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ABSTRACT

The concept of tne distribution function of a closed-valued
measurable multifunction is introduced and used to study the
convergence in distribution of sequences of multifunctions and
the epi-convergence in distribution of normal integrands; in
particular various compactness criteria are exhibited. The
connections with the convergence theory for stochastic processes
is analayzed and for purposes of illustration we apply the theory
to sketch out a modified derivation of Donsker's Theorem
(Brownian motion as a limit of random walks). We also suggest
the potential application of the theory to the study of the con-

vergence of stochastic infima.
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ON THE CONVERGENCE IN DISTRIBUTION OF
MEASURABLE MULTIFUNCTIONS, NORMAL INTEGRANDS,
STOCHASTIC PROCESSES AND STOCHASTIC INFIMA

1)

Gabriella Salinetti, Universita di Roma
Roger J.-B. Wets?2)

In [1] we have given various characterizations for the al-
most sure convergence and the convergence in probability of
sequences of closed-valued measurable multifunctions, sometimes
also called random closed sets. In this paper we study their
convergence in distribution or equivalently the weak*-convergence
of the induced probability measures. Actually, we derive the
basic results by relying on the framework provided by the theory
of weak*-convergence in metric spaces. As background to the
study of the convergence of normal integrands, we exhibit the
relationship between the convergence theory for measurable multi-
functions and that for certain stochastic processes associated
to measurable multifunctions, such as the processes determined
by the distance and characteristic functions. After some general
results about normal integrands we relate their epi-convergence
in distribution to their convergence in the classical sense of
stochastic processes. Next, we abtain compactness criteria.
Finally, we derive convergence in distribution results for

selections of measurable multifunctions and touch on the

1)
2)
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potential applications of these results to stochastic optimiza-

tion and the convergence of stochastic processes.

There i1s an intimate relationship between normal integrands
and stochastic process which can be exploited to devise a new
approach to the convergence of stochastic processes. To illus-
trate this point, we give a modified derivation of Donsker's
theorem. A related approach has been developed by W. Vervaat.
His motivation comes from the study of extremal processes in
statistics, whereas our work was originally motivated by the
search for approximation schemes for stochastic optimization
problems. However, we feel that there also many potential
contributions that this approach could make to the study of

"classical" stochastic processes.

The setting is the same as in [1]. Let (Q,A,u) be a prob-
ability space with A the class of measurable sets and u a
probability measure on A; (E,d) is an n-dimensional linear space
equipped with a metric d. A map I with domain  and whose values
are closed subsets of E, I':Q 3 E, is said to be a closed-valued

measurable multifunction if for all closed sets F C E,
I"T(F) = {weq|lw NF =g} €A

Each such multifunction can be identified with a measurable
function y from § to F, the hyperspace of all closed subsets of
E equipped with the topology TF’ a variant of the Vietoris topo-
logy, cf. [1, Proposition 1.1]. More precisely, TF—-or simply

T if no confusion is possible--is generated by the subbase con-
sisting of all families of sets of the type

{F.,K € K} and {rF®, G € 6}

KI
where for any set D € E,

FP = (Fe FlF N D=9} and ={FeF|lFND#g} |,

Fo

and G and K denote respectively the classes of open and compact

subsets of E. The choice of this topology is motivated by the



fact that sequences in F T-converge if and only if the corres-
ponding sequence of subsets of E converge in the classical sense,
see [1, Theorem 2.2]. The properties of E allow us also to
generate this topology T from the subbase consisting of all sets
of the type

B_ (x)

{F € , € > 0,x €E} and {FBo
€

(x)’ e > 0,x € E}
where Bs(x) and BZ(x) are respectively the closed and open balls
of radius ¢ and center x. In fact, it is sufficient to consider
open and closed balls with € € Q+ and x € D, a countable dense
subset of E, i.e., these sets (balls) determine a countable base
for (the topology of) E. In turn, this yields a countable base
for T, let

B={B=B_(x)|]e €Q, , x€DCE] ,

then as can easily be verified

. B'
1’. o r ! 1 = N 1 =
1,___,BS‘B]€B,]—1,...,r,Bi€B,1 1,___,5}

{F

is a base for T, where

B;,. .,Bé B%U..JJBé
F.o o = F N Fgel L., NF_ o
B»‘l IBS B1 BS

It follows directly from the properties of E and the
definition of T that the Borel sigma-field SF--or simply S,
when no confu51on is possible--is g%n?r?ted by any one of the
families {F¥ ,K € K}, {F ,G € G}, {F r € > 0,x € E},

(F o( yr€ > 0,x € E} and {FB,B € B} and their complements.

It is significant that the topological space (F,T) is com-
pact, regular and has a countable base; hence is metrizable.
The compactness follows from Alexander's theorem with the sub-
base {FG,G (S G;FK,K € K} for the closed subsets of F; note




that @ € F. The local compactness of E yields regularity and a
countable base has already been exhibited earlier; see [2], [1]

for details and further developments.

y,

Figure 0.1. Multifunction T and associated function Y.




We can thus view Yy as a measurable function (a random object)
from Q to the compact metrizable space F. The general theory of
convergence in distribution on metric spaces is applicable and
provides the underpinnings for the results on the convergence of
closed-valued measurable multifunctions, as well as for the epi-

convergence of normal integrands, cf. Section 3.




1. COWVERGENCE IN DISTRIBUTION

Since (F,T) is metrizable every probability measure P de-
fined on S is regular [3, Theorem 1.1] and thus is determined by
its value on tihe open (or closed) subsets of F. Since here
every open set is the countable union of elements in the base,
which in turn are obtained from the subbase by finite intersec-
tions, it will be sufficient to know the values of P on the sub-
base {FK,K € K;FG,G € G} to completely determine P. We shall
show that even a much smaller subclass of subsets of S will in

fact suffice.

A function T from K into [0,1] with T(¢) = 0 is called a
distribution function if for any sequences of compact sets
{k, v € N}

(1.1) the sequence {T(Kv),v € N} decreases to T(K) whenever the
Kv decrease to K;
(1.2) the functions {S ,v = 0,1,...} defined recursively by
SO(KO) = 1 = T(KO)

S1(KgiKq) = 55 (Kg) = 55(Ky Y Ky)

and for v = 2,...

S, (KyiKyseeo K = S (KgiKy,...,K - S (K

v 1 U Kv;K1,...,K

v—1) v=1'"0 v=

take on their wvalues in [0,1].

A function on K with properties (1.1) and (1.2) is sometimes
called a Choquet capacity. These properties of T on K are
essentially the same as those of a distribution function defined
on the real line. Property (1.1) can be viewed as an extension
of the notion of right-continuity and property (1.2) as an

extension of monotonicity.

1)



_7_

1.3 THEOREM (Choquet). Every probability measure P on S deter-

mines a distribution function T on K through the correspondence

(1.4) T(X) = P(FK)

K

_ 0
1,...,K\)) = P(F N FK n... N FK )

(1.5) S (K.;K
voo 1 N

Conversely, every distribution function T on K determines a

' probability measure P on S through (1.4), or alternatively (1.5).

Matheron (4, p. 30-35] gives a proof of this theorem by rely-
ing on Choquet's Capacity Theorem. A new derivation relying ex-

clusively on standard probabilistic tools is given in Appendix A.

Every closed-valued measurable multifunction I':Q =% E, or
equivalently every measurable function (random element) Y:Q -+ F,

induces on S a probability measure, denoted by P, with
P(D) = plw|y(w) € D}

for every D € 5. For sets of the type FD that belong to §, we
have that

_ -1 - -1
P(Fy) = uly  (F1 = ull” (D)1 .

In particular, the values of T, the distribution function of T
(i.e. the distribution function associated with P), are given by

T(K) = pil" ' (X)] .

The convergence in distribution of a sequence {Fv,v € N} of
closed-valued measurable multifunctions can thus be studied in
the framework of the weak*-convergence of the induced probability
measures {Pv,v € N} defined on 5 - the Borel field of the meri-
tizable space (F,T) - or equivalently, as we shall see, the
convergence of the associated distribution functions {Tv,v € N}
at every "continuity" point of the limit distribution function
[3], [5]. This program is carried out in the remainder of this

section.



A distribution function T defined on K, is said to be
distribution-continuous at K if for every sequence of sets
va € K,v € N} (T-) increasing to K we have that the seguence
{T(Kv),v € N} increases to T(K). Recall that T(K) = lim T(K),

if {Kv,v € N} is any sequence decreasing to K. HNote that

K

. . ~
K, ¥7 K implies that K véN N

V
and

K #+

v M K implies that K = cl

véﬁ Kv d

see for instance [6, Prop. 1 and 2]. The distribution—-continuity
set CT is the subset of K on which T is distribution-continuous.
We shall show that the multifunctions {Fv v € N} converge in
distribution to a limit multifunction I if and only if the
associated distribution functions {Tv,v € N} converge to the
distribution function T on CT; in fact we shall go one step
further and show that it is sufficient to demand convergence on
c;b = CT ) KUb, where KUb consists of all the compact subsets of
E that can be obtained as the finite union of closed balls

(including g, the empty union of closed balls).

Recall that the random elements {Yv’v € N} (respectively
the multifunctions {Fv,v € H}) converge in distribution to a
random element y (respectively, the multifunction ) if the
induced probability measures {Pv,v € N} weak*—converge to P,

' in particular if
(1.6) lim Pv(D) = P (D)
v

for all P-continuity sets D € S[3, Theorem 2.1] where D € § is

a P-continuity set if
P(bdy D) = 0

and bdy D is the boundary of D with respect to the topology T.




Let V be a subclass of S endowed with the following properties:
(1.7) V 1is closed under finite intersections,

(1.8) given any F € F and any (7-)neighborhood N of F,
there exists W € V such that

Feint W CWOCN

Then V is a so-called convergence-determining class, i.e., con-
vergence in distribution of the Fv to T follows from having (1.6)
satisfied on V rather than on S. The proof that ¥V is indeed

such a class of sets is the same as that of Theorem 2.2 and its
Corollary 1 in [3], it suffices to recall that (F,T) is separable.
The next theorem shows that Kub generates a convergence-determining
class; this allows us to relate the convergence in distribution

of multifunctions to the convergence of their distribution func-
tions. A related result, for extremal processes on R, appears in
[26, Theorem 8.3].

ub, .
} ©s a convergence-

1.9 THEOREM. The class of sets {FK,K e K
determining class, <.e., the I, converge in distribution to T,

1f for every P-continuity set FK’ with K € Kuo, we have that

(1.10) lim PV(FK) = P(F

K

Moreover the Fv converge in distribution to I <if and only <f for
every K € C;b - Kub we have that

(1.11) lim Tv(K) = T(K) .
v
The two following lemmas are needed in the proof of this
theorem. They clarify the relationship between P-continuity
and distribution-continuity. We define the c-enlargement of K by
e°K = {x|d(x,K) < €} and set €K = cl €°K, where -
d(x,K) = miny(:_K d(x,y).
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1.12 LEMMA. Suppose that K € K is nonempty and € > 0. Then the
family {F_,,0 < € < €} contains at most countably many sets which

are not P-continuous.

PROOF. Formally, the argument is similar to the one used to show
that the set of discontinuous points of a monotone function is at

most countable.

