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SUMMARY

A locally Lipschitz cooperative generalized game is described
by its coalition worth function v defined on the set [0,1]n of
generalized (or fuzzy) coalitions of n players. We assume that
v is positively homogeneous and locally Lipschitz. We propose
the Clarke's generalized gradient Bv(cN) of v at the coalition
cN = (1,...,1) of all players as a set of solutions, and we study
its property. We point out that it coincides with the core when
v is super-~additive and to the Shapley value when v is smooth.

We also represent cooperative fuzzy games as "action games", for

which we define and prove a concept of equilibrium.
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Introduction

We show in this paper how concepts of fuzzy sets and gener-
alized gradients as well as viability theory allow to treat, in
a unified way, several competing concepts of cooperative game
theory and how to devise new models (called action games) which

are dynamical and explain the formation of coalitions.

Many concepts of solutions to a game with side-payments
have been proposed: among them, the core and the Shapley value,
which yield different outcomes. Many efforts have been made to
obtain situations where some of these concepts coincide. Let us
mention for instance the replicating procedure introduced by
Debreu-Scarf (1963) and Shapley (1953) and the use of continuum
of players introduced by Aumann (1969). [See the books of Aumann-
Shapley (1979) and Hildenbrand (1974) for further references.]

In Aubin (1974a,b), we proposed the framework of 'fuzzy
games' (games defined on a 'continuum of coalitions') for defining
and comparing these concepts [see for instance Aubin (1979b, chs.
10, 11, 12)]. This paper deals with the same framework of fuzzy

games.
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For games with side-payments we propose the generalized
gradient 3v of the coalition worth function v as a set of solu-
tions to a locally Lipschitz game. It can be regarded as the
subset of 'marginal gains' that the players receive when they

join the coalition of all players.

We do not claim that this is a 'good' concept of solution:
we only point out that it 'unifies' competing concepts of solu-

tions.

We characterize this set of solutions in several instances:
it is the core when the game is super-additive, the generalized
Shapley value when the game is smooth. We characterize (some)
solutions when v arises from a game described in 'strategic' (or

'normal') form.

What about the usual games? We proposed a single concept
of solution. Still, there are several ways to extend a usual
game w into a generalized game mw. Each extension procedure T
vields a set of solutions E(FV)(CN) that depends upon the choice
of m. So, the diversity of these solution concepts results from
the different ways by which a usual game is transformed to a

generalized game.

We shall observe that this concept of solution does not
explain the formation of coalitions. Then, the second purpose
of the paper is devoted to a radically different way for modeling
cooperative fuzzy games as "action games”.

We assume that players act on the environment by transforming
it and that we know the law of transformation of each fuzzy co-
alition of players. We are looking for equilibria, i.e., a fuzzy
coalition ¢ and states x of the environment which are invariant
by the action of the fuzzy coalition c. We prove a theorem of
existence of an equilibrium of such a game, an equilibrium which
is the stationary set of a dynamical system in which coalitions

of players can be regarded as regulation controls.
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FUZZY GAMES: THE STATIC .AND DYNAMICAL
POINTS OF VIEW

Jean-Pierre Aubin

Fuzzy Coalitions

We denote by N the set of the n players. Cooperative games
are those games that involve the behavior of "coalitions",
regarded as subsets S of the "grand coalition" N. Cooperative
fuzzy games, consequently, do involue fuzzy coalitions,

regarded as fuzzy subsets of N.

Besides the usual benefits gained at using fuzzy subsets,
we have to mention that it is also technically advantageous
since we "convexify" in some sense the discrete set SHN)

(of subsets of N) and thus, use the results of analysis.

We recall that we identify the set §NN) with the subset
{0,1}n of characteristic functions Cq of subsets S defined
by

(1) cg(i) =1 when i € S and c¢. (i) = O when i & S.

S
Since{O,1}n is a subset of Rn, we can take its convex hull,
which is the cube [0,1] .

The elements ¢ € [0,1]n are called fuzzy coalitions, Thgj

associate with any player i € N its rates of participation

c(i) € [0,1 in the fuzzy coalition c.



.

A player participates wholly to ¢ when c(i) = 1, he does not
participate at all when c(i) = O, and he participates in a
fuzzy manner when c(i) € lo,1 .

