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PREFACE

The System and Decision Sciences Area plays a dual role at
the International Institute for Applied Systems Analysis (IIASA),
both providing methodological assistance to other research groups
and carrying out fundamental research on new methods and models
for use in applied systems analysis. The Optimization Task of
the System and Decision Sciences (SDS) Area contributes in both
of these fields by helping to solve optimization problems aris-
ing in applied areas and also by providing an international forum
for large-scale and dynamic linear programming and for non-
differentiable optimization. In the second of these capacities,
SDS sponsors annual task-force meetings on various aspects of
optimization, bringing together research workers from both East

and West to discuss advances in methodology and implementation.

This volume grew out of the second meeting on nondifferen-
tiable optimization, a field whose most important applications
lie in treating problems of decision-making under uncertainty.
Many important advances were made between the first meeting in
1977 and the second in 1978--new results were obtained in the
theory of optimality conditions, and there was more understand-
1ing of the relationships between various classes of nondifferen-

tiable functions. All of these new developments were discussed
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at the meeting, the reports presented by the participants cover-
ing the theory of generalized differentiability, optimality
conditions, and the numerical testing and applications of
algorithms.

After the meeting the participants prepared extended ver-
sions of their contributions; these revised papers form the core
of this volume, which also contains a bibliography of over 300
references to published work on nondifferentiable optimization,

prepared by the Editor.

It is hoped that this volume will be of use to those al-
ready working in nondifferentiable optimization and will stimu-
late the interest of those currently unfamiliar with this new
and rapidly expanding field.
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INTRODUCTION

E. Nurminski (Editor)
International Institute for Applied Systems Analysis,
Laxenburg, Austria

IIASA's interest in nondifferentiable optimization (WDO)
1s based on the great practical value of NDO techniques. This
new field of mathematical programming provides specialists in
applied areas with tools for solving non-traditional problems
arising in their work and with new approaches and ideas for
treating traditional problems. Nondifferentiable optimization
is concerned with the new type of optimal decision problems
which have objectives and constraints resulting from the be-
havior of different complex subsystems, the solutions of auxil-
iary extremum problems, and so on. A common feature of these
problems 1s that the objectives and constraints inevitably have

poor analytical properties.

Good analytical properties are essential both for perform-
ing comprehensive theoretical analysis and for producing effi-
cient.computational methods which are acceptable in practice.
Tne most important of these analytical properties are the exis-

tence and continuity of derivatives of various orders.

unfortunately, derivatives are very sensitive to manipula-
tion~--many standard operations and representations used in eco-
nomics or operations research destroy the property of
differentiability.



As an example, consider the piecewise method of represent-
ing the response function for different ranges of variables.
This type of approximation often has a discontinuity in the
first~order or higher-order derivatives at the boundary between

consecutive intervals.

The incorporation of uncertainty in environmental parameters
or systems characteristics by means of the minimax principle
provides another example. In this case, the resulting criteria
and constraints will almost certainly have discontinuous deriva-
tives, regardless of how well-behaved the injitial equations may

have been.

Many of the procedures used in multiobjective optimization
create an auxiliary nondifferentiable problem in the search for
a compromise solution, and game~theoretical approaches, equilib-
rium formulations and decomposition are also important sources
of nondifferentiable problems.

The absence of derivatives leads to many theoretical diffi-
culties and numerous practical failures in solving certain prob-
lems in operations research and systems analysis. The lack of
continuous derivatives makes it very difficult to predict with
a good degree of accuracy the effect of small changes in control
variables--and this hinders the performance of many numerical
algorithms.

These, then, were the main motivations for the study of
nondifferentiable functions--that is, functions for which deriv-
atives do not exist in the traditional sense of the word. The
problem was approached from many angles: these included the
study of generalized differentiability and properties of
generalized derivatives, the analysis of extremum problems and
optimality conditions, and the development of computer algorithms.

The first IIASA meeting on nondifferentiable optimization
was concerned mainly with the development of algorithms. It
summarized past developments in both East and West, outlined the
fields of application, provided test examples, and gave a com-
prehensive bibliography compiled by participants and other

contributors throughout the world.



Since then many important results have been obtained in the
general theory of differentiability, and these and other results

are discussed in the eight papers contained in this volume.

In the first paper, Yu.M. Ermoliev considers the fundamental
connection between nondifferentiable and stochastic optimization,

and the various gquestions raised by this relationship.

J.L. Goffin's paper is concerned with acceleration in the
relaxation method for linear inegqualities. This is closely
related to acceleration in subgradient optimization procedures
and it is shown that there are certain features in the perfor-
mance of these methods which are not explained by current theory.
Experiments conducted by the author show that subgradient opti-
mization techniques perform better than existing theory would
predict on the basis of the worst-case estimates. Using argu-
ments taken from the theory of successive over-relaxation, rates

of convergence are shown to improve in selected experiments.

The paper by C. Lemaréchal is devoted to numerical experi-
ments in wnich various types of algorithms are applied to a
number of test problems. The algorithms considered range from
those which have a good performance in smooth cases to the robust
ellipsoid algorithm.

The paper contributed by R. Mifflin describes an algorithm
for the minimization of certain semismooth functions defined by
the author. These functions are quite general and are likely to
cover most practical applications. The algorithm combines the
idea of the cutting plane method with a quadratic term which the
author suggests as a second-order approximation of the Lagrangian

associated with the optimal multipliers of the subproblems.

A number of algorithms for convex optimization are based on
the idea of :<-subgradients, which have certain remarkable theo-
retical properties. The paper by E. Nurminski discusses general
aspects of the use of c-subgradients in nondifferentiable convex

optimization.

The latest results in the theory of optimality conditions
and differentiability were presented at the meeting by



R.T. Rockafellar. His paper on this subject deals with the
refinement of the properties of generalized gradients for func-
tions which satisfy regularity requirements in addition to the
Lipschitz condition. Additional properties of this type make it
possible to establish useful connections between the directional
differentiability of nondifferentiable functions and the mono-

tonicity properties of subdifferential mappings.

The links between nondifferentiable optimization and
structured decision-making problems are considered in the paper
by A. RuszczyAski. A two-stage decision problem is shown to
give rise to nondifferentiable problems with specific types of
nondifferentiability for which simple subgradient-type algorithms
are proposed. An important feature of this approach is that it
also allows random factors to be included in the formulation of
the problem, and this makes it more realistic in terms of
applications.

A. Wierzbicki discusses the theoretical and computational
possibilities connected with the use of augmented Lagrangian
functions in the last paper of this volume.



METHODS OF NONDIFFERENTIABLE AND STOCHASTIC
OPTIMIZATION AND THEIR APPLICATIONS

Yu. M. Ermoliev
International Institute for Applied Systems Analysis,
Laxenburg, Austria

1. INTRODUCTION

Optimization methods are of great practical importance in
systems analysis. They allow us to find the best behaviour of a
system, determine the optimal structure and compute the optimal
parameters of the control system, etc. The development of non-
alfferentiable and stochastic optimization allows us to state,
ana effectively solve, new complex optimization problems which

are impossible to solve by classical optimization methods.

The term nondifferentiable optimization (NDO) was introduced
by Balinski and Wolfe [1975] for extremal problems with an objec-
tive function and constraints that are continuous but have no
continuous derivatives. This term 1s now also used for problems
with discontinuous functions, although in these cases it might
be better to use the terms nonsmooth optimization (NSO) or, 1in

particular, discontinuous optimization (DCO).

The term stochastic optimization (STO} is used for stochas-
tic extremal problems or for stochastic methods that solve deter-

ministic or stochastic extremal problems.

Nondifferentiable and stochastic optimization are natural

agevelopments of classic optimization methods. Some important



classes of nondifferentiable and stochastic optimization problems
are well-known and have been investigated long ago: problems of
Chebyshev approximations, game theory and mathematical statistics.
It should also be noted that, from the conventional viewpoint,
there is no major difference between functions with continuous
gradients which change rapidly and functions with discontinuous
gradients. Each of the above mentioned classes was investigated
by its own "homemade" methods. General approaches (extremum
conditions, numerical methods) were developed at the beginning

of the 1960's. The main purpose of this article is to review
briefly some important applications and nondescent procedures

of nondifferentiable and stochastic optimization. Clearly, the
interests of the author have influenced the content of this

article.

Let us consider some applied problems which require
nondifferentiable and stochastic optimization methods.

2. OPTIMIZATION OF LARGE-SCALE SYSTEMS

Many applied problems lead to complex extremal problems
with a great number of variables and constraints. For example,
there are linear programming problems in which the number of
variables or constraints is of the order of 10000, Formally,

such problems have the following form:

n

z a.__.x.=nmin 1
j=1 0373

;1 aij(y)xjibi(y) ' YEY, i=1,m (2)
x5 20 j=1,n (3)

Here Y is a given discrete set. For example, the use of
duality theory for solving discrete programming problems [Balinski
and Wolfe 1975; Lasdon 1970] necessitates the minimization of



nondifferentiable functions of the kind

n
f(x) =max ( Z aj(y)xj-b(y)) ) (4)

YEY j=1
where Y is some discrete set. This problem reduces to problems

of the kind (1) - (3).

Clearly in this case the total number of constraints
may be equal to 100100. However, these constraints have a form
which does not impose heavy demands on the computer core and one
can try to find their solution with the finite methods of linear
programming. But the number of vertices of the feasible polyhed-
ral set for such problems is so large that the application of the
conventional simplex method, or its variants, yields very small
steps at each iteration and consequently very slow convergence.
Moreover, the known finite methods are nct robust against computa-
tional errors. The use of nondifferentiable optimization has made 1t
possible to develop easily implementable iterative decomposition
schemes of the gradient type. These approaches do not use the
basic solution of the linear programming problem which enables
one to start the computational process from any point, and leads
to computational stability. Nondifferentiable decomposition
techniques (see, for instance, Shor{1967]land Ermoliev and Ermolieva

{19731) are based on the following ideas.

Let the linear programming problem have the form
{c,x)+ {d,y) =min

Ax+Dy>Db

We assume that for fixed x it is easy to find a solution
y(X) with respect to y. For example, the matrix D may have a
block diagonal structure, with x being the connecting variable.

. . . . ) * .
The main difficulty here is to find the value x for the optimal



* * * .
solution (x ,y(x )). The search for x 1is equivalent to the

minimization of the nonsmooth function

f(x) =(c,x) + min (d,y) =(c,x? +{d,y(x)) . (5)
Dy>b-Ax
y>0

Another approach is to consider the dual problem:
(u,b) =max

ub <4 ,

Let us examine the Lagrangian function
(u,b) + (2=-uA,x) =(c,X) + (u,b - Ax)
subject to constraints

ub<d , u>0 , x>0 .

* . L.
In this case the search for x 1is equivalent to the minimi-

zation of the nonsmooth function

f(x) = (c,x)+ max (u,b-Ax) for x>0 . (6)
Up <d
u>0

The well-known Dantzig-Wolfe decomposition 1s also based on this
principle. A subproblem of minimization with respect to variables

u, subject to

ub<d , u>90



is solved easily because the matrix D 1s assumed to have a

special structure.

A parametric decompasition method [Ermoliev and Ermolieva
1973] reduces linear programming problems, which may not have
block diagonal structure, to nondifferentiable optimization pro-
blems by introducing additional parameters. In this case, there
is the possibility of splitting the linear programming problem
into arbitrary parts, 1in particular, of singling out subproblems
which correspond tc blocks of nonzero elements in the constraint

matrix.

Let us analyse the general idea of the method using the

concrete example

y3=min (7)

a”y1+a12y2|+ a13Y3
33174 "’azzyz *o223¥3 £ by (8)

[
o

where

b, >0 , b,>0 , y. >0 j=1,2,3

Let it be necessary to cut this problem, for example, into

three parts as shown in constraints (8).

Consider the following subproblem: for the given variable
x = [x1],x12,x21,x22,x23) >0 find ¥4 >0, yzio, y3_>_0 for which

Y. =min
iR 1

A19Y T AY S Xy o 343¥3SiXg,

X<l

B21¥1 2%y 1 33Y3 5%y
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This problem produces three subproblems with the desired
structure. If the minimum value Y, is denoted as f(x) then it
is easy to show that solving the problem (7)-(8) is equivalent
to solving (9) for the value of x which minimizes the nondiffer-
entiable function £(x) under the constraints:

X + X <b ,

11 X220y
Xp1 ¥ ¥p ¥ Xp35by
xljio ’ i=1,2; i=1,2,3 (10)

3. MINIMAX PROBLEMS, PROBLEMS OF GAME THEORY

The problem (4) is the simplest minimax problem. More

general deterministic minimax problems are formulated as follows
(Danskin 1967; Demyanov and Malozemov 1974].

For a given function
g(x,y), x€xCR", y €Y CRT
it is necessary to minimize

f(x) =max g(x.,y) =g(x,y(x})) (n
YEY

for x € X. Independently of the smoothness of g(x,y) the function
f(x), as a rule, has no continuous derivatives. A particular
class of minimax problems thus arises in approximation theory
e.g., in problems of the best Chebyshev approximation, in appro-

ximation by splines, and in mathematical statistics.

The solution of a system of inegqualities
d;x) <0 , i=1,m

for g(x,y) =dy(x), ye€Yy=1{1,2,...,m} can also be found by

minimization of the function (11). The solution of the general
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problem of nonlinear programming,

min (£9x)l £5(x) <0, 1=T,m xE€xJ,

15 also reduced to this problem, tf it 1s assumed cthat

gix,y) = fo(x) +

. 1
1

W3

i .
1 v. T (x),yEY= y y= (Yqroeeny)oy; 20, i=71,m!}.

In game theory more complex problems arise in the
minimization of the function

f(x) =qg(x,y(x)) (12)
for x €X, where y(x) is such that

h(x,y(x)} =max h(x,y)
yey

Independently of the smoothness of the functions glx,y).,
h(x,y) the function f(x) 1n any +iven <ase may have no continuous
derivatives and may be discontinuous at any point. For

ni<,y) =x-'vy, 31x,v) =x+vy, Y= 1]-1,1], we obtain

The function h(x,y(x);, =xy(x) =Ix{is continuous, but does not
nave continuous derivatives at the point x=0. The function

£(x) = x +y(x) may be regarded as discontinuous at x=0.

4. OPTIMIZATION OF PROBABILISTIC SYSTEMS

Taking tne influence or uncertain random factors into

account, even 1n the simplest extremal problems, leads to
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complex extremal problems with nonsmooth functions. For example,

for deterministic w a set of solutions to the inequality

wx < 1 ,

where w, x are scalars, defines a semi-axis. If w is a random
variable it is natural to consider the function

£(x) =P{ux <1}

and to find x which maximizes f(x). If w=+ 1 with probability

0.5, then f(x) is a discontinuous function (see Figﬁre 1).

f(x)
$
T 1
! |
l /2 !
_:_____.___ - _:_
' I x
2 g T >
-1 0 +1
Figure 1.

A quite general stochastic programming (stochastic

optimization) problem can be formulated as follows [Ermoliev and
Nekrilova 1967, Ermoliev 1976]:

min {Fo(x)lFi(x)io,i=1,m,xex} . (13)

where

FY(x) =Ef"(x,w) = £ (x,w)P(dw) , v=0.m . (14)
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i) N .
Here f " (x,w), »=0,m are random functions, and « 1is a

random factor which we shall consider as an element of the

probability space ({:,A,P). For example, conditions like

L>{c;l(x,m)i0)ipi , 1=1T,m
become constraints of the type (13) - (14) 1f we assume that

i
‘ (py=1, 1f g7 (x,w} <0
£ (x,w) =J,
[p.l ,  if grix,w) >0

The problem (13) - (14) is more difficult than the conventional

nonlinear programming problem. The main difficulty, besides the
nondifferentiability, is connected with the condition (14). As
a rule, it is practically impossible to compute the precise
values of the integrals (14) and therefore one cannot calculate
the precise values of the function Fv(x). For example, it is
only rarely possible for special kinds of distributions and
functions gi(x,m) to find the expression P{gi(x,w)i_o} as a
tunction of x. Usually only values of the random quantities
f'(x,.) are available - not values of FY(x). To determine

whetner the point x satisfles the constraints

(x)=Efl(x,¢J)iO , 1=1,m

necomes a complicated problem of verifying the statistical hypo-

thesls that the mathematical expectation of the random quantities

1
pY

(x,«) 1s nonpositive.

=

5. ON EXTREMUM CONDITIONS

The difference between nondififerentiable and stochastic
optimization problems on the one hand, and the classic problem
of deterministic optimization on the other, i1s apparent in the
optimality conditions. If f(x) 1s a convex differentiable

function then the necessary and sufficient conditions for the
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minimum nhave the form:

fx(x)=0 ’ (15)
where
_ , of Jf
fx(x)"(EET ceey xn) .

In the nondifferentiable case this condition transforms into the

requirement (Figure 2)

0 € {fx(x)} (16)

where
(£ (x)}=23f(x)

is a set (the subdifferential) of generalized gradients (the
subgradients). These vectors gx(x) satisfy the ineguality

£ly) - £(x) > (Ex(x),y-x> , vy . (17)

fix}

Figure 2.
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It should be noted that the notation fx(x) for a subgradient
used here is convenient in cases where a function depends on

several groups of variables and the subgradient is to be taken
with respect to one of them.

The complexity of nondifferentiable optimization problems
results from the impossibility of using (16) in practice to dis-

cover whether a specific point x i1s a polnt corresponding to the
minimum of f(x).

This discussion requires one to test whether the O-vector
belongs to the set 1fx(x)}, which usually has no constructive
description. A further complication arises from checking the
conditions (15) and (16) in stochastic optimization problems.
Generally speaking, even checking the conditions (15) in the
stochastic case leads to a verification of the statistical hypo-
thesis that for fixed x the mathematical expectation qf the

random vector fx(x’“) is 0, that 1is,

Efx(x,u) =0

In such cases, the development of direct numerical procedures

for finding optimal solutions becomes extremely important.

6. DETERMINISTIC METHODS OF NONDIFFERENTIABLE OPTIMIZATION

There are two different classes of nondifferentiable
optimization methods: the nondescent methods which started their
development in the early 60's at the Institute of Cybernetics in
Kiev ([Shor 1964; Ermoliev 1966] and the descent methods which
appeared Lh the western scilentific literature in the 70's (see

salinski and wolfe (1975] for a bibliography).

Let us discuss briefly the basic ideas of these two
approaches.
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Let us attempt to generalize the known gradient methods of
the kind

s+1

s s
x = x —osfx(x)

’ 530’1,-..

where x° is an approximate solution at the s-th iteration, and
pg are step-size multipliers, for convex functions f(x) with a
discontinuous gradient. Difficulties arise connected with the
choice of step multipliers Py in the similar procedure

s+1 S - o
x =x —osfx(xs), s=0,1,... (18)

or more generally

s+1 ] 2 s _
X =me —%gﬁx)),s—oﬂ,u- (19)

where fx(xs) is a subgradient of f (x) at x=x" and nx(.) is a
projection operator on set X.

In practice, it is difficult to review the whole set of
subgradients and choose the one which lies in the opposite direc-
tion to the domain of smaller values of the objective function
(see Figure 3). Usually one can get only one subgradient, and
therefore there is no guarantee that a step according to proce-
dure (18) will lead into the domain of smaller values of f(x).
The nondescent procedure (18) was proposed by N.Z. Shor [1964]
and called the method of generalized gradients.

Figure 3.
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It allows the use of any subgradient in the subdifferential.
General conditions for its convergence were first independently
obtained by Ermoliev [1966] and by Polyak [1967] , where °q

satisfies the conditions

@
o v 0, T op_ ==
s S
s=Q
These conditions are very natural as (18), (19) are non-
descent processes, i.e., the value of the objective function

does not necessarily decrease from iteratlion to iteration even

for arbitrarily small Py

The influence and close relationship of I. I. Eremin's
research on solutions of systems of inequalities and nonsmooth

penalty functions on this area of work should be noted [Eremin

1965] .

More recently the method (18) has been developed further
(see Shor [1976] for a review) and rates of convergence have been

studied.

E. A. Nurminski [(1973] studied the convergence of methods of

type (18) for the functions satisfying the following condition:
E(y) - £(x) 2 (£ (x),y=x/ + ollly - xll)

Moreover, he proposed a new technique for proving convergence
Lased on the reduccio id zEsurdum argument; he then adapted
this technique for studying the convergence of nondescent methods

for nonconvex, nonsmooth optimization.

As has already been said, the algorithms constructed on the

basis of (18) are simple and require relatively little storage.

Thus let us consider an application of the method (19) to the
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development of iterative schemes of decomposition. For the

. : S .
function (5) one of the generalized gradients at point x~ 1S

£ (xs) =c- uSA,
X
. s
where u® are dual variables corresponding to y(x~). Therefore,

the iterative scheme of decomposition according to the procedure

(19) has the form

x** 1 =max (0,x5 -0 (c-u®M)},  s=0,1,... (20)
For the problem (7) - (8), if ys is an approximate solution of the
subpreoblem (9) for x==xs:={xsij} and u® are dual variables cor-
respcnding to ys, then

s+1 _ S _ S _

X = nx(x pgu Y, s=0,1,..., (21)
where ﬂx(') is the projection operator on the set (10). There is
a very simple algorithm for obtaining wx(~) on sets of type (10).

For the minimax problem (12) in the case when g(x,y) for
each Y€ Y is a convex function with respect to x, the subgradient

is defined as fx(x) =gx(x,y)|y= v gx(x,y(x)). If g(x,y) is

x)
continuously differentiable with respect to x then

fx(x)=gx(x,y)l ) =gx(x,y(x)) .

y=y(x

It should be noted that the above-mentioned nondifferentiable
procedures of decomposition make it relatively simple to take into

account thne special structure of a given problem. For example.
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consider the linear problems of optimal control: to find a

control x= (x(0),...

SX(N=T))

and a trajectory z = (z{(0),...,z2(N)),

satisfying the state equations:

z(k + 1) =A(k)z(k) +B(k)x (k) +a(k)

0

z(0) =z",

the constraints

k=0,1,...,N=1

G(k)z (k) +D(k)x(k) > b(k)

x(k}) >0

’

’

k=0,1,...,N~-1

and minimize the objective function

N-1
Ce(N),z(N)> + ¢ We(k),z(k)> +Cd(k), x(k)]
k=0
€RrY. The difficulty of this problem is

where x (k) €RY, z(k)

connected

can solve

principle.

The
~(0)) and

aguations

with the state constraints.

If matrix G(k) =0, we

this problem with the help of Pontzijagin's

dual problem is to find dual control A= (A{N-1},...,

dual trajectory p= (p(N),..

., pt0)),

p(k) =p(k+1)A(k) - A(k)G(k) +c (k)

c(N) =~-c(N),k=N=-1,...,0

and constrailnts

plk+1)

k) 20

B(

~

subject to state
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which minimize

N-1
(p(0),29 + £ [((k),b(k)) ~(p(k+1),a(k)].
k=0

We have the following analog of the iterative scheme of decom-
position considered above:

71 () = max(0,x% (k) = o [p% (k+1)B (k) = 2% (k) D(K) -d (k) ]},

where A%(k), ps(k), k=N=-1,...,0 is a solution of the subproblem.
Minimize the linear function:

o]
(p(0),29 + T KAa(k),b(k) -(p(k+1),a(k))
k=N-1

+(d (k) ~p(k+1)B (k) - A (x)D (k) , x> (k)]

under constraints

p(k) =p(k+1)A(k) - A(k)G(k) +c(k)

p(N) =-c(N) ,A(k) >0 , k=N=-1,...,0

We may use the well-known Pontzjagin's principle for solving this
problem. Its solution is reduced to the solution of N simple

static linear programming problems.

Some original work carried out individually by Wolfe and
Lemarechal (see Balinski and Wolfe [1975]) on descent methods is,
on the one hand, a generalization of the c-steepest descent algo-
rithms studied by Demyanov [1974) and, on the other hand, formally
similar to algorithms of conjugate gradients, coinciding with

them in the differentiable case.

Since it is impossible to obtain the whole set {fx(xs)} at
the point xs, Wolfe and Lemarechal tried to construct it approxi-
mately at each iteration. The further development of subgradient

schemes resulted in the creation of :-subgradients, which were



_21_

introduced by Rockafellar [1974]. The early results in this field
are due to Rockafellar {1970], Bertsecas and Mitter (1973],
Lemarechal [1975]|, and Nurminski and Zhelikhovski [1977]. Recent
research revealed properties of :t-subgradient mappings such as
Lipschitz continuity which make e€-subgradient methods attractive
both in theoretical and practical respects.

7. STOCHASTIC METHODS

Two classes of deterministic methods have been discussed:
nondescent methods and descent methods. The first class is easy
to use on the computer but does not result 1n a monotonic
decrease in the objective function. The second class gives mono-
tonic descent but has a complex logic. Both classes have a
common shortcoming: they require the exact computation of a sub-
gradient (in a differentiable case this would be the gradient).
Often, however, there are problems in which the computation of
subgradients is practically impossible. Random directions of
search is a simple alternative method of constructing nondifferen-
tiable optimization stochastic descent procedures that do not
require the exact computation of a subgradient and which are

easy to use on the computer.

There are various ideas on how to construct stochastic
descent methods in deterministic problems which only require the
exact values of objective and constraint functions. One of the
simplest methods 1is as follows: from the point xs, the direction
Qof the descent 1s chosen at random and the motion in this direc-
tion 15 made with a certain step. The length of this step may

be chosen in various ways, 1n particular such that:

r
-
o
o1y
I
]
¥

Stochastic nondescent methods of random search (stochastic
optimization) are of prime importance in the solution of the most

difficult problem arising 1in stochastic programming, ii which it is
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impossible to compute either subgradients or exact values of
objective and constraint functions. The presence of random com-
ponents in the search directions of nondescent procedures allows
one to overcome local minima, points of discontinuity, etc. A
quite general scheme of nondescent methods in stochastic optimi-
zation was studied in Ermoliev and Nekrilova [1967], and Ermoliev
[1976] under the name stochastic quasigradient (SQG) methods., SQG
methods generalize the well-known stochastic approximation
methods for optimization of the expectation of random functions
to problems involving general constraints with differentiable
and nondifferentiable functions. For deterministic nonlinear
optimization problems these methods can be regarded as methods
of random search. Consider the problem

*

min {Fo(x)\ F (x) <0, i=T,m,x€X}

\.) —— . i <
We assume here that F ' (x), v=0,m are convex functions, and X is a

convex set. Let f: denote a subgradient of the function F’(x)
F'(z) -F (x) > (F(x),2-x%)

In stochastic quasigradient (SQG) methods the sequence of
approximations xo,x1...,xs..., is constructed with the help of
random vectors £°(s) and random quantities ;v(s) which are statis-
tical estimates of the values of subgradients ﬁ;(xs) and of the

functions F”(x%):

E('v(s)\xo,. x5t = ?;(xs) +a’(s) ,
Elc () x%, ... x® =" x® +b (5)

where av(s) is a vector, bv(s) is a number depending upon xo,

x1,...,xs,..., where usually av(s)'*O,bJ(s) ~+0 (in any sense) for

s+, Thus in these methods, instead of exact values of
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ﬁ;*xs)'Fy(xs)r quantities 7 7(s),¢ (s; are used. For further

v

understanding, it is important to see that the random values

)

g)(s) and vectors :°(s) are easily calculated. For example, if

F/(x) =Ef” (x,w)

tnen . (s) = £V (x5,.%) where the +° result from mutually

independent draws ©of w. We have

E{r (s) x°} =E{f" (x%,.,) xv=£Y(x%) .

I1f functions fv(x,w) are differentiable with respect to x and

gV(s) = £/(x%,.%),

then under reasonable assumptions we will have

Eu”(suxs}=sfx<x 27y = (E{f;(x NS D PN A e

ft should be stressed that SQG methods are applicable not only to
stochastic programming problems, but also to NDO determinlistic pro-
vlems, witnout naving to compute values of subgradients. For example,

for tne deterministic minimax problem {12) consider the vector

0 g(xs +%h5,y(x5}> -g(x%,yx%)) s
£5(s) = (3/2) - h™, (22)

\

S

where As > O,hs is the result of independent random draws of the

random vector h =(h1,...,h1) whcse components are independently

and uniformly distributed over [-1,1]. (22) satisfies the condition
Ei;o(x)gxs =fo(xs) +ao(5),

el . . . .
where fx(xs) 1s a subgradient of the function (12) and

o] . . . )
la (5)14;const-as, 1f g(x,7) has uniformly limited second
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derivatives with respect to x€X. It is remarkable that
independent of the dimensionality of the problem, the vectors

(22) can be found by calculating the function g(x,y) at two

points only. This is particularly important for extremal problems

of large dimensionality.

Let us now discuss briefly one particular type of SQG
method - the stochastic quasigradient projection method.

Let it be required to minimize the convex function Fo(x),

X € X, where X is a convex set.

The method is defined by the relations:

s+1 _ s _ Q —
X =7 (x pE(8)), s=0,1,..., (23)

where nx(-) is a projection operation on X, pg are step multipliers.
The method (23) has been proposed in Ermoliev andé Nekrilova [1967].
The characteristic requirements under which the sequence {x®°} con-
verges with probability 1 to the solution, are: if 1% <B,

k=0,s, then E{Igo(s)HZQXO,...,xS} <€y where B,Cy are constants;
oy are step multipliers which may depend upon xo,x1,...,xS and
g >0, z pg== with probability 1, (24)
s=0
© 2 0
I Elpg+olla™(s)ll} <= . {25)
s=0 s

In the special case when the pg are deterministic and independent
of (xo,...xs) then, under (24), (25) we obtain from method (23)

using the random direction (22) that

x oo 20
2.>0, I o0 == L o A <=, L 02 < ® (26)

The important application of SQG methods is concerned with the

optimization of probabilistic systems by simulation. To obtain
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the desired parameters of the probabilistic system, one can often

use a Monte-Carlo simulation technique. Let
£2(x, %)

be the outcome of the s-th simulation, where fo(x,ms) is the
random gquantity, which depends on an unknown vector of param-
eters, and noise observations wS. Suppose that it is desired
to choose the vector x==(x1,...,xn), which minimizes the ex-

pected value of the performance function defined by the expression

Fo(x) =Ef0(x,w) =ffo(x,w)P(dw).

The main aifficulty of this problem i1s that the distribution
P(dw) 1s unknown and we cannot get the precise value of the func-
tion Fo(x) (it 1s theoretically impossible). A statistical esti-

mate ;O(x) of the gradient for a differentiable function Fo(x)

could be calculated analogously to (22):

o 90+ 208,08 - £0 5,050
S7(s) = (3/2) = h™,
s
where fo( S-PL hs,u51),f0(xs,wsol are outcomes of simulations for

X S
x=><5+.;s'r1S and x =X
If the second derivatives of the function Fo(x) are bounded

for x €X, then

. ) : . 2 . . .
since Ehinjz 0, if 1#3 and Ehj =2/3. The step-size iy of the
finite difference approximation cculd be chosen according to

conditions (26).
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8. CONCLUSION

Some applied NDO and STO problems have been briefly
discussed in this work. Deterministic, stochastic, descent and
nondescent methods were considered. Each one requires some defi-
nite information about objective and censtraint functions.
Deterministic descent methods use the exact values of these func-
tions and their subgradients; stochastic descent methods use only
the exact values of functions; deterministic nondescent methods
require only the exact values of subgradients; stochastic non-
descent methods use neither the values of functions nor the exact
values of their subgradients. Obviously, every method reveals
its advantages in a specific class of extremum problems: for
instance, complex stochastic programming problems are soluble only
by stochastic nondescent methods.
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ACCELERATION IN THE RELAXATION METHOD
FOR LINEAR INEQUALITIES AND SUBGRADIENT
OPTIMIZATION™*

J.L. Goffin
McGill University
Montreal, Canada

1. INTRODUCTION

Subgradient optimization has been shown in many experiments
to be an effective solution technigue to the problem cf maximiz-
ing piecewlse linear concave functions defined through the use
of the Dantzig-Wolfe decomposition principle applied to some
combinatorial problems. This effectiveness showed up in some
problems of rather respectable size (10, 12, 15], even though 1t
can be shown to perform arbitrarily badly in two-dimensional
problems.

A convergence theory developed by Shor {21, 22] and the
author [7] quantifies the rates of convergence of subgradient
optimization, in function of condition numbers which measure the
gcod behaviour of the function to optimize. When applied to a
quadratic function, subgradient optimization can achieve the
rate of convergence of the steepest ascent method provided that
the function be not too well conditioned, that the condition

aumper (or the eigenvalue ratio of the matrix defining the

*Thls research was supported in part by the D.G.E.S. {Quebec)
and the N.R.C. of Canada under grant A4152.
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quadratic function) be known, and that an overestimate of the
distance between the initial point and the solution point be

known.

wWwhen applied to piecewise linear problems, subgradient opti-
mization always performed significantly better than the theory
of [22] and [7] indicated, the gap in performance between experi-
ence and theory being wide enough to justify further study.

One key fact to notice is that subgradient optimization is
closely related to the relaxation method for solving systems of
inequalities, to the extent that the rates of convergence that
have been proved for both methods are identical [8,9], under some
assumptions (namely that the function not be too well conditioned,
that the relaxation parameter be equal to one and that every non-
zero extreme point of every subdifferential of the function have

the same norm).