Suppose that F_ and F_ . with 0 < e, < g, < € are not P-

K K 1 2
. . . . 1 — . -
continuity sets, i.e., for i = 1,2, a; = P (int FE.K) < P(FE.K) a..
) . i i
Tne two open intervals

— ' 3 3
I(ei) = ]ai,ai[ C [0,1] i 1,2
are disjoint, since for any € € ]61,62[ we have that

int F€1K C FE K ' FéK

C int FE C F
1 2

X €2K

- ' ~ —
and thus oy < o, <4 = P(FéK) < o5 < 0, It follows that the

class of sets {Fa ,0 < € < €} that are not P-continuity sets

correspdnd to a ciass of disjoint subintervals of [0,1], each
one containing a distinct rational number. There can only be a
countable number of such intervals and hence of sets FeK that
are not P-continuity sets. O

1.13 LEMMA. Suppose that T is a distribution function on K.
Then
ub

C = {K € K

ub|
T

Fx P-continuity set}
PROOF. Suppose first that K € Kub and FK is a P-continuity set.
Let us consider {Kv,v € N} an arbitrary collection of compact

sets increasing to K. We need to show that

lim T(K ) = T(K)

v
Since Kv +T K = cl Uv=1 Kv’ we have that
FK = cl FUK and int FK C FUK

\Y \Y
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These relations and the P-continuity of FK imply that

T (K)

A

P(FK) = P(int FK) = 1lim P(FK )

P(Fy )
UK\) vV \Y

T (K)

lim T(K,) < P(F,)

and thus K € CuD.

Next suppose that K € Cub. We suppose that K is nonempty,
since otherwise the assertion holds trivially. Because K is a
compact set with nonempty interior, we can find an (strictly)
increasing sequence of open precompact sets {Gv,v € N} such that

cl Gv = Kv 4+, K, and cl Gv C Gv We have that

T +1°

The sets FG are T-open and hence
v+1

F C F C int F
Kv Gv+1 K

Since T is distribution-continuocus at K, we have that
P(FK) = T(K) = lim T(Kv) = lim P(FKv) < P{int FK) < P(FK)

which implies that P (bdy FK) =0, i.e., FK is a P-continuity set. O

PROOF OF THEOREM 1.9. Let
v = {F |k € K*,p(bdy F,) = 0}
K ! ¥ Ty

and

We prove first that (1.10) implies that for every D € U

(1.14) lim Pv(D) = P (D)
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and that U satisfies (1.7) and (1.8). This will yield the first

assertion of the theorem.

Since Kub is closed under finite unions and for any collec-

tion of subsets D1""’Dr of E

bdy ﬁJDi cubdy Fy o

it follows that

(1.15) Fur X € V whenever FK ev, 1i=1,...,r.
i=1 71 i

And thus from (1.10), with FK eV, i=1,...,r, we get that
i

Ko o
lim Pv(F Yy = 1lim [1 - P (F ) = P(F

) = lim [PV(FKOUK1) - PV(FK

from which (1.14) follows by induction.

That U is closed under finite intersections, i.e., satisfies
(1.7), follows from (1.15) and the fact that

K. UL
_ 0 0

1,...,LS K1,...,Kr,L

L
0 A 5O

-.lKr I"'ILS 4

1

b b

where for i = 0,...,r, K; € K~ and for j = 0,...,s, L, € 'Sl

Next, we show that U also satisfies (1.8). Take F &€ F and
N € B, a base neighborhood of F, say

Bl’ -,B‘
(1.16) o= Fo & = Fo e
17°°°"'"g 17°°"""s
with ¢ = U[_, B}, and for i = 1,...,r, B} € B and for j = 1,...,s,
Bj € B. We assume that F # #, C # § and s > 1, the other cases
being straightforward. F € Fpo with B’ = B;(x) means not only

that F N B;(x) # § but also that

F N B;(x) =g
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o

for all € € ]i,n][ for some fi < n. From Lemma 1.12 it follows
that then there exists € = i + € with 0 < € < n - fi, such that
Fg, with B = Bé(x), is a P-continuity set. Hence to every Bi
that appears in the definition (1.16) of N, there corresponds

ﬁi € B such that Fg is a P-continuity set and F € Fgo C Fg C FB°'

Thus i i i i
F € int W' C W' C FBo n ... N FBo
1 S
where W' = Fﬁ N ... N Fﬁ is a P-continuity set, and clearly
1 S
i ' i ﬂ ﬂ A
int W D FBO .« FBO

1 S
as follows directly from the construction of T.

On the other hand, since C € Kub is compact and F € Fc is

closed, there exists & > 0 such that for every € € ]10,¢€(
eECNF = (C+B_(0) NF #4

Again by Lemma 1.12 there then exists & € ]0,e[ such that Fau,
with £C = €, and necessarily its complement FC are P-continuity
sets. The set

w=u n S

is a continuity set and we have that

FEintWCWCFCo o =N
BY,...,B
1 X
since F € Fgo A~ o G int W by definition of T. This completes

B.,...,B

the proof of1the fi?st assertion of the theorem.

ub

By Lemma 1.13 for every K € CT , F, is a P-continuity

K
set and hence the convergence in distribution of the Fv to T

implies via (1.6) that

lim Tv(K) = lim Pv(FK ) = P(FK) = T (K)
v \Y v

which naturally yields (1.11).
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On the other hand, if lim T_(K) = T(K) on c;b it follows
from Lemma 1.13 and the relation (1.4) that

lim Pv(FK) = P(FK)

v
for every K € Kub. But we just proved that this is a convergence-
determining class. Hence the FV converge in distribution to T'. 0O

In [1, Section 5] it was demonstrated that the almost sure
convergence of a sequence of measurable multifunction {Fv,v € N}
to the multifunction ' implies their convergence in probability.
We show that in turn, this implies their convergence in distribu-
tion. Recall that the [, eonverge to T in probability of

for all € > 0 and any compact K € K,

(1.17) lim u[A”' (RK)] = 0
£,V
AV
where
— [=] U [=]
Ae,v (Fv\s T) (I'\ e FV)

Note that A V:Q =3 E is a measurable multifunction.
14

1.18 PROPOSITION. Suppose {Fv,v € N} 728 a collection of closed-
valued measurable multifunction converging in probability to the
closed-valued measurable multifunction TI. Then the {Fv,v € N}

also converge in distribution to T.

PROOF. We start with proving that for all K € Kub

lim sup T (K) < T(K)

\)—+co

Suppose A1 and A2 are two closed-valued measurable multifunctions
defined on Q@. Then for any € > 0 and K € K we get

A;1(ex) = (en) T (®) )

One also has that
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(1.19) A;1(K) C A;1(€K) U (A1\€°A2)—1(K) ,
as follows from the following relations
A;1(K) = [A, N (e°A2 U (E\E°A2))]_1(K)
-1 ° -
C (g Ned) TR U (ANEA) T (k)
C (eh) " (R) U (A \e’A,) " T (R)
2 1 2
= ATV (eR) U (A\e®AL) " (R)
2 1 2 ’

where the last equality follows from the preceeding identity.
Thus

(1.20) wAT TR < n(AS T (eR) T+ T (ANe Ay T (R ]

since by definition of measurability for multifunctions all sets
involved are measurable. 1In particular if we set A1 = I  and

v
A2 = ' and take K € Kub this gives

1

T, = WITL KT < il (er) ]+ wl(M\e T ) T

K) ]

1

T(cK) + u(A;,v(

K))
Since this holds for all v, taking lim sup on both sides yields:

lim sup Tv(K) < T(eK)

¥

as follows from convergence in probability, in particular

(1.11). The above holds for all £ > 0 and since T is a distribu-
tion function we have that lim€+0T(sK) = T (K) from which the re-
lation li@+§up Tv(K) < T(K) follows directly.

There remains only to show that for K &€ C;b

lim inf Tv(K) > T(K) .

>0 -
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Since K €& Kub we can write it as

with 0 < ¢
ub
If T € CT

Thus given

< min {r1,r .,rq}. As ¢ ¥ 0 we have that €K€ + K.

o
we have that

T (K) =‘lim€+0T(K€) = 1i T(EKE)

Mo

any ¢ > 0 there exists €8 such that for all 0 < & < €6

T(K) < T(Ke) + §

We now again use (1.19) with A1 =T and A, = ', to get

2 V

T(K) < T(K) + 6 = ulI" (K )] + 8

<ulrD ek )1+ LN T) TR T + 6

€

]
,v(Ke)] + &

| A

Tv(EKe) + p[AE

| A

T (K) + u[A;jV(KE)] + 6

Taking lim inf on both sides, using (1.17) and the fact that §

is arbitrary yields the desired relation. 0O
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2. CLOSED-VALUED MEASURABLE MULTIFUNCTIONS AND ASSOCIATED
STOCHASTIC PROCESSES

A closed-valued multifunction T is completely described by

any one of the following associated processes:

(2.1) the indicator (function) process 1F defined on E x Q
with
1 if x € T (w) ,
1F(x,w)
0 otherwise :
(2.2) the extended indicator (function) process wr defined

on E x  with

0 if x € F(U)) ’
Yp(x,w)
+o0 otherwise ;
(2.3) the distance (function) process dF = d(+,T') defined
on E x § with
dr(x,w) = d(x,T(w)) = min d(x,y)

vel (w)

In this section, we analyse the relationship between the con-
vergence of a sequence of multifunctions and the convergence of
the associated stochastic processes, by which is meant, as usual,
the convergence in distribution of the finite dimensional sec-

tions of the stochastic process.

It is remarkable that the convergence in distribution of the

Pv to ' is eguivalent to the convergence in distribution of the

corresponding distance processes drv to dP’ whereas it does not
imply, nor does it follow from, the convergence of the indicator
processes. We start with an example, involving nonempty convex

sets, that illustrates some of the problems that may arise.
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2.4 EXAMPLE. For all w € @, let

I (w) = {(x1,x2) = A(1,v ') , A > 0} v €N

—
€
Il

{(0,0)}
and
I''(w) = {(xq,%,) = A(1,0) , X > 0}

Note that for ;ll w € {, limv Tv(w) = ' (w) and consequently the
sequence of closed-valued measurable multifunctions {FV v € N}
converge in distribution to I''. However, the processes

{1pv,v € N} and {wrv,v € W} converge, "as processes, to the

stochastic processes 15 and wr respectively, i.e., for every

finite collection of R“-vectors
1 1 1 2 G
X = (x1,x2),x ,...,xq ’

the random vectors

[Opx) e 1 ) v em)
\Y Y

converge in distribution to the (random) vector

1 x1),...,1

r(
and similarly for wpv and wr. To see this, simply observe that
(i) the wvariables 1pv(x ),..;,1pv(xq) are independent, (ii)
if x # (0,0), then for v sufficiently large the distribution
function of 1F (x) 1is given by

V

0 if z <0

1 if z >0
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which is also the form of the distribution function of»1r(x),

and (iii) for all v, the distribution function of 1F (0,0) and

Vv
that of 1F(0’0) is the same, viz.,

O_ lei1 7
1 if z > 1

But the Fv do not converge in distribution to T. Simply let K
be the ball with center (1,1) and of radius 1. Then

T (K) = ulw|T (w) NK # ] = 1 ,
does not converge to
T(K) = plw|T(w) "K # g1 =0 ;
and moreover clearly K is a continuity set of T since for any

K' C K we have that T(K') = 0. In fact we already knew that
the Fv do not converge in distribution to ', since they actually

converge to I''. It is also easy to verify that the processes dF
v
converge to the process dF" For every x = (x1,x2), the functions
d((x1,x2),(0,0)) if VX, o+ X,
drv(x,w) = _
VX, X, XtV X,
d[(x1lx2)l[ e = ]] if \)X1 + X2
v+V v+v

converge, for all w, to

d((x1,x2),(0,0)) if x

| A
o

1

d w,X) =

(
T
d((x1'x2)’(x1’0)) if X.] > 0

and from this it follows that for any q > 1, we have that the

vectors

|~

| v
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converge in distribution to the vector

(ap(x'y o), eeedp (13, )

2.5 THEOREM. Suppose that {F;Tv,v € N} are closed-valued measur-
able multifunctions. Then, the I, converge in distribution to T
if and only if the stochastic processes {(dF(x,-),x € E),v € N}

converge in distribution to the stochastie process (dF(x,°),x € E).