Exaaples
N = {112}

Since the set of fuzzy coalitions is the convex hull of the
set of coalitions, we can write any fuzzy coalition in the

form

(2) ¢ = I m(S)c, where m(S) > O, g m(s) = 1
s € P s €RN)

The rates of participation are therefore defined by

(3) c(i) = I m(S) i=1,..., n.
S 2i

In other words, if m(S) denotes the probability of coalition
S forming, the associated rate of participation of player i
is the sum of probabilities of the formation of coalitions S
to which i belongs.



Remark

We can also introduce more generally generalized coalitions
c €[-1,+1] N where a negative rate of participation c (i) des-
cribes an agressive behavior of player i in the generalized
coalition c.

Remark

We can use also a more adequate description of a player i by
describing him as a vector al = (a; ,...,ag}) oijQ, where

the indexes h = 1,..., 2denote "qualities" and the components
i

2 x

player is possesses. Then a generalized coalition C is a

of the player a describe the amount of quality k that

matrix of rates of participation chl of the % qualities h
of the n players i. See J.P. Aubin, Ch. Louis-Guérin and
M. Zavalloni [19 79 .

Remark

We can define as well fuzzy coalitions of an infinite subset
of players. In game theory, it is customary to represent a

continuum of players as a measure space N supplied with a

q—algebraJQ and a non-atomic measure u (for exemple, N:=[O,ﬂ]

and the lebesgue measure, which is non=-atomic).

The set.A.of (measurable) subsets is identified with the
subset Lm(N,{O,1}) of glasses of) measurable functions with values in
{0,1}. The set of (measurable) fuzzy coalitions is equal,

by definition, to LY (N, [0,1]), the unit ball of L°(NMR).



When we supply Lm(N;R) with the weak star topology, we can
prove that the set Lm(N,{O,1}) of coalitions is dense in

the set Lm(N,[O,1]) of fuzzy coalitions, which is compact and
convex. This is a consequence of the Lyapunov convexity
Theorem. (See J.P., Aubin, [1979b], Proposition 10-4-1, p. 319)

Cooperative fuzzy games with side-payments

Cooperative fuzzy games with side-payments are described by
a coalition loss function V from [0,1]n to R, associating to

every fuzzy coalition ¢ its loss V{(c). The problem at hand
is to allocate the loss V(cN) of the grand coalition among
the n players, i.e.,

(4) find s:= (Sy,...,5) €K' such that Zjge s, = Vioy.

We regard elements se€®” as "multilosses". The aim of game
theoricists was to find equitable allocations of the loss VKCN)
by taking in account the consecuences of the cooperation among
plavers described a priori by the coalition loss function V.

In this framework, the rates of participations are only rela-
tive. S0 we can assume that V is positively homogeneous, and
thus, extend it to R+,

Definition 1

A cooperative fuzzy game with side payments is described by

n

{a positively homogeneous function V ffomIRf to R which
(5)
+

is locally lipschitz on the interior.]Rn+ of R



This function V is called the coalition loss function.

The subset

_ n n .
(6) Mi={s ER | ¥ cER , JZ,ocisi s vic)}

is called the subset of accepted multilosses.

This is motivated by the fact that, for each coalition
c:E[O,1]n, the loss allocated a posteriori to the fuzzy
coalition ¢ according to thenrates of participation of the
players, which is equal to .Z C; Sy is at most equal to

the loss V{(c) yielded a prié?l to this fuzzy coalition accor-
ding to the rules of the game described by the cocalition

loss function V.

We observe that the conjugate function Vv* defined by

(7) V*(s) = supn (<C,s> = V(c)}
cCER +

is the indicator of the subset M of accepted multilosses
(see J.P. Aubin [ 1979 al], chapter 10).

Now, we describe several axioms -~ that any allocation rule
of the loss V(cN) should respect. An allocation rule is by

definition a set-valued map S that associates with any coali-
tion loss function V a subset S(V) of multilosses s € R"
satisfying the condition (4),

This condition is also known under the name of "efficiency

axiom" or "Pareto cptimality axiom". We define as well other

axioms.



Symmetry axiom

Let us consider a permutation & : N»N of the set of n players,
which describes the order in which the players are called.
We define the action of 6 on the function V by

(8) (8*V) (c):= V(C reeeiCo_q )

=1 (1) (n)

and the action of 6 on the multiloss s € R" by

(9) (e*s)i = for all i =1,...,n.