A second key fact to notice 1is that the relaxation method
for solving systems of linear inequalities is related to the
Kacmarz projection method, the successive overrelaxation method
and the Southwell method for solving systems of linear equalities.
It has been observed, and proved for some cases, that the S.0O.R.
method can be accelerated by using values of the relaxation
parameter greater than one (if this parameter is equal to one,
then the S.0.R. method is known as the Gauss-Seidel, or Nekrasov
method). This indicates that acceleration is conceivable for the
relaxatiqn method for linear inequalities, and thus also for

subgradient optimization.

A study of the acceleration of the relaxation method for a
system of two lnequalities done in (6] and [9] shows that the
same value of the relaxation parameter which accelerates the
most the S$.0.R. technique in a related linear system of equations
also accelerates the convergence of the relaxation method for
inequalities, but that this accelerated rate is still bad if the
system is badly conditioned (even if the rate is improved by an
"order of magnitude"). Experiments suggest that if the relax-
ation parameter goes above the optimal value given by S.0.R.

theory, the convergence accelerates still more, for reasons
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different from the ones used in the 5.0.R. theory. And thus
acceleration, even if it could be proved satisfactorily, 1is only
part of the explanation of the effectiveness of subgradient

optimization.

The other part of the explanation will have to relate the
combinatorial structure of the original problem studied to the
condition number of the function defined through the Dantzig-Wolfe
decomposition principle. This paper will attempt to show ("indi-
cate" or "allude to" might be more appropriate) by using experi-
ments and some theory that:

1. The relaxation method for linear inequalities, and sub-
gradient optimization can be accelerated (and in some
cases faster than the S.0.R. theory woula preaict).

2. For some classes of combinatorial problems, uniform
lower bounds (dependent upon the dimension of the prob-
lem) on the condition number of the associated functions
probably exist.

3. The "harder" the combinatorial problem 1s, the better

the condition number of the associated functiocon is.

Given the rather incomplete nature of the theory of accel-
eration in the S.0.R. method, 1t should be clear that a general

proof of these three points is probably unattainable.

2. SUBGRADIENT OPTIMIZATION AND THE RELAXATION METHOD
Let f(x) be a finite concave function defined on R” and
5f(x) be 1ts subdifferential at x, i.e.,

JE(x) = ‘u e R :f(y) < f(x) + (u,y=xJ, ¥y € R

n .

For every x, 3f(x) 1s a convex, compact set, and if £ is

differentiable then f(x) = {(7f(x)', the gradient of f.

In tnis paper f£(x) will always be a piecewise linear

function:
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where I is a finite set, at e Rn,bl € R.

Letting I(x) = {i € I:f(x) = <a*,x> +b*}, then

af(x) = {u e R":u = y Xial, ¥ A = 1A 20, ¥ie Ix)!
1€I (x) i€I(x)

is the convex hull of the set {al:i € I(x)!}.

It will be assumed that the optimal value f‘=max{f(x):x e R}
is reached on the optimal set P = {x € R:£(x) = f‘}. It is well
known that P = {x € R":0 € 3f(x)}. The projection of x on P will
be denoted by x‘(x), and the distance from x to P by d{x)

* oy
= |x-x (x)|, where |....| means Euclidian norm.

The term subgradient optimization will be used if £* is not
known, and the term relaxation method will be used if £* is known.
The reason for this is that if f‘ is known, the optimal set can
be defined by a system of linear inequalities:

1 1 *
<at,x> +b*-£ >0, i €1

A description of both subgradient optimization and of the

relaxation method follows:

1. Choose = R

2. Compute a subgradient of f at x1:u? € 5£(x3) (or it could
be restricted to u? g {ai:i e 1(xH}. 1f uI =0, an optimal
point has been found (also if £ (x9) =f' in the case of
the relaxation method).

3. The next point xq+1 of the sequence will be obtained by

q q

moving from x° in the direction of u® by a certain step

size. Go back to 2 with g+1 replacing g.

=
The selection of the step size depends on whether f is

known or not:

g+1 _ .4 uq X . . * .

X = X +Aq 3 subgradient optimization (f unknown) (2.1)
b=t

a1 _ g £ -£x9) g - .

X = x°+0_ =——=%+u* relaxation method (f known). (2.2)

a5 932
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The sequences {Aq} and (oq} that will be studied are given by:

A o= 59 , s € (0,1)

q o ' Ao > 0
and
S =0 , .21,
o g € (0.2]
In both cases a convergence theory is available: in (22],

[7] for subgradient optimization and in {1], [6] and [9] for the
relaxation method. Rates of convergence depend upon condition
numbers which are defined below. For subgradient optimization

one defines:

1]
=
-
o

L (x) for every x ¢ P

and

. = 1inf u(x)

and for the relaxaticn method:

*
i(x) = min ———EL;Elfl—— for every x # P
u€xf (x) u. x¥(x)-x

and

- = inf 0(x)

fo

The concavity of £ implies that L(x) < a(x) and thus U - u.
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The convergence theorems are as follows:

Theorem 2.1 For subgradient optimization (where Aq = kopq), let

p
C = maxdl, ¥ -\/(u:—(;-oz)) o weNwi0-h)

P 1-p | 1-p°

J (1-u%) if uw<$ V2,

1 . 1
l o if u >7 VE.

z(u) =

Then

(A) p>z(u) and da(x°) € [A,C,A,Dl implies that for all q:
“dxY) <ax®ed,

(B) o>z(w and d(x”) <A,C implies that for all q:
a(xd) < co?,

(C) p<z(uw) or d(x°) > p,D may lead to the convergence of

{x9} to a non-optimal point [7].

Theorem 2.2 For the relaxation method:

ax*) < Vi-o2-op? axd

*
and furthermore if dim P = n, there exists a g € [1,2) such that

*
if 0 € (g ,2), then convergence is finite (9].

It should be clear that in general u and | are different, but
also there is a neighbourhood of P such that u(x) = ji(x). One
could define condition numbers close to the optimal set (say Mo
and ﬁc: note that they are equal): the number ic could be used
in Theorem 2.2 instead of I, provided that q is large enough, so
that the iterates are close to the optimal set; a similar state-
ment cannot be made easily about Theorem 2.1, because the proof

technique 1is quite different (and more global in nature).
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Thus the rates of convergence of both methods involve condi-

tion numbers which are related to one another.

In one case of interest [8], where all the extreme points of
all the subdifferentials of f have the same norm (unless the
norm is zero) then p = g = He = ﬁc, and thus in that case the
rates of convergence (as given by the available theories) of the
relaxation method with ¢ = 1, and of subgradient optimization
with p = z(p) {(and U,iVG/Z) are identical. In this case it also
follows that condition numbers far from the optimal set can be no
worse than close to the optimal set. The condition that all
norms be equal is met by the relaxation method of Agmon under its
maximal distance implementation (and all norms are one): it

simply means that all a® have been normalized.

This whole theory, though correct, is incomplete, in the
sense that it fails to account for the interaction between suc-
cesslve iterates: the theory only considers the worst step-to-
step behaviour of the seguences, putting bounds on this, but
1ignoring the fact that it is impossible for all successive iter-
ates to behave according to this worst bound. This reasoning 1is
very similar in nature to the one used in proving the conver-
gence, and the acceleration, in the S5.0.R. technique for solving
systems of linear equalities: the linear operators that relate
an lterate to the next one all have a spectral radius of one, but
the product of n operators (which defines a cycle of n iterations
in our terminology, or of one iteration according to the §.0.R.

terminology) has a spectral radius less than one.

In this paper we will attempt to extend the ideas of the
acceleration of the S5.0.R. method to the relaxation method for

inegualities and to subgradient optimization.

3. EXAMPLES AND EXPERIMENTATION

Imampie 1: Systems of linear equalities
(at,x)+pt =0 , xeRr’, iel (3.1)

{where usually I contains n elements).
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Solving this system is equivalent to maximizing

f(x) = min min {(ai,x) +bi, —(ai,x)-bi} (3.2)
il

* :
where f =0 if and only if the system has a solution.

Example 2: Dual of a transportation problem
i I
f(x) = S.X. + d min (e, -%x.) (3.3)
351 373 k21 X 5=1,....n Ik
i i
where s. = d,_ .
j=1 1 k= K
Zxample 3: Dual of an assignment problem
in example 2, let m=n, s, =1, d, = 1 ¥j,k. (3.4)

3 k

We experimented on TR 48, the dual of a transportation problem
with n = m = 48, the data of which can be found in [17]. This
problem has the peculiarity that the optimal solution is
"unique" (i.e., up to an additive constant), and thus we were
able to compute u(xq) for the successive iterates. We observed
that for all experiments performed inf u(xq) = ,0021, and thus
u and § are less than .0021, from which it follows that

z(u) = Y1'U2 > .999998. Actual experimentation with the relax-
ation method with o = 1 showed an asymptotic rate of convergence
of .999986 (guite disastrous as it indicates that in order to
improve the accuracy of the optimum by one digit, one should go
through something like 150,000 iterations). This pessimistic
result should be tempered by the observation that the methods
(subgradient optimization and relaxation) behaved very well in

the opening game (the early iterations) before slowing down.

Experiments were performed in order to measure the actual
convergence rates of the relaxation method as a function of o.
The theory says that the rate of convergence is 1-0(2—0)ﬁ2, i.e.,

it worsens when ¢ goes from one to two.
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Figure 1. Rate of convergence of the relaxation method applied
to TR 48 as a function of 7.

The results, shown in Figure 1, clearly indicate that ac-
celeration taxkes place, and that a best rate of convergence of
about .9935 occurs for 5 < (1.36,1.98). This is an improvement

by a factor of one hundred over what happened when g = 1.

Closer examination of the convergence showed that:

1. <dConverqgence was very good 1in the first few hundred iter-
ations: good opening game.

2. t worsened considerably after this (to a rate of che
order of .9998): weak middle game.

3. It improved again, starting about when all the

subgradients used define linear pieces whicn go through

the optimum point, thus showing that acceleration is an

asymptotic behaviour; 1t also shows that the ;(xq) en-
countered are all in the range .16 to .26: good end
game.

It seemed logical then to experiment with subgradient opti-
mization; we tried with +_ = 53000, - = .999, x° = 0 (where d(x”)
o

% 1978.), for 30,000 iterations. Even though we nad some worries
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about the middle game it converged at a rate given by p (on that
the theory is clear: 1if it converges, it must be at a rate p).
It is not clear at this point whether this is luck or an indica-
tion of an underlying theory of acceleration of subgradient opti-
mization (my own feeling is that getting over the middle game is
luck, but that acceleration in the final game is probably prov-
able) .

A study of the acceleration phenomenon in the relaxation
method for inequalities will be attempted in the next sections on

a few very particular examples.

4. SYSTEMS OF LINEAR EQUALITIES

Let a system of linear equalities be given by:
i i X
{a~,x) +b" =0, 1i€1I={1,2,...,n} (4.1)

where the a’ are linearly independent column vectors. Another

notation i1s of course Ax +b = 0, where

[

Let D be a diagonal matrix, with Di; = , then (4.1) can be

written as
~ ~ ~ -1
Ax+b =0, A =0D /zb . (4.2)

If one defines n and § by x = A'f = ATn, then equivalent systems

may be defined by

ler 1]
[}

fi+b = 0 where (4.3)

'n+b 0 where [ = AA . (4.4)
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”» . - *
If x denotes the (unigue) soclution to (4.1) and (4.2) and n
» . \
and 1 the (unique) solutions to (4.3) and (4.4), clearly

T % * % 1 "
x = AT n = ATn n =D /2n
The matrix [ is the Grammian of the vectors al, while [ is the

Grammian constructed on the vectors of unit norm a* =al/fal;.
Clearly I is simply the matrix of the cosines of the angles be-
tween the vectors al, i=1,...,n. Of course © and [ are both

positive definite symmetric matrices.

The S.0.R. technigue (or extrapolated Gauss-Seidel) can be

written as follows:

1. x° arbitrary (g=0)

2. define 1 by 1 = g(mod n) +1
then

30 AT o F s (reoE 1 A9 FT)

g + g+1 and go to 2

E.l is a matrix with a one in position (i,i) and zeros elsewhere;

note also that ﬁq+1 is computable in function oI 7% (3* 1s not

h =
known but 7 = =-b is).
If we let Z(R) = "n+b, the residue, then also

< ~g+1 = -~

3T = (z-ate 5 (R

= (1-0E.0)73i%  as “E. = (g, 7T
b8 1 1
In the 5.0.R. theory one deflnes a sequence by

) L K -k | - > ok+1
A= 0,000 T =0 n; the “i1teration” from Hk to {K+ Ww1ll be
characterized here as a cycle of n iterations. The reason for

this 1s Of course tinat the "iteration" from §k Lo §K*1 is
jiven by a linear operator, and thus the convergence can be
studled, and rates of convergence can be identified with the
spectral radius of this operator. If we define L and G by

= I -L-U, where -ﬂ(—i) are respectively, the strictlv lower
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™

(upper) part of [', then

— “ - ~ ~ ¥
VY o (1m0 T (1m0 T+ oD) FR-RT)

1((1—c)I -cU) is equal to

T((1=0)1 +ol)

the classical formula; clearly (I-0L) "
(I—cEnI‘) . (I'GEn_1f)... (I-0E1f). If we let R = (I-ci)-
then also 6(ﬁkn+n)= PRI = (A

Now let us define the Kacmarz (extrapolated) method applied to
(4.1) or (4.2):

1. x° arpbitrary (g =20)

2. 1 defined by i = g(mod n) +1
* i i *

3. xq+1—x = (I-0at SLT)(xq -X )

g +g+1 and go to 2.

- w
T ll xq+1

. L1 . . .
Again, as a 'x = -D is computable in function of xq.

If we let r(ix) = Ax +b, and r(x) = Ax +b, the residues, then it
can be checked that:

IV = (1-0TE. ) E(x9)

Observe that:

ATe. AT = ATg A = 34317,
i i
and thus
(I-célélT) = AT(I—cEiE)§—1T
Also, «
2 (Y = CRETE (M
an+n _ STRA_1Txkn

We have thus shown the following "theorem®.

Tneorem 4.1

If we use the Kacmarz method applied to (4.1) (4.2) or the
Gauss-Seidel method applied to (4.3) and (4.4), with the same
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. b
relaxation parameter o and starting points x  (for 4.1 and 4.2),
47 (for 4.u4), A° (for 4.3) satisfying

x¢ = aT3% = aT,?
then at every iteration, it is also true that

xq = ATF] = Aqu
9
This fact was noticed by Kahan [14]. And thus the rates of con-

vergence of both methods are identical, and given by the spec-

tral radius of R, (which is known to be less than one if 7 £ (0,2)).

As to every positive definite symmetric matrix [ one can
associate (real) Cholesky factors by I = AAT, it is also clear
that the S.0.R. technique applied to 'n + b = 0 is equivalent
to the extrapolated Kacmarz method applied to Ax + b = 0.

All of this can be found in Nicolaides [18].

The followlng theorem characterizes the convergence of the
sarious methods in terms of the asymptotic behaviour of the

directions pointing from the iterates to the optimal point.
Theorem 4.3

Assume that the largest modulus eigenvalue (%) of R 1s real,
positive and the unique root of modulus A of the characteristic
polynomial, with unit (right) eigenvector e,, then the seqguence
generated by the S.0.R. method applied to (L.3) will, unless

37 -7 is perpendicular to the left eigenvector e, corresponding
to A, satisfy:

lim ———— = fe, (where 3 is either +1 or -1)
S

rxkn+n_.*
lim s ] =\
~kn_.*

kv RTT=]
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lim "0 = (I-0E,[)...(I-0E,l)ée,, 1<2<n

Proof

Let R = SJS-1 where J is the Jordan cancnical form associated
to R. Then there is only one Jordan canonical box corresponding
to A, and it is of dimension 1. Let (%£,%) be the location of
A in J.

Classically: g9 = Aqu +o(Aq), where o (A%) represents a
(n xn) matrix which goes to zero faster than Aq,

Thus

d - 74 -7 q

R A S;S, +0(A™)
where sET is the %-th row of S-1, and sy is the 2-th column of S
which can be shown to be proportional to e, (it could have been

chosen equal to e,), while s; is proportional to eX.

- . ok
The theorem follows provided that (eA,no-n y# 0.

To summarize, the convergence of ﬁk to fi* takes place along
n one-sided asymptotes, used in a cyclic order; the convergence
is geometric, with a crisper definition of this concept than in
general (the decrease of the distance over n steps tends as a limit
to A, and thus the average rate per iteration is QJE3. Of course

an almost identical theorem holds for the Kacmarz method.

If the eigenvalue(s) of largest modulus is complex, then
the rate of convergence of the Kacmarz and of the S.O.R.
method is still given by the n-th root of the modulus, but
the existence of asymptotes depends on discussions on the ratio-
nality of the argument (in degrees) of the root of largest
modulus. If the eigenvalue of largest modulus were negative,
then there would be n two-sided asymptotes.

Now the relaxation method of Agmon defined in (2.2) and
applied to (3.1) is identical in spirit to the Kacmarz method (a

similar argument could be made to compare Southwell's relaxation
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method applied to (4.3) and the S.0.R. method applied to (4.1));
the difference is that the sequence of indices used is not given
by repeating the cycle 1,2,3,...,n but by choosing at each itera-
tion the index of the largest residue, in absolute value. The
same linear operators are used to go from one iteration to the
next, but in an order, not necessarily uniquely defined, deter-
mined in a different fashion; the order is not defined a priori,
but 1s dependent on the iteratién sequence.

It might be worth pointing out that in the Agmon's relax-
ation method of (2.2) (and in Southwell's method), the normaliza-
tion of al,i = 1,...,n, changes the sequences generated, as the
index which gives the maximum residue depends on the normaliza-

tion.

The reason for this section 1s given by the observation that
if in the relaxation method of Agmon (2.2) applied to (3.1) the
indices chosen form cycles repeating the integers 1,2,3,...,n in
sequence then the convergence theory of the Kacmarz method and of
the S.0.R. method applies exactly. It also indicates why the
discussion of 5.2 is needed; if in the relaxation method (2.2)
the cycle 1,...,n has repeated itself often enough for the non-
dominating eigenvalues to have lost their powers, then this
cycle will repeat 1tself ad infinitum, so that an exact asymp-

totic theory of (2.2) would be available.

If the relaxation method of (2.2) used the index 1(g) at
*

iteration q = 0,1,2,... , and 1f there exists an index g and an

]
integer p such that i(gq+p) = 1(q) for all g>gq (i.e., the Indices
used are cyclic), then all that has been said above holids, muta-

tis mutandis; the S.0.R. theory can be applied with a Grammian
constructed on the vectors ai(q)'ai(q+1)"..'ai(q+p-1), (in that
order), where the Grammian mignt be positive semidefinite 1f some
indices are repeated within a cycle, or if the a* used are not

linearly independent.

The study of when a cyclic order of indices will appear (in
an asymptotic sense) has not been done yet, except for a two-

dimensional linear system [9].
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5. EXAMPLES OF APPLICATION OF THE THEORY OF ACCELERATION OF
THE RELAXATION METHOD

1. A two-dimensional example was studied in (9] quite exten-
sively. Let a1 = (cos a, sin a)T, a2 = (cos a, =-sin a)T,
b1 = b2 = 0, and ae(0,n/4); a study of the relaxation method of

Agmon (2.2) applied to (al,x) +bl_:o, i=1,2, x€R® was done and
it is already quite messy. A short summary follows.

Let o‘ = 2/(1+sin 2a), then if oG(o‘,ZI finite convergence occurs
for any initial point; if 06(1,0‘], then infinite convergence
occurs along 2 (one-sided) asymptotes for all starting points in
an open angle, while finite convergence occurs for all other
starting points (except for the boundary of that open angle,

where unstable infinite convergence 1s theoretically possible).

If one deals with the system of equalities atx +pt = 0,

i1 =1,2, then if 06(1,0*], the results are essentially identical
(except for the finite convergence part). If one uses the Kacmarz
method for this system of equalities, and if.oE(1,o‘), identical
results can be shown. In the relaxation method applied to both
equalities or inequalities (for 06(1,0*]) one uses the constraints
one after the other (maybe after a few iterations in the case of
equalities; in the case of inequalities, this applies only if
convergence is not finite, and if so, the cyclic order starts at
the first iteration). And thus for 06(1,0‘], the convergence
theory 1s identical to that given by the S5.0.R. technique. We
should mention that o‘ is the optimal value of the relaxation

parameter, as predicted by the S.0.R. theory.

If oe(o‘,Z), then the S.0.R. theory shows a rate of conver-
gence of o-1 which is the modulus of the two complex eigenvalues
ot the operator R, as defined in section 4. If oe(o*,Z), then
the case of the relaxation method of Agmon applied to the equal-
ities has not been studied in a satisfactory manner: the indices
of the equalities are not used in any easily recognizable cycles,
and thus the whole theory of linear operators does not seem to
help. Experiments have been performed (and also with subgradient
optimization), but will be reported elsewhere. Improvements of

rates of convergence over the $.0.R, theory seem typical.
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2. Aan assignment problem will be studied in some detail.

It has been chosen, because we think that it is the hardest one
from the point of view of the relaxation method (note again that,
when we talk of relaxation method, it implies that we make the

‘ .
unrealistic assumption that £ 1s known).

This problem is defined by a cost matrix which is zero:

cij =90, i,3 = 1,...,n; we will denote this assignment problem
H
by An .
Clearly:
n n
£(x) = ] x, + ] min(-x.) (5.1
. ik - j
i=1 i=1 1
n
= E X. =-n max(x.) (5.2)
i=1 3 -

Note that these two expressions are not defined in terms of the

same set of linear pileces:

In the first case

f(x) = min «(a”,x) ]
i€l

i_n . . . i 1 . .
where a"€R" 1s any vector satisfying (al,e)=0, (al,ek) is an in-
teger (+ or -) less than one, <=1,...,n, (e is a vector of ones,

k . .
e 1s a vector with one in position k and zeros elsewhere).

In the second case

1 i .
where v - =e-ne”, 1=1,...,n.

The implications of tnis distinction are not earth-shaking,
but they may lead to distinct sequences; this is related to the
gquestion: when there is more than one subgradient, which one is
chosen? This depends on the exact way subproblems are formulated
and solved.
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The optimal set is P ={ae : o reall; notice that
(3f(x),e) =0, ¥xeR™ and thus with either the relaxation method
or subgradient optimization (x°,e) = (x3,e) = (x",e), where xm,
the point to which the sequence converges (if it does converge)
is given by:

x = lﬁ%fﬂl e.

To simplify the notation, we will assume that (xo,e) = 0,
and thus "the" optimal point is x‘ = 0. The whole seguence takes
place in the (n-1)-dimensional subspace S = {xer™ : (e,x) = 0};
and thus the problem (5.1) or (5.2) is effectively a problem in

(n-1) dimensions.
If x € S then f({x) = -n_ max X. 7 and thus
3f = {vi iff x. > x. W, i, ] = ey .
(x) i X Xy ¥y # 1 j n

It is possible to check that:

1. The extreme points of 3f(0) are vl, i

=1,...,n

2. (vi,v)) = -n if 1 # j
lvl‘z = n(n-1)

3. The solution of the n-1 equations (vl,x) = 0, )
i=1,2, j=1, j+1,...,n such that x€5 is given by va.
yo= 3 o= 1

4w = n-1

Proof *
L =1 = inf inf {u,x (x)-x)

x¢gP  u€esf (x) ,u\ﬁx*(x)-x\

The cosine function is quasiconcave (on the domain where it
is positive), and thus the inner infimum 1is attained at extreme
points of 3f(x). But for every x, every extreme point of 3f(x)

has norm n(n-1).
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i = = inf £ - fx)
*
x#P  \In(n-1) |x (x)-x|

n max x;
; L

%P | yn(n-1) : i

(the inf max is attained for (x; = ] X, = = Vn—;i,
'n(n-1) ]
A}
j#£1), 1 =1,...,n) Q.E.D.
5. The minimum u or I 1s attalned for
x = av) + Ke, ¥ > 0, YK, J = 1,...,n
-
6. VL d(x,P) < £ -fix}) - N¥n(n=1) d(x,P)
n-1 -~ -
the bound on tne right is tight 1f x = -iv) +Ke, ¥V > 0,
YK, j = 1,...,n and on the left if x = «v° +Ke, ¥x » 0,
YK, 3 =1,...,n.

Thus twne rate of convergence, as proved in [7] for the relaxaticn

L)
method is ‘/1—0(2—0)—1—2 , and the sustainable rate of conver-
tn=1)
gence [7], [21] for subgradient optimization is z(u) = 1—(%%T>2.

This 1s not very good. A better theory certainly exists.

We will try to show that improvements in the theory can
probably be made by using the comparison with the S.0.R. tech-

nigue, provided that all subgradients (except one) are used
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in a cyclical order. What we will do here is to exhibit a se-
. . H
quence generated by the relaxation method (2.2) applied to Ay

which is cyclical, and then indicate that this sequence is stable.

Let the initial point be:

2
o _ o _ __a o _ 2 __g i-p
X;=a , x5 = alp =gz » %3 = afe =T 7:17)...
n-2
o N n-2 _ a 1-p SN o__ o 1
Xp-1 = ale =T 15 (o= x, n-1 > 7-p
o) o) o o)
Note that Xy > Xy > .. > X0 g Xp
T o o
and that } x; = (x ,e) =0 . (We assume o # 1).
k:‘]
At the first iteration, the subgradient v1 = e--ne1 is chosen,
and the second iterate will be:
1 _ - 1 _ 1 _ _ G
x; = -(g-Na, x, =pa, x3=palp-z=g ...
n-3
T n-3 _ 3 1-p Voo 9 e
Xn-1 = ol n-1 " boeoxy n-1 P97 -
~-P
where
n-2 o 1—pn_2
-(g=1)a = pa o] —m? « (5.3)

x1 is simply px° with a shift of one down of all component
indices, except the n-th, (which remains last), and the 1-st
which becomes the (n-1)-st. Condition (5.3) simply expresses
the fact that the formula is consistent and that the sequence
will repeat itself ((5.3) 1is an equation between p and o).

Clearly,

(k)

x(k+1) oPx (5.4)
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where Phn =1
Pi,i-1 = 1 for 1 = 2,...,§—1
P1,n=1 !
pi,j =90 otherwise,
and also
x(k+n-1) - pn-1Pn-1x(k) - on-1x(k).

The subgradients are used in the cyclical sequence
1 .2 n-1 1 2 n-1

v o,V 0.,V VLV e,y PR

It can be checked that:

d(xq,P) = panno(Z 9) ———1
q 2
2. uf{x7) = u( v o

x- >0 ¥i=1,...,n-1 (5.5)

4. The vector (ﬁi, i=1,...,n-1) is an eigenvector of the
S.0.R. operator R = (I-ci)_1((1—o)I+oﬁ) where [ is the

Grammian constructed on (v1,...,vn‘1)/ n(n-1).

The operator R of the S.0.R. method has a characteristic

equation (in variable w) which is:

det[{w+ =1)I=30~=cuwk] = 0

w+a=-1 -9/(n=-1)...
or det = 0

-odw/ (n=-1) w+o-1
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which can be computed as

wlw+o=1+0/(a=1)""" _ (w+ws/(n=1) +0-1)""]

w = 1 w=1

(5.6)

This polynomial can be related to (5.3) which is obtained
by letting on-1=m and taking the (n-1)-th (real, positive) root
of (5.6):

0 = pn-1__n<3 (pn-z

+ .. +p) +O =1

p(pn-1 + (g=1) + 0/ (n=1)) -1 (pn'1 (1+a/n=1) + o= 1)
D -

(5.7

Every root p of (5.7) gives rise to a root of (5.6) given by
n-1

w=p . If (5.7) has (n~1) distinct roots oy such that
ui=oin_1 are distinct, then Wy i=1,...,n~1 are the (n-1) roots
of (5.6).

It is not too surprising that (5.3) is identical to (5.7).
In order that the sequence of points given by (5.2), (5.3), (5.4)

be observable in practice, the stability of that sequence must

be proved. Stability follows if two conditions are met:

Condition 5.1 The largest modulus root of (5.6), say w", must be
real, positive, unique and larger in modulus than all other roots
of (5.6) (the same statement holds mutatis mutandis for ot
(@H 1/ ™ V¢ a1l roots of (5.7) are distinct); the vector i°
given by (5.5) is the eigenvector of the operator R correspond-
ing to wt.
Condition §.2 For a neighbourhood of ﬁo (given by 5.5), one needs
that the same cyclic use of subgradients as given by (5.2), (5.3)
and (5.4) be preserved for all iterations. A sketch of the long
and uneventful proof follows (if one assumes all eigenvalues to
be distinct so that a full set of eigenvectors exists): let n°
= 7% +¢9, where 7° is given by (5.5) and ¢° is a linear combina-
tion of the eigenvectors of R (excluding 7% ; the equations ex-
pressing that at iteration k+£(n-1) (where 0 <k <n-1), the sub-
gradient to be used is vk, are linear inequalities in terms of
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variables which are the components (possibly complex) of ¢’ in

terms of the nondominating eigenvectors of R and are such that
the coefficients of the variables are proportional to the i-th
power of the corresponding eigenvalues (multiplied by constants
which depend only on k and R), while the constant term is pro-
portional (w+)1 (times constant which depend on k and R). Every
one of these inequalities for every k=0,...,n-1, 2=0,...,», each
of which contains zero, contains a neighbourhood of zero. Thus,
if €, belongs to some neighbourhood of zero, the indices are

used in the cyclical order 1,2,...,n-1,1,2,...,n=1 ... .

A proof of this second condition for stability would become
interesting if some useful characterization of these neighbour-

hoods of attraction into a given cyclical order could be given.

We will now move to experimentation on A?1. The number 11
was chosen because the routine (Jenkins-Traub) we had available
to us broke down for n rather small on the polynomials given
by (5.6) or (5.7).

L P

wi //

N compLex

L}
4 »: EXPERIMENTAL POINTS

Figure 2. Roots of (5.7) and experimental rates of convergence

of the relaxation method applied to A$1.
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For n=11, Figure 2 shows the modulus of the roots of (5.7) for
g€ [1,2]. It was checked that the 10-th power of these roots
are the roots of (5.6) because they are distinct (except at
isolated points, where, by continuity, it does not matter), and
in fact (5.6) was solved and it confirmed this (note: the rou-
tine we used broke down on (5.6) for values of ¢ above 1.7).
The roots of (5.7) are shown here because they represent what
has been called the rate of convergence of the relaxation
method (2.2), while the roots of (5.6) represent the rate of
convergence of cycles (n-1 iterations) of the S.0.R. method;
comparisons with experiments reported in other works can be

made.

It thus follows that we have shown that for ce (1, 1.43]
the rate of convergence of the relaxation of (2.2) applied to
A?1, as function of ¢, and for a set of initial points of di-
mension 11, is given by the graph of the largest root.

A similar graph could be drawn for any value of n. Experi-
ments and the theory of polynomials show that (for ge(1,2)):

1. (5.7) has either two, one double, or no positive real
roots.
2. (5.7) has one negative root if n is even.

3. The complex roots of (5.7) get to be extremely close in
modulus but not identical (except, of course, for the
conjugate pairs), as o increases from 1 to 2, while the
negative root (for n even) is always less in modulus
than the complex roots, but comes very close in modulus
when ¢ goes from 1 to 2.

4. The two complex roots which originate from the positive
real roots, when o increases, remain, in modulus,
significantly less than the other complex roots.

5. The largest modulus root of (5.7) has a modulus greater

O_1)1/(n-1)

than or equal to (this is classical in the

S.0.R. theory).

It should be noted that if o <1, then R is a positive
matrix, and thus the existence of a dominating positive real
root follows from the Perron (Froebinius) theorem.
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Experiments to verify all of this were made, and the ob-
served race of convergence as a function of 4 1s plotted
(Figure 2). For 3 €[1,1.43] the experiments confirm the theory
gulte exactly (if 5 € (0,1) the same would be true). wWhat experi-
ments also indicate is that, after a few initial iterations, n-=1
subgradients are used in a cycle (of order n-1); of course any
(n-1) subgradients could be used in any cycle of order n-1. In
this problem, cycling seems to be an attracting behaviour for
all starting points (if o <1.43), 1in that cycling occurs after

some iterations.

Note that the rate of convergence obtained for o=1.43 is

about .93, while the rate given by previous theories (for g=1)

is ¥ 1—ﬁ2 = YE%T: .995; and thus the theory of acceleration is a

significant improvement.

We should mention that this example 1s very particular: the
matrix R depends, in general, on the set of subgradients used 1in
a cycle, and on the ordering of the cycle; but in this case,
because of the fact that (vl,vj)=Constant 1f 1#¥3j, R does not
change. It would imply that, in general, a whole family of
matrices R (and of polynomials) would need to be studied; and
of course that the idea of one rate of convergence disappears
(there might be many). Figure 2 also clearly shows that if
s£(1.43,2), tne rate of convergence 1s guite different from the
modulus of the eigenvalues of R (in fact, the concept of rate of

convergence in this case nas not been exactly defined).

