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ABSTRACT

The problems of waterlogging and salinity on agricultural lands has led to
the installation of agricultural drainage systems. The effect of soil pro­
perty uncertainty on drainage system design and thus ,drain perfor­
mance is not implicitly considered by present design procedures. This is
the first in a series of papers that will present methods for analyzing
the effect of soil property unc'ertainty on drainage system design. An
analysis of the nature of uncertainty and spatial variability in recharge
rate and soil permeability is presented. A First Order-Second Moment
(FOSM) approach is developed for the Hooghoudt steady-state drainage
design equation to provide an estimate of the of the uncertainty of the
dewatering zone between the drains as a function of the design variables
and the uncertainty in the soil propert!p,s. Based upon the FOSM
approach , a Chance Constraint model for optimal design of drains is
developed which incorporates uncertainty in recharge rate , permeabil­
ity, dewatering zone with the economics of drain installation to provide
the least cost design for given reliabilities of drain performance.
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DESIGN OF AGRICULTURAL DRAINAGE
UNDER UNCERTAINTY.1.
A CHANCE CONSTRAINT APPROACH

Kenneth M. Strzepek. John L. Wilson and David H. Marks

1. Introduction

In the design of drainage systems to alleviate problems of waterlog-

ging and salinity on agricultural lands uncertainty can be found in many

aspects of the analysis: the modeL the physical properties, the agronomic

response,economic coefficients, and institutional factors. The effect of

these uncertainties on drain performance is not considered by present

design procedures, which also lack any explicit consideration of economic

efficiency. This series of papers will present for the first time methods

for analyZing the effect of soil property uncertainty on drainage system

design. A method to provide a measure of uncertainty in drain perfor-

mance will then be used to develop a model for the economically optimal

design of surface or subsurface drains under steady-state conditions of

water application.
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An analysis of the nature of uncertainty and spatial variability in

recharge rate (sometimes called drainage rate or drainage coefficient)

and soil permeability (hydraulic conductivity) is presented. A First

Order-Second Moment (FOSM) approach which is developed for the

Hooghoudt steady-state drainage design equation provides an estimate of

the first and second moments of the dewatering zone between the drains

as a function of the design variables and the uncertainty in the soil pro­

perties. Based upon the FOSM approach two methods for optimal design

of drains are developed. One of these two methods, a Chance Constraint

model which minimizes drainage installation cost subject to a reliability

constraint on drain performance, is presented in this paper. In a second

paper [Strzepek, Marks, and Wilson.19B2] a Stochastic Programming

model which incorporates crop yield functions into optimal drain design

is developed, applied. and the two approaches are compared.

2. Uncertainty in Drainage Design

Figures la and 1b are representations of the drainage design prob­

lem. The objective of installing a drainage system is to control the dewa­

tering zone, DWZ, between the drains. The dewatering zone is a function

of the design variables: the spacing between drains.L: the depth to the

water level in the ditch,D I and the penetration of the ditch below the

water level,P. for surface drains (see Figure la) and for sub-surface

drains (see Figure 1b) DWZ is a function of the spacing between drains,L I

the depth of the drains.D ,and their effective radius,T. In both cases the

soil properties ,permeability, K, and the recharge rate ,N, and the depth

to the impervious layer.Z. effect the dewatering zone The soil properties'
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and the design variables' effect upon the dewatering zone between the

drains is related through a model of the physics of groundwater flow.

The goal of the designer is to choose a depth, D , and a spacing ,L, that

satisfy design criteria for the dewatering zone. These design criteria are

usually based upon crop response to various dewatering zones. The pos­

sible combinations of D and L which meet this criteria are related to the

physical parameters through the model. The D and L that are chosen

should maximize the benefits of drainage installations.

A problem that arises in drainage design is that the model formula­

tion and the estimates of the physical parameters contain uncertainty

and therefore the performance of the drainage design is itself uncertain.

With respect to uncertainty in the .physical parameters ,Strzepek,Wilson,

and Marks [1982] have shown that drain design is insensitive to the depth

to impervious layer for sufficiently larg e Z. It can also be demonstrated

[Strzepek,et al, 1982] that subsurface drainage design is relatively insen­

sitive to the effective drain radius,r, and surface drain design is insensi­

tive to the penetration depth, P, for the range of values encountered in

the field. Thus, uncertainty in these parameters are neglected in these

papers, although if necessary, they could easily be accounted for. The

important parameters are recharge rate ,N, and soil permeability, K. The

uncertainty of these parameters effect the design process and will be

analyzed in detail. In addition, any mathematical model of drainage flow

will be an approximation and thus be uncertain.
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2.1. Model Uncertainty

Model uncertainty arises from the assumptions and approximations

implicit in the model of the physical system. For the Hooghought

Model[Hooghouhgt, 1940, Wesseling,1979 ] presented below these include

the assumptions of steady-state flow,essentially horizontal flow except

near the drains, constant permeability over the depth of the groundwater

system, and a fixed depth to an impervious stratum below. The

Hooghought model also assumes spatially uniform permeability and

recharge rate. The importance of these last two assumptions is evaluated

later in this paper. As already mentioned the assumption of a fixed depth

for the impervious layer below is valid for sufficiently large depth.