Se (1)

The symmetry axiom states that an allocation rule does not
depend upon " how the players are named", in the sens that

(10) for all permutation 6, S(6*V) = 8* S(V)

Atomicity axiom

When P:= (S1,...,Sm) is a partition of the set N in m nomenpty

coalitions Sj (1<j<m) we associate with any coalition loss

function V of a n-person game the coalition loss function

PaV 0of a m-person game defined by

1) ((PhV)(d1,...,dm):= V(cys...cy) where ¢ = dj

Lwhen k belongs to Sj'

We associate also to any n-loss s CERn the m-loss
Pas € R" defined by

(12) (Pn\s)j:= z s" 4 j = 1]o¢olm

S, 4
j



The atomicity axiom states that

(13) S(PaV) = PaS(V)

Dummy axiom

Let us consider a subset N of a subset M of m players and a
coalition loss function V : N + R of a n-person game,

Let T denote the projector from R® to R" defined by

s. when j€ N
(14) (mes) . i= J |
J O when j€ N

We associate with V the coalition loss function nNAV of the
m-person game defined by

(15) (HNAV) (d) == V(ﬂNd)

The dummy axiom states that the dummy players (players who
do not belong to N) receive nothing :

(16) S(ﬂN AV) = 7, S(V).

N

Clarke generalized gradients

We refer to Aubin [1978] , Clarke [1975] and Rockafellar
[1978 [ for further details.

When V is lipschitz around cOGEJRn, we can define the folowing
limit (called the upper Clarke derivative of V at ¢_ in the

direction 4)




c, V(Co) (d):= lim sup V(cthd)-V(c) ¢ ¢
C + Co h
h + o+

We thus can prove that

da ~» C+V(Co)(d) is convex, positively homogeneous,continuous.

and that

(c,4d) - C+V(c)(d) is upper semicontinuous

at (co,do) for all do €R"

Therefore, 4 - C+V(c°)(d) is the support function of the
bounded closed convex subset

V(co):= {s e R"| ¥d e R", <s,d> < C,V(Co)(d)}

which is called the Clarke generalized gradient.

We observe that
i/ When V is continuously differentiable at ¢o, then

W (co) = {W(cCo)}

ii/ When V is convex and continuous at c¢o., then

3V(co) = {s €R" | V(Co)=V(c) < <s,Co-C>¥ c € R"}

is the subdifferential of V at Co of convex analysis (see
Aubin [1979] a, chap. 10, Rockafellar [ 1970 ] for further
details).

This is the reason why 09V (Co) is called a generalized

gradient.




We also define the upper contingent derivative defined by

D, V(Co) (do):= lim infY{Se *hd) = V(Co)
d » do h
h > o+

We always have

D+ V(Co) (do) _< C+ V(Co) (do)
We say that V is reqular at co if
¥ de R, D V(co) (do) = C,V(Co) (do).

Continuously differentiable functions at co. and convex
continuous functions at Co are regular at co.

We have the folowing properties

3(=V) (co) = = 3V (Co)
I(VHW) (Co) C dV(Co) +9 W(Co)
3(A V) (Ca) = AV(Co)

3(VoA) (Co) CA* 3V (Ac,)
Equality holds when A is surjective or when V is regular
If V is non decreasing, 3V (Co) iji
If V is positively homogeneous,

¥s € 3V(Co)s <5,Co> = V(Co)

If V:= sup V., if I(co):={i|V(co)=Vi(Co)},

r
i=1,...,n .
then
3 V(ce) T co UV 3 Vi (Co)
i€I (Co)

Equality holds when the functions Vi are regular,
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Definition of the set of solutions to a cooperative fuzzy

ame

So, let us consider a game whose coalition loss function V is
o
locally Lipschitz oniRE.

We propose the folowing definition of a solution concept to
the game.

Definition 2.