The whole set of n subgradients 1s used in a noncyclical
way, with no recognizable pattern. It also means that the theory
of linear operators does not seem to provide anv insights about
convergence theory (of course convergence takes place at a rate

of at most 1—0(2-J)u2, but this is a rate which ignores the

interactions between successive iterates). It also shows thnat
in this case, when noncycling behaviour occurs, an extra accel-
eration (beyond the acceleration jiven by the S.0.R. theory)

takes place. At this point it 1s guite unclear how this could

be studied theoretically.
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3. Almost all that was said in the previous section can be

interpreted in terms of the solution of the system of linear

. n
equalities (v x)=0, i=1,...,n-1 wnere xeS={xeR : 7 xj=0}. It
j=1

shows that for values of o below the optimal relaxation param-
eter (1.43), choosing indices according to the maximum residue
gives rise to the same rate of convergence as a cyclic choice
of indices.

Before ending this section, we would like to emphasize that
we have dealt with only a few examples, and that not all that
has been observed can be extended verbatim. A general theory

might not be unattainable but it seems to be exceedingly complex.

6. SUBGRADIENT OPTIMIZATION

In most optimization problems the optimal value of f* is
not known, and thus the relaxation method (2.2) is not implemen-
table. Part of the interest in it comes from the fact that the
two theories on rates of convergence (subgradient optimization
and relaxation method) appear to be related. Bounds on the rates
of convergence of the two methods were shown to be identical,
under some conditions, in [8]; those bounds did not account for

any acceleration properties.

No theory has yet been developed which would show the accel-
eration of subgradient optimization. So back to experimentation
on the example of section (5.2) (A$1).

Note that in the segquence of iterates given by (5.3), it is
(k+1)-x(k)|=-———2——— ook, and thus that if

Yn(n-1)

one started subgradient optimization from the point x

easy to see that |x

(0) yith

Aj:ﬁ a2 and o and p related by (5.3), then subgradient
n(n-

optimization could theoretically generate the same sequence of

points (5.4) as the relaxation method. This did not happen in

practice, because rounding errors made the sequence unstable.

What was observed in practice is that the sustainable rate

of convergence of subgradient optimization was around .92, even
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though the sequence of iterates used all n subgradients in a
pattern with no discernable regularity. With subgradient opti-
mization rates of convergence between .32 and .9 were sometimes
achieved, but it required that i Dbe chosen very carefully, as
convergence failed for high valués of ko as well as for lcw
values of Ao' This example (as well as TR 48) clearly 1lndicates
a relationship between the rates of convergence of subgradient
optimization and of the relaxation method; and thus that some

form of acceleration occurs in subgradient optimization.

7. CONCLUSIONS, CONJECTURES AND AREAS OF FUTURE RESEARCH

Subgradient optimization has worked well in practice on
quite a few problems generated from combinatorial problems. We
think that a complete explanation of this practical effective-

ness will require four parts.

Fart 1

The theory of acceleration of the classical S.0.R. theory
extends, sometimes, to the relaxation method for inequalities and
also to subgradient optimization. This is essentially what has
been done 1n this paper, tarough a mixture of theory, examples
and experiments. A general theory would need to add a few
layers of complexity to the S.0.R. theory (in cases where 1t 1s
not very complete, i.e., where matr:ces are positive derfilnite},
and, 1f the behaviour is noncyclical, then the S5.0.R. theory

does not seem to help.
Jart i

For some classes of combinatorial problems there are uni-

versal bounds on ¢ and .. For instance, we conjecture that for
1

anv assignment problem, u=u=H:T.

Tnis conjecture is a bilt misleading: the values of the
condition numbers close to the optimal set (uc and ic) could be
much above 1/(n-1). 1In this paper we showed that =, I, Ho of
ﬂc are not very accurate indicators of the rate of convergence;
SO we will also conjecture that the assignment problem Ai (for

whaich ._ = i.=1/(n-1)) will give the lowest rate of convergence
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for both the relaxation method and subgradient optimization, if

the acceleration phenomenon is taken into account.
Part 3

To every problem one could associate a rate of convergence
achievable by subgradient optimization. And thus we could make
probabilistic statements for the rates of convergence of sub-
gradient optimization if the data of a problem varies according

to certain probability distributions.

In fact every experiment with subgradient optimization
could be viewed as a simulation experiment designed to estimate
the probability distribution of the convergence rates. One
should point out, that the experiments reported in the published
literature are a very biased sample as it is a practice (some-

times unfortunate) not to report failed experiments.

For instance, problem Aga was studied as a few assignment
problems of this size have been studied by Held, Wolfe and
Crowder [12]. 1In [7]), it was shown that for A 48 (an assignment
problem studied also in [12]) the best rate of convergence was
.85. For Aﬁa, the roots of (5.7) were studied, even though the
routines for solving polynomials broke down. We found, by using
Rouché's theorem (of the theory of complex variables) that the
minimum value of p, subject to the conditions that it be the
strictly dominating real positive root of (5.7), was around
.9926 for a value of ¢ around 1.693. (Roucheé's theorem was used
to show that all roots of (5.7), except .9926, are in a complex
circle |z| < .9926-¢). Comparing .9926 to .85 seems to indicate
that "random™ assignment problems will give rise to rates of
convergence which are reasonably good, on the average.

Other classes of combinatorial problems should be studied;
in fact an assignment problem was chosen here, because it is
reasonably easy to study, and we should at least say that it
would be guite absurd to solve assignment problems by using
subgradient optimization.
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Part 4

We will also conjecture that the hardest problems from the
point of view of subgradient optimization not only have low
probability, but also are the easiest from a combinatorial point

of view.

For instance, Ag is trivial, and it 1s hard from the point
ot view of subgradient estimation. It should be possible to
relate H and ﬁc to the nature of the solution to the primal

assignment problem.

It also indicates why subgradient optimization works quite
well within a branch and bound framework [10]: subgradient
optimization seems to work better when the combinatorial nature

of the problem is hard.
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NUMERICAL EXPERIMENTS IN
NONSMOOTH OPTIMIZATION

Claude Lemaréchal
INRIA, France

1. INTRODUCTION

The aim of this paper is to show the behavior of various
methods for nonsmooth optimization, applied to various problems.
In Section 2 we present the methods, in Section 3 the problems

and the results. In Section 4 we draw some conclusions.

Notation. The function to be minimized (without constraints) is

£(x), x € R and we denote by (., .) {resp. |*|{) the scalar
product {(resp. the norm) in RN. The sequence of iterates gener-
ated by an algorithm is Xqrewor X and Gqeeenr 9 denote the

subgradients that it uses; objective values and subgradients
are computed simultaneously at each execution of a subprogram,
characteristic of each problem, but the same for each algorithm.
When no confusion is possible, we will denote by x the current
the same

iterate X and by x, the forthcoming iterate x

+ n+1’
notation g and g, will hold for the subgradients; i will index
iterations performed before the current one. The direction moved

from X will be d or dn, and the stepsize a or a .-

2. THE METHODS

The first two metnhods are heuristic, in that they are
supposed to be applicable only to differentiable objective
functions.

-5~
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2.1 BFGS. In this method the direction is 4 = -Hg and the next
iterate is

x+ = x - aHg ,
where H is the N x N quasi-Newton matrix computed by the
Broyden-Fletcher-Goldfarb-Shanno formula (Powell 1975). One
has H, = I, the identity matrix and setting y = 9, = 9

H, = H - (dy8 + Hyd)/(d,y) + [a + (y,Hy)/(d,y)]dd/(d,y)

where y denotes the transpose.
The stepsize a is computed as follows:

+ One starts from an initial quess a > 0. We take the one
suggested by Fletcher (Wolfe 1975): a = 2(fn - fn—1)/(g’ d),
i1.e., the stepsize that would minimize f along d, if f were
quadratic, and if its corresponding decrease were equal to the

decrease obtained at the previous iteration.

+ One tests if the stepsize meets a certain stopping
criterion, namely, if

-

(g7 d) > m(g, d) , and

1f < £ + d (h
B 2 msaf{g, d)

where 0 < m, < m, < 1 are preassigned coefficients (in fact

m, = 0.7, m, = 0.1).

» If a is not convenient, one performs a series of adjust-
ments until an a 1is found that satisfies (1). Noting that,
at a point x = X+ adn, (g(xn + adn)dn) is the derivative with
respect to a of the one dimensional function £ (xn + adn),
(1) means that the objective has sufficiently decreased, and
the derivative sufficiently increased, relative to the initial

slope (gn, d)) = (g, d).
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The way the adjustments are made 1s rather standard and not
significant encugh to be described here. Suffice it to say

that it is a safeguarded cubic interpoclation.

These characteristics make BFGS equivalent to the subroutine
VA13A of the Harwell Library. In nonsmooth optimization, such
a method is heuristic. 1In particular dn may be uphill. There-
fore, the only possible stopping criterion is the case of failure:
the algorithm i1s run until any positive a satisfying (1) cannot
be found. This event means that X i1s (very close to) a kink.
However, 1t i1s likely to occur only when X, is close to a

minimum, thanks to the fact that the line search is by no means

an attempt to minimize f along dq. This intuitive statement
is supported by numerical validation, which makes quasi-Newton
methods, well-known and easy to program, reasonable "faute de

mieux" for nonsmooth optimization.

2.2 SHOR. The second method is Shor's (1971) dilation of the
space along the difference of two successive gradients. Here

d is again of the form -Hg and

x = x+ ad/|d]

The matrix H is a product of orthogonal affinities alcng
9y " 9iq- We refer to (Shor and Shabashova 1972) for the
complete statement of the algorithm.

In this method there is no line-search, the stepsize is

computed off-line as a geometric sequence:
a = a,gqg ' 3 €10, [ ,

where the parameters a, and g have to be tuned. Unfortunately
we do not know any method to do it properly, so, in the present
study, we nad to do it empirically by running the algorithm with
several values of a, and g--for each problem--and taking the
combination that gives apparently the best results. Of course,

this 1s possible only when the optimal solution is known. There-

rore, we cannot really speak of an implementable algorithm.
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However, as with 2.1, numerical evidence will demonstrate
excellent behavior of this method.

The next methods are all based on the use of eg-subgradients.

2.3 EPSDES. In this method, which could be called method of
c¢~-descent (Lemaréchal 1974), the direction is computed by
orthogonal projection of the origin onto a set of subgradients,
and the line-search igs an approximate one-dimensional minimi-
zation.

If G = {gq,.--, gk} is a finite set in RN, we denote by
NrG the unique solution of

| 2
min 7|s| .

In EPSDES, a number € > 0 is managed along the iterations.
It is normally kept fixed, and it is divided by 10 when it is
recognized that X, (approximately) minimizes £ within €.

An iteration consists of finding a direction of t-descent

d i.e., such that there exists a > 0 satisfying

nl

£lx, + ad ) < E(x)) - e

and then x  is updated to X041 such that a decrease of ¢ is

obtained.

Constructing such a direction is itself a subalgorithm,

made of a series of line-searches along trial directions
1 k

dn,..., dn until the proper decrease is obtained. At X,
, 1 . .
having generated gn,..., gﬁ (one starts with g; = g, subgradient
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at xn) one computes

k
n

k 1 k kK _
s, = Nr (g ,---, gn} and dn = =g

Then a line-search is performed along dﬁ

-if a decrease by € is obtained, then the iteration is

finished, )
+if not, a new gi+1 is obtained, that is approximately a
subgradient at the minimum of £ along d%; g5'' is added

to G and a new direction d§+1 is computed.

0Of course, the line-search is possible only 1if si # 0.
Hence, a convergence parameter n » 0 1s used and the test

k,
Is,l < n

is checked. Tf it is met, one has the approximate optimality

condition

N

(2)
(this 1s true only 1s f is convex:; in the nonconvex case, the
method 1s heuristic}).

We refer to (Lemaréchal 1974) for an accurate statement

of the algorithm. We consider it rather special. It strongly
relies upon convexity and appears as extremely heavy. Only a
coarse experimental version has been programmed, and numerical
results will show that, although it is very reliable, the

convergence 15 usually very slow.

2.4 CHAINE. This method is essentially that of (Lemaréchal
1975), but with a line-search based on (Wolfe 1975). This line-

search is rather fundamental because it 1s a direct extension
of 2.1, and is identical for 2 .4, 2.3, and 2.6. Therefore we

expose it first. The only difference with (Wolfe 1975) is the

test for null step.
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At x,
m, = 0.2, m, = 0.1. Also a tolerance t¢' > 0 is given and one

are given the direction dn and the two coefficients
has on hand a number p < 0 that estimates f'(xn; dn)(normally
p = f'(xn, d) = (d., g,)). The aim of the line-search is to

produce a point y = x, + adn and a subgradient g at this point
such that:

(dp, 9) > myp (3)

and either

£(y) < £(x,)) + am,p , (&)
or
|f(xn) - £(y) + al(g, dn)l <e' . (5)
In cases (3), (4) a normal descent step is made from xn to
Kpe1g =Y = X + adn. It is a serious step (compare with (1)).

If Xn is (very close to) a kink, it may happen that
m,p < f'(xn, dn) and then (4) is impossible to obtain. Then a
(sufficiently small) stepsize is found satisfying (3), (5):
X0 is taken as X, only the new gradient is used for the
forthcoming iteration. It is a null step.

As for the direction, it is 4 = -NrG, where G = {g1,..., qn}

and is reinitialized when a certain test is met, namely

The convergence parameter ¢ is managed throughout the algorithm.
When the direction is computed, the parameters for the line-
search are p = - idnfz and ¢' = 0.1 ¢. The set G is reintial-

ized on two more occasions:

‘when |d| < n (see (2)). Then & is also divided by 10,

*when the number of subgradients to be stored exceeds a
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preassigned limit; this preventsthe algorithm from needing

an infinite amount of storage.

Note that this algorithm is apparently similar to 2.3.
However, there are two characteristics that make it fundamen-

tally different:

-the test for descent,
-the test for reinitializing G,
(in 2.3, G is reinitialized every time a descent is made).

2.5 DYNEPS. This algorithm was first presented in (Lemaréchal
1376). See also (Lemaréchal 1979). Its line-search is
identical to that of 2.4, and a convergence parameter £ 1is

also managed. The direction is computed in a slightly different

way than 2.3 and 2.4.

Call Y the point at which the subgradient 9; has been

computed (observe that y; = x. if the step a;_; was a serious

1
one; for each null step, y, = Xi_ ¢ ta; 4 4 # X0 foi i=1
Yy = x1). Then at each iteration define the numbers ay,
i=1,..., n as follows:
1
o= 0 and, forn=1,...,
Nt 1 _VO if a is a serious step ,
3 =
n+1 i , | . . .
[\f(xn) - f(yn+1) + a g e dn)\ if it is a null
step.

. . . . n
For each serious iteration n, update ay to

i 8 n+1) = f(xn) - (qn+1’ xn+1 - xn)[ ’

(note that this formula would leave q?unchanged 1f it were applied
at a null iteration). These formulae allow to define a? recur-
sively at each iteration. There is at least one 1 for which

1= 0 (it is the index of the last serious iteration performed
before the present one) and ag < ¢' (see (5)).
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If the absolute values were neglected, one would have

n = - -
o] = £(x) - £ly;) - (g

i’ D, Yl) '

which is the error made at xn when f is linearized at X . In
the convex case, these absolute values do not play any part.

Then the direction finding problem is now S, = NrG(e)

where

n
- _ - > n
Ge) = (g = i£1*191 /Dy =1y 20, [hop < oe)

More precisely, the algorithm is as follows:

X, 94 € 3f(x1) are given, together with the tolerances
€ >0, n>0, and the coefficients m, = 0.2, m, = 0.1. Set

T = 4o, n = 1, a, = 0. Choose some € in [g,E].

Step 1. Solve

.2 [ 2
min |} A9l
i=1

r

and let s = JA,g, be the solution. Also call u > 0 the multi-
plier of the last constraint.

step 2. If [s| > n then set d = -s and go to Step 3. Other-
wise if ¢ ¢ £ then stop. Otherwise take ¢ = max{g, 0.7¢) and
go to Step 1.

2.4 with p = =[]d_|% + ue)

N

Step 3. Apply the line-search of

and €' = 0.1¢.
Obtain y = X, o+ andn and = €3 f(y).

In cases (3), (4) go to Step 4. In case (3), (5) go to
Step 5.
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Step 4. (serious iterationj). Set Xopqp T Y, Ay = 0. Change
the ai's i =1,..., n; choose a new = € [E'E]' Set n = n + 1

and go to Step 1.

Step 5. (null iteration). Set x = X compute

n+l set

n+1’
n=n+ 1 and go to Step 1.

This algorithm is not totally defined because the choice
of ¢ at Step 4 is somewhat arbitrary. We have studied several

possibilities for this choice:

€ 1s not changed in Step 4 (thus the only occasion at {6}
which € is changed is in Step 2, when it is divided by 10Q)

m
]

e, = als|? (7)

m
[}

+ alls|® + uel (8)

€, = Af where Af > 0 is the decrease of f obtained during

the last serious iteration , (9)
2y = k[f(xn) - min f] where k is a fixed number in J0, 1]
(this last rule supposed that the optimal cost min f 1is
known; we have tested k = 0.1, k = 0.5 and k = 1) . (10)
2.6 BFEPS. Finally we have tested a rough version of the
algorithm presented in (Lemaréchal 1978). As in 2.%', a guasi-
Newton matrix H is updated at each serious iteration, by the
BFGS formula. Then d = -Hs where s = Z\igi is the solution of

(Pr;9;. HIA;9,) + [hja,

[T

As for the line-search, it is the same as 1n 2.4 except

. 1
that, instead of (35), the test for null step is a <ip
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3. THE TESTS

We now present application of these algorithms to the test
problems of (Lemaréchal and Mifflin eds. 1979). Since each
algorithm is applied to each test-problem, the study is compar-
ative. However, the results should not be considered as reliable
enough to allow for accurate comparative conclusions. The
reason is that the algorithms tested here are experimental, only
CHAINE being a polished product. Thus our presentation is more
an illustration of the behavior of various methods, than a
normative analysis of their respective performances. Only very
large differences (in speed of convergence for example) are

conclusive.
The speed of a method is characterized by two numbers:

. number of line-searchers (i.e. number of times a direction
is computed),

. number of computations of function-gradient.

We think that the second one is probably the most significant,
since nonsmooth optimization seems normally devoted to problems in
which function-gradient are expensive to compute.

We now review the problems and give the results.

10

3.1 MAXQUAD. In this problem, x € R and f is the maximum of

five convex quadratics:

5
f(x) = max (A, x, x) = (b,, x)
max By X

See Lemaréchal and Mifflin eds. 1979) for the definition of Ak

and bk'

Table 1 displays the results for methods 2.1 to 2.6. Each
line of the table corresponds to an iteration (line-search) and
gives, for each method, the cumulative number of times function-
gradient have computed, and the current value of the objective
function.

The parameters of 2.2 are a, = 10, g = 0.95. For method

2.5, the rule for € at Step 4 is (9). Other rules for the same
method are exhibited in Table 2, which reads as Table 1.
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3.2 SHELL. An example >f exact penalty is given with the second
problem of Colville, where all the constraints are eliminated by
an ¢, penalty. See (Lemaréchal and Mifflin eds. 1979) for the

preclse definition of the problem.
Method 2.2 uses the parameters a1 = 10, q = 0.97.

It turns out that, for the present problem, most methods
fail to converge to the solution (this bad behavior 1s apparently
due to nonconvexity). Therefore, it 1s meaningless to compare
speeds of convergence, so we rather compare robustness by recording,
for each method, the best objective value obtained when the method
stops. In order to have more illustrative results, we have made
two series of experiments, where, in the second series, function-

gradient are computed in double precision.

Table 3 shows, for each experiment, the number of line-
searches, the number of computations of function-gradient, and
the final objective value. Except for method 2.2, the behavior
1s very bad and double precision does not substantially improve

the situatilon.

It would be frustrating to limit this illustration of L1
penalty with such negative results, so0 Table & (which reads as
Table 1) shows the same xind of experiments on the first prcblem
of Colville (Shell primalj.

3.3 EQUIL. This 1s a set of 3 examples of computation of eco-
nomic equilibria. In terms of nonsmooth optimization they can

be written

N
© min  max fk\xx
k=1
11
! ‘Xj =1 ’ X: _’_O ’
- R . N
wnere N = 5, 3 and 10 respectively {and, as usual, x € R").

See (Lemaréchal and Mifflin eds. 1979) for the definition of fk'

The functions fk are defined only for x > 0 and tend to += if

£, by

a coordinate of x tends to 0. Therefore we extend each

e
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Wom=w<g

BFGS

SHOR

EPSDES

CHAINE

(6)
(N
(8)
(9

BFEPS

nb. nb.

iter. obj.
43 137
199 199
980 3562
244 979
63 224
111 463

56 246
85 337

56 187

86 307

78 251

38 112

final
obj.val.

65.7

32.6

32.7

33.8

36.7
34.7
35.1

49,7

SIMPLE precision

nb.

iter.

38

365

747

193

92
69
105
73

103
42
113

nb.
obj.

104

365

3001

329
306
376
271

404
161
370

34

final
obj.val.

84.3

32.4

32.5

33.9

34.4

37.2

33.2
34.4
34.1

1648

DOUBLE precision

Table 3.-

SHELL DUAL

Comparative tests
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+o outside the feasible domain. Furthermore, we do not really
consider f, but rather its restriction to the manifold ij =1

(the gradient of such a restricted function is the projection

of the original gradient onto the subspace Zgj = 0=--see (Lemaréchal
and Mifflin eds. 1979)). As a result the minimax problem is
uncongtrained and methods 2.1-2.6 are applied as they stand.

For method 2.2, the paramenters are a, = % and q = 0.95.

In addition to 2.5, we have tested a variant, which we call
ECONEW, similar to DYNEPS except that the set G(e) is larger:
to the vectors Jqree-v 9y that are subgradients of f at Yqreeor Yoo

n
one appends the vectors

S ek ka(xn) , with the coefficients

o = f(xn) - fk(x ) .

n+k n

This makes dn similar to the direction of the Newton method,
when applied to the minimax problem (11). It so happens that
(11) is a Haar problem soO that the .Newton method has a super-
linear rate of convergence (and so should have ECONEW).

Table 5 shows the result, for the 3 problems. For each
method it displays the number of line-searches, of computations
of function-gradient, and the final value of the max-function f.
Figure 1 illustrates the relative behavior of DYNEPS and ECONEW
on the third problem (N = 10), with € in Step 4 given by (6).

It exhibits the better asymptotic behavior of ECONEW.

3.4 TRU43. This is the dual of a transportation problem in R48

and the function to be minimized is
3? 48
f(x) = s.Xx, +d, max (a.. = x.) .
PRI i =1 ij j
It is a piecewise linear function, with a very large number
of linear pieces. The optimum value is =-638565 but, working in
single precision, one should be satisfied with objective values
around -638500.
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BFGS 1A 63 .66 16 68 4 33 103 .9

S HOR 34 34 .007 40 40 .006 51 51 .06

CPSDES 47 238 .000 82 395 000 143 518 .000

CHALINE 28 72 .000 44 35 . 000 8% 192 . 000

(6) 11 42 .019 17 43 .008 25 61 .09

0 1t 37 .001 l4 44 .001 12 28 .01l
Y

N ) L4 40 .008 16 40 .007 26 69 .08

E 12 31 .011 16 39 .006 22 52 .004
P

5 (8) 12 39 .008 17 43 .003 28 60 .08

) 13 Ja L0l 17 43 .004 19 S4 .001

¢ (9) 13 39 .009 18 52 .007 26 56 A

E ’ 3 7 L001 17 43 .006 2 42 .04

g 0 16 58 .000 19 54 .003 30 74 .082

N 1h 41 .000 21 55 015 2 68 .082

E 0.5 13 52 .007 16 4 .008 27 66 .09

W : 11 3o .02 18 59 .001 18 47 .05

) 14 L2 .002 17 42 .008 26 [ .09

v Ly 37 .I3 19 46 .000 23 59 .000

BFEPS 14 83 .7 10 52 .6 10 4l 3.
nb. nb. final nb. nb. final nb. nb. final
! 1ter. by obi.val. 1ter. obj. obj.val. Lter. obj. oby.val.
il
543 8 X5 10 X
Table 5.- EQUIL Comparative tests
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For method 2.2, the parameters are a, = 1000, g = 0.985.
Table 6 (which reads as Table 3) shows the results, and demon-
strates the excellent behavior of method 2.2. Method 2.3 was
so slow that we could not consider that it converged in a reason-

able amount of CPU time.
3.5 HILBERT. Finally, for curiosity, we have tested these
algorithms on an ill-conditioned quadratic function:

EG0) = (x, Ax) - (b, x) , x € RO

. 1 .
where A 1s the Hilbert matrix aij s 1T and b 1s such that
the solution is (1,..., 1).

From properties of Hilbert matrices (reasonable norm but
small coercivity constant) it 1s easy to identify the optimal
cost, but impossible to obtain the optimal solution up to a
reasonable precision. Therefore we measure the quality of a
solution x, not by its cost f(x), but by its deviation from the
optimum: 2.

Since the objective function is differentiable, we have
tested--in addition to algorithms of ;2--two versions of the
conjugate gradient methed, namely the subroutines VAO8A and
VA1U4A of the Harwell library.

Table 7 shows, for each method, the number of line searches,
of computations of function-gradient, and the final deviation
from the optimal solution. A note (°) indicates that the method
has stopped through roundoff errors in the line-~search; other-

wlse the stopping criterion has normally worked.

It has been practically impossible to implement method 2.2
because, in this example, we could not really know which criterion

o use for adjusting parameters a., and g.

1
The results are jenerally modest (the contrary would nave

been a big surprise) but 1t is astonishing to see that the most
preclse algorithm Zor estimating the optimal solution is 2.3,

whereas this algorithm is devised to estimate the optimal cost.
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nb. nb. final
iter. obj. obj.val.
BFGS 289 414 -638 346
S HOR 285 285 =638 563
EPSDES LJ =
CHAINE 415 629 -638 057
(6) 244 368 -638 203
N 332 627 -638 328
D
v (8) 325 643 -638 536
N
£ (9) 400 748 -638 308
P
g 0.1 209 398 -638 308
0.5 207 422 -638 521
1. 139 227 -638 475
BFEPS 167 257 -638 330
Table 6.~ TR48 Comparative tests
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nb. nb. final

iter. obj. obj.val.

BFGS 8 16 .098 (%)

VAQBA 5 15 .100 (B

VAl4A ] 20 L0909 (N
SHOR 100 100 .139
EPSDES 70 276 .004
CHAINE 16 35 .013

(6) 15 38 010 (M)

®)) 15 35 L0546 (1)
(8) 15 31 .018

(9) 13 32 078 (Y
0.1 20 38 .013

0.5 11 29 L091 (Y

1. 14 31 034 (Y
BFEPS 11 21 .018

Taole 7.- HILBERT Comparative tests
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4. CONCLUSION

The aim of this paper was first to demonstrate the validity
of some recently proposed algorithms for nonsmooth optimization.
We think that the variety of experiments (although they are purely
academic) shows that these algorithms do behave consistently,
even if their convergence is not always very fast. Failures
have been recorded only in one instance (Shell dual) but some
improvements of e-subgradient methods are under study to better
cope with nonconvexity, and more satisfactory results have already
been obtained.

We have also exhibited the fact that it can be good prac-
tice to use a guasi-Newton method in nonsmooth optimization
The convergence is rather rapid, and often a reasonably good
approximation of the optimum is found; this, in our opinion,
is essentially due to the fact that inaccurate line-searches
are made. Of course, there is no theoretical possibility to
prove convergence to the right point (in fact counterexamples
exist) neither are there any means to assess the results.

In terms of rapidity of convergence, Shor's dilatation of
the space along the difference of two successive gradients is
an excellent method. However, it must be recalled that the
question of stepsize is not yet solved, and this prevents the
method from being really implementable.

Finally it is rather amusing to compare the results on
problems 3.4 and 3.5. Since 3.4 is piecewise linear, one should
expect better results with methods 2.4 to 2.5 (which are based
on piecewise linear approximations). On the other hand, problem
3.5 being quadratic, it is with methods 2.1 and 2.2 (which are
based on guadratic approximations) that better results should
be expected. Table 6 and 7 show that it is the contrary that
happens, and this raises the guestion: 1is there a well-defined
frontier between quadratic and piecewise linear functions, or

more generally, between smooth and nonsmooth functions?
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APPENDIX: Experiments with the ellipsoid algorithm.

Because an exceptional attention has been recently given to
Shor's method of dilation of the space along the gradient (the
so-called ellipsoid algorithm, popularized by Khachyian) we have
also programmed this method, as described in:

N.Z. Shor : Cut-off method with space extension in

convex programming problems, Cybernetics 1
(1977) 94-96.

In this method, a parameter R must be given, which estimates
the distance from the initial iterate x, to the optimal solution

X*. Because x* is known in each of the present examples, we just
set R = [x, -x* .

Table 3 shows the results by this method, with the 7 test-
problems described in Section 3.

Table 8. Experiments with the ellipsoid algorithm.

Number of calculations Final value of
of function-gradient cbjective function
{1
MAXQUAD 1383 -.8414
(2)
SHELL DUAL 4399 32.35
EQUIL 5 X 3 160 0.03
EQUIL 3 X 5 398 0.03
EQUIL 10 X 5 T4 0.09
TR 48 331 -631000.(3)
4
HILBERT 241 0.003( )
(1) Value after 500 calculations : ~-.82
(2) Value after 1000 calulations : B3

(3) Starts diverging after that iteration

(4) Final value of ixn -x*\z.
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CONVERGENCE OF A MODIFICATION OF LEMARECHAL'S
ALGORITHM FOR NONSMOOTH OPTIMIZATION*

Robert Mifflin

Department of Pure and Applied Mathematics
Washington State University

Pullman, Washington

Usa

1. INTRODUCTION

We consider the problem of minimizing a locally Lipschitz
continuous function f on R®.  wWe give a modification of an al-
gorithm due to Lemarechal [2] and show convergence to a station-
ary point of £ if f also satisfies a weak "semismoothness" [3,4]
hypothesis that is most likely satisfied by continuous functions
arising in practical problems. The method combines a general-
ized cutting plane idea with quadratic approximation of a La-
grangian. Even for the case of a convex f, as considered in [2],
this version differs from the original method, because of its
rules for line search termination and the associated updating of
the search direction finding subproblem. More specifically, our
version does not require a user-specified uniform lower bound on

the line search stepsizes.

A point xeRT is stationary if 0€3f (X) where 3f is the gen-
eralized gradient (1] of £, i.e., 3f(x) is the convex hull of

all limits of sequences of the form {Vf(xk) :{xk}-'x and £ 1is

£
This material is based upon work supported by the National
Science Foundation under Grant No. MCS 78-06716.

-35-
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differentiable at each x,}. Important properties of the mapping

3f(+) are uppersemicontiﬁuity and local boundedness. If f is
convex (concave), 3f equals the subdifferential (superdifferen-
tial) of £ or if f is continuously differentiable (C1) 3f equals
the (ordinary) gradient {Vf}. It is possible to determine 3f or
at least to give one element of 3f(x) at each x for many other

L func-

functions f such as those that are pieced together from C
tions (for example, via maximization and/or minimization opera-
tions occurring in decomposition, relaxation, duality and/or

exact penalty approaches to solving optimization problems).

In order to implement the algorithm we suppose that we have
a subroutine that can evaluate a function g(x)e€3f(x) for each
x€R™. Of course, we are especially interested in the case where
g is discontinuous at stationary points of f£. Associated with £

(and g) let a :RHXRn<'R+ be a nonnegative-valued function

satisfying
a(x,y) =0 if x »x and y ~ X, (1a)
alz,y) ~a(x,y) =0 if x +x, z+§amiy+§, (1b)
and
geaf(x) if x+x, y~+y, gly)+g and a(x,y) 0.  (1c)

a(x,y) 1is intended to be an indication of how much g(y)e&3f(y)
deviates from being a generalized gradient at x. If f is con-

vex we take

a(x,y) = £(x) - [£{y) +<gly), x-y>],

which measures the deviation from linearity of f between y and
x. For a nonconvex f a possibility 1s to take a{x,y) to be some
"distance" between x and y, in which case property (1c) follows

from the uppersemicontinuity of 3f.
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2. THE ALGORITHM

Given a positive integer k, n-vectors X, g(xk), Yy and

g(yi) for i=1,2,...,k and a positive definite nxn matrix Ak
solve for (d,v) =(dk,vk)eRn+1 the kth quadratic programming sub-
problem:

minimize 1/2(d,Akd> +v

N
<

subject to <g(x.),d> g

—m(xk,yi) +<g(yi),d> < v fori=1,2,...,k.

If Ve T 0 stop.

Otherwise (vk <0 and dk # 0) perform a line search from Xy
along dk to find (if possible) two (possibly the same) stepsizes
t. 2 0 and t

L R
yR=xk-+thk, such that

> 0 and two corresponding points, X =Xy +tLdk and

£(xp) < E(x) +m e vy (2a)

and

-a(xL,yR) +<g(yR) ,dk> 2 mpvy . (2b)

wnere my and m, are fixed parameters satisfying 0 < my < mp < 1.

