering implementation of (or
even modeling of) direct non-point source management
activities because those P loads are even smaller than
from urban runoff. Note, however, that this refers
only to direct non-point loads, not tributary non-point

loads.

Figure 5 shows that much of the treatment capability of the
sewer projects overlaps that of the reed projects, since many

-large sewer projects are upstream from reed locations. This is
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not true of season 3, however, (the cold season), when the only

effect of reed projects is from the sediment basins.

The most striking aspect of both figures is the insignifi-
cant improvement in basins 3 and 4. This is due to two facts:
(1) the volumes of basins 3 and 4 are an order of magnitude
larger than that of basin 1 and therefore, dampen most manage-
ment impacts; and (2) the existing water quality in basins 3
and 4 are much better than 1 and 2 and this makes them insensi-

tive to management changes.

Another striking aspect of the figures is that reed projects
are more than an order of magnitude more costly than tertiary
sewer projects. Therefore, since the reed projects produce only
marginally better responses than do sewer projects, the latter
appears to be much more cost effective. Recall that this com-
parison is between reeds and only the phosphorous removal sewer
units--not secondary treatment and sewer collection lines. Sec-
ondary treatment is assumed to be required in any case, in order
to prevent anaerobic conditions; but since it provides very
little phosphorous removal, those (sunken) costs are considered

to be irrelevant to phosphorous management decisions.

The "build everything" situations portrayed by Figures 4
‘and 5 are of course far from optimal or even reasonable solu-
tions. Therefore, let us now consider incremental increases in
phytoplankton as various management projects are eliminated.
Figure 6 indicates that the two largest of four possible sewer
projects in section 1 produce essentially all of the lake re-
sponse (in that critical section). Also, the four largest sewer
projects in sections 1 and 2 produce essentially all of the
entire lake response at half the cost of constructing all 18

(sewer) projects.

Since the Kis Balaton reed project on the Zala River is
already being constructed, an interesting question is: what
additional sewer and/or reed projects are necessary to accom-—
plish a large fraction of the total technically feasible improve-
ment? Figure 7 suggests that the Kis Balaton reed lake does a
little better than the sewer projects in section 1 (except during
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season 3), but at a much higher cost; also that building all
four sewer projects in section 2 will produce about half the
response of a combination of the reed projects in section 2

plus the direct sewage load projects.

What solution is optimal, is of course, a question that
requires the fixing of a budget and an objective function (and
an optimization model). However, from only simulation model

results, some conclusions seem apparent:

1. Management activities should be focused on sections 1
and 2 of the lake, with the first priority being the
Zala load and any additional budget being allocated to
management of section 2.

2. The reed project efficiencies and costs contain a great
deal of uncertainty. However, if the rather optimistic
efficiencies used here are reasonable, the sewer and
reed projects are approximately competitive, in terms
of lake response, with the reed projects being slightly
better during summer months (but totally ineffective
in winter). However, the reed projects appear to cost
at least an order of magnitude more than the tertiary

sewer units.

In order to show the simulation results in terms of P load
reduction rather than lake response, Figures 8 and 9 are in-
cluded. They include many of the same management options as

Figures 4, 5, and 6.

5.3. AIP Model
5.83.1. Input Coefficients

The simulation model was used to develop coefficients for
the AIP model. This task required extraction of cost and P
reduction quantities for management project combinations repre-
sented by the Xij of Problem 2. These combinations are defined
in Table 5.

The AIP matrix (Figure 10) has 34 binary variables and only

seven constraints. This compact size is possible because it
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1 > project is built
O > project is not built
blank > project is undefined by this Xy

jo

Table 5. Key to simulation/AIP model project combinations.
Lake Section 1 Lake Section 2
Xij R1,1 T1,1 T1,2 T1,3&4 Xij R21 R22 R23 R24 T21 T22 T23 T24
X1l © 1 1 1 X21 1
X12 1 1 1 1 X22 1
-Xl3 0] 1 1 0] X23 0
X1l4 © 0 1 0] X24 0]
X15 1 1 1 0 X25
Xl6 1 0] 1 0 X26 1 1 1
X27 1 1 0]
X28 1 0 0]
X29 0 1 1
X2,10 o) 1 0
X2,11 1
Lake Section 3 Lake Section 4
Xij R31 R32 R33 R34 T31 T32 T33 T34 T35 T36 Xij T41 T42 T43 T44
X31 1 X41 1
X32 1 0 X42 1
X33 X43 1
X34 0 1 X44 1
X35 0]
X36
X37 1
X38 1 0
X39 1
X3,10 o) 1
X3,11 1
X3,12 1
X3,13 1
Note: For Xj4y = the following table values apply:
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merely summarizes that portion of the information produced by
the simulation model which is needed for the optimization phase.
The model structure is such that a unique level of P reduction

is associated with each 0-1 variable.