Let cﬁ=(1,...,1) denote the whole set of players. We shall
say that the generalized gradient 3V(cN) of V at cN is the
set of solutions to the game. We set

(17) S(V) &= BV(CN)

A multi-utility s ¢ BV(CN) can be interpreted as the sequence
of marginal losses Sy of players i when they join the whole
set of players. The ith component Sy allocated to the ith
player satisfies

(18) sy < limsup Vv (d+hel) -v(4)
d » cN h
h - O+

Theorem 1

Let V be a locally Lipschitz game. The set S(V) of solutions
to the game is non-empty, convex and compact. It satisfies
the Pareto optimality, symmetry and dummy properties, as well

as



(19)

i/ S(AV) = AS(V) for all ;€ R
ii/ S(VHW) CS(V) + S(W).
iiiy If V is increasing, then S(V)<::R2.

iv/ 1If A e'.'f,(JRm, R") satisfies Acy = cy then

S(VA)C A*S (V) where A* is the transpose of A.

If A is surjective or if V is regular at Cyr we have
S(V A) = A*S(V). When V is regular, the solution set

satisfies the atomicity property.
A

Proof

The properties of the Clarke generalized gradient imply at
once that S (V) is non-empty, convex and compact and that
properties (19) hold true.

The fact that S(V) is an allocation rule follows from the
fact that V is positively homogeneous, because

(20) ¥ s e aV(cN), <§,C,,> = V(cN)

N

The others axioms are satisfied thank to property (19) iv/.

Symmetry Property

We apply property (19)iv/ for the matrix A = (a?). .
i‘i,j=1,...,n

defined by alew= 1 if j = 67 '(i) and al:= 0 if 3 % 51 (1),

which is an isomorphism satisfying AcN =Cy -
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Atomicity Property

We apply property (19)iv/ for the matrix P from R® to R"
defined by

(Pd)i:= dj whenever i€ Aj.

which is an injective map satisfying P ¢,, = ¢

Dummy Property

We apply property (19)iv/ for the matrix ™ from R™ to]Rn,

which is a surjective map satisfying = = C

N°M N°

The concept of solution S(V):= BV(cN) requires that the

grand coalition ¢, plays a privileged role. We observe that

N
for every coalition c € int]Ri, the generalized gradient

3V (c) provides a subset of allocations of V(c) since
(21) ¥ s € 3V(c), <c,s> = V(c)

for V is positively homogeneous. We can prove a partial

converse to his remark.

Proposition 1

Assume that V is locally Lipschitz on a neighborhood onRi.
Then we can associate to any accepted multiloss s€M a fuzzy
coalition c such that
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n

(22) s €3V(c) - R, R

Proof

We apply Ky FanSinequality (See Fan [1968]) to the function
Y defined on the n-simplex st by

Y (¢,4):= <s,d> - C+ Vi(c) (d)

which is concave whith respect to d, lower semi-continuous
with respect to c. Il also satisfies

y{c,c) = <¢,s> = C, V(c)(c) = <¢cys8> = V(c) <O

when s belongs to the subset M of accepted multilosses, since
V is positively homogeneous.

Since s™ is convex and compact, Ky Fan's inequality implies
the existence of ¢ € s such that

vde s", d,s><C,_V(c)(d) = 0(3V(c),d)
We infer that s belongs to QV(E) —ZRE.
Remark

The properties of the generalized gradient imply the corres-
ponding properties of the solution sets S(V). We mention for
instance the following one,



Let J be a finite set, V:= sup V. be the pointwise supremum

jET

of the functions Vj and J(cN) = {j €J such that V(cN) =
Vj(cN)}. Then
(23) S(V) Ccco( U S(V.))

jeT(cy)
If the functions Vj are regular at Cy 7 then
(24) S(V) = co( U S(Vj))

JeT (cy)

Core of sub-additive games

We shall say that the fuzzy game described by a coalition
loss function V is sub-additive if

(25) ¥ ci,c2 V(citcz) < V(cy) + V(cz)

Since V is positively homogeneous, this is equivalent to say
that V is convex. Such games capture the idea that "l'union
fait la force".

Indeed, if S and T are two disjoint usual coalitions, then
CSLJTis the characteristic function of S UT and inequality
(25) implies that

(26) V(c < V(cs) U V(cp).

sur’
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When V is convex and finite on1R+, it is continuous onZRE.

We shall extend it to R by setting V(c) = + «»when
c GJRE and assume that

(27) V is lower semicontinuous from R” to RU {+w}

Then we know that S(V) = aV(cN) is the subdifferential

of V at ¢ We have therefore :

N.