If the line search 1is successful repeat the above procedure with
the x+15t subproblem defined by setting

Xpp1 = X and vy g = Yoo
replacing in the subproblem constraints

g(xk) by g(xL) and a(xk,yL) by a(xL,yi)

for 1 = 1,2,...,k,

appending the constraint

_u(xk+1’yk+1) +<g(yk+1),d> =V
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and replacing Al by a positive definite matrix Ayre

3. REMARKS ON THE ALGORITHM

For the starting point X, we may set y,=x,. If this is the
case the a(x1,y1) =0 and g(x1)=g(y1) so that the two starting
constraints are the same. In general it may be the case that
X =Yy for some ie{1,2,...,k}. In this case the first constraint
may be disregarded during subproblem solution, because it is
included among the other constraints.

Elsewhere we will report on how to extend the numerically
stable constrained least squares algorithm in {5] for solving
more general quadratic programming problems. This will result
in a reliable method for solving the dual of the subproblem
given here.

The scalar V) can be interpreted as an approximation to the

directional derivative of f at Xy in the direction dk' By con-
vex quadratic programming duality theory, as in (2],
k
v = -<d, A4 > - i£1xiku(xk,yi) (3a)
and
k
A dy = =Agg(xy) —iz1xikg(yi) (3b)
where 4, >0 for i1=0,1,...,k are dual variables (multipliers)

associated with the kth subproblem such that

k
Yoa,L o= 1. (3c)
i=o I

By the first subproblem constraint, the Cauchy-Schwarz inequal-
ity, {(3a), the nonnegativity of kik and a and the positive
definiteness of Ak we have

slgtx) | la ! < “gix), 4 > < v < -<d A d > < 0. (4)
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Therefore 1if Vi # 0 then vy < 0 and dk # 0 and, hence, the line
search may be initiated.

Let v, > 0 be the smallest eigenvalue of a. Then from (4)

2 : 2

“lgx ) [/ £ v & v da ] <0 (5)
and we have the following:
Lemma 1. If v = 0 then X is stationary.
2roof. If Ve = 0 then, from (5), dk = 0 and, by (3),

K

L Aoyl =0 (6a)

1=1
and

k

Ao d (%)) + l£1>\ikg(yi) = 0. (6D}

The nonnegativity of Xik and a« and (6a) imply that a(xk,yi) =0

for each i such that Xik > Q0. Thus, by property (ic), g(yi) is
an element of the convex set af(xk) for each i such that

Yk > 0. Now, stationarity of Xy follows from (6b) and (3¢).

Relative to Vi and dk the line search termination crite-
rion (2a) guarantees sufficient function value decrease, while
(2b) along with the definition of a provides sufficient (approx-
imate) directional derivative increase. More specifically,
because Mo < 1, (2b) causes (dk’vk) to be infeasible in sub~
problem k+1. If f is weakl, uppersemismooth (see Appendix)
then, because of (la) and the parameter inequality m. < m

L R’
simple search procedure, suzh as in [3], can be designed to find

a

tL and tR or to generate an increasing sequence {tz} such that

{f(xk+tldk)} ==, In order to deal effectively with regions on

which £ is smooth it is recommended that m < /2.

Note that due to nondifferentiability of f it is possible

that tL=O, SO X =X, and the first constraint is not changed.

k+1 Tk
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But in this case, since tr ? a9, Yi+1 # Xp,qr SO the appended
constraint is clearly different from the first constraint and
its inclusion improves our approximate knowledge of af(xk). In
fact, this difference holds in general when tL # tR and this is
what detects and deals with discontinuities of g.

We do not discuss the important question of updating Ay
here. We conjecture that Ak should be chosen to converge to the
Hessian of some Lagrangian associated with the limiting optimal
multipliers of the subproblems. This is the subject of ongoing
research where we are developing tests to identify iteration
indices k where we may simultaneously make a variable metric

update of Ay and reduce or aggregate the constraint bundle.

4. CONVERGENCE

In this section we establish three lemmas that prove
part (a) of the following convergence theorem. Part (b) follows
from part (a), because a stationary point for a semiconvex func-
tion (see Appendix) is a minimizing point [4] and because every
accumulation point of {xk} has the same f-value due to the mono-
tonicity of {f(xk)}.

Theorem. Suppose {xk}, {yk} and {Ak} are uniformly bounded with
{A)} uniformly positive definite. Then

(a) at least one of the accumulation points of {xk} is
stationary and

(b) if f is semiconvex on R", every accumulation point of
{xk} minimizes £.

Aemark. If (x: £(x) < f(x1)} is bounded then {xk} is bounded
and (yk} can be made bounded by choosing an additicnal parameter

8 > 0 and imposing the additional line search requirement that
I¥g =%yl = (tp=tp)ld i 2 8. (N
For weakly uppersemismooth functions it is possible to simulta-

neously satisfy (2) and (7) after a finite number of line search

steps.
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Consider the following assumption that is trivially satis-

fied if the matrix sequence {Ak} is uniformly positive definite:

If {dk} has no zero accumulation point then
(8)

(Yk} nas no zero accumulation point.

Lemma 2. Suppose (3) holds and (xk} and {yk} are uniformly bounded.
Then (dk} has at least one zero accumulation point.

Proof.
exists a positive number §

Suppose for purposes

of a proof by contradiction that there
such that

id | 28 > 0 for all k.
Tnen, by (8), there exists a positive number y such that

Yi 2y > 0 for all k
and, by (5)

'Ig(xk)iz/Y SV Sotvoidy oo —yéz < 0. (9)
Thus, since {xk} 1s assumed bounded and 3f(-+) is locally bounded,

{g(xk)} and, hence, {vk} and {dk} are bounded.

Let v and d be

accumulation points of {vk} and (dk}, respectively. Then,
by (9)
v S o=ysT <0 (10)
By (2a) and (9),
Elxp) = 5(x) sme v, - —mLtLy‘S\dki
or, since xk+1=xL=xk+tLdk’
£ix, ) - f(x) < -mLydka+1-xkj. (1
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For any p > k+1, (11) and the triangle inequality imply

p=1
Elxg) = £(xy 4] = j£k+1f(xj+1) - flxy) £ -mpys
p=1
O P e LR AR L Y

As f is continuous and {xk} is assumed bounded, the monotone

nonincreasing segquence {f(xk)} is bounded from below and, hence,

{\xp—xk+1}} -0

These facts together with property (1b) and the assumed bounded-
ness of {yk} imply that

(a(xk+1,yk+1) -a(xp,yk+1)} -0 . (12)

Also, for any p 2 k+1 we have, by the pth subproblem feasi-
bility, that

—a(xp,yk+1) +<q(yk+1),d > 2 v

P P

and, by (2b) with X=Xy and YR Y1 that

-a(xk+1,yk+1) +<g(yk+1)’dk> 2 mpvy
Subtracting the latter from the former inequality gives

G Xy 17 Yieqq) T 0K ¥y q) + <G lyy, ) dpmdy>

S VTmRYy (13)

Now choose p and k in K, as infinite set of integers where

(dk}kex'*a and {vk}kEK”;’ so that from (12), (13) and the

boundedness of (g(yk+1)} we have
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0 < v-mRv= (1-mR)v

Since m_ < 1, this implies that v > 0, which contradicts (10)

and completes the proof.

Lemma 3. Suppose that K is such that {(d .} . | 0, P dtex 0

- 1 -
and {<g(xk),dk>}kEK 0. Then {Vk‘kEK 0,
k

U8 Agpea(xryy) dyeyg = 0

i=1
and

k

hoga i) # 1 A3pa 3] Iy = O
where the Aik > 0 satisfy (3).
Proof. The conclusions follow from the hypotheses (4), (3a)

and (3b}.

Lemma 4. In addition to the hypotheses of Lemma 3, suppose that

{ b i X .
{xkjkex and ly beegg are uniformly bounded and let x be any
accumulation {xk’kex

Then x is stationary.

#roof. As in the proof of Thm. 5.2 in [3], depending on the
local boundedness and uppersemicontinuity of 3f and the proper-
ties of convex combinations, Lemma 3 implies the existence of a

positive integer m ¢ n+1, an infinite subset JCKX and convergent

Subsequences
N a2 0 n = i i,
{(xk,g(xk));keJ (x,g )ER" x 3f (x), {(yk,g(yk))}kEJ
~ (yr.ghrer x af(yh
for i=1,2,...,m and (u;kkeJ‘*ul > 0 for 1=0,1,...,m
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such that

m . .
Z ulql = 0 ,
i=0

and for i=1,2,...,m
i . od '
{a(xk,yk)}keJ + 0 if uy= > 0 .

Now, stationarity of x follows from property (1c) as in the
proof of Lemma 1.

5. EXTENSION TO CONSTRAINED PROBLEMS

Finally, we remark that using ideas in (3], the algorithm
can be extended to become a feasible point method for dealing

with constrained optimization problems involving semismooth
functions.

6. APPENDIX

A function f : R" +R is weakly uppersemismooth ([3] at
xer" if

(a) f is Lipschitz continuous on a ball about x.
(b) for each deR" and for any sequences {tk}CR+ and
{g, }CR" such that (£,} +0 and g & (x+t,d) it follows

that lim inf <g ,d> 2 lim sup [f(x+td) - £(x)]/¢t
k+o t+0

It can be shown that the right-hand side of the above inequality
is in fact equal to

£ (x;d) = lim[f(x+td) - f(x)1/t ,
t+0

the directional derivative of f at x in the direction d.
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The class of weakly uppersemismooth functions strictly
contains the class of semismooth [4] functions. This latter
class is closed under composition and contains convex, concave,
C1 and many other locally Lipschitz functions such as ones that

result from piecing together C1 functions.
A function f : R® +R is semiconvex [4] at xer® if

(a) f is Lipschitz continuous on a ball about x;
and for each derR®, £ (x' d) exists and satisfies

(b) £ (x;d)= max(<qg,d> : g€3f (x) ]

(c) f£'(x;d) 2 0 implies f(x+d) _ f({x).

An example of a nondifferentiable nonconvex function that

is both semismooth and semiconvex is log (1+|x|) for xe€R.
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SUBGRADIENT METHOD FOR MINIMIZING WEAKLY CONVEX
FUNCTIONS AND =-SUBGRADIENT METHODS OF CONVEX
OPTIMIZATION

E.A. Nurminski
International Institute for Applied Systems Analysis
Laxenburg, Austria

1. INTRODUCTION

Optimization methods are very important in systems analysis.
Not all systems analysis problems are optimization problems, of
course, but in any systems problem optimization methods are im-
portant and useful tools. The power of these methods and their
ability to handle different problems makes it possible to analyze
and construct very complicated systems. Economic planning, for
instance, would be greatly limited without the use of linear

programming (LP) techniques.

However, linear programming is not the only method of opti-
mization. Problems including factors such as uncertainty, only
partial knowledge of the system, and conflicting goals require
more sophisticated methods for their solution--methods such as

nondifferentiable optimization.

This paper considers the common situation which arises when
tne outcomes of particular decisions cannot be estimated without
solving a difficult auxiliary problem. The solution of this aux-
iliary problem can be very time-consuming and may limit the
analysis of different decisions in the original problem. This
paper develops methods of optimal decision making which avoid
the direct comparison of decisions and which use only information

which 1is readily accessible from a computational point of view.

-§7~
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2. THE PROBLEM

This paper deals with the finite-dimensional unconditional

extremum problem

min £(x)

x€ED (1)

where the objective function has no continuous derivatives with
respect to the variable x= (X;,...,X_}. Various methods were
discussed and suggested in relevant literature to solve problem
(1) with many types of non-differentiable objective functions.
The bibliography published in [1] gives a fairly good notion of
these works. It should be emphasized that the nondifferenti-
apility of the objective function in problem (1) is, as a rule,
due to complexity of the function's structure. A representative
example is minimax problems where the objective function f(x)

is a result of maximization of some function g(x,y) with respect
to variables y:

f(x) = max gl(x,y)

yEY (2)

In this case even a simple computation of the value of f
at some fixed point may be quite a time-consuming task which
requires, strictly speaking, an infinite number of operations.
wWith this in mind, it seems to be interesting from the stand-
point of theory and practice to investigate the feasibility of
solution of problem (1) with an approximate computation of the
function f(x) and of its subgradients (if the latter are deter-
mined for a given type of nondifferentiability). To the best of
our understanding, € - subgradients of functions of the form (2),
introduced by R.T. Rockafellar {[2], are quite convenient for
constructing numerical methods, and so we offer here some

results generalizing efforts in this direction [3-5].
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3. WEAKLY CONVEX FUNCTIONS

The discussion of a class of the non-differentiable func-
tions broader than the convex functions enables us to gain sub-
stantially in generality at the expense of a minor increase in
complexity. Properties of the class which will be treated
are described by the following definition [6]:

Definition The continuous function f(x) is called the
weakly convex function if for each x there exists at least one

vector g such that

£(y) > £(x) + (g,y-%x) + rix,y) (3)

for all y, and the residual term r(x,y) satisfies the condition
of uniform smallness with respect to Ix~yl in each compact sub-
set of En, i.e., in any compact set K ZEP for any e > 0 there
exists 6, >0 such that for Ix-yh <35, x,yek

e (x,y) [Ix=yd ™ < e

Notice that nc constraints are imposed on the sign of the
residual term r(x,y). Furthermore, strengthening (3) it is pos-
sible to add to r(x,y) any expression of the form ¢(lx - yl),

where

2(8) <0 ., st a0 for t— 40

The term weakly convex functions is suggested by analogy
to the strongly convex functions studied by B.T. Polyak [7].

We will call the vector g, satisfying (3), the subgradient
of the function fix) and will denote a set of subgradients at
the point x by 3f(x).

We will now describe some simple properties of weakly

convex functions and of their subgradients.
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Lemma 1. With respect to x, 3f(x)is a convex, closed, bounded
anJ upper semicontinuous multivalued mapping.

The proof of these properties presents no special problems.

Lemma 2. Let f(x,a) be continuous with respect to a and
weakly convex with respect to x for each a belonging to the
compact topological space A. That is,

fly,a) -~ £ix,a) > (ga,y-x)+ ra(x,y) (4)

for all y, and here ru(x,y) satisfies the condition of uniform
smallness uniformally with respect to a €A. Then

f(x) = max £(x,a)
aEA (5)

is a weakly convex function.
The proof is rather simple.

Let
A(x) = {a: f(x,a) =£(x)}
Then, considering (4) for a €A(x), we obtain

£(y) - £(x) > f(y,a) - £(x,a) >

|v

(ga, y=-x) + ra(x,y) >

|v

(g ry=x) + rix,y)

where

-T(x,y) = sup |rg(x,y)]
ae Al

It is easily seen that r(x,y) satisfies necessary conditions of
uniform smallness and the lemma is proved.
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The proof of Lemma 2 helps in understanding the procedure of
calculation of subgradients of the weakly convex functions.
Specifically, for functions of the form (5) the vector
gaéfca(x),a<EA(x) is the subgradient of the function f(x) at
the point x. It follows from Lemma 1 that an arbitrary vector

gEcdngEAMH = G(x)

is also the subgradient.
The finding of even one element of the set G(x) may be a

non-trivial problem and, ignoring efforts spent to calculate for
the fixed a the subgradient 9, € afa(x), it can be said that prob-
lems of computing f(x) and of its subgradient g &€ 3f(x) are equal
in complexity.

In establishing necessary extremum conditions for weakly
convex functions of great importance is the existence of direc-
tional derivatives and a formula f{or their computation in terms

of subgradients.

Lemma 3. The weakly convex function f(x) is directionally

differentiable and

3§(X) = lim fix+he) ~£(x) _ pay (g,e)
e h
h=+0 g€ 3f(x)
Proof. Let
y(h) = f(x+he) - £(x)

It is easily seen that $(h) as a function of h is weakly
convex. Denote the set of subgradients of ¢(h) by 39 (h). Assume

the contrary of what the lemma asserts:




-102-

and let {rk} = 1 and {ck} = o be sequences of values of h such
that

9{t,)
1im L
T
ko K
#(0,)
lim =a t
k= = ck

Furthermore, we have:

, 1 (6)
ptrk) <9 Tt 0 (Tk)
where
ec?in,), otrtt =9 for ko=, T, -
Ik Tk’ k' 'k T~ * T TH0
Without loss of generality it may be assumed that
lim g; = gT
k->=»
Dividing (6) by Ty and passing to the limit for k »«o we
obtain
T -
g > a
By virtue of Lemma 1 gr € 36(0) , therefore
$(o) > gfo, = 0(gy) &

Diwviding (7) by Ik and passing to the limit when k-« we
have a contradiction that proves the differentiability in any
direction. By virtue of the weak convexity of £ it is easy to
obtain

> max (g,e)
Je g&df
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Now let
k

X =X+tke, tk—o+l)' K & o

and
k
9 €3E(x7), g~ € (x)
Then
k k k
£(x) - £(x7) > (gyr X=x7) + r(x ,x)

The division of the above inequality Dby tk and the pass to the
limit when k—+ » vyield:

< (g,e) < max (g,a)
se gesf

and thus the proof is completed.

Lemma 3 implies that the necessary condition for the point

be extremal is

0 € 3f (x*) (8)

however, unlike the case with the corvex function, this condition

is i1nsufficient.

Local properties of the weakly convex functions do not
differ from those of the convex functions but their global pre-
perties are radically dissimilar. Specifically, the weakly con-
vex functions lack the salient feature of subgradients that
enables us to prove the convergence of subgradient method, i.e.,
the positivity of scalar product of an arbitrary subgradient at
some point X in the direction from tihe extremum point x*;

(g, x—x*) > 0 (9)

for an arbitrary ge 5f

This and the fact that a shift in the direction of the

antigradient does not assure a decrease in value of a function
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being optimized both for the weakly convex and convex functions,
complicate tangibly the proof of the subgradient method convergence.

Difficulties that present themselves in proving the conver-
gence of non-relaxation algorithms are of common knowledge. How-
ever, in a number of cases they pay, opening new possibilities.
In the following chapter we will describe certain criteria of
convergence of iterative algorithms which made it possible to
prove convergence of a number of algorithms whose behaviour is

substantially non-monotonic.

4, CONVERGENCE OF ITERATIVE METHODS OF NON-LINEAR PROGRAMMING

General conditions of convergence of iterative procedures
received attention of a lot of researchers. The most fundamental
results appear to belong to W.I. Zangwill who suggested necessary
and sufficient conditions of convergence of iterative methods of
the mathematical programming [7]. However, the convergence theo-
rems derived by W.I. Zangwill do not exhaust investigations con-
ducted in this field, and many authors formulated other conditions
that characterize convergence of iterative procedures. In spite
of the fact that the later approaches are less general and
universal they proved to be more helpful in investigations of
specific algorithms. Take [7-9] as an example. It should be
emphasized that in the majority of cases these works deal with
convergence of algorithms whose objective function decreases
monotonically as a process goes and, therefore, they are not
applicable, in principle, to the case in hand. These and other
reasons served as the starting point in the elaboration of condi-
tions of convergence of iterative procedures with weakened proper-
ties of a monotonous variation of the objective function in the
progress of the solution of an extremum problem. The approach
set forth below is based on author's paper [12].

We will consider an algorithm of the mathematical programming
as a certain rule of construction of a sequence (x°} of points of
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an n - dimensional Euclidean space E". Conditions of convergence

of this sequence will be formulated in terms of properties of

this sequence and of a certain subset X* of the space ER which

we will call the solution set. The algorithm will be thought

of as the convergent algorithm if each limit point of a sequence

generated by it belongs to the set x*.

Al)

A2)

A3)

Al)

The basic convergence theorem is formulated as follows:

Theorem 1. Let the sequence {x®} and the set Xx* be such that

Sx
If x4 x*ex' then

X € K
Sy _
If x - x' = x* , then there exists gy 0 such that for
t

all €<i€0 and any k's there exists a point X k, ty > Sy
such that

t, s

x F -k K> e

le will assume

There exists a continuous function W(x) such that

— t s

Lim Wix %) < lim W(x ) = W(x')
k—»-_g k-’w
for arbitrary sequences {sk‘, (tk} satisfying condition

Al.
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AS5) The function W assumes on X* an everywhere incomplete set

of values.

Then all limit points of the sequence {x%} belong to

*
the set X .

This theorem is proved in [12]. A version of conditions
given there varies to some extent from that given above; however,
proofs of both theorems are practically similar. An assertion
weaker than Theorem 1 is also of interest.

Theorem 2. Under the conditions of Theorem 1 Al-A4 there
exists a limit point of the segquence {x%} which belongs to the set
x*. The proof of this theorem employs the same arguments as

those of the proof of Theorem 1.

5. MINIMIZATION OF WEAKLY CONVEX FUNCTIONS

In this section we shall study convergence of the recurrent

procedure

xs+1 = x° - psgs, s=0,1,... (10)
for finding the unconditional minimum of the weakly convex func-
tion £. In the above relation Pg > 0 are step multipliers,
gsE af (x®) is the subgradient of the objective function £ at the
point x5, Requirements placed upon the sequence of step multi-
pliers will be stipulated in what follows.

To prove convergence of procedure (10) requires an auxiliary
geometrical lemma. In a simplified form such lemma was first
proved in [6].

Lemma 4. Let D be a convex compact set which does not
contain a zero and let {yn} be an arbitrary set of vectors from
D. By means of a sequence of numbers %n such that

-0, L 0, ==

Q0 < <1
202N %n n
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n
let us form a sequence of vectors {z } as follows:

+ o (¢™ - 2™, n=0,1,...

Denote by {nk} a sequence of indexes such that

nk nk+1
(z

Then for some v >0 such a sequence exists and

nk+1-1
Z 05 <Cc<a
s=n,
. . n . =
Proof. It is obvious that {z } CD. Since 0&D, then
constants § and A exist such that

0 <8 <iz' <a<w

Let us consider now the changes in the length of vectors z

2
R I B G | L Lt
+ ai"yn+1 _ zn"2 n+1

+ Zﬂn(znry

s un?el v 20 (™™ CaMh) < a2™i?

+

2.2 n _a+1 2
+ 4873+ 20 ((z,y ) = 57

If for all n

N
s}
5
o}
+
—_
S
I
[ ]

INY]
>

(11)

n
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then

Summing the above inequality with respect ton from N to N+M-~-1
we obtain

1= <1z - (12)

N+M-1 2 62 N+M=-1
- Z on < AT - —2 Z Un
n=N n=N

ra

The pass to the limit when M-+ «» leads to a contradiction to
the supposition (11). It follows that there exists a sequence
{nk} such that

n n, +1
(z k,y ol >y = % §” >0

Further, from (12) it follows for sufficiently large k that

-1
2 Px+1
< 2 8
0 = 4" - — > g
s=n,
Hence
Neyq? 22
3. < 2 =
s - 2

which completes the proof.

The main result which will be prcved here later is the
proposition about convergence of procedure (10). At first the



-109~-

solution set will be defined using the necessary extremum
conditions:

* *

X" = (x* : 0 € g(x")}

The following theorem is valid:

Thegrem 3. Let

Pgr€s » + 0, ¢ Pg = =

and the sequence {x°} defined by (10) be bounded. Then all limit
points of this sequence belong to the set X*.

Proof. 1In proving this theorem we shall employ the general

conditions of convergence described in Section 3.

The objective function f(x) is chosen as W(x) and it is
demonstrated that conditions A1-A4 will be also satisfied. For

simplicity, we will assume that condition AS is satisfied.

It is obvious, that the satisfaction of conditions A1,A2
follows directly from the assumptions of the proof.

n
Let {x k} be a convergent subsequence and

My

lim x © =x' & x*

Kam

In this case 0 € G(x') and by virtue of G(x) being upper semi-
continuous it is possible to choose so small &§ > 0 that

0§<m{Gm),ﬂx—xW < &}

This is also true for the =z - subgradients. It 1s always possible
to choose so small =,8 >0 that

02 colG (x), Ix=x"t <&, v <zci=g (x
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Then, if condition A3 is not satisfied, for k's large enough

5 '
g € Ge,d(x }y 8 2 ng
and by virtue of separation theorems there exists a vector e
such that

(g%.el <=Cx<0

Therewith

(xs+‘,e) = (xs - psgs,e) =

= x%,e) - ps(gs,e) > (x%,e) + C g

The above inequality implies because of our assumptions an
unlimited growth of the inner product (x%,e). This implication
obviously contradicts the assumption and, therefore, proves
that condition A3 is satisfied.

Let for some small ¢ >0

) m .
™, = min m® : Ix" - x "8 > ¢

m > ny
Requirements placed on ¢ will be refined later.

We meet the dominant difficulty at the following step of
the proof; an estimation of andecrease in the objective function
when passing from the point x k. As the directions - gs are,
generally speaking, not the directions of decrease in the function
f(x) the problem of estimation of the function decrease is fairly
difficult and rather unwieldy in view of the large number of com-
putation.
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Let us fix a sufficiently large k and examine a difference

m n n n
£x) - £x %) < (g% x"-x )+ -rix 5, %™, mon,

Estimate with greater precision the addend on the right

side of this ineguality.

m nk ! s
(@ x"=-x ) = -(g", T o,9%) =
s=n,
m-1 m~1 m-1
m -1 s
= - X pglg, (SZ; o) Sg; Pgg ) =
s=n, X k
mi1 m=1
= - p_(g ,z2 )
S=nk s k

m .
Vectors z, can be obtained by means of the recurrent

formula:
zi+1 = zi + Oék)(gs"'1 - zi), s=n,. nk4-1, Nt 2,00,
with the 1nitial condition
Lk g“k
and coefficients o;k) equal to

s>nk =% US -~ Q for s+ =»
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Then by virtue of Lemma 4 there exists a sequence

(s?, i=1,2,...,} of indexes such that
k
S, s. -1
gtz )2 70
and here
k
st n Si 1
- - 3 +
fx ) f(x ™) < Y o2, Py
s=ny
n st
+ r(x =, x 7)
Choose from the sequence £5§’ i=1,...,} a maximum index whose

value does not exceed the index my and denote it by vt

From the inequality (Lemma 4)
k
i+1 !

R R

kK 3
S=S.
1

it follows that for sufficiently large k's

Sivy™) (k
1 > n (1—05))>p>0
s=Sk
whicn implies that
k k
vl-l Si+l-1 1
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The above inequality may be put in another form:

mk-l -1
2 Pg 2 4@ Pg

s=v§ k

~

where gq=1-p<1

Summing up it is possible to say that we have constructed

k
Y]
as a result the point x ' such that
k
vf n, Y1 ! n Y4
flx ) - £(x ) < - ¥ Z : og -r (x %, x ) (13
s=n,

and therewith
m ) m=!
) pg < qz Py (1)
Kk
S=\)1 S=nk
k

P
. - . . 1.
If in a similar reasoning the point Xx is considered as the

initial one, than it is possible to show the existence of a point

k
el

b e 2 such that K
e \
vg vf 2 vf )g
S(x %) - £(x ) < - ¥ 2: Pq - r(x , x )
k
s=v
1
and
m =1 mk—1 mk_1
2
Z: g 24 2: °s 1 4 z: s
S:Hk = k =
5 s=v s=n.
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Let us fix an arbitrary small 1 >0 and repeat this process
a required number of times in order to construct a sequence of

k
V.
points {x t, i=1,2,...,M} such that for each i inequalities

similar to (13)-(14) be satisfied:

k
v§+1 v EEIR
- 1
g h - taeh <y X oy
g=vk
" k .
Vi Vi (15)

mk—1 mk-1
X e cat X oo,
s=vlj(_ S=ny

and qm < t. It obviously suffices to repeat the above reason-
ings no more than M = [logqr) + 1 times. Summing (15) with
respect to i from zero to M- 1 we obtain (assuming v§=nk and

. k _ .
denoting vy = tk )y

t:k n tk_1 M=1 vk vk
R 1 R AR D - ) rix bx i
s=n, ;
1=0

Addend 1in the right part of the inequality is evaluated
as follows:
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- e
s Msup |rix,y)| =M ro(x )
n
Ix - x ©1 <z
n
Iy - x ky . €
n
For the k's that are large enough Ix ko ox'l < € therefore
-— nk
Mr (x™) <M sup [r(x,y)| <€ 8(e)
Ix-x'¥ < 2 ¢
ﬂy—x'" < €
where 4(Z)—~ 0 for c— 90

Finally we obtain:

" o™ . et "

Ex ) - £(x %) < (x5 - Ex ) 4
t -1
t
+\f(xmk)—f(xk)\<-yz og + e5(e) +
s=nk
m, ~1 m.k—l
e %% S
+ C lx -x"i-f_ ps+yrz g
s=n, s=ny
m.k—1 mk-‘l
+e8le) # C 20 o < - i-yT) ¥ oo
s=ty s=n,
mk-J mk-1
+edle) +C'T Y g - ymyr=0C'1) > Pg *
s=n; s=n,
K

where ° may be assumed to be so small that
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In doing so we obtain:

m n M1

£ (x )—f(xk)f_—% I o +e 8 (e) (16)

Furthermore,

N
- x <C L o]
5=nk

ll'lk

e <fx

Substituting this estimate into (16) we obtain:

™ k. . _ e

- f 8
£(x ™) x "1 < 2C + 4 (g)

It may be always assumed that

s h
(g) < EE

hence

n
fxF) - £x Ky < - 1E
- 4C

Passing to the limit when k —+ ~ we obtain:

n
lim W(xmk) < lim wix k

)

k= o k—* o

which is what it was required to prove.

As a result the convergence of algorithm (10) is a
consequence of the satisfaction of conditions A1-A5 of Theorem 1.
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6. CONVEX CASE

For the problem of convex minimization some results can be

obtained describing the behavior of process (10) in the

case when Eg = £ = const.

Theorem 4. Let the objective function f(x) be convex

Pg»+ 0, L pg ==, e.=¢>0

Then, if the sequence {x°} is bounded, there exists only one

s
k
convergent subsecuence {x } such that

lim x =X
k~»x

and

£(x) ¢ min f£(x) + ¢

x€E D

Proocf. The proof will be based on the same formalism as in
Theorem 3. Let

x* = Ix* : £(x*) = min f(x), x€E"}
and
X! = (x* i £(x") < min f(x) + e}
x€E"
Denote
. *y 2
W(x) = min kx-x"1

x*e x*
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In our case the role of a set of solutions will be played

»
by xE

can be satisfied. It is obviocus, that on no account condition

Let us verify whether conditions A1-A4 from Section 2

AS can be satisfied in this case and, therefore, it is possible
to prove only a weakened convergence of procaess (10) in the
spirit of Theorem 2.

Conditions A1, A2 are obviously satisfied in agsumptions of
this theorem: verify whether condition A3 is satisfied. Let
there be some subsequence:

*®
E

n
lim x k o x' € X

k- o

that is,

f(x') > min f(x) + €
x EER

Assume the contrary to condition A3, that is,

lim xs = x'

8- x

Then for an arbitrary 6 >0 for a sufficiently large k

for s>n, . Choose §>0 in such a way that the set
Upelx') = {x: Ps-x'l < 48}

does not intersect with the set Xz : U4s(x')ﬂx€ =¢. Then in

suppositions of the proof for an arbitary x* €X* and s > ny
"xs+1 - x'ﬂz = 1xS

] tn
pgg - X

2 2 an
= 1x5 - x*1° 4 g Hgsﬂz - Zps(gs,xs-x') <
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]

s *, 2 2 s *
[ Co_ - 20,(g ,x —x)

%™ - %

I A

since

then

S

€ <f(xs) - £(x*) < (g7, xS- x*) + ¢

whence we have for s > Oy

Substituting the above ineguality into (17) we obtain

S+ 1
X

s 2
W( ) s W{xT) + Cos - 2YOS

or for sufficiently large k

s+1
p. 4

W ( b Hx®) - yp (18)

S

Summing (18) with respect to s from n, to m-1 we obtain:
- ¥s (19)

Passing in the above inequality to the limit when m-« we
have a contradiction to the boundedness of the continuous func-
tion W(x) on 045(x')' The obtained contradiction proves the
fact that condition A3 1is satisfied. Let
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For k's that are large enough

e
Ué(x Yy C Uzd(x') C Uué(x')

therefore the egstimate of (19) is also valid for m=m

Tk "k

X
W{x 7) <W(x ") -y Z o

However,

mk-1
8 < Ixmk - xnkl <C I p

S
s=nk

By means of the above estimate we finally obtain:

n
W) < Hx ) - )

and passing to the limit when k= «

n
T wix® < 1lim wix 5

k- w K=o

which, by virtue of Theorem 2, proves our proposition.

In all probability the assert’on of this theorem cannot be
strengthened unless additional hypotheses concerning the choice
of vectors g° from appropriate sets G_(x®) of ¢ - subgradients

are involved.

It is also of interest to estimate a deviation of the limit

points cf the sequence {x%} from the set of solutions X; .
If we denote

. *
d = sup inf fIx*- xEﬂ

L] - * *
XEEXE X ey

then from geometrical considerations it is easily shown that all
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L . S .
limit points of the sequence {x~} occur in the set

where S is a unit ball and the addition is meant in Minkovsky's

sense.,

7. APPENDIX ANWND GENERALIZATIONS

An essential feature that distinguishes the result of
Theorem 3 as compared to that obtained earlier in [13] is, as

applied to minimax problems of the type

min max f(x,y)

(20)
S ¥
the possibility to rid oneself of the check of exactness of
the solution of an auxiliary problem of finding the internal
maxlmum:
p(x) = max f£(x,y)
7
This enables us to justify the application of Arrow-Gurwitz'
method
s+1 _ s (WS S
X = x osfx(h A (21)
s+1 _ s - - ‘5
v =y + ﬁsfy(x Y) {22)

in the solution of problem (20) on the basis of broader assump-
tions than common assumptions of strict convexity-concavity or
similar ones. Under some of them concerning the relation between
step multipliers it proves to be possible to consider iterative

relation (2) as the & - subgradient method of minimization of the
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function ¢(x). Convergence of method (21)-(22) is here an
implication of Theorem 3. Results obtained in this field are
described in more detail in [14]. Of great practical interest

is also the development of methods for regulating step multipliers
in procedure (10). Basically, Theorem 3 asserts that the

€ - subgradient methods converge under the same assumptions as

the subgradient methods. 1In all probability, the ideas that
underlie the subgradient methods are applicable to the ¢ - sub-
gradient methods when their step multipliers are regulated, and
furthermore, the computational effect is alsc the same.