We give two separate proofs of this assertion, the first one
providing a simple direct argument, whereas the second proof
relies on a general result and yields some insight in the struc-
tural relation between the two types of convergence. The second

proof is given in Section 3, it follows Example 3.17.

PROOF. We first show that the distribution function of a closed-

valued measurable multifunction A determines and is completely

determined by the distribution of the process dA' For a,,...,a_s

any finite collection of positive real numbers and X, € E,...,xq € E,
we have that

u{wIdA(xi,w) <agi= Tpeee,m} = plw|A(w) N B, (xi) #@g,i=1,...,m}

i
This in turn can be (uniquely) expressed as the sum and difference

of probabilities associated with sets of the type {w|A(w) N K # g}

with K € Kub. We do this for g = 2, the generalization is immediate

p{wlA(@) N B, () A0, 1= 1,2

i£1 plwA(w) N Bai(xi) # 4} - wlw|A(w) O (Ba1(x1) v BaZ(XZ)) £ g}

(x))) = T, (B, (x;) UB,

(x,))
2 1 2 2

= TA(Ba1§x1)) + TA(Ba
The result now follows directly from the above, because if
(21,22) is a continuity point of the distribution function of the
random vector (d(x1,-),d(x2,-)), then the sets BZ1(X1),B22(x2)
and Bz1(x1) U BZZ(XZ) are continuity sets for TF——the distribu-

tion function of A--and vice versa. O
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3. CONVERGENCE OF INTEGRANDS

Any function f:E x Q - R will be called an integrand, with
R = R U{#=} denoting the extended reals. The function f is

completely determined by its epigraph multifunction
wh>epi £(*,w) = {(x,0) €E x Rla > £(x,w)}

We say that f is a normal integrand if its epigraph multifunction
is closed-valued and measurable. The theory of normal integrands
was introduced and developed by Rockafellar [7], (8] to study
variational problems involving constraints. It also provides the
natural framework to analyze the convergence of stochastic opti-
mization problems, as is sketched out in Section 8. Vervaat [26]
who also saw the concept of normal integrands emerge in his study
of extremal processes refers to them as random lower semicontinuous

Ffunetions.

Every normal integrand can be viewed as a stochastic process
with lower semicontinuous (l.sc.) realizations; the functions
Xt—>»f(x,w) are lower semicontinuous since their epigraphs are
closed. On the other hand, any finite-valued stochastic process
with l.sc. realizations is a normal integrand. This follows
immediately from [8, Corollary 2E]. We give a direct proof of

this fact for the reader unfamiliar with the general theory.

3.1 PROPOSITION. Suppose f:E x Q@ - R 78 a stochastie process
with lower semicontinuous realizations, in other words f is a
finite-valued integrand with wp—>f(w,x) measurable for all

x € R” and x f(w,x) l.se. for all w € Q. Then £ is a normal

integrand.

PROOF. We need to show that the closed-valued multifunction
wr——»epi £(+,w) = A{(w) is measurable. To do so it suffices to
show that A admits a Castaing representation, i.e., that dom A
= {w|A(u) # g} € A and there exists a countable collection
{vk,k € N} of measurable functions from dom A

into E such that for all we dom A,
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cl [Y_q V(W] = Aw) '
cf. [8, Theorem 1B]. Since f is finite, dom A = Q@ € A. Now let
D = {(ak,ak) €EE X R, k €N}

be a countable dense subset of E x R, and for k = 1,... define

the functions
vk(w) = (ak , max [ak,f(ak,w)])

They clearly determine a Castaing representation for A. 0O

At first it might appear that, at least in terms of the
classical analysis of stochastic process, the requirement that
the processes have l.sc. realizations is rather limiting. That
is true, in some sense, and in Section 7 we suggest another
approach which overcomes the difficulties one might have with
this restriction. However, note that any cdd-14g process (whose
realizations are right continuous and have at all points left
limits) admits trivially a modification with l.sc. realizations.
Thus the class of normal integrands includes not only stochastic
processes with extended real values, a form in which they arise
in stochastic optimization for example, but also a very wide

class of the "standard" real-valued processes.

Crucial to the development is the fact that for stochastic
processes representable by normal integrands, we can introduce
a notion of convergence which not only is the appropriate one
if we are interested in extremal properties of the processes,
but also in many situations provides us with a more satisfactory
approach to convergence questions as the classical functional
approach. We start with a short description of the epi-topology

on the space of lower semicontinuous functions.
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A collection of lower semicontinuous functions
{f:E > R, v € N} is said to epi-converge' to the function
£:R" = R at the point x if

(3.2) given any subsequence of functions {ka,k € N} and

any sequence {xk,k € N} converging to x, we have that

lim inf £ (x,.) > f(x) ,
Koo Vp K
and
(3.3) there exist a sequence {xv,v € N} converging to x
such that

ll€+iup fv(xv) < £(x)
If the above holds at every point x in Rn, we say that the
collection epi-converges to f. This type of convergence,
introduced by Wijsman [11], is closely related to the notion of
pointwise convergence but it is neither implied nor does it
imply pointwise convergence. Simply note that (3.2) implies

but does not follow from

(3.4) lim inf fv(x) < £(x) '

AV e oo
whereas (3.3) follows from but does not imply

(3.5) lim sup fv(x) > £(x)

Consider for example the sequence {fv:R - R, v €N} with
1

fv(v- ) = 0 and 1 otherwise, which epi-converges to f with
£(0) = 0 and 1 otherwise, but pointwise converges to the function
identically 1. The terminology epi-convergence comes from the

TIn the context of the Calculus of Variations, this type
of convergence is sometimes called l'-convergence, cf. [9], [10],
for example; in [26] Vervaat refers to it as the inf-vague convergence.
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fact that a collection of funqtions epi-converges if and only
if the epigraphs of the functions converge as sets as was al-
ready observed by Mosco [12]. Further details can be found in
(131, [141, [15]1, [16]1, [17]1.

Epi~convergence engenders a topology E on the space SC(E)
of lower semicontinuous functions defined on E and with values in
the extended reals [17]; note that SC(E) is a convex cone. In
view of the preceding comments, it can be identified with the
restriction of the topology T on the closed subsets of E x R to
the space of epigraphs. It can be verified [17, Section 1IV],
(18, Theorem 4] that this topology E on SC(E) can be generated
by the subbase consisting of the sets of the type

EK,a

{f € SC(E)|ian £ > a} KeK, aeR ,

and

]

E

G,a {f e SC(E)llnfG f < a} GeG, aecRr

Recall that K and G denote the space of compact and open subsets
of E respectively. For obvious reasons we refer to this topology
E as the epi-topology on SC(E). The topological space (SC(E),E)
is regular and compact [17, Corollary 4.3]. 1In particular

this means that every sequence of lower semicontinuous functions
contains a convergent subsequence. Moreover, the properties of

E allow us to replace, in the construction of a subbase for E,

the class of sets K and G by
{Be(x)le €Q, , x €D CE}
and
o
B,(x)|e €, , x €D CE}
respectively, and restrict a to Q and x to D, where D is a count-
able dense subset of E, cf. the Introduction. Thus the topological

space (SC(E),E) has a countable base, and hence is metrZzable

and separable.



As already pointed out at the beginning of this Section,
although pointwise and epi-convergence are intimately related,
in general they do not imply each other. In other words, this
means that the epi-~topology E and the product topology P (that
corresponds to pointwise convergence) do not coincide on SC(E).
However they do on epi-lower semicontinuous subsets of SC(E)

[17, Theorem 2.18 and Theorem 4.6]. A set Q C SC(E) is equi-
lower semicontinuous, if to all x € E and € > 0 sufficiently
small there corresponds V € N(x), a neighborhood of x, such that
for all £ € Q.

(3.6) inf o £(y) 2 min (™!, £(x) - el

Let us now return to normal integrands and their convergence.

3.7 DEFINITION. We say that the sequence of normal integrands
{fv:E x Q >R, v €N} epi-converge almost surely [in probability,
in distribution respectively] to the normal integrand

f:E x Q > R, if the corresponding epigraph multifunctions

{epi fV:Q:3 E xR, v €N} converge almost surely [in probability,
in distribution respectivelyl to the epigraph multifunction

epi £:Q 3 E x R.

We note that as a consequence of [1, Corollary 3.2] and the
definition of almost sure convergence of normal integrands, it
follows that 1if {fv,v e N} is a sequence of normal integrands
and they have almost surely an epi-limit, then this 1imit <Zs

also a normal integrand, ignoring possibly a set of measure 0.

3.8 PROPOSITION. Suppose {fV:E x Q>R , v EN} Zs a sequence
of normal integrands. They epi-converge almost surely to the
normal integrand £:E x Q + R <f and only if for all w € Q, except

possibly on a set of measure 0, we have that for all x € E

(3.9) for any subsequence {ka,k € N} and any sequence

{x_,k € N} converging to x we have that

k

lim inf £ (Xk,w) > f(xlw) ’
k> Vi -
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and

(3.10) there exist a sequence {xv,v € N} converging to x

such tnat

liT+iup fv(xv,w) < f(k,w)
PROOF. It really suffices to observe that conditions (3.9) and
(3.10) are nothing more than the conditions for epi-convergence
and that they hold if and only if the epigraph converge [17,
Proposition 1.9]. Thus the epigraph multifunctions converge al-
most surely if and only if (3.9) and (3.10) hold for almost all
w. O

To characterize the convergence in probability of normal
integrands it is useful to introduce some perturbations of the
given integrands. Let g denote an arbitrary function defined on
E and with values in the extended reals. For any positive num-

ber a, we denote by ga the function defined by

a p—a 1 -— -—
g (x) := 1nfyGaB g(x V) a
where aB = Ba(O) is the closed ball of radius a. It is not

difficult to verify that
epi g% = epi g + {(x,0) |x € aB , |a| < a}

If epi g is closed, i.e., if g is l.sc., then so is epi ga since
the second term of the (Minkowski) sum is compact. Suppose
f:E x @ - R is a normal integrand then so is £2. To see this

simply observe that the epigraph multifunction
w—> epi £7(+,0) = epi £(+,w) + {(x,0)|x € aB , |a| < a}
is closed-valued and measurable, since for each w it is the sum

of a closed~valued measurable multifunction and a compact-valued

constant (measurable) multifunction [8, Proposition 1I].
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3.11 PROPOSITION. Suppose {f :E x Q - R, v €N} is a sequence
of normal integrands. They epi-converge in probability to the
normal integrand £:E x Q + R if and only if for all ¢ > 0, r > 0
and X € E

lim pu{w| y such that d(x,y) < r, and either
Yo
-r < £ (y,w) < £(y,w) < T or

-r < fly,w) < fi(y,w) <r} =0

PROOF. It really suffices to observe that there exist y satis-

fying the conditions laid out if and only if
[ (epi fv(-,w)\e-epi f(e,w)) U (epi £(+,w)\e-epi fv(°,w)] A Br(x) # g

This is exactly the definition of convergence in probability of

the multifunctions {epi fv(-,w),v € N} to epi f£f(+,w), [1, Section 5].