The optimization model was run several times with various
budget levels. Both Problems 2a and 2b were solved. All that
was needed to convert from Problem 2a (P removal objective) to
Problem 2b (lake quality objective) was to change the objective
function coefficients by addings the Wij weighting factors as
described in Section 3.1. Both objective functions are included

in Figure 10.

5.3.2. Results of AIP Optimization

Table 6 displays optimal solutions for six type 2b problems
(maximum lake quality objective) and one type 2a problem (maxi-
mum P reduction). The budget constraints are varied from 30 to
1100 (_106 Forints present worth). The table includes results
in terms of both the AIP variables (many of which represent com-
binations of variables) and the individual projects as defined
for the simulation model. A budget constraint of 30 allows con-
struction (and operation) of only part of the sewer projects
and no reed projects while the 1100 constraint allows construc-

tion of almost everything.

The optimal configuration for a 30 million Forint budget
(Problem 2b) is to construct tertiary sewer projects for all
cities in section 1 (the west end of the lake and 3 out of 4 of
the cities in section 2). As the budget is increased to 40, 50
and 60 million, the optimal solutions are to complete all of the
sewer projects in section 2 and then to spend the remaining money
on sewer projects in sections 3 and 4. The first reed project to
enter an optimal solution is in section 3 (a very small one) at
a budget constraint of 100. At a budget level of 700 the optimal
solution is to construct the very large Kis Balaton project plus

all possible sewer projects.

The general pattern of optimal management project configura-

tion is precisely that which was suggested by the simulation
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model, namely--the most cost effective use of management actions
is to begin with sewer (P removal) projects in the west end of
the lake where dilution of P is least, existing quality is worst,
and P loads are highest. Allocate the budget first in lake sec-
tion 1, then 2, then 3 and 4, building only sewer projects.

Then, if any budget remains, begin building reed projects.

The optimization model adds the capabilities to: (1) Verify
general patterns of change in optimal configuration as budget is
varied (which seemed intuitively appropriate from the simulation
analysis); (2) Determine specific optimal configurations for any
particular budget (which because of combinatorial interdependen-

cies are not apparent from the simulation model).

The fact that the AIP model appears to verify the general
pattern of results predicted by the simulation model implies
that the weighting factors used to convert the problem 2a to 2b
are adequate. However, these factors can produce only an approx-
imation of the explicit lake response equations. Therefofe, for
a more accurate indication of lake quality response, the simula-
tion model should be used for any specific configuration recom-

mended by the optimization model.

The single 2a type problem solution in Table 6 demonstrates
the importance of maximizing lake quality rather than simply
maximizing reduction in nutrient loading. When the lake response
was not modelled, a radically different solution was obtained.
The P reduction objective selected all of the sewer projects in
lake section 4 and some in 2 and 3, while the lake quality objec-
tive selected all of the sewer projects in Section 1, some in 2,

and none in 4.

6. SUMMARY AND CONCLUSIONS
6.1. Conclusions Related to the Balaton Application

The management alternatives considered here included phos-
phorous removal sewer treatment projects, P removal from non-
point sources by reed lakes, and P removal from urban runoff.

The simulation model calculated only insignificant response from
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the urban runoff projects and therefore they were not included

in the optimization model.

The P removal efficiency (and costs) of reed lakes are very
uncertain and in fact represent an area of controversy among
researchers. Such questions as how (and at what cost) to harvest
green reeds (before the nutrients move below the water line);
will such harvesting cause the plants to die; how much P is re-
moved by the reeds and how does this quantity vary over time,
are still largely unanswered. The approach taken in this model
was to be optimistic on all of these issues. The logic behind
this decision was that if under the most optimistic estimates
(95% PO,

months, and only particulate sedimentation during winter) the

- P removal during July-August, 85% during other warm

reed projects are cost effective, then more research to verify
actual efficiencies would be justified. However, the opposite
appears to be true. Reed projects are not cost effective even
under the optimistic assumptions used here. What should be done
is to concentrate management effort on chemical treatment of
sewer effluents, particularly in the west end of the lake. One
possible exception to this negative picture in regard to reed
lakes is the Kis Balaton project. The phosphorous load from

the Zala River is very large and only part of it is removable
by sewer projects. (Even with low reed removal efficiency, the

particulate P removal in the sediment basin would be significant.)

6.2. Conclusions Related to Use of Generalized

Lake Eutrophication Models

Two somewhat independent approaches were pursued in this
study. First, a mixed integer programming model was developed.
It has the capability of producing optimal management alterna-
tive solutions for any budget constraint. It does this by cal-
culating internally both the phosphorous removal (dissolved and
particulate) quantities and lake water quality response season-
ally for any given vector of assumed removal efficiencies. The
P removal lake response relationship must, of course, be ob-
tained from an exogenous water quality modelling effort. The

MIP optimization model performed satisfactorily for the Balaton
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application but could become very large (resulting in possible
computational difficulties) in an application where more than

three seasons or more than four lake sections are modelled.