A non-formal requirement here consists in giving up the
exact computation of the objective function as stated earlier
in the introduction to this paper. For instance, the general-
ization on the case of ¢ - subgradient method of step regulation
[11] presents no difficulties.
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1. INTRODUCTION

A function £ :R” =R 1is said to be local oy

each x €R” there is a neighborhood X of x such that, for some

[E(x") = £(x')i < A[x" =-x'| for all x'&X, x"e€X

Examples include continuously differentiable functions, convex
functions, concave functions, saddle functions and any linear
combination or pointwise maximum of a finite collection of suc

functions.

Clarke (1975 and 1980), has shown that when f 1s locally

Lipschitzian, the generalized directional derivative

£ 1 - F '
£9 (x:v) = lim sup fixrev) - Fix’)
' X t
t«0

is for each x a finite, sunlinear (i.e., convex and gcsitively
homogeneous) function of 7, From this it follows bty classical

convex analysis that the set

Rn‘y-v < £° (x;v) for all v=3a™

M

JE(x) = 7y
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3

(1.

h

o>l

ipsaonttztan Lf for

’

1)
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is nonempty, convex, compact, and satisfies
£° (x;v) = max {y'v |y€3fix)} for all veR". (1.4)

The elements of 3f(x) are what Clarke called "generalized gradients"
of £ at x, but we shall call them subgradients. As Clarke has
shown, they are the usual subgradients of convex analysis when £

is convex or concave (or for that matter when f is a saddle func-
tion). When f is continuously differentiable, 3f(x) reduces to
the singleton {Vf(x)1} .

In subgradient optimization, interest centers on methods for
minimizing f that are based on being able to generate for each x
at least one (but not necessarily every) y € 3f (x), or perhaps just
an approximation of such a vector y. One of the main hopes is
that by generating a number of subgradients at various points in
some neighborhood of x, the behavior of f around x can roughly be
assessed. In the case of a convex function f this is not just
wishful thinking, and a number of algorithms, especially those of
bundle type (e.g., Lemarechal 1975 and Wolfe 1975) rely on such an
approach. In the nonconvex case, however, there is the possibility,
without further assumptions on f than local Lipschitz continuity,
that the multifunction 3f : x »3f(x) may be rather bizarrely disas-
sociated from f. An example given at the end of this section has
f locally Lipschitzian, yet such that there exist many other locally
Lipschitzian functions g, not merely differing from f by an addit-
ive constant, for which 3g(x) =3f(x) for all x. Subgradients alcne
cannot discriminate between the properties of these different func-
tions and therefore cannot be effective in determining their local

minima.

Besides the need for conditions that imply a close connection
between the behavior of f and the nature of 3f, it is essential
to ensure that 3f has adegquate continuity properties for the con-
struction of "approximate" subgradients and in order to prove the
convergence of various algorithms involving subgradients. The key
seems to lie in postulating the existence of the ordinary direction-

al derivatives



-127-

Sl +tv) ~ £(x)

f'{x;v) = 1lim - (1.5)
t+0 -
and some sort of relationship between them and 3f. Mifflin (1%77a

and 1977b), most notably has worked in this direction.

In the present article we study the relationship between f'
and 3f for several special classes of locally Lipschitzian func-
tions that suggest themselves as particularly amenable to comput-
ation. First we give some new results about continuity properties
of f£' when f belongs to the rather large class of functions that
are "subdifferentially regular". Next we pass to functions £ that
are Louer—Ck for some k, 1 ik_:w, in the following sense: for each

n

point x €R" there is for some open neighborhood X of X a repres-

entation

f(x) = max F(x,s) for all x€X, (1.6)
SES

where S is a compact topoclogical space and F : X x5 —~R is a func-
tion which has partial derivatives up to crder k with respect to

x and which along with all these derivatives is continucus not

just 1n x, but jointly 1in (x,s) €X xS. We review the strong re-
sults obtained by Spingarn (forthcoming) for lower-c1 functions,
which greatly 1lluminate the properties treated by Mifflin (1977Db),
and we go on to show that for k -2 the classes of lower—Ck functions

all coincide and have a simple characterization.

Before proceeding with this, let us review some of the exis-
tence properties of f' and continuity proverties of *f that are
possessed by any locally Lipschitzian function. This will be use-
ful partly for background but also to provide contrast between
such properties, which are not adequate for purposes of subgradient
nptimization, and the refinements of them that will be featured
later.

Local Lipschitz continuity of a function f : RPL R implies by
a classical theorem of Rademacher (see Stein "370) that for almost
avery XvERn,7f is differentiable at x, and moreover that the grad-

ient mapping 7f, on the set where i+ axists, 1s locally bounded.
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Given any x € Rn, a point where f may or not happen to be differ-
entiable, there will in particular be in every neighborhood of x

a dense set of points x' where f(x') exists, and for any sequence
of such points converging to x, the corresponding sequence of
gradients will be bounded and have cluster points, each of which
is, of course, the limit of some convergent subsequence. Clarke
demonstrated in Clarke (1975) that 3f(x) is the convex hull of all

such possible limits:

3f(x) = co{lim f(x')|x'=x, £ differentiable at x'}.(1.7)
Two immediate consequences (also derivable straight from properties
of £f° (x;v) without use of Rademacher's theorem) are first that 3f

is localiy bounded: for every x one has that

U 3f(x') is bounded for some neighborhood X of x,
x'eX (1.8)

and second that 3f is upper semicontinuous in the strong sense:

for any ¢ >0 there is a ¢ >0 such that
3f(x') C3f(x) +cB whenever |x'-x| <6 . (1.9)

where
B = closed unit Euclidean ball = {x||Ixl <1} . {1.10)
The case where 3f(x) consists of a single vector y is the

one where f 1s strictly differentiable at x with Vf (x) =y, which

by definition means

1im EXI*EV) - FUXD) oL, for all ver" . (1.11)
X' X t
t+0

This 1s pointed out in Clarke (1975). From (1.7) it is clear

that this property occurs if and only if x belongs to the domain

of Vf, and Vf is continuous at x relative to its domain.
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We conclude this introduction with an illustration of the
abysmal extent to which 3f could in general, without assumptions
beyond local Lipschitz continuity, fail to agree with 7f on the
domain of 7f and thereby lose contact with the local properties
of f£.

Counterexample

There is a Lipschitzian function f : R"=R such that

n

IE(x) = [=1,1] for all xeR™ . (1.12)

To construct f, start with a measurable subset A of R such that

for every nonempty open interval I CR, both mes{ANI] >0 and

mes[A\I] >0 . (Such sets do exist and are described in most texts
on Lebesgue measure.) Define h:R—=R by
re . f1ifcea,
Hit) = JO;—(T) a(z) , where 3 (t) = {_1 if tea .

Since 84 _=1, h is Lipschitzian on R with Lipschitz constant

A =1. Hence h'(t) exists for almost every t, and |h'(t)’ :1 .

In fact h'= < almost everywhere, from which it follows by the
choice of A that the sets {tih'(t) =1} and {t|h'(t) =-1' are both

dense in R. Now let

hix.) for x = (x1,...,x) .
n

Then f 1s Lipschitzian on 37 with gradient

TE(x) = (h'(x1),...,h' (xn))
exlsting if and only if h' (x.} exists for i=1,...,n. Therefore
7f(x) &€ [—1,1]rl whenever 7f(x) exists, and for each of the corner

x {7f(x) =e} is dense in R". Formula
(1.7) implies then that (1.12) holds.

points e of (-1,11" the set

Note that every translate g(x) =£f(x ~a) has 3g =53f, because

5f 1s constant, and vet g - f may be far from constant.
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2. SUBDIFFERENTIALLY REGULAR FUNCTIONS

A locally Lipschitzian function f : R~ R is subdifferentially
regular if for every x €R"™ and veR" the ordinary directional de-
rivative (1.5) exists and coincides with the generalized one in
(1.2)

£'(x;v) = £7°(x;v) for all x,v.

Then in particular f'(x:;v) is a finite, subadditive function of
v; this property in itself has been termed the quasidifferen-
tiability of f at x by Pshenichnyi (1971).

THEOREM 1, (Clarke 1975). If f i3 convez or Zower—Ck
on R for some kx> 1, then f is not only locally Lipschitztian

but subdifferentially regular.

Clarke did not study lower-Ck functions as such but proved
in Clarke (1975) a general theorem about the subgradients of "max
functions" represented as in (1,6) with F(x,s) not necessarily
differentiable in x. His theorem says in the case of lower-Ck

functions that

Af(x) = co{V F(x,s) |s€I(x)} (2.1)
where
I(x) = arg max F(x,s) . . (2.2)
SES

It follows from this, (1.4), and the definition of subdifferential
regularity, that

F(mv)=xmx{%fk,ﬂ-v|s€1m)} (2.3)

for lower-C1 functions,a well known fact proved earlier by
Danskin (1967).

The reader should bear in mind, however, that Theorem 1 says
considerably more in the case of lower-Ck functions than just this.
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By asserting the equality of f' and f°, it implies powerful things
about the semicontinuity of f' and strict differentiability of f.

We underline this with the new result which follows.

THEOREM 2. For a function £ : R =R, the following are
equivalent:

(a) £ ig locally Lipschitazian and subdifferentially
regular;

(b) f£'(x;v) exists fimitely for all x,v, and I8 upper
semicontinuous in X.

Proaf.

{a) = (b). This is the easy implication; since f'= f°
under subdifferential regularity, we need only apply (1.4) and
(1.9).

(b) = (a). For any x' and v the function Q(t) =f(x' + tv)
has both left and right derivatives at every t by virtue of (b):

QL (v = £ (x" +tv;v), Q'_ () = —£'(x'+ tv; -v) (2.4)

“Moreover, the upper semicontinuity in (b) implies that for any
fixed x and v there 1s a convex neighborhood X of x and a constant

A -0 such that

f'(x'+tv; v) < 3 and -f'(x'+ tv; v) > =X when x'+tveX
(2.35)
Since Q has right and left derivatives everywhere and these are
locally bounded, it is the integral of these derivatives (cf.
Saks (1937)):

'ty £
Q(t1) -Q(to) = Q' (t)dr = ‘ Q'_(nydr
tO 'tD
From this and (2.3) 1t rollows tnat
[E(x'+tv) = f(x'). < ‘t when X'€X, X'+ tvaX

Thus the local Lipschitz property (1.1) holds as long as x"- x'
1s some multiple of a fixed v. To complete the argument, con-
sider not just one v but a basis VireeasVy for R".
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Each x € R" has convex neighborhoods xi and constants xiio such
that

[] - ' ] [ — -
[£(x'+ v,y =£(x")| < At when x'€X;, x'+tv,c X; (2.6)

Then there is a still smaller neighborhood X of x and a constant

a >0 such that for x'€ X and x"€ X one has

" o '
X X '*’121‘1.1 Fouat tnvn

with x' and x'+ t1v1€x1 , X'+ t;1v1 and (x'+ tv1) +tv26x2 , and

so forth, and

\t1| TR |tn| < alx"-x
Then by (2.6)
| £(x") - £(x") < | £(x"+ tlvl)-f(x')| + |f(x'+tvl+ tvz) - f(x'+tv1)| t...

2t2 t...t )‘ntn

In

A1t1 + X

(X

1A

’ n_ L
1+x2+...+ xn) ajx"-x')|

In other words, f satisfies the Lipschitz condition (1.1) with

A= (X1 + ... +>‘n)a . Thus f is locally Lipschitzian.

We argue next that f'(x ;v) < £°(x;v) for all x,v by (1.2),

and therefore via (1.7) that

£°(x ;v) = lim sup £'(x'; v) . (2.7)
X's> X

The "lim sup" in (2.7) is just £'(x':;v) under (b), so we conclude
that £'(x;v) = £f°(x;v) . Thus (b) does imply (a), and the proof of
Theorem 2 is complete. 0O
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COROLLARY 1. Suppose f is locally Lipschitczian and
subdi fferentially regular on R" and let D be the set of all
points where f happens to be differentiadble. Then at each
x€D, £ 13 tn fact strictly differentiable. Furthermore,
the gradient mapping Ts continuous relative to D.

COROLLARY 2, If £ is locally Lipschitzian and subdif-
ferenttally regular on Rn, then 3f is actually single-valued

at almost every x €RT,

These corollaries are immediate from the facts about differ-
entiability of f that were cited in §1 in connection with formula
(1.7). The properties they assert have long been known for convex
functions but have not heretofore been pointed out as properties
of all lower—Ck functions. They hold for such functions by virtue
of Theorem 1.

COROLLARY 3. Suppose f i35 locally Lipschitzian and sub-
differentially regular on rR™. If g i3 another locally Lip-

geattztan funetion on R® such that dg = 3f, thnen g = £ + const.

Proof. By Corollary 2, 3g 1s single-valued almost every-
where. Recalling that g is strictly differentiable wherever
dg is single-valued, we see that at almost every x €R" the
function h = g -f is strictly differentiable with Vh(x) =
7g{x) =Vf(x) = 0. Since h is locally Lipschitzian, the fact
that Vh(x) = 0 for almost all X implies h is a constant func-
tion. O

COROLLARY 4. Suppese £ <5 locally Lipschttzian and sub-
differentially regular on R".  Then for z2very continuously
dijferentiable mapping E:R-*Rn, the funmction Q{t) = f£(5(t))
nas rignt and [ 27t derivatives Ql(t) and Q' (t) everywhere,
and tnese satts’y

Q. (t) = lim sup Qf (1) = lim sup Q'(1) ,
It T=t
“ (2.8)
RI(t) = lim inf Qf (7)) = lim inf Q! (1) .

Tt T+t
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Proof. The function Q is itself locally Lipschitzian
and subdifferentiably regular (cf. Clarke 1980). Apply
Theorem 2 to Q, noting that Q!(t) = Q'(t;1) = Q°(t;1) and
Q' (t) = =Q'{t;=1) = =Q°(t;=1), and hence alsoc 3Q(t) =
[Q!(t),Q;(t)]. The reason Q (1) and Q! (1) can appear inter-
changeably in (2.8) is that by specialization of (1.7) to
Q, as well as the characterizations of Q; and Q' just men-

tioned, one has

Q;(r) = lim sup Q' (t"') , Q! (1) = lim inf Q' (t") ,
't T'=+1

where the limits in this case are over the values 1' where
Q'(t') exists, O

3. LOWER-C1 FUNCTIONS AND SUBMONOTONICITY

The multifunction 3f :Rn::Rn is said to be monotone if
(x'-x")-(y'-y")_>_0 whenever y'e 3f(x'), y"e 3 £(x") (3.1)

This is an important property of long standing in nonlinear ana-
iysis, and we shall deal with it in §4. 1In this section our aim
is to review results of Spingarn (forthcoming) on two generaliz-
ations of monotonicity and their connection with subdifferentially
regular functions and lower-C1 functions. The generalized prop-

erties are as follows: 3f 1s submonotone if

lim inf X=X @29 5 g, wx, vyeaf(x) .

x'=x | %"= x|
y'e af(x") (3-2)

and it is scrictly submonotone 1if

lim inf X2 xD) - (y"-y') >0, ¥x
g [x7= x| (3.3)
-
y'edf(x")
Y"e 3f (x™)
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To state the results, we adopt Spingarn's notation:

If(x), = {y€df(x) | (y'=y) v < 0, ¥y'e3af (x)} (3.4)

Thus af(x)v 1s a certain face of the compact convex set 3f(x),
the one consisting of all the points y at which v is a normal
vector. Let us also recall the notion of semismoothness of f
introduced by Mifflin (1977): this means that

whenever xJ-x , visv , tj¢ 0, yj—»y , with

yje a'c'(xj+tj VJ) , then one has y.v=1£f"'(x;v) . (3.5)

THEOREM 3 (Spingarn (forthecoming)). The following
properties of a locally Lipschitzian function £:R"+R are
equtvalent:

(a) £ is both subdifferenttially regular and semismooth;

(b) 3f is submonotone;

(e) 3f Zs directionally upper semicontinuous in the
, n n
sense *hat for every Xx€R , VER and € >0, there

25 a 8 >0 such that

3f(x+tv')caf(x)v+g}3 when [v'-v{ < 4§ and 0 <t < §,
(3.6)
THEOREM 4 (Spingarn (forthcoming)). Tae fo:lowing
croperties of a locally Lipschitztan Sunction £iR"> R are
equtvalent:
fa) f is lower C1;
(b) 3f is strictly submonotone:
fe) 9f is strictly directtonally upper cemicontiruous

. . . n n ,
in thne sense that jor every XER , VER 2and € >3,

tnere s a >0 that
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{y"=y')+v' > -c when [x'-x| <&, |v'-v]<¢g,0<t <38,
y'edf(x') and y"€3af(x"'+tv').
(3.7}

Spingarn has further given a number of valuable counter-
examples in his forthcoming paper. These demonstrate that

3f submonotone ¥ 3f strictly submonotone , (3.8)
f subdifferentially regular # £ lower-C‘I ’ (3.9)

f quasidifferentiable and semismooth # f subdiffer-
entially regular. (3.10)

Comparing Theorems 3 and 4, we see that lower-c1 functions
have distinctly sharper properties than the ones of quasidiffer-
entiability and semismoothness on which Mifflin, for instance,
based his minimization algorithm (1977a). In perhaps the majority
of applications of subgradient optimization the functions are ac-
tually lower-C1, or even lower-C . This suggests the possibility
of developing improved algorithms which take advantage of the
sharper properties. With this goal in mind, we explore in the
next section what additional characteristics are enjoyed by lower-
ck functions for k> 1.

4, LOWIE:R—C2 FUNCTIONS AND HYPOMONOTONICITY

The properties of lower—Ck functions for k >2 turn out,
rather surprisingly, to be in close correspondence with properties
of convex functions It is crucial, therefore, that we first take
a look at the latter. We will have an opportunity at the same
time to verify that convex functions are special examples of
lower-C” functions. The reader may have thought of this as obvi-
ous, because a convex function can be represented as a maximum of
affine (linear-plus-a-constant) functions, which certainly are c”.
The catch is, however, that a representation must be constructed
in terms of affine functions which depend continuously on a para-
meter s ranging over a compact set, if the definition of lower-C~
is to be satisfied.
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We make use now of the concept of monotonicity of 3f defined

at the beginning of §3.

THEQOREM 5. For a locally lLipschtitzian funetion f:Rq*R,

the following properties are equivalent:

(a) £ 735 convex ;
(b) 23f 15 montone ;

(¢) for each x €RD there is a neighborhood X of X
and a representation of f as tn (1.6) with S a
compacet topologtecal space, F(x,s) affine in x

and continuous in S .

Proof. (a) =»(c). 1In terms of the conjugate f* of the

convex function £, we have the formula

f(x) = max {y*x -f*(y)} for all x , (4,13
ye R

where the maximum is attained at y if and only 1f vy € 3f (x)
(see Rockafellar 1970, §23). Any X has a compact neighborhood
X on which 3f is bounded. The set

n+1

S = (y,3) €R | Ax € X with yedf(x),3=yex-£(x)}

is then compact, and we have as a special case of (4.1)

f(x) = max {y-x-3!}
(y,3) €S
This 1s a representation of the desired type with s = (y,3),
F(x,s}) = y*x -3
(c} = {a}). The representations in (c) imply cer=-

tainly that f is convex relative to some neighborhocd of each
point. Thus for any fixed x and v the function Q(t) = f(x + tv)
has left and right derivatives Q' and Q; which are nondecreasing
in some neighborhood of each t. These derivatives are then non-

decreasing relative to t € (~=,»), and it follows from this that
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Q is a convex function on (-»,») (cf. Rockafellar 1970, §24)
Since this is true for every x and v, we are able to conclude
that f itself is convex.

(a) »(b). 7his is well-known {(cf. Rockafellar
1970, §24).

(b) = (a). A direct argument could be given, but
we may as well take advantage of Theorem 3. Monotonicity of
3f trivially implies submonotonicity, so we know from Theorem
3 that f is subdifferentially regular. Fixing any x and v,
we have by the monotonicity of 3f that

((x+t"v) = (x+t'v}))} * (y"-y') > 0 when

t'< ' t, v'edf(x+t'v), y"edf(x+t"v) .

This implies

su ‘e i ", - ['y"°V] ’
P y'*v < inf y'ev = sup
y'EAf(x+ t'v) y"edf (x + t"v) y"Zof(x+t"v)
or equivalently (by 1.4} and subdifferential regularity)
t'(x+e'vyv) < =f'(x+t"v;-v) when t'<t" , (4.2)
Since also
=f'(x';-v) < £'(x';v) for all x’,v,
by the sublinearity of f£'(x';-}, (4.2) tells us that the func-
tion Q(t) = f(x +tv) has left and right derivatives which are
everywhere nondecreasing in t € (-», *;, Again as in the argu-

ment that (c) implies (a), we conclude from this fact that £
is convex on R". O

COROLLARY 5. Every convex function £:R? 2R is in par-

ticular lower-C%,
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Proof. 1In the representation in (c) we must have F(x,s) =
a(s)* x ~-a(s) for certain a(s) er" and 2 (s) €R that depend con-
tinuously on x. This is the only way that F(x,s) can be affine
in x and continuous in s. Then, of course, F(x,s) has partial
derivatives of all orders with respect to x, and these are all

continuous in (x,s). O

Let us now define two notions parallel to Spingarn's submon-

otonicity and strict submonotonicity: 3f is hypomonotone if

lim inf (x'=x)+ (y'=-y) > -» for all x and y € 3f (x)
x'-x |x'= x| 2 (4.3)
y'edf(x')

and strictly hypomonotone 1if

(x"=x') *(y"-y') > -=» for all x

lim inf
X'=>x ix"—x'|2
X"+ x (4.4)
y'edfix')
y"E€3f (x™)

Clearly hypomonotone implies submonotone, and strictly hypomono-
tone implies strictly submonotone. We have little to say here
about hypomonotonicity itself, but the importance of strict hypo-
monotonicity is demonstrated by the following result.

THEOREM 6. For a4 locally Lipschitzian Funcsion f on R,

the following propertigs are equivalent:
(fa) £ zs :over-CZ ;
‘b)) 3f is strictly aupomonotone ;

. - - n N . PR .
fz, For gvery X €ER tnere 1s 1 convex nartghbornood X

2f X on wnich £ has a representation
f =g-~-hon X wicth g conver, h jJuadratic zonvexc. (4.3)

- n . . . A
(d) For every x €R’ thare s a neighboriood X of x
and a representatvion of £ as in (1.6) wirn S a
2ompact topological space, F(x,s) quadraziz in

X and zontinuousd in S.
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Proof.

(a) = (c). Choose any x and consider on some neighborhood X
of X a representation (1.6) of f as in the definition of f
being lower-Cz: F(x,s) has second partial derivatives in x, and
these are continuous with respect to (x,s). Shrink X if
necessary so that it becomes a compact convex neighborhood of x.
The Hessian matrix Vi F(x,s) depends continuously on (x,s)

ranging over a compact set X x S, so we have

min v -Vz F(x,8)v > -
(x,s) EX xS x
vl =1

Denote this minimum by -p and let
G(x,s) = Flx,s) + (p/2) |x|?% . (4.6)
Then

v .92 Glx,s)v = v (7P (x,8) +oIlv >0 (4.7)

for all (x,s) €EX xS when |v| =1 and hence also in fact for all
v‘ERn, because both sides of (4.7) are homogeneous of degree 2
with respect to v. Thus Vi G(x,s) is a positive semidefinite
matrix for each (x,s) €X xS, and G(x,s) is therefore a convex
function of x €X for each s€S. The function

g(x) = max G(x,s)
seS

is accordingly convex, and we have from (4.6) and (1.6) that
(4.5) holds for this and h(x) = (p/2) |x]|2.

(c) ={d). Given a representation as in (c), we can translate
it into one as in {(d) simply by plugging in a representation of
g of the type described in Theorem 5(c).

(d) ={a). Any representation of type (d) is a special case
of the kind of representation in the definition of f being lower-

C2 (in fact lower-C ); if a quadratic function of x depends
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continuously on s, so must all its coefficients in any expansion

as a polynomial of degree 2.

(c) = (b). Starting from (4.5) we argue that 3f(x) =
3g (x) = 3h(x) (cf. Clarke 1980, §3, and Rockafellar 1979, p.3u45),
where 3g happens to be monotone (Theorem 5) and 3h is actually
a linear transformation: Yy e€3f(x) if and only if y =Ax, where
A 1s symmetric and positive semidefinite. For y€3f(x'), y"€df(x"),
we have y'+ Ax'€3g(x') and y"+ Ax"€3g(x"), so from the monoton-
icity of 3g it follows that

0 i (X'-X")'([y'+Ax']‘[y"+AX"])
(4.8)
= (X'"=x")(y'=y") + (x'-x")cA(x'-x") .
Choosing p > 0 large enough that
veAvV < piv!z for all veRr"
we obtain from (4.8) tnat
" 1] " 1 " ) 2 | "n
(x"=x")(y"=y') > plx"=-x"] when x'=X, x"e€X,
y'e 3f(x"), (4.9)
y"e 3f(x") .
Certainly (4.4) holds then for x =x, and since X was an arbi-
trary point of R we conclude that 3f 1s hypomonotone.
(b) = (c). We are assuming (4.4), so for any x we know we
can find a convex neighborhood X of x and a o >0 such that (4.9)
holds. Let g(x) = fi(x) + (0/2)|x|%, so that 3g = 3f + oI (cf. Clarke

1980, 33, and Rockafellar 1979, p.345). Then by (4.3), 3g is
monotone on X, and 1t follows that g is convex on X (cf. Theorem 5;
the argument in Theorem 5 is in terms of functions on all of Rn,
but it 1s easily relativized to convex subsets of R™). Thus (4.5)
holds for this g and hix) = (:/2) P
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COROLLARY 6. If a function f:R°=R is lower-C%, it
18 actually lower-C"~. Thus for 2 <k <= the classes of

lauer-Ck functions all coincide.

Proof. As noted in the proof that (d) = (a), any re-
presentation of the kind in (d) actually fits the defini-
tion of f being lower-C" .

COROLLARY 7, Let £:RP+R be Zower-Cz. Then at almost
every xR, £ s twice~differentiable in the sense that
there 18 a quadratic function q for which one has

f£(x') = q(x') +o(|x'-x[|%) .

Proof. This is a classical property of convex func-

tions (cf. Alexandroff 1939), and it carries over to gener-

al lower-C2 functions via the representation in (c).

Counterexample

Since the 1ower-Ck functions are all the same for k >2, it
might be wondered if the 1owe1:—c1 functions are really any dif-
ferent either. But here is an example of a lower-C' function
that is not lower-C2. Let f(x) = -|x|3/2 on R. Then f is of
class C1, hence in particular a 1ower-C2, and there would exist by
characterization (d) in Theorem 6 numbers a,B8,Y, such that

2

f(x) > a+Bx+yx for all x near 0,

with equality when x =0,

Then a =£(0) =0 and -|x|3/2 > Bx+Yx2, from which it follows on
dividing by |x| and taking the limits x +0 and x + 0 that 8=0,
Thus v would have to be such that -|x|3/2 > v|x|? for all x suf-
ficiently near 0, and this is impossible. Therefore f is not
lower-C2 .
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NONDIFFERENTIABLE FUNCTIONS IN
HIERARCHICAL CONTROL PROBLEMS

Andrzej Ruszczyfiski
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Technical University of Warsaw
Poland

1. INTRODUCTION

The aim of this paper is to highlight the importance of the
theory of nondifferentiable optimization and of equations with
nondifferentiable operators in a modern branch of control theory -

the theory of hierarchical sontrol systems.

The hierarchical approach usually applied to large-scale
decision problems is based on the partial decentralization of
the decision-making process. The typical decision nroblem in-
volves an object and a decision maker. 1In the classical (cen-
tralized) approach the decision maker observes the object and
chooses the decision variables according to certain praferences.
Each such operation is connected with the solution of an optimi-
zation problem. In practice, however, we often have to deal with
large-scale objects which are systems composed of several inter-
connected subsystems. In this situation the centralized approach,
though mathematically correct, has several drawbacks due to the
need for large-scale information processing, data transmission,
etc. Therefore we aim at organizing the decision-making process
in such a way that the decision variables related to a definite
subsystem are chosen on the basis of information relevant for

this subsystem. Thus, a decision maker is associated with each
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subsystem and takes part in the decision-making process; each of
them observes his own subsystem and chooses his decision variables
by solving an optimization subproblem related to this subsystem.
It is clear that a simple decentralization of this type cannot be
considered effective if there are interactions between the sub-
systems, and for this reason a supreme decision maker (called the
coordinator) is introduced. The aim of the coordinator is to in-
fluence the lesser decision makers so as to make their decisions
consistent with the global objective. This is achieved through
the introduction (by the coordinator) of certain parameters (co-
ordination variables) into the lower-level problems and the modi-
fication of the set of preferences (i.e., objectives and/or con-
straints) used by the other decision makers. It should be stressed
that the coordinator has no direct access to the system and that
he may not override the decisions of the other decision makers.

It is also assumed that he receives aggregated information about
the effect of his decisions. The decision-making structure out-
lined above, which comprises the coordinator and several lower-
order decision makers, is called the hierarchical control system.

At this point it should be said that the above approach does
not necessarily lead to strictly optimal decisions, and this is
the main reason why it is difficult to convince a mathematician
of the value of hierarchical control systems. The advantages of
the hierarchical approach lie beyond the mathematics and are con-
nected with adaptability, information privacy, data transmission
and other preferences which cannot be formalized and which, obvi-
ously, will not be discussed in this paper (see, however, refs.
2,4, and 7). However, once a definite hierarchical structure has
been chosen, interesting and well-~defined mathematical problems
arise. These problems are connected with the coordinator's task,
which is to optimize the performance of the whole system by the
appropriate choice of values for the coordination variables. From
the outline given above it will be evident to experts in optimiza-
tion that the function coordination vartables + performance will
be a nonsmooth function, even if the infimal problems involve
differentiable functions. This is the main reason for including
this paper in a volume concerned with nondifferentiable optimization.
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In the following analysis we shall assume that the subsystems
being controlled are described by the following equations:

y; = £ leugnzy) i€ (1,N} (1.71)

where 1 is an index representing a particular subsystem, Yy denotes
the output influencing other subsystems, <y denotes the local de-
cision variables (control), ay denotes the input originating from

other subsystems, and z, denotes disturbances. We assume that

i
y,€Y,CY¥,, c,€C,CC,, u; €U, CU,, 2, €2, £, C,xU, xZ »Y,,
and Y. Ci’ Ui are finite dimensional spaces. The interconnections

between the subsystems are described by the following equations:
H.. Yy (1.2)

where the Hij are linear operators (usually given by 0-1 matrices).

For brevity we use the following notation: vy = (Y1""'YV)’
N N N N
Y o= = (. = = C = >
7= X YiC Y X !i' c (C1""’CN)’ c X ci c R gi’
i=1 1=1 i=1 i=1
N N
= = 3 ! =
u ayr-vvvugd s U X u,cu X L;' z (zyr.. ,zN),
i=1 1=1
M
2 = X Z.. Using =his nctation we can write equations (1.7), (1.2
i=1
.n the compact f{orm
y = fic,u,z) , {1.3)
u = Hy hxlz Hly) . (1.4)
where £: CxUx2-Y, H: Y->U, H Y—*Ul. It is assumed that
for any ¢&€C and zg€ 2 the set of equations {1.3), (1.4) defines
anigque Interactions ul(c,z)eU, ulc,z) = (uW(C’Z)""’UV(C'Z))‘
We assume that there is a perrformance index gfc,z} defined
fior the system,
N
glc,z) = . qi(ci,ul,zl) {1.3)



-148-

where u; = ui(c,z). Also, the controls c and inputs u must satisfy
the constraints

g, (cy,uy,2,) <0, i€ (TN} (1.6)
Ji
where gy Ci XU1 xzi-vR . Here Ji represents the dimensionality

of this vector constraint.

In the next two parts of the paper we shall describe two ex~
amples of the hierarchical approach to the problem of finding the
value ¢ which minimizes the function (1.5) subject to (1.3), (1.4),
and (1.6). These examples represent the two main ideas on which
hierarchical systems are based - the primal approach, which involves
a two-stage minimization, and the dual approach, which uses coordi-
nation variables (prices) to represent interactions.

However, before proceeding to these problems we should explain
the notation used in the following sections. If ¢ :Rn-—R1 then
¢ (x) and V2®(x) denote the gradient and the hessian, respectively.
If ¢ :Rn-'Rm, ¢ (x) = (¢1(x),...,om(x)) then V¢ (x) denotes the matrix
with columns V¢i(x) (1 =1,...,m), and ¢x(x) denotes the derivative,
considered to be a linear operator. For a linear operator (matrix)
A we use A" to denote the operator (matrix) conjugate to A. Finally,
a function ¢ :Rn-fRm is described as convex if all functions ¢i

(i =1,...,m) are convex.