In parallel to the development in Section 1, it is possible
to associate to each normal integrand a distribution function
defined on Kub x R, cf. Section 1 and the expressions given for
‘the subbase of the epi-topology. The epi-convergence in distri-
bution of normal integrands can thus be given a characterization
similar to that given by Theorem 1.2 for closed-valued measurable
multifunctions. It is an excellent exercise that the conscientious
reader would not want to bypass. As a consequence of [1, Sec-

tion 5] and Proposition 1.18 we can conclude the following:

3.12 PROPOSITION. Suppose {f;f :E x Q@ ~ R,v € N} 75 a collection
of normal integrands and WU 1S a probability measure. Then the

£, ept—converge a.s. to £ if and only tf they epi-converge u-al-
most untiformly to f£. Moreover almost sure epi-convergence implies
epi-convergence in probability which in turn implies epi-

convergence in distribution.

As already indicated at the beginning of this Section
normal integrands can be viewed as stochastic processes with

l.sc. realizations albeit with values in the extended reals.
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The main result of the Section is a characterization of the

normal integrands for which epi-convergence in distribution

and convergence iﬁ the classical sense (Kolmogorov) for stochastic
processes coincide. The key ingredient is the concept of equi-

lower semicontinuity defined by relation (3.6).

3.13 THEOREM. Suppose that {fv:E x Q - R,v € Q} s a collection
of a.s. equi-lower semicontinuous, normal integrands, T.e., there
exists Q' € A with u(Q') = 1 such that for all w € Q', the

collection of functions
{x £ (x,w):E > R, v=1,...}

18 equi-lower semicontinuous. Then the £, epi-converge in
distribution to a normal integrand £:E x Q@ +~ R <f and only <if

the stochastic processes
{f (x,*) , x€E ; v=1,...}

converge in (the classical sense) to the process (f(x,*),x € E).

PROOF. The product topology P on SC(E) can be generated by the
base of open neighborhoods of the type

Ve;x1,...,xq(g) = {fescE||f(x;) - gx)| <e, i=1,....q}

with € > 0, g € N and x1,...,xq a collection of points in E. The
topological space (SC(E),P) is compact and regular but not sep-
arable. However any equi-lower semicontinuous subset Q of SC(E)
equipped with the relative P-topology is a separable metric space
since on Q the epi-topology and the product topology coincide
[17, Theorem 2.18 and Theorem 4.6]. This also implies that the
Borel fields on Q generated by the E-open or P-open sets are

the same.
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Let L denote the natural projection with respect
to x1,...,xq (all 9in E) from Q to Rq, where
T £f = (£(x,), HE(x_))
XqoeeerXy 1 q

The finite dimenstional sets

-1

= {TrX.I,...,X

H|H € Sq;xi €eE , i=1,...,9 and q &€ N}
g
where S9 denotes the Borel sigma-field on R9, contain the open

neighborhoods V (g) that determine a base for P.

Moreover, sincegkg,ﬁ.;.é? is separaple it follows that U
generates the Borel field on Q. This is of crucial importance

to the proof of this theorem, since it follows that for probabil-
ity measures defined on (Q,SO), the class U is a convergence-
determining class [3, p. 15]. To see this we rely on a theorem
of Kolmogorov and Prohorov [3, Theorem 2.2] and observe that U

is closed under finite intersections and every open set is a
countable union of elements of U; recall that the open sets

Ve, g . belong to U and that (Q,P = E) is Lindelof.
’ 11---1 q

The projections 7 from (SC(E),E) to RY are in

general not continuous? ééi;éggvergence would then imply point-
wise convergence. But on 4, an equi-lower semicontinuous sub-
set, these projections are continuous. In turn, this implies
that weak*—convergence of probability measures defined on
(Q,SQ) yields the weak*—convergence of their projections [3,
Section 5]. The next lemma encapsulates what we have shown

so far.

3.14 LEMMA. Suppose Q is an equi-lower semicontinuous subset
of (SC(E),E) and {Pv,v = 1,...} 28 a sequence of probability
measures defined on the Borel field generated by the E-open sets
of Q. Then the P weak*-converge to a probability measure P
(defined on the Borel field generated by the E-open sets of

SC(E)) <f and only <If for all finite dimensional sets A € U.

P(a) = lim P (3)
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PROOF OF THEOREM 3.13 (Continued). We now consider {Q”,v = 1,...
and Q the probability measures induced by the normal integrands
{fv,v = 1,...} and f on the measure space'(SC(E),SE) where SE
denotes the Borel sigma-field generated by the E-open sets. The
Theorem will be proved if we show that the Qv weak*—convergence

to Q if and only if they converge on U--the class of finite

dimensional sets--when the {fv(-,w);v =1,...,0 € Q'} determine
an equi-lower semicontinuous subset of SC(E). But this is
precisely the content of Lemma 3.14. 0O

Before we continue, we note that all the results obtained
for epi-convergence, the space of lower semicontinuous functions,
and normal integrands with lower semicontinuous sections have
their counterpart in the mirror-setting: hypo-convergence, the

space of upper semicontinuous functions and normal integrands
with upper semicontinuous sections. Recall that the hypograpi of
a function f is defined by

hypo £ = {(x,a) € E x R|la < £(x)}

For the record, we give here the definition of equi-upper semi-
continuity and the corresponding version of Theorem 3.13. Let
-SC(E) denote the space of upper semicontinuous functions. A
subset Q C =-SC(E) is equi-upper semicontinuous, if to all x € E
and € > 0 sufficiently small there corresponds V € N(x) such
that for all £ € @

1

(3.15) sup £(y) < max [-g , £(x) + €]

yeV

3.16 THEOREM. Suppose that {f :E x O - R,v € Q} Zs a sequence
of a.s. equi-upper semicontinuous normal integrands (with upper
semicontinuous sections). Then the £, hypo-converge in distri-
bution to a normal integrand (with upper semicontinuous sections)

£:E X Q » R 2f and only if the stochastic processes
{£ (x,*) , x€E ; v=1,...}

converge (as stochastic processes) to (f£(x,*) , X € E).
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We could now define a concept of a.s. equi-continuity and
combining Theorems 3.13 and 3.16, obtain limit results for
processes with continuous paths but defined on E not as usual on
a compact subset of E. We do not work out those results, cf.

(17, Section 4] for how this program could be carried out.

The equi-semicontinuity with probability 1 is, as we have
seen sufficient to ensure the equivalence of these two types of
convergence for sequences of normal integrands. But in fact it
is nearly necessary. From [17, Theorem 2.18] it follows that if
for all w € Q' with p(Q') = 1, the functions {x———>'fv(x,w),v =1,...}
both epi- and pointwise converge to x ——>f (x,w) > -», then the
collection is equi-lower semicontinuous with probability 1. On
the other hand, if for some x, there is some subset A C 2 of positive
probability such that for all w € A, either the fv(-,w) epi-
converge to f£(:,w) at x but do not pointwise converge at x, or
vice-versa, then convergence in distribution of the finite
dimensional sections never implies epi-convergence in distribu-
tion, as can easily be verified. However, tne segquence may fail
to be equi-lower semicontinuous with probability 1 and still it
may converge in distribution, in both the epi- and the pointwise
sense, to limit processes that are distribution-equivalent. The

following example illustrates such a situation.

3.17 EXAMPLE. Consider the sequence of normal integrands, for

v =1,..., let fv(x,w) = =Vvi(x - w) if w < x < w + v—1
+o0 otherwise
with (Q,A,u) = ([O,]],B[0 177 uniform measure). Then for all w,
tne fv(-,w) epi-converge to
fle,w) = =1 if x = w,
+o0 otherwise,

and they pointwise converge to

f'(«,w) = 0 if x = w,

+oo otherwise.
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Let Fv(x,-):ﬁ + [0,1] be the distribution functions associated
to the random variables fv(x,-). They are given by the expres-
sion: for x € )0,1] and v < x
F (x,2) = 0_1 if z < 1
v o (z + 1) if -1 <z <0
v if 0<z <o
1 if zZ = @ .

that converge (as distribution functions) to F(x,+*) with

F(x,z) = 0 if z < =

1 if 2z = o

This is the distribution function (on R) of both f(x,*) and
f'(x,*), again taking x € )0,1]. For x & )0,1] the expressions
for Fv(x,-) are a little more involved but the limit distribu-
tion function is again the same. Since for all w, there is some
x at which the pointwise limit and tnhe epi-limit are different,

we have
u{w|fv(-,w) , v=1,... are equi-l.sc.} = 0

but the normal integrands both epi-converge in distribution and
in the (classical) sense of stochastic processes to £, or f'
for that matter. O

Tneorem 3.13 and the comments that follow also enable us to
return with gained insight to the questions raised in Section 2
in connection with the convergence of stochastic processes
associated to ﬁultifunctions. We start with a new proof of
Theorem 2.5, which shows that it is actually a Corollary to
Theorem 3.13.

SECOND PROOF OF THEOREM 2.5. Let D = {d_:E - R|F € F} be the
space of distance functions. There is a natural bijection re-
lating the elements of F and D. Let us observe that the topology
T on F corresponds to that generated on D by the subbase consist-
ing of the sets of type
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<
It

{dg|0 ¢ dL(K)} K € K '

3
I

{dp|0 € do(6)) G EG ,

o(X),x € Q}. This is in fact

where for any set Q, dF(Q) = {a =4d
the epi-topology on D. To see this, recall that the epi-topology

is generated by the subbase

{d |0 ed (el a)} , KeKk,aeR

m
]

{dF|a < d_(K)}

m
ll

{dila € dp(G)} = {d |0 € dp(a°G)} , Ge€6,ac€Rr,

it is sufficient to consider a € R+ because the functions dF are

nonnegative. Since for every a € R+——the nonnegative reals--the
sets aK are compact and a’ G are open, it follows that X = EK’a
and DG = EG,a'

The set D C SC(E) is equi-lower semicontinuous. To prove

this it certainly suffices to show that:
to every x € E and € > 0, there corresponds V € N(x) such that

J.nfyev dF(y) > dF(x) - €

for all F € F.