The second type of modelling approach was a simulation
model coupled (manually) to an all integer optimization model.
The simulation model was designed to perform all of the manage-
ment alternative--phosphorous removal--lake response calcula-
tions. It therefore produced input coefficients for a very
compact form of optimization model. The seasonal variations
modelled by the simulation model are not explicit in the AIP
optimization model because the decisions are only to build or
not build particular projects. However, the phosphorous and
lake response impacts transferred from the simulation model can

be either totals from all seasons or from a particular season.

The simulation/optimization combination appears to be supe-
rior to the single MIP model for the following reasons: (1) the
simulation model is very useful by itself in answering all sorts
of "what if" questions related to a specific management config-
uration. It runs at very low computer cost and produces output
in a convenient format designed specially for this purpose.

(2) Since the AIP optimization model contains only a summary of
information produced by the simulation model, it is very compact
and could handle problems much larger than the Balaton problem

at reasonable computer cost. None of the Balaton problems re-
quired more than one minute of CPU time. The algorithm used

was MIP 370 on an IBM 370 system located in Budapest and accessed
via the IIASA network system.

One important aspect of lake eutrophication modelling which
was demonstrated by these models is that maximizing the change
in lake quality due to reduction in nutrient loading is a very
different objective than simply maximizing the reduction of the
nutrient loading itself. Unless a lake has nearly equal volume
of water and pre-management water quality in each of the model
sections, the distinction between the two objectives (the a and
b type objectives of this report) is important. If the nearly

equal conditions do exist, this implies that the model need not



-39-

divide the lake into sections and in that case the two objectives
become synonymous. In the more typical case where lake section
volumes differ significantly, an objective which minimizes nutri-
ent loading per unit of volume for each lake section would be a
‘great improvement over one which ignores nutrient dilution.

This would represent a compromise between the type a and b objec-
tives which is very easy to model since it does not require a
sophisticated lake eutrophication model--only knowledge of lake

geometry and nutrient loading.



APPENDIX A

A. SELF CONTAINED OPTIMIZATION MODEL
A.1. Deviation from P Loading Goals--Problem 3a
A.1.1. DNotation

A.1.1.1. Subscripts:

i = section of lake,

j = management project location (either reed or tertiary
project),

k = season,

2 = tertiary unit capacity indicator.

A.1.1.2. Decision Variables:

= integer variable indicating number of tertiary

s sewer treatment units constructed at location j,

of capacity £ and discharging into lake section i,
i3 = 0,1 variable indicating construction of a reed
project (including related sediment basin),

Dip = continuous variable indicating deviation from
phosphorous reduction goal for lake section i
during season k (in kg/day),

LTijk = available P load actually treated by tertiary units,

-4Q-
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LR.., = continuous variable indicating dissolved P load
at mouth of river j as reduced by tertiary units
and by natural river action before reed project

(the load entering reed project j).

A.1.1.3. Constants:

GLik = goal indicating desired level of available P,

LDijk = dissolved P load entering lake section i from
either point load j or river j (average) during
season k without any management action,

LPijk = particulate P load entering lake section i from
jth river,

ETijk = efficiency of tertiary treatment (fraction of
plant capacity that is removed),

ERSijk = efficiency of particulate P removal by sediment
basin associated with reed project j,

ERijk = efficiency of dissolved P removal by reed project
j during season k,

O;o = weighting factor indicating relative importance
of P load reduction goals among lake sections
and/or seasons,

Bijk = factor which transforms upstream dissolved P load
to river mouth quantity (river reach natural P
removal addition effect),

Y = fraction of particulate P which becomes avail-
able P,

32 = capacity of tertiary treatment unit 2 in kg/day
of phosphorous,

Cijl = capital cost of tertiary project at location 1ij
of capacity 2.

Cijk = present worth of future operating costs of project

ij during season k (either tertiary or reed pro-

ject) per kg/day of phosphorous.

A.1.2. Objective Function

Minimize deviation from P removal goals (Problem 3a)

Min ;Z aikDik .
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A,1,3, Constraints

a. Calculate deviation from goals:

I Removal (kg/day) + Dev. from Goal
= I Initial Loads* - Goal

as follows:

o A A
Bijk(ET) § LT; g + § ERSijk(Y)(LPijk)Rij + I (ERijk)LRijk
o A
* Dix = Bisx § LD;j + () T LPjgp = Ghyyp
(1 =1,2,...,I) ; (k =1,2,...,K) , (a1)
where
o = j = all municipal point load locations
A = j = all reed project locations
o= j = all j except upstream municipal projects
which discharge into a river which has a
potential downstream reed project.t
b. Force load treated by reed project to zero if Rij = 0.