2. THE PRIMAL APPROACH

2.1 The decentralized control system

In this section we assume that the disturbance z = (21""’2N)
which influences the system is a random variable. We also assume
that it is possible to measure z. The optimal decision rule is then simple:
observe z and choose the value of c which minimizes gq(c,z) (defined
by (1.5)) subject to the constraints (1.3), (1.4}, and (1.6). How-
ever, this approach may not be satisfactory for some particular reason
and so we are going to develop a decision rule z +c¢, which can be
split into N rules of the form z; +cy. To achieve this we shall
adopt the primal approach derived from large-scale optimization

theory (see, for example, ref.5), and analyzed in the context of
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control in refs. 2-4. Let us assume that the desired values of
interactions y = (yw,...,yN), u = Hy = (uW,...,uN) are fixed.
Under this assumption we formulate N independent problems for
local decision makzrs as follows: (DMi) observe z; and cnoose

the value éi which zolves the problem
min qi(ci,ui,zi)
subject to
- = 2
fL(ci,ui,z‘) Yy g, (2.1)
and

gi(ci,ui,zi) < 0. (2.2)

Note that u; and y, are fixed parameters for DM, . Let Ci(ui’yi'zr
denote the feasible set for DM, , defined by (2.1} and (2.2}, and
let Ci(ui’yi’zi) be the solution of DMi'

N
et Clu,y,z) = i§1 ci(ui.yi,zl), clu,y,z) = (cj(u1,y1,z1),...,
%N(uN,yN,zN)). e define the set
Yy = {y=Y: P {C(Hy,y,z) # #} = 1}, (2.3)

where P denotes the probability. We assume that Y, # @, and that

for any yeY¥y, u = Hy and for almost all z with respect to measure
P, the local problems DMi have solutions. Thus, for any erO,

the set of problems DM (i€11,N}) defines a mapping z - C(HY,y,z),

composed of local mappings z; ’éL(Hiy’yi'zi)‘ Thus, any erO
defines a igecencralized contr,! s3yco-em of the type we were trying
to achieve. It remains only to make the performance of this con-

trol system as good as possible by appropriate adjustment of the
desired values of interactions y (and u = Hy). This is the zo-

crdinaticn task and we shall focus our attention on this problem.

Let 5>:Y. < Z+R' be defined by

sly,z) = q(é(Hy,y,z),z)) (2.4)



=150~

and let
d(y) = E{¢(y,z)} (2.5)

where E denotes the mathematical expectation. The coordination
task is to solve the following optimization problem:

min ¢ (y), (2.6)

YEY,

which, when written explicitly, takes the form

N
min  E{ ] min qy (cy Hiy, ¥ 0250 ¢, (2.7)
i=1

ero Cfaci(ﬂiy,yi,zi)
This is a large-scale two-stage stochastiec programming problem [1]
(see also the paper by Yu. M. Ermoliev in this volume). The so-
lution of problems of this type presents certain serious difficulties.
Firstly, in order to obtain the value of ¢ at a given point y it is
necessary to compute the integral ¢(y) = [¢(y,z) P (dz). The ana-
lytical calculation of this integral is impossible (except in some
trivial cases). 1In addition, the numerical computation of the inte-
gral appears to be difficult and time-consuming. Secondly, even in
very simple cases, the function y+ ¢(y,z} is nonsmooth because its
values are obtained from the optimization problems dependent on the
parameter y. Thus the function ¢ is generally nondifferentiable.
Thirdly, the feasible set YO
difficult to verify whether a given y belongs to Y

is defined indirectly and so it is
0

With a view to the above-mentioned difficulties we have de-
veloped a special algorithm which is able to tackle problem (2.7).
This algorithm is based on the stochastic subgradient method due
to Yu. M. Ermoliev and others.

2.2 Properties of the coordination problem

In this section we shall investigate the essential character-

istics of problem (2.6). We shall make the following assumptions.

1. There exists an open bounded set (CY, such that the solution

0
of the problem (2.6} belongs to Q.
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2. The set c(H2,2,2Z) is bounded.

3. The functions {(c,u) » f{c,u,z), (c,u) +gl{c,u,z), (c,u) +qglc,u,z)
are continuously differentiable for almost all z and all yegR,
u = Hy, c = Elu,y,z), and the derivatives are uniformly bounded.

4. The functions z + (f(c,u,z), gl(c,u,z}, glc,u,z)) are integrable.

5. For almost all z and all yel the solutions of the problems DMi
satisfy necessary optimality conditions. It is possible to

choose Lagrange multipliers uniformly bounded on 2 x Z.

6. One of the following conditions is satisfied:
(a) The functions (ci,ui)* fi(ci'ul'zi) are linear and the

functio La,) > g, L, ,2Z, L uL) » g, R .2 r
n ns (clul) gl(cl, i 1)'(c1’ l) ql(cl,ul, l) are

convex for almost all z.
(b) The function y<+€(Hy,y,z) is uniformly Lipschitz con-

tinuous on  for z€Z.

For brevity we use the expressions "almost all" and "integrable"
for "P-almost all” and "P~integrable" and we write "“Z" instead of
AV

where Z_ is a set of null measure”.

o' 0
We shall now prove that the function % is weakly convexr and
we shall develop formulae for the calculation of its subgradients
{(see ref. 3 and the paper by E.A. Nurminski in this volume for de-

finitions of a weakly convex function and a subgradient),

Zemma 1. The function y+ o(y,z) 1s weakly convex on {Q for almost
all z.

Proof. Let us define the Lagrange function for DM, :

e, ,u; I D . = q. WL ,2,) + <AL E L, )=y > o+
LL( iRy Yyr2ye l'ul) ql(cl' i’ 1) Ay l(cL' 1’21) Yy

+ <y, . . . s>,
ul'gl(cl'ul’zl)

We denote by \i(ui,yi,zi), ui(ui,yi,zi), any multipliers corre-

sponding to the solution of DM.. Let

L(c,u,y,2,A,u) =

: Li(ciluilyilzilx‘lu')

1 1 1

Wi~z

be the global Lagrange function and let i(u,y,z) =(;1(u1,y1,z1),

--,RN(UN/YNrZN))and u(u!YIZ) =(u1(U17Y1721):---fuN(uN-YN,ZN))-
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Then for any yeR, u = Hy, and for almost all z the following equality
holds:

¢(y,2) = L(E(u,y,2), u,y,z,5(a,y,2), nlu,y,2z)).
Let §EQ and 1 = H§. For brevity we use the notation:

c(u,y,z), » = Au,y,2z), X = 3@,y,2),

Q
[}

clu,y,z), ¢

= plu,y,2), u = a(a,y,z).

i
[

We then have
¢(y.,z) - ¢ly,z) = L(c,4,¥,2,%, #) - Lic,u,y,z,A,u) >

L(EIGI§IZIqu) - L(CIQIYIZIAIU) (2.8)

|v

By virtue of condition 3 the function (c,u,y) +L(c,u,y,z,A,u4) is
continuously differentiable for almost all z. Thus

¢(y,2) - oly,z) > <Y _Llc,u,y,z,\,u), c-c> +
+ <Y Llc,u,y,z,\,u), u - u> + (2.9)
+ <vyL(c,u,y,z,A,u), Y - y> o+
+ rL(c,u,y,E,ﬁ,§,z,A,u)

where the residual term r  is small with respect to [(c,u,y) -

{(c,u,y) || . Note that it follows from the necessary optimality

conditions for DM, that VCL(c,u,y,z,X,u) = 0. Next

i

<VuL(c,u,y,z,A,u), u-u> = <H*VuL(c,u,y,z,X,u), 9"Y>-

If condition 6a holds then the function (c,u,y) ~L(c,u,y,z,A,u)
is convex and rLz_O. On the other hand, if condition 6b holds then

r, is small with respect to ly-yll. 1In both cases, for almost

all z
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ply.z) - oly,2z) > <€, Y-y> * r(¥,y), (2.10)
where

£ = H*VuL(c,u,y,z,A,u) + VYL(C.u,y,z,X.u). (2.11)

and the residual term rz(§,y) satisfies the condition of uniform
smallness with respect to H§"YH on compact subsets of . Final-
ly, the function y > ¢(y.,z) is continucus for almost all z. Con-
sequently, taking into account (2.10) and {2.11), it is weakly

convex, and the lemma has been proved.

Corcllary. For any yER and for almost all 2z the vector defined
by (2.11) is a subgradient of the function y -+ ¢(y,z) at the point y.

Lemma 2. The function ¢ is weakly convex on Q. For any ye{l the

vector
4 = E(H*VuL(C,u4y,2,l,u) + VyL(c,u,y,z,A,u)} (2.12)

with ¢ = C(Hy,y,2z), u = Hy, » = 1(Hy,y,2), u = u(Hy,y,z) is a sub-
gradient of ¢ at the point y, i.e., de€3d(y).

Proof. Observe that by virtue of assumptions 3 and 4 the function
z~+dly,z) is integrable. Hence the function ¢ is well-defined and

continuous on Q.

Now let us consider the inegualities (2.8), (2.9), and (2.10).
In practice, by virtue of condition 5 we can always assume that the
functions z > Af{u,y,z), z=@(u,y,z), z~&(u,y,2) are measurable (this is
true if we choose solutions and multipliers according to a certain
ordering rule, e.g., solutions and multipliers of minimum norm, if
they are not unique). Thus the functions z »YCL(é(u,y,z),u,y,z,
Y{u,y,2z), plu,y.2)), 2 +VUL(c(u,y,z), u,y,z, »u,y,2z), wlu,y,2z)),
and z *VyLﬁc(u,y,z), a,y,z, »{u,y,2}), plu,y,2}) are integrable.
The integrability of these gradients follows from assumptions 3
and 4 and the finite dimensionality of the ¢-,u- and y-spaces.
Consequently the vector d is well-defined by (2.12). 1If condition
fa holds, then rz(§.y) = 0 and the proposition of the lemma follows
immediately from (2.10). If condition 6b holds, then it follows
from the above considerasions that the function z-»rL(E(Hy,y,z),
Hy,y.c(By,y,2z), Hy,y,z, *(Hy,y.,z), w(Hy,y.2)) 1is integrable, and
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the function (y,§)-*rL($(Hy,y,z), Hy,y, cl(Hy,y,z)., HY.Y, A(Hy,y.2z),
4(Hy,y,2)) is uniformly small with respect to || y-y|| for z€z.
Hence the function rz(§,y) in (2.10) is integrable and E{rz(§,y)}

is small with respect to || y-y|| . The proposition of the lemma
follows from (2.10}.

2.3 The algorithm

In this section we shall assume that the set 2 satisfying con-
dition 1 is known and that there is a point yer such that &(y) >
¢(y°) + v for all yEYO\Q and for some y > 0.

Let =, (i€{7,N}) be binary random variables associated with

the problems DM, such that P; = P{wi =1} > 0. Let w = (w1,...,nN).

i

We shall now develop a two-level stochastic algorithm for the
solution of problem (2.6). The algorithm operates in conjunction
with two random number generators, which produce sequences {nk}
and {zk} from a series of mutually independent observations over T
and z. Based on these results, the algorithm constructs a random
sequence {yk}, which is supposed to converge to the solution of
problem (2.6). The k-th iteration of the algorithm consists of
the following operations:

k

1,...,n§), independent of the previous

1. Draw a value nk = (
draws nJ,zJ(j < k).

2. For a given yk determine the parameters yt,uf = Hiyk for the

problems DMi.

3. Draw a value zk = (z?,...,z;), independent of all nj(j_ik),
23 (3 <x).
4. Solve those problems DMi for which wt = 1, and define
k .~ .k _k _k
¢y = ci(ui, Yir zi),
k _ s , k .k _k
Xi = xi(ui, ¥y zi),
k _ ~ , k _k _k
wy = ui(ui, Yir 2

Kk _ . kK k _k kK k _k, .k kK k _k, Kk
T Vg Yglegeayezg) v Wy Eiley i uge 2y Ay e Ty gileyaugszy) uy.

* i i
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5. Compute the vectors

k _ , kk k_k

a = (ﬂ1a1/p1,...,vNaN/pN).

k _ ,_k.k K.k

) (n1k1/p1,...,nNkN/pN),

gk - H*ak - Bk

6. Compute

k k . k k

k+1 Y - Dk£ , if Y - DkE =Q ’

y = (2.13)
yo , otherwise,

where op 2 0, and o, depends only on (yo,...,yk).

k

Theorem 1. Let the probability that the following conditions are

satisfied be 1:

Ok+1/ok -1, Z P = @ . {2.14a)

Additionally, let

=

5 Eoi Swo (2.14b)
k=0

. . k .
Then all accumulation points of the sequence {y ]| are stationary

(i.e., belong to the set Y* = {y€D : 0€3d(y)}) with probability 1,
k
and the sequence {¢(y )} converges.

Proof. Observe that

R e LT L 20 A CAN RN LI LR

. 7YL(ck,uk,yk,zk,xk,uk)

k _x k k \k

with ck = é(Hyk,y /27), u = Hy A" = i(Hyk,yk,zk).uk = ﬁ.(Hyk,yk,zk

Thus, by virtue of Lemma 2,

iiy0, R = mie R W0,V R0, v resn ) . (2.18)
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Convergence of the sequence {yk} satisfying (2.13)-(2.15} to the
set Y* follows from results obtained by Nurminski and Ermoliev
(see ref. 8 and ref. 1, Chapter IV, Theorem 5).

The above theorem is of great practical importance in computa-
tion. Observe that for a given sequence of draws {zk}, {ﬂk} the
algorithm generates a path (yk(m)} for the stochastic process {yk}
(w denotes the event corresponding to one run of the algorithm).

It follows from Theorem 1 that almost all of the paths taken by
this process converge to the set Y*. Therefore, for any practical
purposes, one can consider only a single trajectory of the process
{yk}. It is worth noting that neither the values nor the subgra-
dients of ¢ are necessary to generate the path {yk(m)}.

Finally, let us discuss briefly the role played by the binary
variable ﬂk. If nk = {1,...,1) for all k > 0, then we have to solve
all lower-level problems at each iteration of the algorithm. This
can be costly if we are dealing with a large problem involving many
subproblems DM, . The random variable n has therefore been intro-
duced in order to overcome this difficulty. At the k-th iteration
of the algorithm we solve only those problems DM, for which ﬂt = 1.
In particular, if "k always has only one nonzero component then only
one subproblem is solved at each iteration of the algorithm.

2.4 The penalty method

It was assumed in the previous section that the set ¢ which
satisfies condition 1 is known. This assumption seems to be rather
restrictive and we shall try to avoid the need to invoke it. A
serious difficulty arises at this point; we cannot guarantee that
all points yk belong to the set YO. In order to overcome this
difficulty we shall introduce artificial variables into the prob-
lems DM, and formulate modified lower-level problems as follows:

(DMi) observe z; and choose CyrVyi/Wyi0y which solve the problem

min [ql(ci,u.

J_,zi) + Roi]

subject to

fi(ci,ui,z.) -y. +v, =0, (2.16)
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gjlegeugrzy) + Wy <0, (2.17)

(Vi'wi'ci)eri = {(vi'wi'ci) s

|2§ o?

L > 0}. (2.18)

' Ui 2

2
v % e |
The variables v,,w, are the artificial variables, and the constant
R > 0 is a penalty coefficient.

Let cRi(ui,yi,Zi), vRi(ui'yi’zi)' wRi(ui,y ,zi), and

i

9pi (Uir¥;+2;) be the solutions of DM;. As before, let ER(u,y,z) =

= (6R1l---réRN)r GR(UIYIZ) = (6R1l"‘IGRN)I Q(U'er) = (QRA‘IU"IQRN)I
dg(u,y,z) = (GR1""'0RN)' Let

%R(Y'Z) = q(ék(Hy;y'Z),Z) + R ”aR(HY!Y!z) ”1 ’
where

lolly = T iyl .
and let

@R(y) = EwR(y,zl
Let us consider the problem

min 5R<y) . (2.19)
We assume that we know an copen bounded set ¢ such that for R suf-
ficiently large the solution of (2.19) belongs to 2. We also
assume that conditions 2-6 from Section 2.2 are satisfied for DMi

with Q@ replaced by Q and & replaced by ¢&

assume that QCYO.

R Note that we no longer
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Using a method similar to that employed in Section 2.2, it

may be shown that the function o is weakly convex on Q. More-

over, we can solve the problem (5.19) using a modified version
of the algorithm described in Section 2.3; at each iteration of
the algorithm we solve the problems 5&1 instead of DMi, and we
use multipliers corresponding to (2.16) and (2.17) instead of
multipliers corresponding to (2.1) and (2.2). This algorithm
will generate a sequence {yk}whichconvergeswithprobabilityone
to the set of stationary pointsof problem (2.19). However, even
for a very large penalty coefficient R the solutions of (2.19)
are not necessarily the solutions of (2.6), although the exact
penalty approach is used. This is due to the stochastic nature
of the problem; the operation of averaging may smooth out the
penalty function. Thus we have to study the relations between
the solutions of (2.6) and the solutions of (2.19). Let y€Q be
a solution of (2.6) and let 9&55 be a solution of (2.19) for a
sufficiently large value of R.

Lemma 3. Let the functions (ci,zi)-'qi(ci,ui.zi) be uniformly
bounded from below for ueH. Then for sufficiently large values of R

E]lcR(HyR,yR,z) ||1 < const/R. (2.20)

Proof. Note that $R(y) < ¢(y) for yes'zrwo. Thus

5R(yR) < 5R(y) < 0(9) (2.21)

On the other hand

I . o , o
oo (¥p) RE .IcR (HY o+ ¥ s 2) 1l1 + E qEp(RYp,¥p.2),2) >

Iv

R E||5R(H?R,9R,2) H1 + const. (2.22)

The inequality (2.20) follows from {2.21) and (2.22), and the
lemma has been proved.
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Corollary. For any € > 0

P{HOR(HYR,yR,z)H7 > g} < const/eR.

Now let us consider the sequence {y"} such that y° =

Rs+m. s

Theorem 2. Any accumulation point of the sequence {ys) is a solu~
tion of problem (2.6).

S S

Proof. Let u” = Hys, c”(z) = &R (us,ys,z) = (c?(z),...,cs(z)),
s N

s o= s .s _ s s
o {z) = GRS(U 'Y 42) = (01(2),...,0N(z)).

Let y* be a limit point of the sequence (ys}. Obviously, we
can always assume that ys-y*. We shall prove that for almost all
z the sequence {a%(z2)} converges. It.is easy to verify that the
point ci(zi) is a solution of the problem

. S S S
min [qi(ci,ui,zi) * Rg Ti(ci.ui,yi'zi)),

where
T.lc.u.,y.,2.) = (Hf . (c.,u,,2;) -y 2.
LS R RS R SRS TS L A i
' 2,.1/2
+ ;!gi(ci,ui,zl)+H )
S s S _ .S
and Ti(ci(zi)’ui’yi’zi) = oiizi). Thus, for any k > 0
q; (e (z)) i,z Rko};(zi) z qi(ci(zi)’u;i(’zi] *
s k _k s k
+ RkTi(ci(zi),ui,yi,zi) < qi(ci(zi),ui,zi) +
.S s k _k S s s
+ RkJi(zi) + Rk(Ti(ci(zi),ui.yi,zi) Ti(ci(zi),ui,yi,zi)).
Hence
Kz < Sz - ke,

s,k

where 2y (zi) +0 as s,k +». This property follows from the con-

vergence of the sequences (ui(zi)}, <y§(zi)} and the continuity of
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the function (ui,yi)-»Ti(ci,ui,yi,zi). It follows from the last in-
equality that the sequence {0S(z)} converges with probability one.
Consequently, from Lemma 3, lim 6%(z) = 0 for almost all z. Let

c*(z) be any accumulation point of the sequence {cs(z)}. Then

P {f(c*(z) ,Hy*,z) - y* = 0} = 1,

[}
—_

P {glc*(z),Hy*,z) < 0}
Thus yﬂgyo. On the other hand

o(y) > ¢ (v°) > E q(c®(2))
S

Consegquently ®(9) = ¢(y*), and the theorem has been proved.

The above theorem shows that use of the penalty method with a
sufficiently large penalty coefficient yields good approximations
to the solution of problem (2.6). Thus we have overcome the last
of the three difficulties mentioned at the end of Section 2.1.

3. THE DUAL APPROACH

3.1 The interaction balance method with feedback

In this section we shall describe a variant of the dual method
for large-scale optimization problems. For simplicity, we assume
that z in (1.3) is constant and that the performance index (1.5)
and constraints (1.6) do not depend on z. Thus we have to solve
the following optimization problem:

N

min § q(c;.uy)
i=1

subject to

u-H f(c,u,z) =0, (3.1)
g;(cy,uy) <0, i€(T,N}. (3.2)

If the exact value of the parameter z is known and the functions
involved are sufficiently reqular, then the solution of the above
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problem can be found by well-known large~scale optimization tech-
niques (see, for example, ref. 5). However, in some control and
large-scale optimization problems we encounter situations in which
these techniques are not applicable. 1In control problems we do

not usually know the exact values of the parameters z; we can only
observe the behavior of the controlled system. 1In some large-scale
optimization problems we cannot handle the constraints (3.1}, even
though we know 2z, because the functions (c,u) + f(c,u,z) are non-
differentiable. In both cases we have to content ourselves with

an approximate solution which must, however, satisfy the constraints
{(3.1) and (3.2). 1In this section we develop a hierarchical method
which generates suboptimal solutions of this type. The method is
based on the interaction balance principle suggested in ref. 2 and

analyzed in refs. 6,9, and 10.

Let us introduce a coordination variable (price) p such that
p = (p1,...,pN), pfsgi and let us specify the problems to be soclved
by the local decision-making units associated with the subsystems as
follows:

min Li(ci,ui,p) (3.3)
subject to

g;lcyruy) <0,
where

Ly(ey,uysP) = qy(Cy,uy) + <pyauy> -

, Pirfii®iley

Wie~1%

) rui)> . (3.4)
J

We assume that the functions ®; are continuously differentiable

approximations of the functions (ci,ui) *fi(ci,ui,zi). Let c(p) =
(Ei(p),...,EN(p)) and u(p) = (61(p),...,GN(p)} be the solutions
of problem (3.3). When the control E(p) is applied to the real

system described by (3.1) it produces interactions ulc(p),z).
The coordination task is to find price p(z) such that

u(p(z)) - uic(p(z)),z) = 0 . (3.5)
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This principle is an extension of the dual method of optimization
to the class of problems considered in this section. Indeed, ob-

serve that if ¢i(ci,ui)5 fi(ci,ui,z) then the function

. (c. ,u
Ll(cl' i R

N
..p) = § g (c;,uy) + <p,u - HE(c,u,z)>
1 i=1

N
L(c,u,p) = §
i=

is the Lagrange function for the original problem. Note also that
condition (3.5) 1is equivalent to the condition u(p) = Hf (c(p),u(p),z),
which is the optimality condition in the dual method of optimization

[5,7]. However, if @i(ci,ui) # fi(ci,u ) then the solution given

' 2
by (3.5) 1is not necessarily optimal, althotgh it still satisfies con-
straints (3.1) and (3.2). Some bounds on the loss of optimality have
been derived in ref. 6, but it is still difficult to convince a mathe-
matician of the validity of the above approach since it is motivated
by preferences which cannot be formalizgd. However, once the coordi-
nation problem (3.5) has been formulated, we are faced with a well-
defined mathematical problem: find a method for the solution of equa-
tion (3.5). This is not a trivial matter since the functions p~+cl(p),

p+u(p) and c +ulc,z) are generally nondifferentiable.

In the next section we shall investigate in detail the proper-
ties of the function p-'(E(p),G(p)). In Section 3.3, we shall con-
struct an iterative algorithm based on the properties of this func-
tion which can be used to solve equation (3.5). However, before
proceeding to these problems we shall introduce some useful nota-
tion and make a number of assumptions.

1. For any c€C the equation u = H¢(c,u) defines a
unique solution uo(c). The linear operator

I-H¢u(c,u) is nonsingular for cecC.

We introduce the following notation: x = (c,u), x€X, Q(x) =
N
= [ qylejouy), Flx) = u = Hélc,u), D(x) = u = uyle),
i=1
D.(x,2z) = u - u(c,z). Using this notation we can write the lower-

level problems in the form

min [L(x,p) = Q(x) + <p, F(x)>] (3.6)

subject to

glx) <0
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The coordtination problem (3.5) takes the form

D,(x(p),z) = 0 , (3.7)
where x(p) = (ci{p), U{p)) is the solution of (3.6).
Let po be the solution of the equation F(x(p)) = 0, and let
xO = ;(po). This solution may easily be obtained by the classical

dual method. Let Q_, Qx be neighborhoods of po,xo which satisfy

the relation E(QP)CQX. We then make the following assumptions:

2. The functions Q,F, and g are twice differentiable

on Qx and the function g is convex.

3. There exists a constant v >0 such that VixL(x,p) > vI
for xGQx, peﬂp (i.e., the operator Vix(L(x,p) - vI) is
positive semidefinite).

3.2 Properties of lower-level solutions

In order to investigate the properties of the function p ~x(p),
we have to study the effects of the scalar inequality constraints
gij(x) < 0 (i€{1,Nn}, je{1,Ji}) involved in problem (3.6). Let

Iptp) = (1,303 g;5(x (p)) = 0},

and

Fip,x) (gij(X))(i,j)EIo(p)'

We assume that for penp,x = i(p), the linear operator Fx(p,x) is
nonsingular. Under this assumption there exist unique Lagrange
multipliers u(p)eRJ which correspond to the constraints in prob-
lem (3.6). We define the operator W(p) = Vix(L(Q(p),p) +

hd <u(pl,q(§(p))>). Obviocusly, from assumptions 2 and 3, w(p) >
> vI £ Q.

2V or pe:p

Let p1, p2€QD and let p(t) = (1-t)p1 + t p2. We shall in-
vestigate the behavior of the function t+x(plt)) for te[0,1].
Since the set Io(p(t)) may change as t ranges between 0 and 1,
this function may be nondifferentiable.
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Lemma 4. If the set Io(p(t)) is constant in a neighborhood
of the point t,€(0,1) then the function t+x(p(t)) is differ-
entiable at to, and

X - 2__1
dxip(e)) - - ppe I FA (xRt ) (p2-ph), (3.8)

where
- , if Io(p) =0
B(p) = (3.9)
-1 -1 » -1 x, =1 -1 .
W - W Fx (wa Fx) wa , otherwise.
For brevity we have written W(p) as W and Fx(p,i(p)) as Fx.
Moreover, for any pEQp, B(p) = B*(p) and
N(B(9)) = R(T (p,X(pP))) ., (3.10)
0 < B(p) < Wip . (3.11)

(¥(A) and R{A) denote the null space and the range of the operator
A, respectively).

Proof. The propositions of the lemma follow immediately from the
necessary optimality conditions for problem (3.6) and the assumption

that the operator Fx(p,i(p)) is nonsingular.

Observe that the function t +B(p(t)) is in general discon-
tinuous and so the function t-ﬁd§(p(t))/dt is also discontinuous.
However, if the set Io(p(t)) changes a countable number of times
as t ranges between 0 and 1, then the functions t-+x(p(t)),

t *D(x(p(t))) are absolutely continuous and

1
- - - - 1
D(x(p%))-D(E(p1)) = - [ D (X(p(£)))B(p(£))FS (Rl (£))) (pP=p ) de
0
(3.12)

This condition does not seem to be very restrictive in practice

and we shall impose it on our problem.

Since we may assume that D, (x,2)=D(x), equation (3.12) gives
a good approximation to the difference D*(i(pz),z) - D*(E(p1),z).
Thus it seems reasonable to construct an algorithm for the solu-
tion of (3.7) based on equation (3.12), in a way similar to that
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used in ref. 12. However, this leads to a number of problems. If
p is close to po then D, (x (p)) and Fy (x(p)) are close to D, (x ) and
(x ), respectively, but: no statement of this type can be made about
the operator B{p). Moreover, it seems unreasonable to compute B(p),
since this involves many time-consuming operations. In the next
section we shall develop an algorithm for the solution of (3.7)
which does not require the computation of B(p); this is due to the
properties (3.10) and (3.11) of the operator B(p).

3.3 The algorithm

Let € > 0 and let A be a selfconjugate positively defined
operator such that A : g-»x, mAI <A< MAI. We define operators
Dy = Dx(xo), Fy = Fx(xo), and E = (DyA Fa)-1. Let us consider
the algorithm

" = X v E D, (X(p%),2). (3.13)

It is easy to verify that the matrix E is well-defined, since it
follows from assumptlon 1 that N(D ) = N(F ). We shall prove that
the mapping p <»pk 1 has a fixed p01nt in a neighborhood of p and
that the algorithm (3.13) converges to this fixed point. To do this

we must make the following important assumption.

4. There exists 5 > 0 such that for pef_ and vER(FS)
the inequality d(v,R(r;(p,i(p)))> > & |lvll is
satisfied, where d(v,M) denotes the distance bet~-

ween the point v and the set M.

We now introduce a new norm | in U, derived from the

o
scalar product

<v1,v2>0 = <F v', A Fs ve> .
Since N(FS) = {0} then the norm ! - WO is well defined.
Lemma 5. Let V(p) = p + E D(x(p}). Let [[W(p)|l <M, for pEQp

Finally, let the inequality

=1 2 pa o 1 = 2 20wz 20 0 SR
Dx(x(p ))B(p JE (x(p)) = D (x(p"))BI(PTIF (X(p ")) g <L ip P g
(3.14)
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hold for any p1,p2€Qp. Then for any p1,p%EQp

Ivie?) = v lly <aterllp® - p'll, +

1 1 0 2 0 2 1
+ seL|[E[ly tlp =P ilg+ IIP"-p [Ig) lIp"-p Iy » (3.15)

where
) 2062 | 2 V2 (3.16)
afe) = (1 - vt 3 2)
AW v m
A
1 2
Proof. Let pit) = (1-t)p + t p

Let S = R(Fa) and let P denote the projection on S. We de-
fine linear operations AS:S'+S, Bs(p):S-*S, FS:S-*U, DS:S->U as

follows: A_ = PSA|S, B (p) = PSB(p)|S, F_=PF =D

3 s 0[s’ Ds 0|s*

Next we define

R = B (p(t))dt

1
!
0
It follows from (3.10) that for any x€S

<x, B (p(t))x> = <x,B(p(t))x> = <s, W(p(t))—15> ’

where s = x - I‘;;(l‘xw‘1 F;)_1 wa—1x. For brevity we have written

w(p(t)) as W, and Fx(p(t), i(p(t))) as Fx. Hence, from (3.11) and
assumption 4, we have

2
1 2 8% 1,2
<x, B_(p(t))x> > — sl > — IIx}
s - Mw - M'N I
Thus
2
<xrRx>35% 12 (3.17)
for xeS.
o = * 2 1 i _ |
Let v = (I-cE DOR FO) (p-p ). Since N(DO) = N(FO) J_SI then
= =1 ne =1 -1 -1
E = (Dg A  F ) = (F))  A_ D_ . Thus
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=42 _ .21 2 1. 2 1 wy=1,=10 e 21
Hv||0 = <p™=p ., P=p >, - 2e<p™-p , (Fs) A_ R Fylp™-p )2 +
2 e =1 =1 x, 2 1 wy =1 =1 *r 2
+ e <(Fg) Ay R Fy{p-p ), (F) A" RFy (p7=p )>, (3.18)
We shall now estimate the components of (3.18). It follows from
the definition of <>y and from (3.17) that
2 1 * =1 =1 2 1 52 2. 1 2
<p“=p , (F)™ A_ R FI(p™p )>5 2 g ![FE (p™-p )il
My
Next, we obtain from (3.11) the inequality
* =1 -1 * 2.1 *, =1 =1 *, 2 1 _
<(Fs) As RFO (p™p ), (Fs) A RFO(p -p )>O =
-1 2.1 2_ 1 1 * 2 10,2
= <A R Fy(p=p ), RFJ(P™-p )> < 5 lFy %=p )% .
vim
A
Finally, it follows from the definition of the norm || - HO that
1 2 1,2 [ 2 1 2 1 2 1,2
CY lp™=p llg < liFg te=p )17 ¢ = llp"-p |l
A
Using the above three estimates, we obtain from (3.18) the in-
equality
Hvlly < ate) !\92-91\!0 (3.
where a(e) is defined by (3.16).
It is now easy to prove the inequality (3.15). It follows
from (3.12) that
2 1 - ! .
V(p?) = V(p') = v + eE[ (D B(p(t))Fy -
0
- - 1
- D, (X(p(£))B(p(£)))FL(X(p(t)))) (p%-pllat
Next, by virtue of (3.14),
2 1 21, 0
! - /! ! el " - | ! - i
fvipT)y = vip )iy < dlvilg s e Li[E, tpT-p é p(e)-p" | at <
Iy 1 | o1 0. n_2 2 0.2 10
< vig r 3L By (e mp g ¢ dipT-RTl ) Rt -p Uy (3.20)

19)
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The inequality (3.15) follows from (3.19) and (3.20), and the
lemma has been proved.