Simply take V = {y|d(x,y) < ¢ } = BZ(x), then for any y € BZ(x)
we have that

dF(x) < dF(y) + d(x,y) < dF(y) + €

Now consider {F;Fv,v € N} a collection of closed-valued measurable
multifunctions. The multifunctions {Fv,v € N} converge in dis-
tribution to I if and only if the distance processes {dpv,v € N}

epi-converge in distribution to the distance process dF’ as
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follows directly from the relationship between (F,T) and (D,E).
Since D is equi-lowersemicontinuous, we simply appeal to Theorem

3.13 to complete the proof. [

Contrary to the set of distance functions, the space of
indicator functions of closed subsets of E is not an equi-lower
semicontinuous subset of SC(E). Thus it is possible to find
sequences whose epi-limit and pointwise limit differ on a subset
with positive measure. This observation was certainly instru-
mental in the construction of Example 2.4. We give here a
necessary and sufficient condition for equi-lower semicontinuity
for a sequence of indicator functions which can then be applied

to sequences of multifunctions.

3.18 PROPOSITION. Suppose that {F;Fv,v € N} <8 a collection of
closed subsets of E with F = livav' Then the collection of
indicator functions {va,v € N} 7Zs equi-l.se. if and only if to

every X € F there corresponds Vo such that x € F, for all v > V-

PROOF. By hypothesis, x € F implies that for all v > Ver X € F
and thus for all y € E.

bp (x) =0 < b (y) + ¢
V v
For all v < v_, the l.sc. of the br,, implies that for all € > 0
there exist a neighborhood V such that for all y € Vv

F (x) - €]

vp (y) > min e”l,
\V] \V]

for all v > Vr since there are only a finite number of v. The

two preceding inequalities yield (3.6).

Now suppose that the collection {va,v € N} is equi-l.sc.
and that F = lim F , or equivalently that the {va,v € N} epi-
converge to wF. If for some x, there is no Vo such that x € Fv

for all v v, it means that there exists a subsequence

>
= ’x
{Fu,u € M C N} of sets such that x & Fu. Conditions (3.6) yields
for all ¢ > 0 sufficiently small, a neighborhood V of x such that

for all y e v
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be () 27,
u
for u sufficiently large, or equivalently there is a neighborhood

V of x such that for all u sufficiently large

This implies that x ¢ lim F and thus contradicts the

assumption that F = lim Fv' see . for example, [1, Theorem 2.2.ia]. O

3.19 COROLLARY. Suppose that {F;Fv,v € N} 7Zs a collection of
elosed-valued measurable multifunctions with domain Q. Suppose

moreover that for every w € Q\A with u(d) = 0, we have
x € T'(w) Zmplies x € Fv(w) for v sufficiently large.

Then the multifunctions I, converge tn distribution to T if and
only 1f the stochastic processes {wrv(x,~),x €EE; v=21,...}

converge to the stochastic process (wr(x,~),x € E).

A similar result also holds for the indicator processes 1F'
One passes this time through hypo-converge and equi-upper semi-
continuity. In fact, we can obtain the results directly from

the above if one observes that for any closed set F

- 2
1F =1 = arctan wF ’
and now all the arguments can just be repeated with the obvious

adjustments for signs.

We close this Section with an observation concerning contin-
uous convergence and lower semicontinuous convergence, convergence
concepts that have surfaced in the context of approximation
schemes for stochastic dynamic programming problems [19], [20].

A collection of functions {fv:E + R,v € N} is said to continuous-
ly converge to f:E - R if at all x € E conditions (3.2) and (3.20)

are satisfied, where
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(3.20) given any seguence {xv,v € N} converging to x we have

lim sup £ (x ) < f(x) .
They lower-semicontinuously converge to f if at all x € E condi-
tions (3.2) and (3.5) are satisfied.

Continuous convergence implies lower semicontinuous convergence
and clearly both types of convergence imply pointwise and epi-
convergence. Thus, any sequence of normal integrands that either
continuously or lower semicontinuously converge forms an equi-
lower semicontinuous set. Hence Theorem 3.13 informs us that
for normal integrands lower semicontinuous-convergence in dis-
tribution takes place only if their finite dimensional sections

converge in distribution.




-37-

4. EQUI-LOWER SEMICONTINUITY IN PROBABILITY

Theorem 3.13 was proved by relying almost exclusively on
topological arguments involving the relationship between the epi-
topology and the product topology on the space of lower semi-
continuous functions. Here we actually refine Theorem 3.13 by
paying more attention to probabilistic structures, in particular
we rely on the results obtained in Section 1. As in Section 3,
we shall be working with sequences of normal integrands and will
be concerned with the relationship between their epi-convergence
in distribution and their convergence when viewed as stochastic

processes.

Let {f;fv:E x § » R,v € N} be a collection of normal inte-
grands, {Q;Q /v € N} the induced probability measures on (SC(E) ,Sg)
and {T;Tv,v € N} the associated distribution functions, cf.
Section 1. Relying on the characterization of the epi-topology
given in Section 3, we see that the distribution function T
associated to a normal integrand f can be defined on Kub x R by

(4.1) T(K,a) = Q(f|inf f < a) = plw|inf,_, f(y,w) < a}

YE
, .. ,ub ub

where K € K7, a € R and as before K denotes the compact sub-

sets of E obtained as the finite union of closed balls. By

abuse of notation we shall use T to denote a distribution func-

tion on Kub x R as well as on arbitrary compact subsets of E X R.

In Section 2 and 3 we have stressed the fact that for lower
semicontinuous functions epi-~convergence and pointwise convergence
are not comparable. In view of this the next theorem is some-
what remarkable. At the conceptual level, the validity of this

theorem rests on the fact that the Borel sigma-field S_. contains

E
that generated by the subsets of SC(E) with respect to which

the projection maps of f#——awxf = f(x) are measurable.

4.2 THEOREM. Suppose {f;f :E x @ + R,v € N} is a collection of

normal integrands. Then epi-convergence in distribution of the
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fv to £ implies the convergence in distribution of the stochastic

processes {fv(‘,x),x € E;Vv € N}to the process {f(*,x),x € E}.

PROOF. From Theorem 1.9, it follows that epi-convergence in

distribution implies that for any finite collection x1,...,xp of
points in E and reals a1,...,ap
u{w|fv(x1,w) > a1,...,fv(xp,w), > ap}

p{m|(x1,a1) £ epi fv(-,m),...,(xp,ap) € epi fv(-,m)}

1= ulwl Cxyag),eeen(x )} Nepd £,(7 w) # 0}

1 - TV({(x1,a1),...,(xp,ap)})
converge to
1 - T({(x1,a1),...,(xp,ap)}) = u{wlf(x1,w) > a1,---,f(xp,w) > ap}

provided tnat {(x1,a1),...,(xp,ap)} is a E-continuity set. But

here that means that
p{m|f(xl,w) > a; , 1L =1,...,p}
= :Lim€l+0 u{w|f(xl,m) >a; - €, -, 1= 1,...,p}

where €4 2 O,...,ep > 0, which fails only if the point (a1,...,ap)
is not a continuity point of the p-dimensional distribution

function of the random vector

W h——ﬁ»(f(x1,m),...,f(xp,m)) .

In order to prepare the tools necessary to derive a converse
of the preceding theorem, we obtain a sufficient condition that
allows us to determine the distribution function of a normal
integrand from the distribution of its finite dimensional sections.
To do so it is useful to introduce a class of normal integrands

whose sections x+———> f(x,w) have uniform semicontinuity properties.
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4.3 DEFINITION. A function f£:E » R is totally lower semicontin-
uous (totally l.sec.) if given any bounded set D C E and € > 0
sufficiently small, one can find a finite collection Xyree-rX
S N(x1),...,Vp € N(x_)

P
in D and assoctated neitghborhoods V

1 P
such that
P
(4.4) Ul:1 Vl covers D ’
and for 1 = 1,...,k '
. . -1
(4.5) J.nferl f(y) > min [e ,f(xl) - £]

A normal integrand f£:E x Q R <s in probability totally l.sc. i1f
gtven any n > 0, any bounded set D C E and V1 € N(XT)”"’Vp e N(x_)

P
such that the Vl cover D and

(4.6) plw € Q|infyGV f(y,w) > min [6-1,f(xl,w) -€l, 1l =1,...,p} > 1=1
1

A stochastic process (Xt(-),t € T) with continuous paths
tF——4>Xt(w) is totally l.sc. in probability as can easily be

verified. This is also the case if (X, (*),t € T) is a l.sc.

t
modification of a stochastic process with céd-lég paths, i.e.,

in the space D(T].

4.7 PROPOSITION. Suppose f:E x Q - R Zs in probability a
totally l.sc. normal integrand. Then the distribution function T

of £ ©s completely determined by its values on fintte sets, t1.e.,
T({x1r---rxp} , a)

with x, € E, L =1,...,p and a € R.

1
PROOF. Let a € R and K € E be compact. Now, since f is a totally
l.sc. in probability integrand, for any n > 0 and € < 0
sufficiently small, in particular with 5—1 > a + £, we can find
x1,...,xp and V1 € N(x1),...,vp e N(xp) such that conditions (4.4)
and (4.6) are satisfied. This means that p(QE) > 1 = n where

Q_ = {w|inf

, -1
c f(y,w) > min [e ,f(xl,w) -€] , 1 =1,...,p} .

yEVl



-40-

We have
{w e Q|f(xl,w) >a+¢e, 1l=1,...,p}
= p{w € lef(xl,w) >a+¢ ,1=1,...,p}
+ ulw € N _[f(x;, ) >a, 1= 1,.;.,p}
< p{w € Q|f(y,w) > a for all y € Y;V;} +n

< pluw € QlinfyeK f(y,w) > al +n =1- T(K,a) + n ,

where the last inequality follows from the lower semicontinuity
of £ and the compactness of K.

On the other hand for any choice x .,xp in K, we always have

ER

ulo € a[f(x,0) >a+¢e, 1=1,...,p} > u{w e Q|innyKf(y,w) > a+e

Thus for any n > 0 and any € > 0 sufficiently small, we can find
x1,...,xp such that

(4.8) T(K,a) - n < T({x1,...,xp},a + €) < T(K,a + ¢€)

from which the assertion directly follows because as &€ tends to O,
T(K,a + €) goes to T(K,a) as follows from (1.1). O

We now consider sequences of normal integrands and we are

led to the following concept:

4.9 DEFINITION. Let D = {f:E x Q > R} be a family of normal
integrands. We say that they are equi-totally lower semicontin-~
uous in probability if given any n > 0, any bounded set D C E

and € > 0 sufficiently small, there exist X .,xp in D and

1,-.

V1 e N(x1),...,Vp € N(xp) such that the Vl cover D and (4.6)

18 satisfited for all v € N.

4.10 THEOREM. Suppose {f;fv:E x Q@ > R,v € N} Zs a collection of

equi-totally l.se. normal integrands in probability. Then they
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epi-converge in distribution if and only <f the stochastic process
{fv(x,-),x € E;v € N} converge (in distribution) to the process

{f(x,*),x € E}.