Note: cannot use (LR)R = 0 because both are variables; and
cannot use (LD)R = 0 because LD arriving downstream = f (ter-
tiary units built), therefore ¥ constant. So use:

LRij < (Rij)L

Dijk ’ {redundant if R = 1) (A2)

k = 1,2 (reeds do not operate in winter, therefore, Rij3 is

deleted); i = 1,...,K) j = A (each j with reed project).

*Loads transformed to river mouth quantity levels.

+The j associated with B8's are each river reach j while
the rj associated with LD and LT are the related upstream muni-
cipal j locations.
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c. Definition of load reaching reed projects.

LR.., < LD... - (B.

isk < IPigk 151)BT L LT L (i=1,...,K)

] (j = each river)2
(k = 1,2 only)

(A3)

Note: The < formulation in equation (A3) works because the ob-
jective function will force LR as large as possible (= is no

good because we want LR = 0 if R = 0).

d. Limit P removed by tertiary units to load (LD) or the

2th unit capacity--whichever is smaller.

(1 =1,...,K)
(each j I B)
k =1,...,K)

ITi3k € 9Ti90 -

(2 =1,...,L) (AlL)
LTi 4 S WDjqx o+ (i =1,...,K
(each j I o)

(k = 1,0--'K) (_A.S)

e. Budget constraint.
L Costs < Budget

L Cileijl

+ LI C..R,. + III C . LT,
ije i3 M ik

ijkT7ijk

+ IZI C,.
i

< Budget (A6)
igk LIk



APPENDIX B: SIMULATION MODEL PROGRAM LISTING

Notation

C

c ers(i, j)=eff.of particulate p removal by sediment basin j
c (=.8 except where no sed. basin is possible.

¢ t(i,j)=0,1 decision indicating construction of sewer project j.
¢ r(i,j)=0,1 decisiion indicating const.of reed project and*
c related sediment basin.

c er(ijk)= effic. of po4 removal by reed project j (=.95,.85,.0
c during season k =1,2,3.

¢ 1t(ijk)=po4 load actually treated by tertiary sewer project i, ]
¢ 1r(ijk)=po4 load arriving at reed project i,j.

¢ 1p(ijk)=tp-po4 load " " sediment basin i,j.

¢ cer(i,j) and cct(i, j)=construction cost of reed and tertiary
c project resp. in millions of forints.

¢ pwopr(ij) and pwopt(ij) = operating cost present worth of
c reed and tert. project resp. in millions of forints
c assuming discount at 20%.

¢  pwr(ij) and pwt(ij) = total pr. worth of reed or tert.
c proj. resp. (const+pw of op cost).

c  tpwopr=total pw of op cost of reed projects.

¢ tcer=total const. cost of reed+sed projects.

c tpwopt=total pw of op cost of tertiary projects.

c  teet=total const cost of tert. projects.

¢ tec=total cost

¢ 1s(ij)=annual avg pod load (untreated) at city j in

c lake sec i (j=7 is sum of all small loads where no

c project is planned.

¢ 1npt(i,j)= annual avg tp load (untreated) entering lake sec i from

c trib. j (j=5 is sum of loads from small trib.s where no projis planned
¢ 1lnpp4(ij)=annual avg pod4 load (untreated) entering lake sec i from

c trib j

¢ lut(i)=annual avg tp from direct urban runoff to sec i.

¢ lupd(i)=annual avg po4 from urban runoff.

¢ 1rt(i)=annual avg tp from direct rural (NON-trib) runoff to sec i.

4=
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1rp4(i)=annual avg po4 from direct rural.

latt(i)=annual avg tp atmospheric load to sec (i).

latp4( i ): " n p04 " " "

ftbst(i,k)=season/avg factor for total p trib loads season k.

ftbspd(i,k)=season/avg factor for po4 trib loads

fssl(ijk)=season/avg factor for sewer loads.

b(ijk)=factor indicating treatment effect of river reach on po4 load
from sewage in *trib* j, season k.

1sd(ij)=direct 1s(ij)

phpo(ik)=phyto-plankton levels befor management

resp(ij)=coef. of p load/lake production transformation equations

et=tert. unit removal efficiency

ur=flag for construction of urban run off projects (ur=1)

sumt (ik )=change in po4 load during season k due to tertiary projects
built in lake sec i.

sums(i,k)=change in .2*(tp-po4)during season k due to sediment basins

in sec 1i.
sumr (ik)= change in po4 during season k due to reed projects in
sec 1i.