Now let us define the operation

D(x,z) = D,(x,z2) - D(x) = uo(c) -u (c,z) .

Theorem 3. Let the assumptions of Lemma 5 be satisfied. Let also

15" ,2) - Bix(p%),2)ly < Lllp'-p%ll, (3.21)
1 2
for P ,P er. Next, let
| ED, x°,2) g £n . (3.22)

We define the following constants: § = (1-a(e))/e, b = HEHO,

h =bln, r = (E -~ bL - [(£ - bL)% - 2n] /2

ing conditions be satisfied:

)/bL. Let the follow-

V3R + bL < § (3.23)
0 _ : o]
K(p':;r) = {peU: |p-p l|0 < r}CQp. (3.24)

Then equation (3.7) has a unigue solution p(z) in K(po;r) and the
sequence {pk} generated by (3.13) converges to pl(z).

Proof. We define the operation V,(p) = p + € ED, (x(p),z) .
It follows from Lemma 5 and (3.21) that

Ve e?) = v, @) Iy < ale) + ebly [p%0' iy «

1 1 0 2 0 2 1
+ zedL(lip -p Iy + [Ip"=p lly) lIp"-p Il (3.25)

for any p1,pzer. We define the function U¥: R1-*R1,

p(t) = %e bL t2 + (ale) + Ebi) t + en .

It follows from (3.25) that for p1,p%EQp and t > %(||p1-po||0 +

2.0
+ ilp™-p {|0)the following inequality holds:
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]]V,(pz) - V,,(p1)H0 < (ale) + ebL + ebL t)]lpz-p1I]O < w'(t)[]pz-p1}
(3.26)
Next ,

v, % - g0 lg < en = w(0) . (3.27)

In addition to the sequence {pk} we shall consider the segqguence
{t, } defined by the formula t, ., = y(f, ), t;=0. It is evident
that €y t r, since r is the smaller of the two roots of the equa-
tion Y(t) = t. We are going to prove that (tk} is the majorizing
sequence for the sequence (pk}, i.e., that ka+1-pkﬂo St "t
It follows from (3.27) that

K

1 0 0 0
e - p “0 < fvatpy = p \‘0 < t1 -ty
Let us suppose that
1\pj - j-1‘? <t, -t
ERLIE IS B R
k-1 k
for 1 < jJ < k. Let p(r) = (1-1)p + Tp , and let
0 = 74 £ 74...87y = 1. It follows from (3.26) that
k+1_ k o ik k-1, NI
™" T =p iy = IV, (@M1 =v (0™ D ily < 7 iivalelt )=V (plr, Nl <
1=0
N
' - !
< l§1w o) llplry) = el 1Ml
where
o, = 1 (. + T )y, -t ) + t >
i 2 1 i+1 k k=1 k=-1=
1, 0 ! 0
>ztiplry) = p Hy + dplri,) = pllg) .

)

Approaching the limit as N-+«, we find that sup |7, , - Ti\ + 0 and

we obtain the inequality
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kel _ K . _
Ie**" - 2"l Pt g+ TlE -t ) (k- €, )dT =

O

VBt = blE) - Wt ) =g Tt -
k-1

o

Kk
i o <t %k
for all k > 0, and hence that the sequence {p’} converges to the

Thus, we have proved by induction that Ilpk+1-p

solution §EK(p0;r) of equation (3.7). In order to prove that this
solution is unique, let us assume that V,(p) = p for some pek (p%:r) .
Let EO = ||lp - pOHO and Ek+1 = y(t,). Adopting a method similar

to that used above, it is possible to prove that ||p - pkll < Ek-tk.
But lim tk = lim tk = r, and hence p = p. Finally, let us note
that in a similar fashion it can be proved that the solution p is
unique in K(p®;T), where T = (£-bi + [(E-bL)2 - 2n]'/2)/bL is the
greater of the roots of the equation y(t) = t. Moreover, if the
algorithm (3.13) is initialized with Eoe int K(po;r) it generates

a sequence {Bk} which converges to p. Thus the theorem has been
proved.

To sum up, we have solved equation (3.7) which involves non-
differentiable functions p+ x(p) and x+D,(x,2z), using a Newton-
like algorithm (3.13). The algorithm exploited a number of special
features of the problem under consideration, the most important of
which were: D,(x,2) = D(x) {(conditions (3.21) and (3.23)), N(Do) =
= N(GO) (assumption 1) and B > 0 on S (Lemma 4 and (3.17)). It is
worth noting that if we replace (3.23) by a strict inequality then
the operation V, has contraction mapping properties in K(po;r).
This feature i3 important for control problems in which z is a time-
varying parameter, because it is then possible to trace the moving
solution p(z(t)) of the nonstationary equation D*(i(p),z(t)) =0
(see ref. 11).
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LAGRANGIAN FUNCTIONS AND NONDIFFERENTIABLE
OPTIMIZATION

A.P. Wierzbicki
International Institute for Applied Systems Analysis
Laxenburg, Austria

1. INTRODUCTION

Rapid development and intensive research into nondifferen-
tiable optimization techniques (Balinski and Wolfe, 1975) has
resulted recently in algorithms that are closely related or even
equivalent in the differentiable case to known and effective
techniques of differentiable optimization. A very interesting
quasi~Newton technique for nondifferentiable ovbtimization was
proposed and partly investigated in Lemaréchal (1978). To
understand fully possible weak and strong points of guasi-Newton
methods in nondifferentiable optimization, a more exhaustive
study of various relations between nondifferentiable and differ-
entiable problems is needed. Because of the large variety of
nondifferentiable problems, this goal cannot be achieved in a
short paper. However, some theoretical insight can be obtained

by analyzing the most simple type of nondifferentiable problems:

minimize £ (x) ; f(x) = max f. (x) (1)
xeX ier

where X is a convex set with nonempty interior in rR" (possibly
X-=Rn), I is a countadble set of indexes (possibly finite). It

is assumed that f is bounded from below on X and that max, cq fi(x)
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for each x € X is attained at a finite subset A(x) = A C I;
fi:Rn - R1 are twice-differentiable functions. It is not neces-
sarily assumed that the Haar condition is satisfied, that is, if
& € Arg min_ o max; . f.(x), then foi any subset A C A(R), the
matrix composed of fix(ﬁ) for i € A has its maximal rank. If
this condition is satisfied, then & is uniquely determined by
fix(ﬁ), i € A(®) only, and some efficient algorithms for solving
the problem (1) are known (Madsen and Schjaer-Jacobsen, 1977);
however, this condition is rarely satisfied in practical problems.
Other conditions of second-order type resulting in the unique-
ness of R are further assumed to hold, together with conditions
implying the uniqueness of baricentric coordinates in subdiffer-
ential sets.

The functions fi might be assumed convex or not; this prob-
lem is discussed in detail later. The assumptions of countabil-
ity of I and finiteness of A could actually be relaxed, although
this generalization is beyond the scope of this paper. If the
functions fi are not differentiable, it is often possible to re-
formulate the problem (1) by enlarging the set I in such a way
that the modified functions fi are differentiable. It would seem,
therefore, that the class of nondifferentiable problems con-
sidered could be extended to cover almost all problems encoun-
tered in practice. However, still more assumptions are needed
for a theoretical investigation: that the activity set A(x) = A
can be determined explicitly for each x € X and that the sub-
differential 3f(x) of f at x can also be fully determined:

3E(x) ={g€RY 1 g= | xif;x(x) p A 20, T =1) (2)
1€A 1€A

where f:x(x) are the gradients of functions fi at x (written as
column vectors, nence the transposition sign *). This assump-
tion is not always satisfied in practical problems of nondiffer-
entiable optimization and can even be considered as contradictory
to the very nature of nondifferentiable optimization techniques,
where one of the main problems is to estimate the subdifferential
9f (x) without knowing its full description. On the other hand,
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in order to obtain a better theoretical insight, it is useful to
proceed in two stages: first, investigate the implications that
A = A(x) and 3f(x) are known explicitly, then try to relax this
assumption and check for which theoretical properties this

assumption is crucial.

Under the assumption that A = A(x) and 3f(x) are known ex-
plicitly, problem (1) is equivalent to a constrained differenti-
able optimization problem which can be studied by introducing a
normal or an augmented Lagrangian functicn, depending on convex-
ity assumptions. In this way, the relation of nondifferentiable
techniques for solving problem (1) to known techniques of dif-
ferentiable optimization can be investigated, sufficient con-
ditions of optimality can be studied and some strong (super-
linear or even quadratic) convergence properties of a special
variant of nondifferentiable quasi-Newton techniques can be
deduced. These strong results substantiate the introduction of
a special class of nondifferentiable optimization problems with explicit=
ly known subdifferentials, which are in fact equivalent to differen-
tiable problems and can be solved efficiently by appropriate
technigques~-provided the number of elements 1n the activity set,
|A(x) |, is not too large to make the explicit definition of the

subdifferential computationally cumbersome.

If A = A{x) and af(x) are not known explicitly, or their ex-
plicit definition is computationally cumbersome, then only some
subgradients g € 5f(x) can be computed without specifying fix(X)
and the baricentric coordinates Ai' This constitutes the opposite
class of nondifferentiadle optimization problems with implicit subdifferen~
twala. In this class, it is very difficult to construct a quasi-
Newton method that would converge superlinearly since the sub-
gradient g cannot be used to obtain a sufficiently accurate
approximation of a Hessian matrix that would result in strong
convergence properties; in fact, such a construction seems to be
impossible. However, many algorithms with sublinear or linear
convergence are known for the case of implicit subdifferentials
and these algorithms are in fact more practically efficient for
problems in which the explicit definition of the subdifferential
is computationally cumbersome.
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2. A BASIC LEMMA

One of the fundamental problems in nondifferentiable opti-
mization is as follows. Given the set 3f(x) or an approximation
G thereof, expressed by convex combinations of a set of vectors
g9; € R™ for i € A and by some accuracy parameters ui_io, i €A
(where A = A(x), g; = £, (x), a; = 0 if the set 3f(x) = G is given
explicitly), check whether 0 € G, and if not, find the vector
§ € G of minimal norm, subject to accuracy corrections if oy >0.
When using quasi-Newton methods of nondifferentiable optimization,
the norm in which § is minimized must be chosen according to some
other properties of the problem. Therefore, denote “gﬂ%-l =
<g ,H-1g>, where H-1:Rn -+ R is a given positive definise matrix.
The basic problem can be stated as follows:

minimize (%ﬂgﬁz_1 + Yoayy
H iea ¥

Y6 = {({y,9):g= Jy.g., , Jy,=1,y. >0, i€Aa}
1 e - *

The following lemma is actually only an extension of the
results given in Lemaréchal (1978), but, since it is fundamental
for the investigation of relations between nondifferentiable
optimization methods and equivalent Lagrangian function approaches,

it is presented here in detail.

Zemma I. The problem (3) is equivalent to the following dual

problem

minimize (§0<+%H§N§) i
(X, %) €X,, (4)

X, = ((x5,X) € R 19g .X> - Xy - 2, 0, i€ al

where "i"; = <k , HX>. The equivalence is to be understood in

the sense that, if §, ¢ are solutions to the problem (3) with
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Eagrange multipliers x for the constraint g - ZiEAyigi = 0 and

X, for the constraint } .y, - 1 =0, then X,, X are solutions
of problem (4) with Lagrange multipliers 9i for constraints

- - . 2 -1, 2
<9y X> = Xg T ooy < 0 with x = -H §, x 0.

Ayl
0 = -“g"ﬁ.q

= Liea%i¥; 2
The following equivalences also hold:

-min a, *
1€A iea

®p
i
o
s
[fah)
W
o
s
wh
i
]
~1
%]
<o
[}

x>
i

0 if any of a; = 0

generally, -;0 > "2“3 > 0 and -Xx

2 > 0. Moreover, the
solutions IO' X, § of the problems (3), (4) are unique, whereas
¢ is unique if vectors hi = (-1,gi) € Rn+1 are linearly indepen-
dent for i1 € A, and, generally, ¥ € ¥, where Y is a compact con-

vex set. Even if ¢ is not unique, it minimizes Z over

L 0L Y
N 1€A i71 ]
yey =1y :+y; 20 ‘ziEAyi =1 ’5'€Ayigi = g}. Ifiy 12 unique,
then, for any positive definite H™), the solutions Xgr X, G, 9

depend Lipschitz~continuously on the data gy 2y

Proof. Both problems are convex. Consider first the guestion of
the uniqueness of their solution. Problem (3) clearly has a

unique solution § in g and, if hi are linearly independent for

i € A, a unique solution ¥ in y. Observe that the linear depen-

dence of the vectors hi = (—1,gi) c Rn+1, that is, the existence
) a.h.

of * # Q0 such that Lielllhl

of « # 0 such that !

= 0, is equivalent to the existence

‘ . jerti = 00 35 = "liug¥ye and ag3y = o109,
which, in turn, is equivalent to the existence of Xi = -(ai/uj),
S A = L. o= . AL . ; i i

Liggty 1, and 9y ;ij\ng If h, are linearly independent,

such a situation cannot occur and an arbitrary gj, j € I, cannot
be a convex combination of other 9ii this implies the uniqueness
of baricentric cocordinates yi. If hi are linearly dependent,

choose a minimal subset A C A such that g = Eiexyigi, Eiexyi =1,
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¥; 20, and put ¥, = 0 for i € A. If the choice of A is not
unique, define such a ¥ for each A; define a set ¥ as the convex
hull of all such ¥. Since all y € ¥ result in the same §, the

set of optimal ¢ is defined by Y = Arg mlnyefzieAqiyi; Y is a
compact and closed set. Problem (4) has a unique solution

~ A

A A -~

2 LA 1,2 2 _ 1,5 .2 . . e
AXO' é, S%ncg X01,* f"x1"H;_ Xp2,* X,y lgpllei X901, %02 if N
X, = X5 1f x; # X5, then x, = 8x,, + (1-8)xy,, x = 8xq + (1-B) x

2
for B € (0;1) would yield a smaller value of §0 + %ﬂxﬂga

Consider now problem (3) and define the Lagrangian function:

- - a1, 2 =
Lx/Xpryi9) = 5lgl® v} ayy, + <x,q9 - i;EAYigi> *

H ieA

(3 y.~N (S)
0 iea i

Since the equality constraints in (3) are affine, each solution
(§,8) of (3) together with the corresponding Lagrange multipliers
(i,io) are saddle points of tée function (5) under the additional
denote sets of possible La-

0
for (9,§) € Y x {§}, then:

constraint y, >0. Hence, if X, X

grange multipliers Xx, §0

% § x ¥ x {§} = Arg min max L(X,X,,v,9)
0 yiO,gERn (x,xo)ERn+1 0
(6)
= Arg max min £(§,§O,y,g)

(X, %50 er™ " y>0,ger

where Arg min max is the set of points resulting in min max, etc.

Compute the value g that minimizes £ for a given X, Xge Y-

Clearly, § = g(x) = -HX; this implies that x = -5'1@ and X = (X}
is unigue. Moreover, after easy computation
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% = = Tg—=y2 - -
'E(xlx :Y:g(x)) = 1%l - X - Z (< > _
0 Y. (<g. ,x>x a.)
2 H 0 i i i’ 0

d-f -Z(YIzol;)

. 1y=42 = 1 2
— - = lal 5 . ;
and at the saddle point, zufﬂﬁ X9 Zﬂ@lH_1 + Zi 2®i9,7 since

~

2 =y , . . = 2
1312 = 1512, BT S .
3 -1 xby, thlsllmplles X, xiﬁ Zi 2295 Hegce X
also unique, Xy = {xo}. Obviously, x = 0 * § = 0 and Xg =0 =

Xx =0, §=0.

The function £ in (7) is the Lagrangian function for prob-

is

lem (4). Observe that problem (4) satisfies the Slater condition,

since §1 =0, ;01 > 0 are admissible for the problem and <g; . X
201 T < 0 for all i € A. Moreover, it is well known that
Arg min , max E(y,io,x) = {20} x {x} x ¥ '

(E0,§>ean+ y>0

where ;O’ X are unigue solutions of (4) and ¥ is the set of
corresponding Lagrange multipliers. But relation (7) implies

that:

>
x

>
»
p-<
i

Arg min _ max L(X,Xn, v 3 (X))
y>0 (x,xo)eRrl+1 0

(8)

Arg max min

y>0 (%,%,) e’

1

Hence ¥ = ¥. If ¥ = (¢}, the Lipschitz-continuity of x, ;O’ v,

g in 95 and oy results from general properties of solutions of
sets of equations and inequalities--(see Szymanowski, 1977 and
Wierzbicki, 1978). Moreover, since Io'is the solution of (4),
-2, i X, = -min, =,

, € A, and X4 “ming %

X, = 0. Conversely, Xy = EieAliyi = -m

X=0=X ; if any of 1y =0,

. 0
fhen X =0 iniEAli nd

§=0=%=0.

> -

Liy,RgiX) = (x} < (g}

Yy
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A large part of the above lemma is given in Lemaréchal (1978),
however, without the full interpretation of io, i as Lagrange
multipliers for (3) and without the uniqueness or Lipschitz-
continuity arguments. It is also observed in Lemaréchal (1978)
that problem (3) is easier to solve computationally than (4); in

fact, the equation § = J 95 defines § explicitly, and is

ieals
treated as a constraint in the lemma only in order to provide an
interpretation for i. There exist very efficient algorithms for
solving (3) in ¢ and &, if a; = 0 (see Wolfe, 1976 and
Hohenbalken, 1978); these algorithms can alsoAbe adgpted to the
case when a; > 0. Once ¢ and § are defined, X and ;0 are

easily computed.

Lemma 1 also allows a straightforward generalization for
problems with infinite and innumerable variables and constraints
in Hilbert spaces; but this generalization is beyond the scope
of this paper.

3. NONDIFFERENTIABLE OPTIMIZATION WITH EXPLICIT SUBDIFFERENTIALS
3.1 Fundamentals

If the activity set A(x) and the subdifferential 3f(x) are
given explicitly at each x € X, then the nondifferentiable prob-
lem (1) is equivalent to the following differentiable one:

minimize x

(xo,x)ex0 0
(9)
Xy = ((xo,x) e R1 x X 3 fi(x) - % = 0, 1 €1}
with the activity set A(x) defined equivalently by
A(x) = {L eI : fi(x) - io(x) =0 ;
(10)
Ro(x) = max fi(x)}

i€erx
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If the functions fi are convex, then problem (9) is convex
and clearly satisfies the Slater condition with any X, € X and

X591 > ﬁo(x1). Thus, the normal Lagrange function:

L(y,Xq,X) = X, + Jy. (£, (x) = x.)
Q [¢] iel i'71 0
(11

it

xo (1= Ty + § y.£.(0
0 ier * ier’ tt

has a saddle point (?,20,2) at a solution (ﬁo,ﬂ) cf problem (9)
with a corresponding Lagrange multiplier ¢, whereas X is a solu-

ction of (1) and 20 = f(R) = mi fi(x) is the minimal

Nxex M3*ier
value of f. It is assumed further that %X is a unique solution

to (9) and an internal point of X.

If the number |I| of constraints in (9) is large, then a
purely dual method for solving (9) by assuming arbitrary y =
{yi}iel,yi > 0 and then minimizing the Lagrangian function (11)
is clearly not efficient. But a primal-dual method for solving
(9), which consists of determining the activity set A(X) or an
approximation A thereof and eliminating inactive constraints by
setting ¥y = 0 for i € IN\A, mignt be quite efficient; it is
shown further that one of these primal-dual methods is probably
the most efficient algorithm for nondifferentiable optimization,

if |A(R)| is not too large.

Suppose Yy o2 0 for 1 € A are chosen in such a way that

liEAyi = 1. Then on(y,xo,x) = 0 and
LY x) Ty Er (x) € 3£ (x) (12)
YiXns = ) y.f. (x = g X .
x 2170 ica YT (if A = Aax))

Thus, if only A = A(R) and ?i >0, 1 € A(R), ZiEA(ﬁ)yi =1
such that ziEA(ﬁ)yifi(ﬁ) = g = 0 were known, then solving the
equivalent problems (1), (9) would also be equivalent to mini-

mizing the function:
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F(9,x) = YO E () . (13)

However, not only are the optimal values 9i not known, but
the activity set A(x) also changes, often in arbitrary neighbor-
hoods of R. Also, the strong activity set

S(¢) = {iglI: 2 > 0} (14)

might change in any neighborhood of (y,x). These difficulties
are not uniquely related to nondifferentiable problems; they are
also known in constrained differentiable problems. A typical
way of resolving them (see, e.g., Wierzbicki, 1978) is to con-
struct approximations A of A(x) and S of SA(y) such that Y; = 0
for i g A, Y; 2 0 for i € s, and

Scsly) , A(X) CA , SCA (15a)

and that, for (y,x) in some neighborhood of (¢,R):

S =5(¢9) CA(R) =A . (15b)

A detailed way of constructing such an approximation is
discussed in Section 4. Here note only that a measure of the
distance from (9,R) to (y,x) is useful when constructing such
approximations. Define

w o= "(Lx,Ly)H (16a)

where
L, = 4 ; L = £, - % . (16b
X iéAyl ix (%) y, = Vil = g (16Db)
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Here Ly, is not precisely the derivative of L in Yie but measures
the violation of Kuhn-Tucker necessary conditions for optimality
of (9,%)--if A(R) CAand L, 70, Ly; = 0 for i € A, w = 0, and
R, ¢ are unigue, then clearly y = § and x = . A lemma on the
estimation of I(y - ¢, x - &l by w is given in Section &,

3.2 Quadratic Approximations

Consider now an approximation of the subdifferential 3f (x)
by the set G:

G = {g € R" : g

1]
~1
~

Ll
x

(17)

.é‘l\’l

and assume that 0 = x(x) € G. Although G is only an

iend i £y

“ieativl
approximation, the relation 0 € G might imply x = & provided
that [, .9 (Rg(x) - £,(x)) = 0, since then L, = 0, L LT 0, and
w = 0. This leads to a problem analogous to (3):

L 1 2
minimize (ségh“_ + ] a.y.) ; o = R, (x) - £.(x) ;
(y,9) EYG 2 g=1 iEA i‘i i 0 i
(18a)
Y6 = {(y,q) J oy £ (x) ) 1 0}
= Y.q9) : g = y.r. (X 7 Y, = r Y 2 0
jepTiix ien’ t i

where H_1 is a positive definite matrix, not chosen as yet. But,

due to Lemma 1, (18a) is equivalent to:
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minimize (%. + ~I%l)
(xo ' X) Exo

(18b)

1

-— - — n+ — - -— .
Xy = ((xo,x) € R £, (X)X =Xy = Xg(x) + £,(x) < 0, i€ A}

! or H is now clear: (18b) is a well-known

and the choice of H
quadratic approximation problem for the Lagrangian function (11),
(see, e.g., Szymanowski, 1977 and Wierzbicki, 1978) and the opti-
mal choice of the matrix H is to approximate the Hessian of the

Lagrangian function (11) as closely as possible,

H~L,(9,.8.8) =L = ies£<y>91fixx(2) . (19a)

either by direct computation of second-order derivatives (a
Newton-type method) or, for example, by variable metric techniques
based on the data Eiesyifix(x) for (y,x) close to (¢,R%) and S
close to SA(%).

Another useful interpretation of problem (19a) results from
its relation to the distance w. Observe that the norm used in
(16a) might be arbitrary and, after a slight redefinition of ﬂy '

the following specific expression for w can be used: 1
we= (3 Dy i s Ty Ry - £ 00T L (19b)
i€a H iea
However, this coincides precisely with the minimized func-
tion in (18a) and can be interpreted as follows: given a point
(y,x) and the set A, w or (w)2 can be determined from (19b). By

solving (18a) in y, new vy, X, io and
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(0 = gl

1y=~p2
_ + Z a.9~ _lell + z ).9
1 iea 11 2 H iea 171
(19¢)

o 1022
S R L F

2> (2. on the other hand, (W? can

are found. Clearly, (w)
also be interpreted as an upper bound for a new (w)z, obtained
after x is changed to x + i and y is changed to ¢ (here y does
not denote the optimal Lagrange multiplier for the original prob-
lem, but only for its approximation (18b))--see Section 4. An-
other 1nterpretatign of %o and (Q)2 is that both agproximate the
gain £(x) - f(x + X) of the objective function f--EO is a

linear approximation of this gain and (Q)2 a quadratic one.
Clearly, the linear approximation is more optimistic than the
guadratic one, but, because of convexity, the linear approxima-
tion can also give an estimation of the distance f(x) - f£(R)

from above, thus being more useful for some algorithmic purposes;
moreover, -io also gives an estimation grom above for the new
(w)z, obtained after changing x to x + x and y to 9. All these
properties are discussed in more detail in Section 4; the above
discussion only justifies the role of gquadratic approximations

in nondifferentiable optimization.

3.3 sufficient and Necessary Conditions of Optimality

The basic necessary condition of optimality for nondifferen-
tiable problems

U € Sf(R) (20)

is known to hold under various assumptions related to the
definition of the subdifferential 3f(R)--see Clarke (1975),
Mifflin (1977), Nurminski (1973). In particular, if the Ffunc-
tions fi in the problem (1) are continuously differentiable, then

the function f is weakly convex--see Nurminski (1973)--and
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the necessary condition (20) holds with 3f () defined by (2).

If the functions fi are convex, then the condition (20) is also
sufficient. However, even if the functions fi are convex, the
condition (20a) does not necessarily specify R uniguely. To
obtain uniqueness, we must either assume strong convexity of fi’
or use the Haar condition. The Haar condition is sufficient for
a unigue solution of (20) even in the nonconvex case, but the
requirements of the Haar condition are rather strong. 1In order
to weaken these requirements, second-order approximations for

nondifferentiable problems might be used.

The next three subsections present a more detailed discus-
sion of the above-mentioned conditions. First, a geometric in-
terpretation of the first-order conditions--the condition (20)
and the Haar condition--is given, with an indication of possible
generalizations of these conditions. Second, a second-order
uniqueness condition for convex problems is derived in a natural
way from the normal Lagrangian function. Third, second-order
sufficient and necessary conditions for the optimality of a solu-
tion &% of the problem (1) in the nonconvex case are derived from

augmented Lagrangian functions.

3.4 First-Order Conditions

The condition (20) can be interpreted geometrically if we

n+1

consider vectors hi € R -of the form:

hi = (-1,fix(x)) for i € A(x) ;
(21a)
hi = (-1,fix(x)) for i € A(R)
We shall also use the following notation:
e, = (-1,0) e R (21b)
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where 0 denotes the zero element in R". Taking into account (2),
it immediately follows that the necessary condition (20) can be
written equivalently as

e, € -K = {(h€R : h = Y ah, , a, >0}
0 i€A(R) iv1i i
(21c)
The condition (21c) can also be used in infinite-dimensional
spaces. In fact, if £ : E — R1 is a subdifferentiable function

defined o? a linear topologicai space E, and its subdifferential
3f (x}) C E 1is defined, where E is the dual space to E, then we
can define —K‘ = (h € R1 x E’.l : h=a(-1,9) ,9 € 3f(x) , 2 > 0},
and e, € -ﬁt isAEquivalent to 9 € Bf(ﬁ).1 Note also that the
polar cone to -K , defined by K = {k € R x E : <h,k> < 0 for
all h € -R‘}, is a conical approximation of the epigraph of the
function f at R. The particular sense of this approximation
depends, clearly, on the type of definition of the subdifferen-
tial we use; however, it is not the goal of this paper to pursue
possible generalizations in detail (see Wierzbicki, 1972, for a
discussion of similar ideas in nondifferentiable dynamic opti-
mization). If E = R” and -ﬁt is given by (21c), then ﬁ is the
axierfy
geometric interpretation of the first-order necessary condition

tangent cone to the epigraph of f(x) = m (x) at R. The
(21c) is given in Figure 1: any element of the tangent cone K
must have a nonpositive scalar product with the downward pointing
vector e.

An interpretation and generalization of the first-order
Haar sufficient condition is given in the following lemma.

Lemma 2. The Haar sufficient condition for a point & satisfying
(20) to be a unique (local in nonconvex case) solution of the
problem (1)--usually formulated as the requirement that matrices
Fx have maximal rank for all subsets A of A(R), where F+ is a

A
matrix composed of vectors fix(ﬁ) for 1 € A--can be equivalently
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Epifix)

il

xe€E=R"

Figure 1. A geometric interpretation of the first-order necessary
condition (21c).
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stated in the fellowing form:

P ~
e e-K" ¥ he-k": <h,k> <0 for allk € K, k # 0}

(22)

Before proving the lemma, observe that ﬁ‘ is defined as the
quasi-interior of the cone ﬁ., polar to the conical approximation
K of the epigraph of f. This suggests that (22) might be used
as a generalization of the Haar condition in a linear topological
space. However, this conjecture is not proven here; we limit the
lemma to the equivalence of (22) and the Haar condition in r".
Observe that in such a case the quasi-interior is simply the
interior of ﬁ‘.

Proof. Note that the Haar condition implies necessarily that
there are at least n + | elements of A(R). Suppose that there
are less than this, no more than n. According to {(20) there
ieA(ﬁ)xifix(i) = 0 and thus all the
vectors fix(k)for 1 € A(R) are always linearly dependent; but if

exist nonzero }; such that ]

no more than n vectors of n elements each are linearly dependent,
we cannot form matrices of full rank from all collections of
these vectors. Thus, there must be at least n + 1 vectors fix(ﬁ)
for i € A(R), and each collection of, say, n of them must be
linearly independent. This implies in turn that at least n + 1
baricentric coordinates Ai must be positive, since, ifAlA(2)| =

n + 1, then for each j we have XieA(ﬁ),i#jxifix(ﬁ) = —Xjfjx(ﬁ) £0
and Aj > 0 which implies \j > 0. But if at least n + 1 bari-

centric coordinates are positive, then ey = (=1,0) is in the
. AR
interior of the cone K = cone (-1,fix(ﬁ)). Conversely, if ey

~ ¥
is in the interior of K , then at least n + 1 of vectors fix(ﬁ)
sum up to zero with coefficients greater than zero, and each

collection of n or less of these vectors is linearly independent.

The geometrical interpretation of this reformulated Haar
condition is also given in Figure 1. However, we see from
Lemma 2 that the Haar condition is very restrictive: at least
n + 1 functions fi(X) must be active at % and, on the basis of
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the implicit function theorem, we can determine R unigquely from
the set of n equations fi(x) = fj(x), for any fixed j € A(R)

and for n chosen i € A(R), 1 # j. However, there are often cases
when |A(R)| < n; then the cone k" does not have an interior, the
Haar condition cannot be satisfied, and x must be determined on
the basis of our additional information--this time using second-

order conditions.

3.5 Second-Order Uniqueness Condition for the Convex Case

If all the functions fi and thus the function f are convex,
then the strong local convexity of the function f at R suffices
for the uniqueness of RX. However, the function f is not differ-
entiable and we cannot use the classical definition of strong
convexity via second-order derivatives. On the other hand, we
could use the Lagrangian function (11) for the equivalent prob-
lem (9) to characterize the strong convexity of the problem (1).

Lemma 3. If, at a solution R of the problem (1) satisfying (20)
with 3f(R) defined by (2), the following matrix

L (9/2q,8) = ) (R)

¢.£.
iea(R) 17 1x%x (23)

is positive definite, where ?i = Xi are defined (not necessarily
uniquely) by the baricentric coordinates of Q0 in 3£ (R), then R
is a locally unique solution of (1). 1I1f, additionally, the
functions fi are convex, Ehen R is the globally unique solution.
Moreover, if the vectors hi = (—1,fix(2)) for all i € A(R) are
linearly independent, then the baricentric coordinates 9i are
also defined uniquely.

Proof. It is known that if a Lagrangian function has a local or
global minimum in primal variables while the dual variables
satisfy the Kuhn-Tucker conditions, then this minimum is also a
local or global solution to the primal problem. But the positive
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definiteness of Lxx(y,ﬁo,ﬁ) suffices for a local or, in the con-
vex case, global minimum of the Lagrangian function (11) in x.

In Xq the condition XiEA(ﬁ)yi = 1 guarantees a nonunique minimum;
however, Xg is only an auxiliary variable. As for the Kuhn-Tucker
conditions, they are satisfied by the definition of A(X), the
definition of the baricentric coordinates ?i and by the condi-
tion (20) since 91 = 0 for 1 & A(R), 91 > 0 for i € A(R),

£,(R) - Ry = zie19i‘fi(*’ - %,) =0, and L_(9,%4,%)

Lica(g) it
x(g) =0, on =1 ZiGA(ﬁ)?i

iea(g) ity
baricentric coordinates Yy if ‘ni are linearly independent has

= 0. The uniqueness of

been established in the proof of Lemma 1.

Observe that the requirement that the vector (-1,fix(2)) =
hi is linearly independent is much less restrictive than the
Haar condition; this requirement can also be satisfied if
[A(R)| < n + 1. On the other hand, the requirement that
Lxx(9,ﬁo,2) is positive definite is rather restrictive and not
really necessary: it would suffice for this Hessian matrix to
be positive definite only in the subspace tangent to strongly
active constraints. This, however, is related to the more

general form of sufficient conditions for nonconvex problems.

3.6 Second-Order Sufficient and Necessary Conditions for
the Nonconvex Case

If the functions fi are not even locally convex, then the
normal Lagrangian function (11) for the equivalent problem (9)
might have no saddle-points, but only an inflexion point in x
at a solution R of the problems (1), (9). However, an augmented

Lagrangian function might have a saddle-point.