PROOF. Theorem 4.2 yields the assertion in the "only if" direc-

tion, we only need to prove the "if" part. First note that

= - ey ’ >
T({x1,...,xp},a) 1 u{w|f(x1,w) > a,. .., Bxg,w) a}l
and thus if [{x1,...,xp},a] is a continuity point of T, the point
(a1 =a, a, = a,...,ap = a) is a continuity point of the dis-

tribution function of the random vector
(f(X1,') 1] f(x2r')r°--lf(xpl'))

This means that convergence of the normal integrands in the

classical sense of stochastic processes implies that for any

finite set [{x1,...,xp},a] we have
lim TV({x1,...,xp},a) = T({x1,...,xp},a) ,
\) 00
wiienever [{x1,...,xp},a] belongs to CT. But since the normal

integrands are totally lower semicontinuous the distribution
functions on Kub or K are completely determined by the values of
the T or T on the subsets of type [{x1,...,xp},a] cf. Proposition
4.7. Moreover the equi(-totally lower semicontinuity in
probability) condition guarantees the convergence of {Tv(K),v € N}
to T(K) for every K € K N CT. This is more than what we need,
since in view of Theorem 1.9, it would have been sufficient to

prove the convergence of T, to T on KUb N CT. O




-4~

5. COMPACTNESS THEOREMS

The fact that every sequence of closed-valued measurable
multifunctions contains a subsequence converging in distribution
has many conseguences, in particular in the study of limit prob-
lems associated to a sequence of stochastic optimization problems
but also in the convergence theory for stochastic processes, see
Section 6. This section is devoted to proving this assertion

and deriving a few elementary implications.

5.1 THEOREM. Every collection of closed-valued measurable multi-
funetions 1s pre-compact with respect to the topology induced by
convergence in distribution. In particuldr this implies that
every sequence of closed-valued measurable multifunctions con-
tains a subsequence converging in distribution to a closed-valued

measurable multifunction (possibly the empty-valued multifunction).

PROOF. Recall that (F,T) is a compact separable metric space.
Let {Qa,a € I} be the distributions defined on the sigma-field
ST induced by the multifunctions {Fa,a € I} where I is an arbi-
trary index set. Since F is separable it follows that the space
of distributions on ST is separable and also metrizable by the
Pronhorov metric [3, Appendix III]. Since F is compact, the
collection of probability measures {Qa,a € I} is tight and hence
it follows from the Theorem of Prohorov and Varadarajan [3,
Theorems 6.1 and 6.2] that they form a pre-compact set of prob-
ability measures on ST' To complete the proof it now suffices
to appeal to the Thecrem of Engl and Wakolbinger [21]; they
prove that the set of distributions of multifunctions defined on

*
¢ and with values in F (a Polish space) is weak <closed. O

5.2 COROLLARY. A4ny collection of normal integrands is pre-
compact with respect to epi-convergence in distribution. In
particular this implies that any sequence of normal integrands
contains a subsequence epi-converging in distribution to a

normal integrand.

PROOF. Simply apply the Theorem to the epigrapn multifunction. O
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To know which multifunction (normal integrand respectively),
defined on (Q,G,u) corresponds to this limit must usually be
determined through other means. In the special case when
@ = [0,1] and p is the uniform measure there is always the
Prohorov construction [22] that yields a multifunction (normal
integrand respectively) with the given probability. In the case
of normal integrands the a.s. equi-lower semicontinuity condition
or its equivalent often plays a useful role in characterizing a

limit normal integrand, as can easily be surmised.

As a trivial application of this Theorem, we prove Helly's

Tneorem for random vectors. Let

g = (51152:---1513)

be a random vector defined on (£,A,u) and with values in rP.

To each value £(w) we associate the set
'Nw) = {(1,51(w)) r (2,85 (W) .. -,(plép(w))} cI xRrP

where I = {1,2,...,n}. The multifunction T:Q =8I x RP is closed-
valued and measurable. Let P denote the distribution induced by
' and F the (usual) distribution function of the random vector

£, i.e.,

F(a1,...,ap) = u{w|€1(w) < a1,...,€p(w) < ap}

We note that there is a one-to-one correspondence between F and

P defined through the relation
(5.3) F(a1,...,a ) = P[
on a class of open sets that determine P. Moreover, the conti-
nuity points of F correspond to P-continuity sets in this class.

Let T be tne distribution function of T defined as in Theorem 1.3.

5.4 COROLLARY (Helly's Theorem). If {Fv:Rp > [0,1],v € N} is a

sequence of distribution functions associated with a sequence of
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random vectors {(£° @ -~ RP,v € N}, then there exists a subsequence

{ka,k = 1,...} and a funection F:RP - [0,1] that has all the prop-
erties of a distribution function except possibly that F(a) does
not necessartly go to 1 as a; tends to +» for 1 = 1,...,p and
such that

lim F (a;r.-+.,a_) = Fla,,.-.,2_)

K00 vk 1 P 1 P

© for all continuity points of F.

PROOF. Let Pv be the distribution and the Tv be the distribution

functions associated to the multifunctions Fv defined as before

by T (w) = i§1{(i,gz(w)}. Theorem 5.1 yields a subsequence
{Tvk'k = 1,...} converging to a distribution function T on CT or
equivalently the subsequence {ka,k = 1,...} converge to a prob-

ability measure P with

p
{l}x )"°° ’ a1 (] = P[ a {i} X )-°° ’ al(]
1 i=1

lim P |
k k i

W Do

for all P-continuity set of this type. This completes the proof.
The function F defined through relation (5.3) may fail to tend
to 1 as the a; tend to ®; this comes from the fact that P(I x RP)
could be strictly less than 1, since positive probability may be
assigned to the empty set. This happens when the Tv(w) tend to
the empty set on a set of positive probability which occurs if
and only if the {gv(w),v = 1,...} are unbounded on a set of

positive probability [1, Lemma 2.1]. 0O

In connection with Helly's Theorem it is worth noting that
it can be derived directly from the compactness of the space of
epigraphs. We sketch out the argument. Let us accept the con-
vention that the distribution functions on Rk are everywhere
continuous from below. Thus these are l.sc. functions defined
on Rk and with values in [0,1]. Given any sequence of distribu-
tion functions, a subsequence epi-converges to an everywhere
continuous from below function bounded by 0 and 1 [17, Theorem
4.6]. One then shows that this limit possesses the desired

"monotonicity" property on each rectangle.
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Compactness for processes whose paths are in C[0,1] or
Dsc[0,1] can be derived using Corollary 5.2; here Dsc[0,1] is
the space of l.sc. real-valued functions defined on [0,1] which
we view as a l.sc. modification of D[0,1], the space of real-
valued right-continuous functions with left-hand limits (cid-
l4g). 1In general, however, there is no guarantee that the limit
probability measure, or equivalently the limit distribution
function, is that of a process whose paths are of type C[0,1]
or Dsc[0,1].

We like to point out another approach to obtaining compact-
ness criteria very much in keeping with the ideas developed here.
It is possible to associate to every measure on (F,BT) induced
by closed-valued measurable multifunction I, a function
V:F -~ [0,1], which has the same properties as a distribution
function plus some "finite additive property, and which is upper
semicontinuous on F with respect to the topology T. The weak*—
convergence of measures on (F,BT) can be identified with the
hypo-convergence of functions of type V on F [23]. (For distri-
bution functions defined on R1 Vervaat ([25] has also observed
that weak convergence of the distribution function corresponded

to their hypo-convergence.)
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6. CONVERGENCE OF SELECTIONS

A measurable function v from @ to E is called a measurable
selection of I' if v(w) € I'(w) for all w € dom T = {w|T(w) # #}.
The basic theorem on measurable selections asserts that a closed-
valued multifunction is measurable if and only if it admits a
Cdstaing representation, i.e., dom ' € Q and there exists a
countable collection of measurable selections {V,,k € N} such
that for all w € dom T

cl {L&Vk(w)} = I'(w)

6.1 THEOREM. Suppose {Fv,Q::EE,v € N} 28 a collection of closed-
convex—-valued measurable multifunctions converging in distribu-
tion to the closed-convex-valued measurable multifunction T:Q 3 E
with u(dom Fv = dom I') = 1. Then there exist Castaing representa-
tions {Vvk,v € N} of the I, such that for every k, the {Vvk,v € N}
converge in norm in.distribution to a measurable function Vi such

that {Vk,k € N} 7s a Castaing representation of T.

PROOF. First observe that if the {Tv,v =1,...} converge in
distribution to T, then for all z € E the multifunctions

{z + Forv = 1,...} converge in distribution to I'. Let d be the
Euclidean distance on E and fix D a countable dense subset of E
whose elements are denoted by {ak,k € N}. For each k € N and

w e f, let ka(w) € Fv(w)[xk(m) € I'(w) resp] be such that for

v =1,...

d(ak,xv (w)) = d(ak,Fv(w)
k
and

d(ak.xk(w)) = d(ak,F(w))

Since the multifunctions are convex-valued, the ka(w) and xk(w)

are unigue. Moreover the functions

Wr—3>x  (w) and (uh——?xk(w)
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are measurable [8]. The assertion now follow directly from

Theorem 2.5 applied to the multifunctions Pv (that converge

- a
k
in distribution to T - ak) and the distance functions d(O,Fv - ak)

which converge in distribution to 4(0,T - a a

k)'
6.2 COROLLARY. Suppose {Fv:QZZZE,v = 1,...} 28 a sequence of
closed-convex-valued measurable multifunctions converging in

distribution to a closed-convex—valued measurable multifunction
':QZ3E. Then there exzist measurable selections of the r, that

in norm converge in distribution to a measurable selection of T.

It is easy to find a sequence of random vectors év,v = 1,...
that in norm converge in distribution to a vector § but such
that the vectors do not converge in distribution. Simply for
each v let Ev(w) = =1 for all w and §&(w) = 1 for all w. But
such a situation cannot arise if the vectors Ev are viewed as
multifunctions and when these multifunctions Ev:Q:j;R converge

in distribution.
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7. STOCHASTIC PROCESSES - THE WIENER PROCESS

We consider stochastic processes (Xt(-),t € T) with values
in RP. The limit associated with a sequence of stochastic pro-
cesses is usually obtained in the following manner: a function
space Y is selected in terms of the expected properties of the
patns of the limit process, (say the space of continuous func-
tions), the approximating processes are redefined so that their
paths are in Y (for example, random walk paths are "filled in"
by interpolation), and some compactness criterion (the Arzela-
Ascoli equi-continuity condition, for example) is invoked to ob-
tain the relative compactness of the probability measures in-
duced on Y by the stochastic processes of the sequence. In
Section 3 we have already suggested another approach for pro-
cesses that are (extended) real-valued. It identifies the paths
of a process with normal integrands and consider convergence in
terms of their associated epigraphs; this is particular useful
if one is interested in extremal properties as we shall see in
Section 8. In that setting we always have a "limit" in distri-
bution (Corollary 5.2) and in favorable circumstances, such as
under equi-semicontinuity conditions, the limit can be calculated
explicitly. 1In this section we suggest another approach which
more naturally fits the study of wvector-valued processes. To
illustrate this approach, we conclude with a derivation of

ponsker's Theorem.