Proposition 2

We assume that the coalition loss function is sub-additive
and lower semicontinuous. Then

(28) S(V) = {s € M | i; s; = V(cy)}
A
Proof
Let s belong to S(V).
Since
(29) V(cN) - V(c) < <s,cy~c> for all c € ]R? ’

we deduce that, by taking c = ACy

(1=X) (V(cN) - <s,c>) <O

N
Therefore, by choosing )= 1 *+ ¢, we obtain

(30) X s; < <s,cN> = V(cN)
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and thus
(31) ¥ceR, , <s,c> <V(c) (i.e., s€ M).
Conversely, inequalities (30) and (31) imply (29).

Definition 3

The subset of accepted multilosses satisfying the Pareto
optimality axiom is called the core of the game.

Therefore, when V is sub-additive, we have proved that the

solution set coincides with the core of the game. A

Smooth games and their Shapley values

Let us consider the class of games whose coalition worth

function V is continuocusly differentiable at Cy- Then
(32) S(v) = {VV(CN)}
contains only one element, which is the gradient of V at CN*
For instance, if we take V:=yk where
R TRALY
(33) yp(e)= (I i) r k=g oo k), [k =kavkoto vk,

i=1

we see that

S(y); = ky/ |k
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Definition 4

We shall say that the map v ~* VV(cN) is the generalized

Shapley value of the game. A

Proposition 2

Let 7" be the vector space of games spanned by the functions
Yx when k ranges over N". Then S is the unigque linear map

from 7‘toiRn that satisfies the Pareto optimality, symmetry
and atomicity properties. A

Let ¢ be a map satisfying those three properties. Let
= (1,...,1). The Pareto optimality and symmetry properties

imply that Q(yu)i = (1/n)10, for all i=1,...,n.

Let k=(k1,...kn) belong to N?. If we consider the partition P
of the set of |k| players in n subsets A, of ki players,...,A
of kn players, we can write that

' |k | 1/ x|

(c)= (I c.) .
j=1

Y = Pny|k| where Ylk‘

Hence the atomicity axiom implies that

1 kK.
), = 2 e fh= 2 T2 ki
jen; jea; &I TK
So, @(Yk) = S(Yk) for all k € N®. Since the maps S and ¢ are

both linear, they coincide on F~.
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Strategic Games

We shall associate a fuzzy cooperative game with a strategy
space Y, a loss function f defined on Y x [O,1]n and a set-

valued map F from Y tojmi describing either the fuzzy
coalitions that form when a strategy x is implemented and/or
the strategies implemented by a generalized coalition.

Namely, we introduce

f’i/‘a Banach space Y and a closed convex cone K C Y,
regarded as the cone of feasible strategies.

ii/ a positively homogeneous locally Lipschitz function

(34) defined on a neighborhood of X xZRi ; (for any
fuzzy coalition ¢, y+ f(y,c) is regarded as the

loss function of c¢).

iii/ a set-valued map F from K tolmi, whose graph is a
closed convex cone (such set valued maps are called

closed convex processes (see Rockafellar [1967] and
[1970] section 39),.

It is clear that V is positively homogeneous.

For studying the properties of the solution to this game,
we introduce the adjoint process F* of F defined by

graph F*:={ (x,p)E]Ran*| P,y -<x,c> <0, ¥(y,cE graph(F)}.

It is another closed convex process mappingilRn to Y*,
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Theorem 2

We posit assumptions (34). We assume also that

n

i/ F(K) =R}

(35°

o =1
ii/ ¥c¢ GZRE, J n>0 such that F (c+nB) is bounded.

- 1
Then we can associate with any optimallstrategy VA3 (cN),

achieving the maximum of f(y,cN) on F_ (cN), a solution
s € S(V) to the game, and p€ X*, £ € R" satisfying

i/ (P, T) € 3f(¥cy) and p €F*(s - 7)),

(36) _
c =

1 i

ii/ <p,y> +
i

nes s
nes B

, 51 [ =f(yscy) = VicyI.

Remark
If £ is continuously differentiable, condition (36) becomes

Vyf(y,cN) € F*(s = ch(y,cN)).