1tt(ijk)=reduction in p load by tert. units at river mouth-not

tert. location.
lrsec(ik)=po4 load arriving at reed projects for entire section i.
delr(ijk)=change inavailable p load due to reed project(ij).
slnpt(ik)=total p entering lake sec. i from tributaries with no pr.
slnpp4(ik)= " p04 " " " " " ]
ssdir(ik)=total direct load of po4 with no pr.
cost notation: (all in millions of forints)

cer(ij)=const cost of reed pr (ij).

pwopr(ij)=pr. worth of op. cost-reed pr.{ij).

pwr(ij)= " " total cost " "

tpwopr=total pr.w. all reed pr.

pwopt(ijl)=pr.w. of op cost-tert. pr.(ijl)

cct(ij)=const. cost tert. pr(ij).

pwt=total pr. w. tert. pr.(ij).

tpwopt=total pr.w. of all tert. pr.

tcost=pr.w. of all reed plus tert. pr.
parta(ik)=20% of partic. p. load with no management
poda(ik)=po4 load with no management
availa(ik?:total avail load with no management
partb, podb,availb=1loads to lake with only selected tert. pr. operating.
partc,po4c,availc=loads to lake with selected reed & tert. pr. operating.
partd,podd,availd=loads to lake with reed, tert.,& urban run off pr. op.
11(ik)=avail load reduction due to reed + tert. pr.
php(ik)=phyto-plankton levels after management.

begin program
real 1s,1npp4,lnpt,1t,11,latps,latt,lrpd, 1rt, lupd, lut, Irsec,
?1lr,1p,1sd,1tt
integer t,r

dimension 1s(4,7),fssl(4,7,3),t(4,7),b(4,7,3),1npp4(4,5)
1,ftbsp4(4,3),ftbst(4,3),r(4,5),ers(4,5),er(4,5,3)
1,1npt(4,5),1p(4,5,3),1t(4,7,3) ,sumt (4,3) ,x(1,1,3),
11r(4,5,3),1rsec(4,3),sums(4,3) ,sumr (4,3) ,slnpt(4,3),
1slnpp4 (4,3),ssdir(4,3),cer(4,5), pwopr(4,5),pwr(4,5),
1cct(4,6),pwopt(4,6,3),parta(4,3),lut(4),lupd(4),1rt(4)
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1,1rp4(4),latt(4),latps(4),po4a(4,3) ,availa(4,3) , parth(
14,%) ,po4b(4,3) ,partc(4,3) ,pode(4,3) ,availb(4,3) ,availe(4,3)
1,phpo(4,3), hp(4,3),11(4,5) ,1sd(4,7),164(4,7,3)
1,resp(3,4),partd(4, 3) p04d(4 3),delr(4,5,3)

data lp/60*O o/, 1t/84*O .0/, sumt/12*O o/ x/3 0.0/,
?1r/60%0.0/, 1rsec/12*0 o/, sums/12*O o/, sumr/12*O o/ slnpt/12*0.0/,
°slnpp4/12*0 o/, ssd1r/12*O 0/,cer/20*0.0/, pwopr/20*O o/,
?pwr/20%0.0/,
°cct/24*O 0/, pwopt/T72%0.0/ , parta/12*0.0/,1lut/4*0.0/,lupd/4*0.0/,
?1rt/4*0.0/,
?1rpd/4*0. o/ latt/4*0.0/,1atpd/4*0.0/, poda/12*¥0.0/,
?availa/12%0.0/, partb/12*0 o/,
?p04b/12%0.0/, partc/12*O 0/, po4c/12*O 0/ ,availb/12%0.0/,
?availc/12*0. o/ php/12*0.0/,11/12%0.0/

read(1,1000,end= 9OO)((ls(1 j),i=1,4),3=1,7)

1000 format(4£9.3)

read(1,1010,end=900
read(1,1010,end=900
read(1,1010,end=900
read(1,1010,end=900
readg1 ,1010, . end= 900

Tut(i)
1up4(1) i= 1 4)
1rt(i),i= 1,4)
1rp4( 1) i=1,4)
latt(l 1 1,4)
read(1,1010,end=900) (1latp4(i), i= 1,4)
1010 format(4£9.2)
read(1,1002,end=900) ((resp(i,j),i=1,3), j=1,4)
read(1,2995, end—900)et ur
2995 format(2f9 2)
¢ write out most of input data for convenience in interpreting results
write(6,14)((1s(i, J) i=1,4),3=1,7)

14 format(1h ,'ls='/7(4£10.3/))
write(6,143((1sd(i, ),1=1,4),3=1,7)
write(6,9)((£(i,3),1=1,4),3=1,7)