By the closure of a (vector-valued) stochastic process we
mean the process obtained by taking the upper semicontinuous
regularization of its paths (viewed as multifunctions). More
precisely the closure of (Xt(~),t € T) denoted by
((cl X)t(-),t € T) is defined as follows:

cl X, (w) = {y = lim yk|yk = X, (w) for some t, - t} )

K k

This is a multivalued process, in general. The next figure

illustrates this closure operation.
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7.1 Figure: Closure of (Xt(-),t € T)

To each path £t —> cl Xt(w) we associate the closed set
['{w) defined by

T(w) = {(t,y) €T x Rp[y € cl Xt(w)} = graph cl X_ ()

Clearly T is closed-valued, it is also measurable as follows
from [1, Theorem 3.1] since ' = ls Fé, where for all v,Fk(w) =
graph X, (w). Now let {(Xz,t € T),v € N} be a sequence of

stochastic processes, and for all v,FV:Q::3Rp the multifunction

defined by
Fv(w) = graph cl XY(w)

We can now study the limit process associated to the
sequence {(Xz),v € W} through the convergence in distribution of
the multifunctions {Fv,v € N}. One of the advantages of pro-
ceeding in tnis fashion, in preference to the more traditional
functional approach, is the automatic existence of a limit

distributjon as guaranteed by Theorem 5.1 even when the (index)
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set T is not compact. But also, the fact that the space of closed
subsets of T x R? is richer than the class of subsets correspond-
ing to the graph of functions with prescribed properties
(continuity, ...) might enable us to study processes whose

paths do not conveniently fit in a neat class, such as when the
paths of the limit process do not have the same properties as

those of the processes {(Xz),v € N}.

We have used cl X , the closure of X , rather than
(Xt(~),t € T) to define the associated multifunction ' because
the theory of convergence in distribution for multifunction has
been developed for closed-valued measurable multifunctions and
thus for purely technical reasons we need the graph of the paths
of the random variables to be closed. It would be possible to
work out a theory for multifunctions defined by the graphs of X ,
not necessarily closed-valued, however, since limits of sequences
of sets are always closed, the multifunctions associated with
limit processes will always be closed-valued and thus the
associated processes will also be closed. It appears that
nothing of substance would be gained by taking such an approach
and thus will not be pursued here.

W. Vervaat [24, 25, 26], whose work has progressed inde-
pendently of ours, has suggested a closely related approach for
the convergence of stochastic processes. He was also led to this
by his penetrating analysis of extremal processes, although his
motivation is not gquite of the same nature as ours. Briefly, to
each path

t#———)Xt(w):T + R

of a process, he associates a closed subset I''(w) of T x R1
obtained as follows: let x?(w) and X%(w) be the smallest upper
semicontinuous function majoring X, (w) and the largest lower

semicontinuous function majorized by X, (w) respectively. Then

(w)}

o+

I'(w) = {(£,%) X (w) < x <X
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Convergence of a sequence of processes can thus be studied
in the framework of the convergence of the associated
multifunctions of type I''. Theorem 5.1 again providing the
needed compactness of the associated probability measures. His
approach works well for R-valued processes, but it is not clear
how to handle in such a framework Rq-valued processes. In fact,
he is more immediately concerned with classes of processes that

we would handle in the structure provided by normal integrands.

As indicated at the outset of this section we conclude with
a derivation of Donsker's Theorem. We do not seek to obtain the
results in the fullest generality, since our aim is to illustrate
the use of multifunction techniques. Let £j,j =1,... be a
sequence of i.i.d. (independent identically distributed) real-
valued random variables with mean 0 and variance 02 and define
by

Il 1
Y
£
o
]
—

S, (w) = .
k j=1 3

the associated random walk, with So(w) = 0. We give an argument
leading to Brownian motion on bounded intervals. First, let

us define for v = 1,..., the processes (Xv(t,-),t € [0,1]) as

follows

(7.2) X, (t,0) = (0v3) (s + (vt - [vE])

[vt] vy +1 (@]

where [vt] designates the largest integer less than or equal
to vt.

Associated to each XV(-,w) we have the closed set Fv(w)

determined by their graphs:

7.3 Figure. r,(+) associated to t+—— X (t,*).
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Clearly the Fv are closed?valued measurable multifunctions and
each one induces a probability measure on the closed sub-

sets of [0,1] x R. Theorem 5.1 guarantees of a weak*-convergent
subsequence of the induced probability measures, however, possibly
to a measure corresponding to the empty-valued multifunction.

Actually, this does not occur as is argued here below.

7.4 PROPOSITION. Let K' = K\{f#} be the space of nonempty compact
subsets of E and D a subset of K'. Suppose
= U
D RED K CE

78 bounded. Then

1
clTD C K
PROOF. Suppose F € clTD, then since every sequence of (nonempty)
compact sets converging to F is contained in D it follows that
F Ccl D and hence F € K. Now F # @ because any sequence con-
tained in D can never satisfy the criterion for convergence to

the empty set given by Lemma 2.1 of [1]. O

There is also a converse to this Proposition but not with
clT but with T replaced by a topology related to T by finer,
namely by Th the topology on K' generated by the Hausdorff dis-
tance. Tne above statement then becomes: D is Th—precompact if
and only if D is precompact.

7.5 PROPOSITION. The probability measures P,/V EN induced by

the measurable multifunctions FV:Q::3[O,1] x R on K' are tight.

PROOF. The measures Pv,v = 1,... are tight [3] on K' if to
every € > 0 there corresponds a compact DE € K' such that for
all v

PV(DE) > 1 - €

In view of the characterization provided by Proposition 7.4 and

the definition of P it suffices that to every & > 0, there
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corresponds n > 0 such that for all v,
wle|l () € [0,1] x [-n,nl} 21 -¢

since certainly [0,1] x [-n,n] is a bounded subset of [0,1] x R.
Using the definition (7.2) of [, we see that this is equivalent

to having for all € > 0 a corresponding n such that

u{w| Max [S, (w)| < noyV} > 1 - ¢
0<k<v

for all v € N. But this inequality follows directly from
Kolmogorov's inequality [27, p. 247] if we choose n = 14/&. O

*We have thus shown that the {Pv,v € N} are relatively
weak -compact on K'. We now need to exnibit the limit to complete
the argument. Using the properties of the symmetric random walk
(0 = 1), it appears possible to calculate explicitly the distri-

ub

bution functions {Tv:K -~ [0,1],v € N} of the multifunctions

{A¥:2=3[0,1] x R',v e N} where

1

A(w) = {((k/v , (V) 'S kK =0,...,v}

k) '
and then obtain the distribution function T:Kub + [0,1] of the
multifunction corresponding to the graph of the Wiener process
as the limit of the sequence of the distribution functions

{Tv,v € N}. The carrying out of those calculations are beyond
the scope of the article, but it is easy to see what needs to be
done. Since the closed balls in [0,71] x R can be taken to be
closed rectangles, the union of finite balls is then the union
of a finite number of rectangles. Let R = [a,B] x [a,b] be such

a rectangle. To find
T, (la,B] x [a,b]) =T (R)
we need to find the probability that the random walk

(s, .

when k € [av,BV], i.e.

k = 0,...,v} will pass through the bounds [a+/V , b v V]




-5l

TV(R) = p{for some k € [av,BV] , Sk € [av/Vv,by/V]1}

Thus we need to count the number of (symmetric) random walk

paths that pass through given a "window", or more generally
through a finite number of such "windows", obtain limiting ex-
pressions and show that they yield the formulas for the distribu-

tion function T of the Wiener process.

There is an alternative approach which is closer to the
standard proof of Donsker's Theorem. It consists in identifying
the random walks through interpoclation such as done in (7.2),
with normal integrands and show that the collection
{xv(-,~),v € N} is equi-totally lower semicontinuous. This
allows us to apply Theorem 4.10 and complete the proof by show-
ing that the finite dimensional distribution of the {Xv,v € N}
converge to those of the Wiener process, such as done in the

first part of the proof of Donsker's Theorem [3, Theorem 10.1].
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8. CONVERGENCE OF STOCHASTIC INFIMA

In this section, our purpose is to suggest the potential
applications of the preceding results to stochastic optimization
problems. Here we deal only with the inf-compact case that allows
for a self-contained analysis. A more comprehensive treatment is

foreseen [28].

Many stochastic optimization problems can be cast in the

following (abstract) form:

(8.1) find X, € E1 that minimize fu[Q(x,w)]u(dw)

where u is a scalingz, e.g., utility function, and

Q(x1,w) = infx.EE g(x1,x2,w) ,
272
with g: (E; x E;) x @ - R is a normal integrand and u, as before,
is a probability measure. Models that fit (8.1) are stochastic
programs with recourse, certain classes of Markov decision pro-
cesses, stochastic control problems in discrete time, statistical

estimation problems, and so on. Typically g is defined as follows:
(8.2) g(x1,x2,w) = fo(x1,x2,w) if for i =1,...,m , fi(x1,x2,w) <0
+o0 otherwise,

where for i1 = 0,1,...,m, the functions fi:(E X E2) Xx Q -+ R are

continuous in (x1,x2) and measurable in x. ;he proof that g, as
well as Q by the way, is again a normal integrand follows from
basic properties [8]. This is worked out in detail in

[29,30] for stochastic programs with recourse and [31] for
stochastic control problems in discrete time, cf. also [32] for

stochastic optimization problems of Bolza type.

If ul*] is linear, we may restrict our attention to compar-
ing the expectations of the random variables {Q(x1,-),x1 € E1},
but more generally it is the whole distribution of Q(x1,') which

is of interest. Unless g is very particular, the only possible
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approach to solving (8.1) is via approximations, in which case we are

interested in the convergence in distribution of a sequence of the type

v o v -
{0 (x1, ) = J.nfX2EE2 g (x1,x2,w) ; V 1,¢..}
This and related questions [33, Chapter II], [34], [35] lead to
the study of the following question, known as the distribution

problem in stochastic optimization:

(8.3) Given {f":E x Q -~ R r vV =1,...1 a sequence of normal
integrands and an associated limit normal integrand f.
Find minimal conditions that guarantee the convergence
in distribution of the random variables

f(x,).

{(zV () = infX fv(x,-) , v=1,...} to z(*) = infx

€E €E

The remainder of this section deals with this guestion,
mainly when the normal integrands are also inf-compact, a
restrictive situation that already covers a large number of
applications. However, we start with a general result that does

not require any additional assumptions about the £V,

Let HY:R -+ [0,1],v =1,...} and H:R - [0,1] denote the
distribution functions of the random variables {zv,v = 1,...}

and z respectively, i.e.

(8.4) H(g) = plw|z(w) < g]
and similarly for the Hv,v =1,... . To show the convergence in
distribution of the {z”,v = 1,...} to z, we need to show that
(8.5) H(g) = lim H"(Z) for all ¢ € C

Y00 H

where CH is the set of continuity point of H. In general every
continuity point of the distribution function of the random
(measurable) multifunction wr—>epi £(*,w) is a continuity point
of H but not conversely. This is at the crux of the difficulties.

We always have the following:
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8.6 THEOREM. Suppose {f°:E x Q >R, v=1,...} is a sequence
of normal integrands epi-converging in distribution to (the normal
integrand) £:E x @ + R. Then, for all T € R

(8.7) H(g) < lim inf H(g)

V>

PROOF. As in the proof of Theorem 3.13, let wV,v=1,...}
and Q be the probability measures induced by the normal integrands
on (SC(E),S We have that

gl
H(z) = plw € Qfepi £(+,w) N G, # #1 = Q(E)
and
H'(2) = plw € Qlepi £7(+,0) NG, # #] = Q" (E,)
where
G, = L(x,a)|a < ¢}
and thus EC = {g € SC(E)|inf g < ¢} is an open subset of SC(E).
Since the epi-convergence in distribution of the £V to f is

%
the weak -convergence of the Qv to Q, it follows that for every

open subset 0 of SC(E), we have [3, Theorem 2.1]

lim inf Q" (0) > Q(0).