An augmented Lagrangian function for the problem (9) has
the form

_ 1
A\(y,a,xo,x) = X * 501

M
H
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where the operation (')+ is defined by (z)+ = max (0,z) and

o > 0 is a penalty coefficient:; it can be shown that with p = 0
the function (24) reduces to the normal Lagrangian function (11).
The sufficient conditions for an augmented Lagrangian function
of type (24) to have a saddle-point, resulting in the optimality
of &, were given by Rockafellar (1974, 1976). However, for the
purpose of this paper, these results must be slightly modified,
since the augmented Lagrangian (24) need not necessarily have a
minimum in the auxiliary variable Xg -

Lemma 4. If R = arg minxex A(Q,p,RO,x) with RO = max, fi(ﬁ),

i€l
p >0, and ¢ = arg max A(y,o,ﬁo,ﬁ), then R is an optimal

yer! Tl
solution of the problems (1), (%), that is, max. fi(x) > 20

1leIl
for all x € X.

Proof. Since A is a differentiable function of its arguments,
§pe unrsgtricted maximization in y implies that (fi(x) - Xyt
7%)+ = 7% for all i € I, which can happen if and only if (see
also Wierzbicki and Kurcyusz (1977) for possible generalizations
of this equivalence) 91 >0, fi(ﬁ) = 20 for 1 € A(R) and ?i = 0,
fi(ﬁ) < ﬁo for i ¢ A(R). Thus, y; are Lagrange multipliers for
the problem (9). If we require, additionally, that Axo(Q,p,ﬁo,ﬁ) =
1+ 0 ZiEI(fi(x) i 7$)+ =1 - licaig)¥y = O/ then y; can
also be interpreted as baricentric coordinates; however, we do
not need to state in the lemma that *0 minimizes A. Since we
assume that R does minimize A, we obtain after obvious trans-

formations:

12> 7 (= for all x e X
+ = . )
€
(25a)
Suppose now that the thesis of the lemma is not true and there

exists an x € X such that fi(x) < 20 for all i € I. However,
this would imply that
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It 2

=) 4 - for all i €I (25Db)

wnich would contradict (25a). Thus the thesis is true.

Actually, Lemma 4 can be proven under much more general
assumptions. Without changing the proof, X might be any set--
say, in linear topological space. The countability and finite-
ness of I 1s also not essential: I might be generalized to re-
present, for example, any subset of a Hilbert space, as in
Wierzbickli and Kurcyusz (1977).

The way in which Lemma 4 is proven suggests the following
equivalent statement of the first-order necessary condition (20)
for the optimality of solutions of problems (1), (9):

Lemma 5. If X is an optimal solution of problems (1), (9), then
there exist 9i >0, ?i =0 for 1 € A(R) = {1 €I : fi(ﬁ) = f(R) =
maxjex fj(ﬁ)} such that R and ? are stationary peoints of

Aly,2,8,,%) with io = ma () and an arbitrary p > 0. More-

b f.
ier “i
over, 9 is a global maximal point of A. If, additionally,
V = . . v .
bieA(ﬂ)yi 1, then 20 is a global minimal point of A.
Proof. If ®x is an optimal solution of (1), (9), then it satis-
fies (20) with 3f(R) defined by (2). However, the scaling of ?i
might be arbitrarily changed in (24), since p is an arbitrary

positive number; hence we need not require that } 1.

iea(f)¥i ~
It was shown in the proof of Lemma 4 that y, > 0, £,(R) = Ry
for i € A(%X) and ?i = 0, fi(ﬁ) < 20 for i & A(R) are equivalent
to a stationary point of A in y; it is also a globally maximal
point, since A is a concave function of y, see Wierzbicki and
Kurcyusz (1977). The condition 0 € 3f(R) or XiEA(Q)y.f. () =0

ivix
is equivalent to the statement that R is a stationary point of A,

. s — - 1_1 s iy ;
since A, (2:0,R/R) = ) ep (B (R) = R * L, R) = Ly (7 Fy
= 0. If EiEA(Q)yi = 1, then also 1\  (9,0,%,,8) = 0; since A is

convex in Xy this implies that 20 is a global minimal point.

a

)
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The conclusions of Lemmas 4 and 5 might be summarized as
follows: although an optimal solution x of problems (1), (9) is
a stationary point of the augmented Lagrangian function (24),
the corresponding multipliers ?i maximize this function (without
any constraints--the nonnegativeness of 9i results from this
maximization) and, if ?i are interpreted as baricentric coordinates
through appropriate scaling, 20 also minimizes this function;
we are not generally certain that & minimizes this function. 1If
it does, this is also a sufficient condition for optimality.

From Lemma 4, a sufficient condition for a local solution
of a nonconvex problem of the type (1) can be derived:

Theorem 1. Suppose that at a given R € int X there exist ?i >0,
2; = 0 for i € A(R), such that ZiEA(R)yifix(ﬁ) = 0, where A(R) =
{ier: £,(8) = £(R) = maX; ey fj(k)}. 1f, for some p > 0, the

following matrix is positive definite:

S *
AS = £ (R) + 0 ] £._(RE._(R) (26)
XX iapz)”ioixx ies(g) ix ix

where S(9) = {i € A(R) : 2, > 0} and f;x(ﬁ) denotes the gradient

of fi in column form, then % is a local solution of problems (1),
(9). With Ry = max; . f,(R), if E.GA(Q)yi = 1, then ¢ and (R,,R)
correspond to a saddle-point of the function (26).

Proof. Consider the function

(27a)
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It has been proven in Wierzbicki (1978) that this function is a
local quadratic approximation from below of the function (24),
that is, there exists a neighborhood U(?,&O,R) of (?,RO,R) such
that

/\S(y,o,xo,x) < /\(y,p.xo,x) for all (y,x,,x) € U(Q,ﬁo.ﬁ)

(27b)

where the inequality can be replaced by equality if A(R) = S(9).

Here 9,20,2 denote a stationary point of the function (24).
If we choose ﬁo = max; .. fi(ﬁ) then, under the assumptions of
the theorem, ¢ and % indeed correspond to a stationary point,
while ¢ is a global maximum point--see the proof of Lemma 5.
However, we do not necessarily require that ?i are scaled to
EieA(ﬁ)yi = 1, and 20 is not necessarily a stationary point; due
to the particular form of (24), (27a), the inequality (27b) also

holds for an arbitrarily fixed ﬁo.

While evaluating the Hessian matrix of 25 in x at ?,0,20,2,
we obtain Aix as given in (26). If it is positive definite,
then A° has a unique local minimum in x at ®, with y,p,ﬁo fixed
(it is easy to check that % is also a stationary point of AS).
With fixed 9,0,%0

A also has a unique local minimum in x at X. Hence, Lemma 4 can

the inequality (27b) implies that the function

be applied with X replaced by a neighborhood of %, and we conclude
that ® is a locally optimal solution of problems (1), (9).
Observe that the uniqueness of the minimum of * in x with fixed

y = ¢ does not necessarily imply the uniqueness of x as a solu-

tion of problems (1), (9). If we scale ¢, to EiEA(R)yi =1,
then Lemma 5 implies that ¢ and (ﬁo,ﬁ) represent a saddle-point
of A. Even in this case, yi might be nonunigque if S(?) # A(XR),
or if the vectors ﬁi = (-1 ,fix(ﬁ)) for i € A(R) are linearly

dependent.
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Theorem 1 is in fact only a slight modification and adapta-
tion to the particular problem (1) of the results given by
Rockafellar (1974, 1976); similarly, his results on the second-
order necessary conditions of optimality can be adapted to obtain:

Theorem 2. If R is an optimal solution for problems (1), (9)
satisfying (20) with 3f(R) given by (2), then, for any p > 0,
the following matrix

* s
Mo = L 936 R +p [ £ (RE(R) (28)

A
XX i€A(R) 17ixx ieA (%)

is positive semidefinite.

Proof. Following Rockafellar (1974, 1976) we conclude that for
the optimality of X it is necessary that the following Hessian

matrix

A ~ ~ ~
S = Dgx * 0 Yy h.h, (29a)

-
xx iea(®) * b

pe positive semidefinite, where X = (x;,X), ﬁi = (=1, £,,(8) and
0 0
.. = , L, = 1 9. . (R (29b)
XX . XX .LEA(SE) 1 1XX
0 L
XX

Now compute a gquadratic form <(§0,§) ’Agi(§0’§)> to obtain
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- = A = - - = - =
<Xy, X) , AL (X5,X)> = <X, L X> + 0 |} (£. _(R)X - X,)
0 xx'"0 XX ieA () ix 0
(29¢)
This expression must be nonnegative for all (EO,Q), in particular

if §0 = 0; but if ;O = 0, then

- LA - - —
<(0,Xx) ,“ﬁi(o,x)> = <x-,Axxx> (294)

Thus, the positive semidefiniteness of Aix is necessary.
Theorem 2 also has the following interpretation. As shown in

Wierzbicki (1978), the function:

v,
AA(Y,o,xo,x) = %y * %p %g (£5(x) = xq + 7%)2
i€A (R)
(30a)
Y.
- lo_ I (7%)2
ieA(X)

is an upper bound for the function (24) in a neighborhood
U(?,QO,R) of (9,20,2):

A(y,o,xo,x) < AA(y,o,x) for all (y,xo,x) € U(?,RO,R)

(30b)

A

Thus, the upper-bound function ° must satisfy the second-order

necessary condition for a minimum in x at 2 if % is optimal.
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4. A QUASI-NEWTON METHOD FOR NONDIFFERENTIABLE

OPTIMIZATION WITH EXPLICIT SUBDIFFERENTIALS

The possibility of constructing gquadratic approximations
to Lagrangian functions for the problems (1), (9), in both the
convex and nonconvex cases, justifies the analysis of quasi-
Newton methods for nondifferentiable optimization. A specific
algorithm of this class, based on a corresponding algorithm for
differentiable optimization described in Wierzbicki (1978), is
presented in this section. For the sake of clarity, only the
convex case is described in detail, although subsection 4.7
implies the possibility of extending this algorithm to the non-

convex case.

4.1 Estimation of the Distance from the Optimal Solution

Most algorithms of nonlinear or nondifferentiable optimiza-
tion produce a sequence (xk,yk} of approximations of the primal

and dual solution (%,¢). Some measure of the distance of (xk,yk)
from (R,9) is explicitly or implicitly used. Here, we shall use
the variaple w® = "(L Lkﬂ with L = ZLEAky £, (x%) anda ¥ =

k k - - i
yi(fi(x ) ﬁ (x )), 2 (x ) = max Xjer fi (xX) see equations (16a,

b)-~for this purpose. ThlS is justified by the following lemma.

Lemma 6 (Wierzbicki, 1978). Suppose R is an optimal solution of
problem (9) with convex functions fi' Let % € int X, and let 9

be the corresponding vector of Lagrange multipliers, with

zielyi = 1. Suppose that the vectors h, = (—1,fix(2)) are linear-
ly independent for i € A(R)--hence y is unique--and let the

matrix L () be positive definite--hence, R is

XX 21&5(9)3}1 ixx
unique. Then there exists a neighborhood U(¢,R) and a constant

o > 0 such that

ly® -9, x5 =20 <5 - W  for all (v%,x%) e u(g, 0

(31)

where wk is defined as in the preceding paragraph, with an

arpitrarily chosen norm, and with Ak o) A(xk).
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In particular, we can use the norm given in equation (19b)

to obtain wk corresponding to the minimal function in (18a).

4.2 Approximations of Activity Sets

Consider now the situation when (yk,xk) are given elements

of a segquence {y , X } Denote by the upper index k all values

k,x ) with ﬁ (x y = xg, etc. Denote

of functions evaluated at (y
by Ak the approximation of the set A(R) as evaluated at (y ' X )
and by Sk the approximation of the set S(9). If (y ,xk) converges
to (9,8 and wk converges to zero, then the following formulae

for Ak, sk can be used:

Kk . Lk k.1 k| _k
A" = {1 €1 : £i = %X * 5¥; 2 nf} (32a)
s = (e oty (32b)

where p > 0 is a chosen constant, depending on the scaling of
the problem; (clearly yX & [0, 1] but £(x*) = x§ can have arbi-
trary scaling), and where n? > 0, nk > 0 and n?, n; converge to
zero but more slowly than wk. For example, formulae of the

following type may be used:

k-1

k ) i
; = .01,
: ny min (0.0 Ey(w )4

(32¢)

where Ef, Ey are chosen constants; again, the best choice of
these constants depends on the scaling of the problem, that is,
on Lipschitz constants for functions fi oi onkthe norms of
gradients fix' Bui the assumption that nf,»ny cgnverge to ;ero
more slowly than w  implies the desired result S° = S(9), A" =
A(R) for sufficiently small wk even if the Lipschitz constants

are not known explicitly. This follows from the following lemma:
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Lemma 7 (Wierzbicki, 1978). Suppose R is a unique solution of

problem (9) and ¢ the corresponding unique Lagrange multiplier.

Let the sets A(R), S(9) be defined by (10), (14) and A, s¥ by
) ) k, k. _ 1. kK, k, _ K .

(32¢, b) with limg, _(w'/ng) = lim (W /ny) = 0, where w  is

defined by (16a, b). Then there exists a number W > 0 such that

k

Ak = a , s

= s5(9) (33)

for all (yk,xk) e U(9,R) = ((yk,xk) : W< Wl

However, the above results are valid independently of the
norm used when defining w®. If the norm (19b) is used and -i§_1
approximates wk from above, a more useful expression than (32c)
can be obtained. Suppose the range of f, denoted by Rf, can be

estimated. Then, after some heuristic reasoning, assuming that

the initial l§g| = Rf, ng = 1072R¢ and n° = 1072

~

and expecting
the final accuracy to be related to Iigl of the order 10 °m,

the following expressions:

e N g = 02t
(324)
k _ [ =k~14 _ -2 -4 . 1
ng = £y|x0 | ; Ey = 10 " (Rf) : e
. . . : k -4 k -4
satisfy the assumptions and result in Ng = 10 "RE, ny = 10 if
[I§-1[ = 107®Rf. This means that a function £, such that
£(R) - fi(ﬂ) < 10‘uRf might still be included in the probably

active set Ak and a Lagrange multiplier with ¢ < 1074 might be
excluded from the strongly active set Sk. However, this can be
considered as an acceptable risk=--particularly since it will be
shown later that the exact estimation of activity (33) does not
influence the simple convergence of algorithms and is needed
only when establishing superlinear or quadratic convergence.
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4.3 A Quadratic Approximation Algorithm for Nondifferentiable
Optimization With Explicit Subdifferentials

The algorithm minimizes a function f(x) = max; . fi(x) for

n . . . ~ . . . .
X € R, where a minimal point x is supposed to exist (a modifica-
tion for the case x € X where X is a compact convex set is pos-

sible but not described here). The functions fi are assumed to
be convex and twice-differentiable. It is also assumed that the
values f(xk) = fk, f.(xk) = fk, £, (xk) = f* can be computed

i i ix ix

for i in any subset of I. The algorithm is based on gquadratic
approximations (18a, b) to the Lagrangian function (11). Sub-
routines for a variable metric approximation of the Hessian
matrix of this function (discussed in Section 4.5) and for a
directional search (described, for example, in Appendix 1) are
assumed to be available.

Step 0. Chocose parameters x1 - initial guess of the solu-
tion, supplied by the user; Rf -~ estimated range of the function
final accuracy of function
re): y € (07 1)
- desired rate of convergence of gradient values (suggested

values, supplied by the user; Ceg ~
values, supplied by the user (suggested Eeg = 107

vy = 0.1); m, € (0;0.5), my € (0.5; 1) - linear search parameters

(suggested m_ = 0.3, m, = 0.7); H1 - initial approximation of the
a 20 1 1

x0=Rf,Y»='—,iEI,k=1.

1 iIi

|

Hessian (suggested H1 = I). Set

k k k k
Step 1. Compute Nge qy from (32). Compute f~ and fi for

k

1 € I and determine the sets A™ and Sk(32a, b), saving only ft

for 1 € AK. Compute £° and a, = fk - fk for i € Ak. Set yk =
ix i i i

0 for i & Ak, rescale proportionally the remaining yE to obtain
< k _ k . k,2 Sk-1
lieak Yi 1. Comiute wo (19b). If (w )< < Ix0 | < €
If k > 1, update H .

££7 stop.

Step 2. Solve the problem (18a) to obtain 9k, @k, compute

=, fg from Lemma 1 and @° from (19c) .
k ~k k =k Zk k-1 q
Step 3é_18et (t7 = 1)%" = x + x. }ﬁ \xo\wi MED | < y'Rf
and wo < yw is not satisfied, compute f5 = f(x7). If either
k <k X =K

> £% 4 m % (34a)

£+ my%g 2 E e
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“ :_ Y|;§—1| : Yﬂnf and Wk i ka-1, set xk+1 = ik, yk+1 = §k

+ 1, and go to Step 1.

Step 4. Perform a linear search for rk such that:

k k k<k k k=k
> Ex + 1 xo) > £+ m, T Xq (34b)

k=k
£+ m, T xo

] LY o
(or any other rk resulting in f(xk + rk xg) < f(xk + rkxk),
where Tk satisfies (34b), see Appendix 1). Set xk+1 = xk + Tkﬁk,

yk+1 = yk + Tk(yk - yk), k: =k + 1, and go to Step 1.

Comments. Observe that all f? for i € I must be evaluated
when computing fk. It is best to combine this with the deter-
mination of sets Ak, Sk, saving only ft for i € Ak. But it is
not known whether rk = 1 will be accepted when checking condi-
tion (34a). Therefore, if |i§| is already small enough and
decreases and the desired convergence rate vy for wk is attained,
Tk = 1 is accepted without checking. 1In fact, wk is computed
only for this purpose--and to double-check the stopping test.
Other redundant information, such as the sets Sk, the values @k,
Gk, or even the rescaled values y?, need not be computed if the
computation of wk were deemed unnecessary. However, this in-
formation is valuable in analyzing the algorithm and in possible

debugging.

A full analysis of the simple convergence of the algorithm
is omitted here, since the proof of the following theorem can be
easily derived from results given in Lemaréchal (1978),
Szymanowski (1977), or Wierzbicki (1978). It is only necessary
to note that (w%)? < |§g-1| will eventually be satisfied if [i§|
converges to zero (see Section 4.4), and that wk < ka-1 implies
convergence if |§§| is small enough and decreases. The double-
check in Step 3 is also redundant, since the linear convergence
of ]igl alone implies convergence of the algorithm in the con-
vex case; but the algorithm is also designed to be used in cases

of only local convexity.
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Theorem 3. Suppose R is the unique minimizing point of f(x) =

max., fi(x), where fi are twice-differentiable functions, and

icel N n+1
let the vectors hi = (=1 ,fix(ﬁ)) €ER be linearly independent
for 1 € A(R) = {i eI : fi(ﬁ) = £(2)}. This implies that the

corresponding Lagrange multiplier vector ¢, 9i >0 for i € A(R),

9, = 0 for i € A(R) and ]

Xx ZiEA(2)9ifixx
neighnorhood of point R such that the (not necessarily convex)

ieA(2)9i = 1, is also unigue. Let

() be positive definite. Let U(R) be a

~

L

function f has no generalized subdifferentials containing zero
other than at point x = R; if f is convex, let U(R) = R". Let
the matrices Hk be uniformly positive definite. Then, for any
x1 € U(8), the sequence (yk,xk) generated by the above algorithm

with €eg = 0 converges to the point (9¢,X).

To prove the theorem, combine the results given, for example,
in Lemaréchal (1975) and Wierzbicki (1978).

4.4 Properties of Quadratic Approximations to
Lagrange Functions

Two basic properties of quadratic approximation problems
(18a, b) are important for the superlinear or gquadratic con-

vergence of the above algorithm:

Lemma 8. Let the assumptions of Theorem 3 and Lemma 3 hold.

Then there exists a neighborhood U(¢,R) of (¢,%) and a number

£ > 0 such that, for any (yk,xk) e U(9,R%), problems (18a) * (18b)
have solutions with ik, 9k =y + ;k satisfying the following
inequality:

1Y%, X1 < aw® (35)

where wk is defined as in (16a, b) with any norm, for example,

the norm (19b).

For a general proof of the lemma, see, e.g., Wierzbicki
(1978) ; when using the norm (19b) for wk the proof becomes quite

straightforward.
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Lemma 5. Let the assumptions of Theorem 3 and Lemma 3 hold.
Suppose the solutions of problems (18a) * (18b) define xk+1 =
xk + %k, yk+1 = yk + 9k. Then wk+1 defined as in (16a, b)

with any norm satisfies the following inequality at the point
(Yk+1 xk+1) .
’ :

A T R T BT (36)

k

k
where Lxx = £

ZiEAle ixx
property that llm“z"+0

For a general proof of the lemma, see, e.g., Szymanowski

(xk) and o(z) denotes a function with the
o(z)/Hzll = 0.

(1977) and Wierzbicki (1978); again, the proof can be simplified

by considering the particular norm (19b}) for wk+1.

Many further conclusions can be drawn from a more detailed
analysis of Lemmas 1, 3, 9 using the specific norm (19b) for w.
For example, the general relation (36) can be transformed to:

O L SR SRR I N N - b

(%) (K

)—1

(37)

+ 02 xK, 75

which indicates that, for (yk,xk) in a neighborhoocd of (2,8) and

for the norm of (Hk - Lix)ik small enough when compared to the
norm of Hkik, the inequality (wkH)2 < -xg holds. More generally,
Lemma 9 indicates that the norm of (Hk - Lk )ik is responsible

XX
for the speed of convergence of gquadratic approximation algorithms.

4.5 Properties of Variable Metric Approximations
k

A variapble metric H  should approximate the Hessian matrix

L= L__(9,8.,8) = T OO9.f. (%)
XX XX o] iEA(R) 1 ixx
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Since A(x) changes in every neighborhood of &, it is necessary

to define sets Ak with the property Ak = A(R) even if evaluated
at (yk,xk) in a neighborhood of (¢,%). 1If the following (matrix-
valued) function is defined:

k > k k k .k
Loy ® Ly (9 ,x) = {ky.f.

(38a)
XX jepk’ iixx

xx’
. . -k . .
moreover, it can pe shown that Lxx can be used in Lemma 9 in-

stead of Lix. It is this matrix iix that can be approximated by

then this function is continuous in (?k.xk) and ixx(Q,i) =L

a variable metric technique.

A typical variable metric approximation of the (n x n)

vk R B S :
matrix L . is based on a set of data {s- ,r }j=k-N+1 such that:
i:XSJ =1+ 08l P, .., 85T (38b)

where o(+) is a function converging to zero faster than the norm
of its arguments. The numoer of data varies; clearly N > n is
reguired for a sensible approximation. The data sj, rj related
to the function ixx can be defined by

sJ = xj - xj-1(= %j-1 , 1f rj-1 = 1) (38c)

B Jo.3% _ g(3-1)*

r ¥ in(fix £.) y . (38d)
iea

Observe that r? # &7 -'@3-1 =1+ EiEAk§Jf;i-1)'7 if g7 - 63_1
were used instead of r?, the reguirements (38b) could not be

satisfied, since the difference between them converges to zero
only as fast as ?J. The matrix Hk approximating Lix is now con-

structed in a way that guarantees that:

Hs" =r (39a)
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k.3

%) = 3+ o0(s3,39,.. ., 857, gK7]

) j <k (39b)
under various additional assumptions. In the most widely used
rank-two variable metric procedures, an increasingly accurate
directional search resulting in almost conjugate subsequent
directions of search is needed to guarantee (39b). If a rank-
one variable metric procedure is used, relations (39a, b) are
independent of the step-size coefficients and of the choice of
directions; on the other hand, a rank-one variable metric approx-
imation Hk may not be positive definite even if Eix are positive
definite. However, there are special variants of the rank-one
variable metric that guarantee that Hk will be positive definite
(Kreglewski, 1977). '

If N > n and the data {sj}i_N+1

shown (Kreglewski, 1977) that the relations (38b) and (39%a, b)

span Rn, then it can be

imply together that

=k X, k+1 _ k =k .

(Lyy ~ H)s =o(s™,y) (40)
+1 ~N+ = 2] Zk~N+

sk = (s¥ ,sk,...,sk AP xk = (Yk,---'yk N 1)

If s = Y3-1, then the estimate (40) together with (36) from
Lemma 9 results in the superlinear convergence of a gquadratic
approximation method (see next section). Note, however, that
estimate (40) does not imply (although it is implied by)
TN o
k~+0 XX -
metric procedures approximate Lxx in the norm. This is

lim = 0; only rather special types of variable

wny the gquadratic convergence of a quasi-dJdewton method can be
obtained in practice only when Hk = th is computed explicitly.

4.6 Superlinear and Quadratic Convergence of Quadratic
Approximation Methods

Lemmas 8 and 9, together with the properties of variable
metric Hk, result in the following theorem:
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Theorem 4. Let the assumptions of Theorem 3 and Lemma 7 hold.
Then, for any desired convergence rate y € (0;1), there exists a
number § = £(y) > 0 and a neighborhood U(9,%) of (¢,%) such that,

if (yflxk) € U(2,R) and "(iix - B0 < ew®, then w**! < yuX
and ]§g+1| < Y|§§| and the algorithm from Section 4.3 converges

at the desired rate. 1If

ll(f.ix - ¥ %5
lim 3 = R
k+oo w

(wk+1/wk) = 0.

then the algorithm converges superlinearly, lj.mk_Nm

If Lix = Hk and the second-order derivatives fixx('), i e AR),
are Lipschnitz-continuous, then the algorithm converges quadrati-
cally, limk+m sup (wk+1/(wk)2) = a < +o,

The proof of the theorem is quite standard--see, for example,
the proof of Theorem 1 in Wierzbicki (1978)--and is omitted here.

It is worth noting that practical experience with quadratic
approximation methods shows that they are the most efficient
algorithms for constrained differentiable optimization
(Szymanowski, 1977). A similar performance might be expected
from the algorithm given in Section 4.3, since it is only an
adaptation of quadratic approximation methods to the special
class of nondifferentiable problems. Moreover, the author's
attention was recently drawn to a paper (Madsen and Schjaer-
Jacobsen, 1977) describing an algorithm similar in nature--though
different in many details and in the theoretical justification--
to that of Section 4.3, for the same class of problems; the
results of numerical tests given by Madsen and Schjaer-Jacobsen
confirm that the algorithm given in Section 4.3 should be very

efficlent in practice.

4.7 Nonconvex Nondifferentiable Optimization With
Explicitly Given Subdifferentials

Following tne results given in Section 3.7, it is possible
to derive a quadratic approximation algorithm extending the al-
gorithm from Section 4.3 to even the locally nonconvex case.
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The algorithm uses the sets Sk (defined redundantly in algorithm
4.3) in order to determine convexifying terms for the gquadratic

approximation problem (18b)}, which now takes the form:

minimize (ig + % G, BT + 0 zk(z k _k - Eg)z
%k =k, o
(x5, 7 exy
(41a)
k, k =k -k
- ai(fixx - xg)))
or, equivalently:
mlnlmlze (x0(1 + 0 Zkal) + —D|5k|(xk 2
ies
(x0 ) X )EX (41b)
O A C AR A b R I CARSE IR

ies

where Fk is a matrix composed cf elements ftx for 1 € Sk, at =
£ - ft, [Sk! is the number of elements in SX, and

Kk _ ok =k, _. n+1 _ _k -k _ -k _ k . k
Xj;—{(xo,x)eR : £/ % - x5 -0y <0, i€}

(41c)
It is interesting to note that, if Sk = Ak and all con-

straints are active for a solution of (41), the problem is fully
equivalent to a dual problem as in Lemma 1; in all other cases
the dual problem for (41) is more complicated, but might lead to
interesting results. A quadratic approximation algorithm re-
quires a variable metric approximation either of the matrix

gk = X kyt txx' or of the matrix HS + oFX*FX; the latter is
positive definite, if the second-~order sufficient condition of
optimality is satisfied. Under this assumption, the superlinear

convergence of the algorithm can also be proved for the noncon-

vex case by a modification of results given in Wierzbicki (1978).
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4,8 Nondifferentiable Optimization With Implicitly
Given Subdifferentials

A large number of algorithms has been proposed for the more
general class of nondifferentiable optimization problems in which
9f (x) are not given explicitly and it is possible to compute only
function values f(x) and subgradients g € 3f (x) without any more
specific knowledge of their baricentric coordinates (see, e.g.,
Mifflin, 1977). This is largely because such problems arise
quite often in large-scale optimization algorithms, as well as
in many other cases., However, in most such problems some addi-
tional knowledge of baricentric coordinates, etc., is implied by
the specific nature of the problem; ignoring this information is
a simplification resulting in more straightforward, but less

effective, algorithms,

The first quasi-Newton algorithm of this type, based in
fact on results closely related to Lemma 1, was given with con-
vergence proofs by Lemaréchal (1975). However, Lemaréchal did
not specify what the matrix Hk should approximate; it was re-
guired only that Hk should pe uniformly positive definite, which

is sufficient for simple convergence. The results given in

previous sections of this paper make it clear that Hk should

approximate (in the sense described in Section 3.6) either the
. k k .

Hessian ZieAkyifixx or, in the nonconvex case, the augmented

Hessian of type (30).

But the results of previous sections also show that such an
approximation is actually impossible if no additional knowledge
of the baricentric coordinates is assumed. The use of consecu-
tive 9 € ai(xk) givei no second-order information, if 9 =
ziEA(xk)xifix where Ai might be arbitrary, not even converging
to the optimal baricentric coordinates 91 (if they are unique)

A

if x, converges to X. The use of the elements gk closest to zero
as a convex combination of previous qj, j =0,1,...,k gives more
information, at least if @k converges to zero, because then some
corresponding baricentric coordinates should converge to 9i; bgt
later @k yield averaged information related to many previous xJ,

j =0,1,...,k, and it is difficult to extract from these the
current information related to xk that is necessary for a variable

metric approximation.
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The above remarks do not prove that it is impossible to
construct a superlinearly convergent algorithm for nondifferen-
tiable optimization with subdifferentials given only implicitly;
however, they do show that some stronger assumptions, either re-
lated to the choice of subgradients or to the basic nature of
the problem, are necessary. For example, if the Haar condition
is satisfied, then even a linear approximation algorithm could
be superlinearly convergent. However, it is clear that the prob-
lem of obtaining superlinearly convergent algorithms in cases of
nondifferentiable optimization with implicitly given subdifferen-
tials requires further study.

4.9 Other Extensions and Research Directions

Some of the results given in this paper, for example,
Lemmas 1 and 2, can be generalized for problems with infinite or
innumerable constraints. The continuous minimax problem

minimize max f{x,2)
xeX zZ€Z

can be approached in this way, and, in the convex case, should
not present great difficulties; the nonconvex case is, however,
essentially mbre complex, since only a partial generalization of
the augmented Lagrangian theory to infinite-dimensional spaces
is now available--see Wierzbicki and Kurcyusz (1977).

APPENDIX 1

An Efficient Line-Search Method for Nonsmooth Optimization

It is assumed that, at a given point xX, a search direction

Ek and a linear estimation of the difference f(xk + ;k) - f(xk) =
;O < 0 are given. Function values fTi = f(xk + riik) are com-
puted in order to find ff = m:.nTi fTi and Te = arg mJ.nl_i fTi'

where T; are elements of a specially generated sequence. The
sequence {ri} starts with 1, = 1 (or, optionally, with the value
accepted for Tg in a previous run of the line-search algorithm).
The sequence {Ti} ends with a value rg =1 which satisfies two
conditions:
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k =k
(a) fTi < £(x7) + m,T;X%g
k . =k
(b) fr > £{x7) + m, T, %)

where 0 < m, < my < 1; suggested values for m, and m,, are m, =
0.3,
traction ratio r is also used:; suggested value r = 10.

m, = 0.7. To generate the sequence, an expansion or con-

The algorithm is as follows:

0 k .
(0) Set TO(=1), w: =0, ff = f(x7), Te: = 0, i: =0 ,
(1) Compute fTi . If fTi < ff, set Te:s = Ty ff: = fTi. If
£, satisfies (a) and (b), stop.
i
(i1) If £_. does not satisfy (a), set T s = 1.. If wt =0
51 i1 ‘max i i1
or wl = -1, set w : = =1. If wl = +1, set w = 2.
(iii) If £. does not satisfy (b), set T_. : = 1 .. If w* =0
: i+1 ;mLn Looie
or wt = +1, set w ;0= +#1. 1f wl = =1, set w = 2.
: : 1+
(1iv) If 1wl+1\ =1, set Tj4q: = rml+1ri. If ot 1. 2, set
Ti+1® T Upax * Tmin!’. set i: = i + 1, go to (i).
Comment : LAt = 1y means that 7. 1 should be increased or de-
creased by a factor of r. ul+1 = 2 means that both a lower
bound Tmin and an upper bound Thax for Tg have already been

found and they should be tightened by computing T as their

+1
geometrical mean. The last value t_ of Ty which satisfies (a)
and (b), often gives useful information. If some external
bounds limit the value of Ty the algorithm must be modified

accordingly.
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2. ALGORITHMS

This section deals with algorithms. It also contains reports on applications

of nondifferentiable optimization and computational experiments in this field.
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