Proof

Assumptions (34) and (35) imply that v is locally Lipschitz
onZRE : this is a direct consequence of the Robinson-Ursescu
theorem ; (see Robinson [1976], Ursescu [1977].
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Let y € F—l(cN) satisfying V(cN)=f(§,E). Let any (y,c) be

chosen in the graph of F. Since it is coEvex, 51—61§y,cN)+

0(y,c) belongs to the graph of F, i.e., y+0(y-yEF (cN+ 0
(C‘CN)).

Thus f(y+6(y-y), ¢y + 8(c = cy)) 2V(cy+8(ccy)

N
and we deduce that¥ (y,c) € graph (F),
0 < {V(cN + e(c-cN)) - V(cN)}/e
+ (=) (¥ + 0(y=¥) ,op+8(c—cy)) = (=£) (Yscy) }/6.

By taking the lim sup when 6 + O, we deduce that

0

A

< inf C_ (V) (cy) (c=cy)+C, (=£) (¥,cy) (Y=Y,c=cy) .
(y,c)&raph(F) N N . .

We recall that the upper Clarke derivative is the support

function of the generalized gradient. Therefore,

0

A

inf sup sup  _ [<s=g,c-c>+<-p,y-y3
(y,c)€graph (F)s€sS (V) , (PL)E3If (y,c )
The graph of F is convex, the subset S(V)xBf(?,cN) is convex
and compact and the function ((y,c),(s,P,L))—s={,Cc~Cc >+

N
<=p,y-y> is separately affine.

Hence the lop-sided minimax Theorem (see Aubin [1979] a,
chap. 2) implies the existence of s € S(V) and (§,§)eaf(§,cN)
such that

@)
7

inf [<s = Z,c-c>+<-p,y-¥3 .
(y,c)Egraph(F)
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Since the graph of F is a cone, this implies that

gi =<§I§> + 1 Cil

1 i

e s
e B

i
and that <§,y>-<§-2,c> < O for all (y,c)Sraph(F).
Hence p €F*(s-7).

|

Core and Shapley values of usual cooperative games

Usual cooperative games are defined by coalition loss
functions v from the subsetSDOH of usual coalitions

to R, associating to each coalition S its loss v(S)e R.

We shall be able to associate a concept of solution
whenever we can associate with a function V:SRN)+AR

a positively homogeneous V=qv fromﬁmﬁ to R, locally
Lipschitz on the interior ofimi, by taking S(wv). So,

we may devise as many concepts of solutions as extension

maps § from usual cooperative games to fuzzy cooperative

games.

Let v be a coalition loss function fromGP(N) to R. We

define the set of accepted multilosses as the

(37) M:= {s€R" | ¥ S CN, 1 s; <v(S)}
i€3
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Definition 5

We shall say that the core C(v) of the usual cooperative

game described by v:§%N)+§2 is the set of accepted multi-

losses s € M such that I s, = vVv(N). A
i=1 *

This suggests to associate with v a sub-additive cooperative
fuzzy game whose set of accepted multilosses is equal to M.

This can be done by defining #v: R R in the following way
(38) Tvi{C):= sup <cC,s>

SEM

which is called the "convex cover" of the game v.
The fuzzy coalition loss function nv is the support function
of the set M of accepted multilosses.
We always have inequalities
¥S C N, nv(cs) < Vv(S)
We shall say that the game is balanced if
(39) nv(cN) = v(N).

It is an exercise to verify the following statement.

Proposition 3

The core C(v) is - nonempty if and only if the game is
balanced. In this case,

(40) C(v) = S(nv). A
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This extension map 7 sends usual coalition loss functions
to sub-additive fuzzy coalition loss functions, Now, we
introduce another extension map y associating smooth fuzzy
coalition loss functions. We introduce the functions

Yg (SEN) defined by

1/1s|
(41)  ygle):= ( I cy) where |S| = card(s)
i€s
(We observe that Ys = Ye defined in (33) with k = Cg
S

We associate with any coalition S the functionals Og
defined by

|s|- 2]

(42) Oc (V) 2= z (=1) v(T)
= TCS
We define y by
(43) ¥ c eRY, vic) = I (V)Y «(C)
+ X <y S S

We check !'the following statement.