9 format(1h ,'t='/7(413/)
write(6,4) ((1nppd(1, J)é
)

read(1,1000,end=900) ((1sd(i,J),i=1,4),3=1,7)
read(1,1001,end=900) ((t(i,3),i=1,4),3=1,7)
1001 format(4i3)
read(1,1000,end=900) ((1npp4(i, i), i=1,4),j=1,5)
read(1,1000 end-900)((lnpt(1 J§,1=1 ,4),3=1,5)
read(1,1001,end=900)((r(i,j), i=1,4),3=1,5)
read(1,1002, end—9OO)(((fssl(1 ik),k=1,3),3=1,7),i=1,4)
1002 format(3£9.3)

read(1,1002,end=900) (((b(i,j,k),k=1,3),3=1,7),i=1,4)
read(1,1000,end=0900) ( (£tbspd (1, k),1i21,4),k1,3)
read(1,1000, end=900) ( (£tbst(i,k),i=1,4) ,k=1,3)
read(1,1000,end=900) ( (ers(i J) 1=1,4),j=1,5)
read§1 ,1002, end=900 g((er i J, ),k=1,3),3=1,5),i=1,4)
read(1,1000,end=900) ( (phpo(i,k), i=1,4),k=1,3)
read(1,1000,end=900) ((cer(i, J), 1=1, ),3=1,4)

g(pwopr 1,3 1=1,4§,j=1,4)

(

(

%

(

)
|
read§1 ,1000, end—900;
)
)
)
)

(
4 format(1h ,'ls='/5(4%)
write(6,4)((Inpt(i,j),1
write(6,3)((r(i,3),i=1
3 format(ih ,'r="/5(413/}
write(6,5) (((fssl(i, ],
5 format(ih ,'fssl=' /28?3
write(6,5)(((b(1,],k), k=1
wr1te(6,6)((ftbsp4(1,k

~—
-
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6 format(1
write(6,
write(

é 'ftbspd="/3(4£10.

6
write(%

6

(ftbst(i,k),i=1
(ers(i,3),i=1 ,4
((er(l i, k), k=1

(cer(i,3),is

NN e
—.

(phpo(l k),i= 1

1
write(6,8 pwopr(l,g),l
8 format(1h ,'cer="/4(4£10.
2997 format(1h ,'resp'/4(3f10.
write(6,2997) ((resp(i, j),1
write(6,2994) et,ur
2994 format(1h ,'et:',f5.2,5x,'ur=',f5.2)
c calculate p load treated by tert. units as total po4 load if project j
¢ is built. then calculate change in pod reaching lake (not change
¢ at project location) due to tert. projects.
do %0 i=1,4
n=4
if(i.eq.3)go to 10
go to 12
10 n=6
12 do 20 k=1,3
do 15 j=1,n
1t(1, j,k)=1s(1, j)*fssl(i, j,k)*t(i, )
ltt(l 3, k)—lt(l 3, k)*et*bgl i, k)
15 sumt(l k)—et*b(l i, k) 1t(1 3, k)+sumt(1 k)
20 continue
20 continue
3000 format(1h ,'lt=")
write(6,3000)
4000 format(1h,/28(3£10.3/))
write (6,4000)(((1t(1i,3,k),k=1,3),3=1,7),1i=1,4)
write(6,2999)
2999 format(1h ,'ltt=")
write (6,4000)(((1tt(i,j,k),k=1,3),3=1,7),i=1,4)

3001 format(1h , 'sumt=')
write(6 3001)
4001 format(1h,/3(4f12.2/))
write(6,4001) ((sumt(i,k),1=1,4) ,k=1,3)
¢ define loads arriving at reed project j including corrections
¢ for removal by upstream tert. projects *1*.
do 120 k=1,3
5002 format(1h,f10.2/)
1r(1,1,k)=1npp4 (1,1)*Ftbspd (1 ,k)-sumt (1 ,k)
120 continue
¢ some reed projects have no upstream tert. projects.
do 130 k=1,3
do 125 j=1,3
125 1r(2,3,k)=Inpp4(2, j ) *£tbsps(2,k)
c correct proj. 2,2
1r(2,2 k§ 1r(2,2,k)-1tt(2,2,k)
130 continue
c reed project 2,4
do 150 k=1,3
1r(2,4,k)=1npp4(2,4)*ftbsps (2,k)- et*(b(2,1,k)*
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11t(2’1 7k)_b(274 7k)*1t(2 74‘ 7k))
1r(3,1,k)=1nppd(3,1 ) *ftbspd (3,k)
1r(3,2,k)=1npp4(3,2)*ftbspd(3,k)- et*pb(3,2,k)*1t(3,2,k)
1r(3,3,k)=1npp4 (3,3 ) *Ftbspd(3,k)- et*b(3,4,k)*1t(3,4,k)
150 1r(3,4,k)=1npp4(3,4)*Ttbspd(3,k)- et*b(3,1,k)*1t(3,1,k)
3002 format(1h ,'lr=')

write(6,3002)
4002 format(1h,/20(3£10.3/))
write (6,4002)(({1r(i,J,k),k=1,3),3=1,5),1=1,4)
¢ calculate corrected po4 loads to each lake sec (1lrsec)

do 200 i=1,3
do 190 k=1,3
n=4
if(i.eq.1)go to 179
go to 177
179 n=1
177 continue
do 185 j=1,n