The ineguality (8.7) is obtained with 0 E . O

Unfortunately, the inequality

lim sup H'(Z) < H(g)
>
does not hold for every ¢ € R. To obtain this inequality we need
to impose a certain type of compactness conditions, sufficient

conditions are provided by Theorems 8.8 and 8.11.
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8.8 THEOREM. Suppose {fY:ExQ+R, v=1,...} is a sequence
of normal integrands epi-converging in distribution to the normal
integrand f£:E x Q - R. Suppose moreover that for all [ € R and
e > 0 there exist compact sets K and K' such that for all v € N

(8.9) p{w|inf V(e ,w) < ¢} < e + u{m]ian fv(-;w) <z + e}
and

(8.10) wlolinfy £(-,0) <z} < e + ulwlinf £(-,0) < ¢}

Then {z%,v = 1,...} converge in distribution to 2.

PROOF. Hypothesis (8.9) implies that for all € > 0

lim sup Hv(c) < lim sup u{w|ian fv(-,w) < T+ €} + €

X300 V>

, . Y
= ¢ + lim sup Q (E. )
yro K,c+e

where

Ex,c+e = 19 € SC(E)[epi g N (K x [z + &, -=)) # g}
is a closed subset of SC(E), as follows from the definition of
the epi-topology. Again {g¥,v =1,...} and Q will denote the
probability measures induced on SC(E) by the normal integrands
{£V,v = 1,...} and £ respectively. The convergence in distribu-
tion implies [3, Theorem 2.1] that

lim sup Qv(E

V>

K,§+E) = Q(EK,§+€)

from which it follows that for all £ > 0

lim sup Hv(;) < e+ u{w|ian f(,0) < ¢ + ¢}
Yo

Nothing is lost if K is enlarged to contain the set K' used to

obtain (8.10), thus we have

lim sup H'(Z) < 2e + pfw|inf £(-,w) < ¢}

WS-




-59-

At every continuity point g € CH we have that
ulw|inf £(+,w) = z(w) < ¢} = H(z)
This with what precedes, implies that for all g € CH

lim sup Y (Z) < H(Z)
Y=+ -
Combining this with the lim inf inequality (8.7) gives us the
convergence in distribution of the random variables
{z¥,v =1,...} to z. O .

It might not always be easy to verify the hypotheses of
Theorem 8.8, a more approachable set of conditions is given by

the next theorem.

A normal integrand f:E x Q@ + R will be called inf-compact if
for every w € Q, the function x ——> f(x,w) is inf-compact, i.e.,
for all o € R the level sets

lev, £(,w) = {x|f(x,w) < o}

are compact. For example, if g is defined by (8.2) it is

inf-compact if the function (X1,X2)F———> fo(x1,x2,w) is inf-

compact or if the set
(%) [£5 (x0%5,w) <0, i=1,...,m} = S(w

is compact, or the function fo(-,-,w) tends to ® on every un-
bounded arc contained in S(w). A sequence {£Y:E x @ ~ R,v € N}
is equi-inf-compact if they are inf-compact and for every w € Q,
the sets leva fv(-,w) are equi-bounded for all o« € R, i.e., to
all w €  and o € R there corresponds D C E such that

D D leva fv(-,w) for all v € N.

8.11 THEOREM. Suppose {(fY:ExQ~+R, v=1,...} 75 a sequence
of equi-inf-compact normal integrands that almost surely epi-
converge to the normal integrand f:E x Q@ + R. Then the sequence

of random variables {zv,v = 1,...} converges almost surely to z,
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in particular this implies that on CH

. v
lim H'(g) = H(Z)
V-0

PROOF. Ignoring a set of measure 0, we need to prove that for

ever w,

lim (inf fv(°,w)) = inf £(°,w)

Yoo
We are thus essentially in the deterministic case and can rely
on [36, Proposition 12] to obtain the preceding equality for
sequences of equi-inf-compact functions (Y (e ,w),v=1,...}.
The last assertion simply follows from the fact that a.s. con-

vergence implies convergence in distribution. 0O

One application of this theorem 1is to random linear programs

(33], [34), more detailed applications appear in [28].

8.12 PROPOSITION. Suppose {A”,b",c” , v =1,...} is a sequence
of random matrices (m x n) and vectors (m x 1) and (1 x n )

respectively, such that

(1) 2~ <a¥(r) <7 and b <bY(*) <b"  for all v
(ii) the interior of {x > 0|A- x > b+} 18 nonmempty and a.s.
(A, () , b;()) #0 for i = 1,...,m
(iii) {x > 0|]a" x > 0} = {0}
and almost surely
lim AY(*) = A(+) , 1im b”(*) = b(+) , lim c’(+) = c(*)
\) 00 AV =) Yo
Then the
z°(+) = inf [’ ()x[a"()x > %) , x> 01

converge almost surely to
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z(+) = infx [c(*)x A(*)x > b(-) , x > 0] .
PROOF. Clearly for all v, and for all w
{x > 0[a"(wx > b (W)} c {x > 0]a*x > b7}

and this later set is compact as follows from conditions (iii).

For v = 1,..., let

£ (x,w) = c(w)x if A%(w)x > b (w) , x >0 ,
+ otherwise,
and
f(x,w) = c(w)x if A(w)x > b(w) , x >0 ’

+ otherwise.

It is easy to verify that these functions are normal integrands

and in view of the above the sequence {fV:E x Q> R U {4+0},v =1,...

is equi-inf-compact. The almost sure epi-convergence of thé
fv(-,w) to f£(+,w) follows from condition (ii). To see this
simply o>bserve that (i) and (ii) imply that

int {x > 0|A(w)x > b(w)} is nonempty for almost all w. Thus to
prove epi-convergence it suffices to prove pointwise convergence
of the £’ to £ as follows from [37, Corollary 2A]. In turn,
this follows from the almost sure convergence of the parameters
of the random linear program and the fact that for almost all w,

no row of (A(w), b(w)) is identically 0. O
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APPENDIX: PROOF OF THEOREM 1.3

This new proof of Choquet's Theorem helps clarify its rela-
tionship to the classical Correspondence theorem which shows
that there is a natural bijection between probability measures
and distribution functions defined on R1 (or more generally rR™) .
It shows that multifunctions can and should be viewed as "thick"
functions and all that is required is an appropriate adaptation

of the definitions.

We start by showing that every probability measure P on S
determines a distribution T on K with T(K) = P(FK) for all K € K.
Clearly T(@) = 0 and T(K) € [0,1], thus we need to show that T

satisfies conditions (1.1) and (1.2).

Let {Kv € K,v € N} be a sequence that decreases monotonically
to K € K. If K is empty, then the Kv must be empty for all but

finitely many v; this follows from [1, Lemma 2.1] and the fact

that {Kv,v € N} .is a decreasing sequence. The corresponding
sets FK are themselves empty and thus obviously
v
0 = ltm T(Kv) = ltm P(FKv) = P(Fg) = T(g) =0

To see this, first note that K = ﬁKv, because the Kv are decreas-—
ing to K, cf. [6, Proposition 2] and thus FK = Fva C HFKv. On
the other hand if F € HFKv, then for all v € N, the elements of
the decreasing sequence {F N K,V € N} of compact sets are non-
empty. From this it follows that F € FK i.e. F N K # @, since
FNEK =g would imply that F N Kv = g for all v sufficiently
large {1, Lemma 2.1] in view of the fact that F N K > ﬁv(F N Kv)'
And thus

lim T(K_) = lim P(F
v v v Xy v

As far as (1.2) is concerned we have immediately that
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and recursively, for v = 1,...

sv(KO;K1""’Kv) = S (KO;K

v-1 170

X KOUKv

- 0 -
=P F F FK1,...,K

KyreoorK,_4

K
=p 0

'0
=P(F N F n ... 0O F ) ’
K.I,..

X K

"Kv 1 v

because for any collection of sets {A "Av} we have that

o' "
A A UA
0 F 0 \F 0 v

...,A =
Fa romorBy ByresesA 1 Aj,... A

v=1

Clearly for all v = 1,...,0 < Sv(K07K "Kv) < 1.

1’
We now prove the converse, namely that a distribution func-

tion on K determines through the correspondence: for v = 1,...

Xo
(1.4) P FK K = Sv(KO;K

-+K )
qree Ky v

qre-

(or equivalently P(FK) = T(K)), a probability measure on S. Let
S, be the algebra (field) consisting of the finite unions of
pairwise disjoint sets of the type T'= FE?,...,Kv for some

collection Ko""’Kv in K. On So’ P is defined by the relation

P(i§1 Ti) ) '2

. P(Ti)

1

where the sets Ti are sets whose measure have been defined by
(1.4) above. P is a nonnegative finitely additive measure on SO

bounded above by 1. The proof can be found in [4, p.33].

In face P is countably additive on So’ To prove this, it is
sufficient to show that given any sequence of sets {Dv = So,v € N}

decreasing to § - i.e. such that
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U D = N U p =
vg1 ugv Du v=1 ugv Du g
with Dv D Dv+1 for v=1,..., we have that
lim P(D ) = 0 ,
v
v
cf. for example [38, Theorem 9.F]. This will follow,

if we can exhibit for every € > 0 a collection of sets

{DG € 5,V € N} such that for every v € N,

(A.1) Dc Ccl D¢ C Dv ,
and

' . =V
(A.2) P(Dv) < P(Dv) + € 2

The sets cl DQ are compact, F being compact. Also since
(o]

ﬁv=1 Dv = @ and (A.1) holds then also

S .
21 Dv

v =4
from which it follows, by the finite intersection property, that
for v sufficiently large ﬂ:=1 cl DQ = g. In view of (A.1) we
also have that

Since the Dv are monotonically decreasing, for every u > v, we
nave that

]
where Dv\Dv c So' Thus

m
P(D) < n; P(D\DY)

it
o

By (A.2) this implies that lim P(Dv)
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To complete the proof it thus suffices to produce the sets
{D¢ I= So,v € N} that satisfy (A.1) and (A.2). Recall that So is
the field consisti?g of the finite unions of pairwise disjoint

sets of the type Fg?,.,. and thus in particular the Dv are

IKh
unions of such sets. %ence it will be sufficient to show that

0
1r++++Kp

an approximation that satisfies (A.1) and (A.2). Given any

each set of the type Fg - used to construct Dv - admits

compact K, there always exists a sequence of open relatively

0
compact sets {Gé,c € N} decreasing strictly to KO such that

]
Ko+1

] ]
C G0 C KO
a L} — L}
with Ko = cl Go’ Hence

K! G' K"

'o+1
(A.3) F.O c O c F.OF

K1’°"'Kh K1""'Kh K1""'Kh
The sets

Gs

F

K1,...,Kh

are closed and thus also compacE, since F is compact. Since

(1.1) implies that P(F ) + P(F %), it follows that

K! K
. 0
lim P(F 7 ) = P(F )
K1""’Kh K1""’Kh
Thus given any € > 0 we can find o sufficiently large so that
( X ) ( X ) v
P|F - < P|F + e » 2
K1,...,Kh K1"°"Kh

This combined with (A.3) yields (A.1) and (A.2), and thus
completes the pfoof. a
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