Proposition 4

The Shapley value of the fuzzy game defined byyxyv 1is equal to

. 1
(44) v i=1,...,n, S(xv); = Z 0g (V)

s3i |5

We recognize the Shapley value of usual games (See Aubin
[1979] b, chap..11, Shapley [19531]).
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The map v +» S(xVv) is the unique linear operator from the
space of functions v:@%N)+E§ to R" satisfying the Pareto
symmetry and dummy axioms.

Hence, the difference between the concepts of core and
Shapley values of usual games does result only from the
two different ways by which a usual game is transformed
to a fuzzy game, but does not follow from a conflict
between two antagonist views over what a solution concept
should be, because this difference is resolved in the
framework of fuzzy games.

Games without side-payments

We associate to any fuzzy coalition ¢ the map ce from
R® to R"™ defined by

(45) (c-x)i = CiX;.
A fuzzy game without side-payments is defined by its coali-
tion loss set-valued map’g from [0,1]n to R" satisfying.

i/ ¥ cg0,1]%, ¥(c)Cc.R"

ii/ ¥ ce[o,1]n, Y(c) is closed, convex, comprehensive
in the sense that X(C)Qg(c)+c.ﬂf” and
(46)° bounded below [in the sens thatx.€R"
such that ¥(c)Cce (xe+RY) ],

iii/ V is positively homogeneous [in the sens that
¥A20, V(Xc) =¥ (c)].
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This allows to extend’gltolmf by setting

,¥(C):= ( i c.)V(c,

Since the subsets V(c) are closed and convex, they can be
characterized by their lower support function defined by

(47) V(c,))=sup {insilsgg(c)}.

Since V(c) is comprehensive and bounded below, V(c,)) is
finite if and only if Aec.m’j.

We shall consider the class of locally Lipschitz games. We
say that a game is locally Lipschitz if

i/ the functions ¢c*V(c,A) are univormly locally
o
Lipschitz onZRE,

(48) n n .
ii/ ¥aes = {(A&R. | I A =1},
i=1
lim sup(V(d+ea,u)—V(d,p»/e=C+V(cN,A)(a).
d»c
VRN

e+o+

We associate with any A e s™ the subset

C(\) :={seRr" | X*s€3V(Cy, M) }

(49) N
={s&R" |x"seS(V(. (A)}.
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Definition 6

We shall say that the subset

(50) S(V) = ¥(c n u C(A)

)
N )\GSn

is the set of solutions to the game.

Theorem 3

Let V be a locally Lipschitz game without side-payments.

Then its set of solutions is non-empty. A

Remark

We can regard the game with side payments whose coalition
loss fonction is V(c,A) as a tangent game whose set of

solutions is C(A). Then S(},) is the set of those multi-
utilities seV(cN) that are solutions to at least one of

the tangent games. [ ]

Proof

We recall that V(c,u) = sup <u,s> is the support function
s&(c)

of the closed convex bounded above and comprehensive subset
e}
';Id(c)Cc R,

°n
If )\ € R,, then
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O(=C(A),u) =  sup  Iu;s;=C,(=V)(Cy,A) (u/A),
A'SGBV(CN,A)

where u/A 1is the vector of components pi/xi.

Assumption (48)ii/ implies that (A,a)+C+V(cN,A)(a) is
o
upper-semicontinuous on ]Ril x R".

[]
Indeed, let (Ao,ao) e]Rf;_1 X]Rn ; for all ¢ > O, there exists
a > o such that
sup | (V(c+Ba_,h) - V(c,A)) £C,V(cgi,) (a)+e/2.
le-cy ka6
M—XOIsz
3]

A

Qo

Let us take A;= Aol <aand Ix;1= Mo, I a;-azlge/2%

(2 being the Lipschitz constant).

Hence
sup 1
lc-cy ke = (V(c+8ao,A)=V(c,A))+ 2 la-a.l <C V(cyrro) (a0)te .
)
1A=A1l <o
6<a

By letting a converge to O, we deduce that
C+V(CN, A1) (aq) =< C+V(CNIA 0)a@o)te,

whenever [Ai1=Xoll £ oy, lai —aol ge/2%.
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<]

o
So, the function ¢ , defined oniRi x RY

+ bY

b Asu) = =V(eg /) =C (=V) (cg /) (/X))

is concave with respect to u, lower semicontinuous with
respect to A, and satisfies

b (uou) = =V{egu)=C(=V) (cygru) (0/1)

= =V(ey ) =Co (V) (Cyrn) (ey)
= =V (e, u)+V(cy,u)=0,

since the function c*V(c,\) is positively homogeneous. Let
us take e<1/n and consider the convex compact subset

SQ:= {XGR2|min Ai > € and Z?=1Xi = 1}. The Ky Fan inequa-
lity (see Fan [1968 ] or Aubin [1978a,jch.5, p. 203 )
implies the existence of xe GS? such that

¥ u €R}, 020 (=C( )+Y(cy) = (S ).