1rsec(i,k)=1rsec(i,k)+1r(i,j,k)
185 continue
190 continue
200 continue
3003 format(1h ,'lrsec')
write(6,3003)
write(6,4001)((1rsec(i,k),i=1,4),k=1,3)
¢ calculate change in tp-po4 due to sediment projects (sums) and
¢ in po4 due to both reed projects (sumr) and tert. projects (sumt)
do 60 i=1,4
n=4
if(i.eq.1)go to %6
go to 38
36 n=1
38 continue
do 50 k=1,3
do 45 j=1,n
1p(i, j,k)=Inpt(i, j)*ftbst(i,k)-Inppa(i, j)*ftbspd(i,k)
sums(i,k)=sums(i,k)+ers(i,j)*1p(i,],k)*r(i,j)*.2
sumr (1,k)=sumr (i,k)+er (i, j,k)*1r(i,j,k)*r(i,j)
¢ calc change in load due to each reed pr. given tert. projects.
delr(i, j,k)=er(i, j,k)*1r(i, j,k)+ers(i, j)*1p(i, j,k)*.2
45 continue
50 continue
60 continue
write(6,201)
write(6,4002)(((delr(i, j,k),k=1,3),i=1,5),i=1,4)
201 format(1h ,'delr=")
¢ calculate total load entering lake from trib.s with no projects (each
c season and lake sec.
do 70 i=1,4
do 72 k=1,3
do 74 j=1,5
slnpt(1,k)=s1npt(i,k)+1npt(i, 1) *Ftbst(i,k)
slnpp4(i,k)=slnpp4(i,k)+1npp48i,j)*ftbsp4(i,k)
74 continue
72 continue
70 continue
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3004  format(1h ,'lp=')
write(6, 3004)
write(6,4002)
write (6, 4002)(((1 (1,],k),k=1,3),3=1,5),1=1,4)
3005 format(1h , 'sums=" §
write(6,3005)
write(6,4001) ((sums(i,k),i=1,4),k=1,3)
3006 format(1h ,'sumr=')
write(6,3006)
write(6,4001) ((sumr(i,k),i=1,4),k=1,3)
3007 format(1h ,'slnpt="')
write(6,3007)
write(6,4001) ((slnpt(i,k),i=1,4),k=1,3)
2008 ﬂrmﬂ(ﬂmﬂshmm:d
write(6,3008)
erte(6,4001 ) ( (S]—npp4(1 ,k) y 1=1 ,4) yk=1 y3)
c calc. total load from direct sewage with no projects
do 100 i=2,4
do 9 k=1,3
do 90 j=1,7
90 ssdir(i,k)=ssdir(i,k)+1sd(i,j)*fssl(i,j,k)
95 continue
100 continue 4
3009 format(1h ,'ssdir =')
write(6,3009)
write(6 4001)((ssd1r(1 k),i=1,4),k=1,3)
¢ calculate cost of reed progects
do 600 i=1,4
n=4
if(i.eq.1)go to 591
go to 589
531 n=1
589 continue
do 595 j=1,n
ccr(i,jgzccr(i,j)*r(i,j)
pwopr (i, j)=pwopr (i, j)*r(i,])
pwr (i, j)=cer(i,j)+pwopr(i,j)
tpwopr=tpwopr+pwopr(i, j)
teer=tcer+cer (i, j
595 continue
¢ cealculate tert. costs
n=4
if(i.eq.3)go to 480
go to 475
480 n=6
475 do 490 j=1,n
if(1t(1, 3,1
if(1t(d, 3,1
if(1t(i, ],
1f(1t(1,3

1le.0
gt.0. )cct(1,')=O.3
1).gt.7)cet(d, J§ =0.5
,1).gt. 21)cet (i) 3)=1.0
if(1t(i,3,1).g6.42)cet(i, j)=1.5
1f(lt(1 j,1).gt.63)cct(i, j)=2.0
if(1t(1,3,1). 90 Jeet(i3)=9999
teet= tcct ct
pwopt(i, ], 1)=350 *1t(1,3,1)*62./1oooooo.
pwopt (i, j,2)=350.*¥1t(i,,2)*91./1000000.
owopt (i, 3,3)=350.%1(1, 3,3)*212 . /1000000 -

).
).
).
).
).

|,_l
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pwt(i, j)=pwopt(i, j,1)+pwopt(i,j,2)+pwopt(i,],3)+cct(i, )
do 505 k=1,3
tpwopt=tpwopt+pwopt(i, j,k)
505 continue
480 continue
600 continue
tcost=tcct+tpwopt+teer+tpwopr
2010 format(ih ,'cer =')
write(6,3010)
4003 format(1h,/5(4£12.1/))
write(6,400%3)((cer(i,j),i=1,4),j=1,5)
3011 format(1h ,'pwopr =')
write(6,3011)
write(6 ,4003)((pWOpI‘(1,J) , 1=1 94) y =1 ’5)
3012 format(1h , 'cost(total)of reed projects')
write(6,3012)
write(6,4003) ((pwr(i,J),i=1,4),j=1,5)
write(6,2991)
2991 format(1h ,'cost(total) of tertlary rojects')
Wi te(6,4005) ((pwt(1,3)  1=1,4)  4=1,6)
3013 format(1h ,'tccr-')
write(6,3013)
4004 format(1h,f12.0)
write(6,4004)tccr
3014 format(1h ,'tpwopr=')
write(6,3014)
write(6 4004)tpwopr
3015 format(1h ,'cct=")
write(6,3015)
4005 format(1h,/6(4f12.1/))
write(6,4005)({cct(i,),i=1,4),Jj=1,6)
2016 format(1h , 'pwopt=" )
write(6, 3016)
4006  format(1h,/24(3£10.3/))
write(6,4006)(((pwopt(i,j,k),k=1,3),j=1,6),i=1,4)
3017 format(1h ,'tcet=")
write(6,3017)
write(6,4004)tcct
3018 format(1h , 'tpwopt="')
write(6,3018)
write(6,4004)tpwopt
3019 format(1h , 'tcost=")
write(6,3019)
write(6,4004)tcost

¢ calculate available loads entering each lake sec.
do 700 i=1,4
do 690 k=1,3

c available loads with no projects operating

arta(i,k)= 2*((slnpt(1 k)-sInppd (i,k))+(1ut(i)-Tupd (i))+

1?1rt(1 )1rpa(i))+(1att(i)-latpd (1))
podali,k)=ssdir(i,k)+sInpp4(i, k)+1up4(1)+lrp4(1)+latp4(1)
avalla(l k)—parta(l k)+poda(i,k)

c loads with only tert. projects operating
partb(i,k)=parta(i,k)
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podb(i,k)=podali,k)-sumt(i,k)
¢ loads with both tert. and reeds operating
parte(i,k)=partb(i,k)-sums(i,k
pode(i, k) o4b(i, k)—sumr(l k)
ayallb(l k partb(l k)+po4b(1 k)
availc(i,k)=partc(i,k)+podc(i,k)
¢ calculate effect of urban runoff projects
if(ur.eq.0)go to 690
partd(i, k)—partc(l k)-.2%.75%(1ut(i)-1upd(i))
po4d(i,k —p04c(1 k) ST*lups (1)
po4d (4,k)=podc(4,k)
avallc(l k§ partd(l k)+po4d(i,k)
2993 format(1h 'urban ro projects constructed')
write(6, 2993)
690 continue
700 continue
do 720 k=1,3
11(1,k)=(availa(1,k)-availe(1,k))/82
11(2,k)=(availa(2,,k)-availc(2,k))/413
11(3,k)=(availa(3, k)—ava110(3,k))/6OO
11(4,k)=(availa(4, k)—avallc(4,k))/
php(1 ,k)=phpo(1 k)—resp(1 1)*11(1 k)—resp(1 2)*11(2,k)
php(2, k)—phpo(2 k)-resp(2,1)*11(1,k)-resp(2, 2) 11(2,k)
? —resp(2 3)* 11(3 k)
php(3,k)= phpo(3 k) —res (3,1
? -resp (3, 3)*11( 4.k g
php(4,k) phpo(4 k)—resp(4 1
13 fbrmat(Bx f12. 2)
720 continue
goto 99999
900 write(6,1003)
1003 format('you have less records than you should have')
99999  continue
3020 format(1h ,'parta',40x, 'partb',40x, 'partc')
write(6, 3020?
write(6,1004)((parta(i,k),i=1,4), (partb(i,k),i=1,4),
?(parte(i,k), i=1,4) ,k=1,3)
1004 forma‘t(" 4f10 3,3x,4f10.3,3x,4f10.3)
3021 format(1h od4a',40x, 'podb',40x, 'podc')
wr1te§6 3021§
write(6,1004) ((poda(i,k),i=1,4), (podb(i,k),i=1,4),
?(potc(i,k),i=1,4) k=1,3)
3022 format(1h ,'availa',40x,'availb',40x,'availc')
write(6,3022)
write(6,1004)((availa(i,k),i=1,4), (availb(i,k),i=1,4),
?(availe(i, k) i=1,4),k=1,3)
3023 format(1h php )
write(6,3023)
write(6,4001)((php(i,k),i=1,4),k=1,3)
stop 'well done'
end

)*11(2,k)-resp(3,2)*11(3,k)
)*¥11(3,k)-resp(4,2)*¥11(4,k)
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