Hence there exists sEG C(XE) N (v(c S§)+).

NS

We can check, as in Aubin [1979b,]l ch. 12 , that S, is
bounded. Thus subsequences (again denoted sE and xs)converge
to some s€ V(c,,) and A€ s, since
A~ TN
)‘e' sE GBV(CN,XE),

we deduce that for all aemﬁ P

<a,xe. s€>§C+V(cN,A€)(a).
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Since the right-hand side is upper semicontinuous with
respect to xe, it follows that

va eRY, <a,hes>C,V(cgA)(a),

i.,e., that s € C()). u

Action games and formation of coalitions

We change radically our point of view for defining games,

by adopting a dynamical point of view.

Let us consider n players i=1,...,n. We suppose that the

behavior of the ith

player is described by its action
on the environment for transforming it. We describe the

environment by

a closed convex subset L of a finite dimensional
(51) {space X = RP

Action of player i is described by a map fi from L to X
associating with each state x € L of the environment the

rate of change fi(x) that player i forces on the environment

A very important example is the case when fi(x) = VUi(x) is
the gradient at x of a utility function Ui’ In this case,
action of player i amounts to the marginal increase of
utility.

We suppose that the action of a fuzzy coalition ¢ €[ O,‘l]n

on the environment is the sum of players i multiplied by
n

their rates of participation (i.e., Z <y fi(x)).
i=1
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Let g : L + X describe the endogeneous evolution law of
the environment in the absence of players.

This describes an action game, in the sense that the

evolution law of the states of the environment is
described by the set C(x) of velocities defined by
n

(52) C(x):= {gx)+Z c; £.(x)}
i=1 * * cepo,q”

Now, an equilibrium X € L is a state of the environment

that remains invariant under the action of a fuzzy coalitior
celo,1I".

Definition 7

An equilibrium is a pair (E,E) of a state x and a fuzzy
coalition ¢ satisfying
n

(53) g(x) +'_§1 Ei fi(i) = 0.
1= A

If L is a closed convex subset, we define the tangent
cone TL(x) to L at x by

TL(x):= c2(U X (L-x))
A>0

It is a closed convex cone, which coincides with the

tangent space when K is a smooth manifold.
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Theorem 4

Assume that L is compact and that

(54) V¥ xe L’ﬂce O, ]n such that g(x)+ c. f£.(X)ET. (x).
i=1 i 71 L

nhm s

Then there exists an equilibrium (E,E) of the action game.

Proof

We apply Browder-Fan's Theorem (see APubin [1979%al: chap.15)
to the set-valuyed map C defined on the compact convex
subset L by

n

(55) C(x):={g(x)+ I ¢y fi(x)} n
i=1 celo,1]

which is obviously upper semicontinuous with convex

compact values. Assumption (55) implies that the

tangential condition

(56) V¥ x&L, C(x)nN TL(x)

is satisfied. Hence, there exists a state x €L such
that O belongs to C(§), and thus, there exists a fuzzy
coalition ¢ satisfaying (53).

Actually, this framework allows a dynamical treatment of
action games. We deduce from a theorem of Haddad (see
Haddad [1980]) the following result.
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Theorem 5

We posit the assumptions of Theorem 4. For any initial

state xo € L, there exists an absolutely continuous

function x(.) and a measurable function c(.) such that
n

i/ for almost all t>o, x'(t)=g(x(t))+i§1 ci(t)fi(x(t)
(57)

ii/ X(O) = Xo

satisfying the viability condition

(58) W¥t>o x(t) €L

For almost all t>o, the state x(t) and the fuzzy
coalition c(t) are related by the feedback relation :

(59) :c(t) eC(x(t)).
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