Steady-state now is a significant assumption , which is not always

applicable. On the contrary. recharge rate is a stochastic variable in both

time and space. Sagar[ 1980] evaluates the effects of stochastic temporal

variation of a uniform recharge on the time response of the water table

between two drains. Earlier work by Gelhar[1974] and Gelhar et al. [1974]

uses spectral methods to examine a similar problem. The present

approach can be extended to account for the temporal source of uncer­

tainty.

Another significant assumption is that flow is essentially horizontal

except near the drains. A great deal of attention has been focused on this

topic in the drainage literature. using deterministic analysis. In fact. the

Hooghought Model is a simple modification of the Dupuit Model [see.e.g.

Wesseling . 1979] to account for the non-horizontal flow near the drains.

The essentially horizontal flow assumption has often been used in previ­

ous analyses of the stochastic spatial variability [See,e.g., Gelhar et al ,
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1974;Freeze,1975; Gelhar,1976;Smith and Freeze.1979;Dettinger and Wil­

son,1981.1982; Wilson and Dettinger,1982] , but up to this time there has

been no definitive evaluation of it for stochastic spatial variation. Gelhar

[1974] has demonstrated under what conditions the horizontal flow

assumption is valid, for stochastic temporal variation.

The most basic study of model uncertainty appears in Bakr et al,

[1978] and Gutjhar et al,[1979]. They show that there is a significant

difference between the effects of stochastic permeability variation in one

and three dimensions. In one-dimensional flow, zones of low permeability

have an exaggerated influence on the flow field. This is of concern here,

as the Hooghought Model is one dimensional. [as are the models of

Freeze,1975;Gelhar,1976; Smith and Freeze,1979; and Wilson and Det­

tinger,1981]. This problem is specifically avoided by assuming that the

permeability is constant over the vertical. In fact, the permeability of the

Hooghought Model actually represents some weighted depth average per­

meability of the soil. The effects of spatial variations in the two horizontal

directions are analyzed below and compared to results presented for the

simpler one-dimensional Hooghought Model.

2.2. Parameter Uncertainty

2.2.1. Permeability Uncertainty

Information uncertainty for the soil permeability is due both to the

error in taking each individual sample and to the sparseness of the sam­

pling network. Punctual measurements of permeability are usually made

via the auger hole method [Beers,1976] or some equivalent technique.

These samples are made at a small distance beneath the ground
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surface(say,2 to 3 meters). They are subsequently assumed to represent

the permeability for the entire soil column at that point, unless there is a

well defined soil stratification. Coupling this assumption together' with

the difficulty of accurately repeating an experiment at the "same" point

leads to the sample error. This sample error can be estimated through

statistical analysis of exhaustive field investigations, or more practically,

it can be subjectively estimated on the basis of experience. In either

case sample error can be directly taken into account in the estimation

techniques introduced below.

Information uncertainty due to data sparseness is closely related to

the issue of spatial variability, and for that reason spatial variability is

addressed next. Consider an agricultural field located on the Embabe

Drain in the Nile Delta of Egypt(See Figure 2 ). The field is approximately

1500 feddans (1 feddan=0.4 hectare ~ 1 acre) in area and has 101 two

meter deep auger hole permeability tests taken on an almost regular grid

of 200 meter spacing, as shown in Figure 3. The permeability values range

from 0.01 to 0.45 meters/~ay, and assuming independence, are distri­

buted lognormally,at the 85% significance leveL(see Figure 4), which is

typical for this parameter[see Freeze,1975]. Figure 3 is a contour plot of

the data. Spatial variability, such as that presented in these figures, may

have large scale trends (or drifts) as well as smaller scale stochastic fluc­

tuations. The slowly varying large scale trends can be identified by

trend[ eg,Davis, 1973] or drift[eg ,David ,1978;Delhomme,1978] analysis,

while the covariogram[David.1978;Delhomme,1978] describes the higher

frequency variability of the parameter. ~n the case where the parameter

variability has a finite variance ,the covariogram ?,[u] is related to the
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Figure 3. Embabe Study Area and Contour of Ln of Permeability Data
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covariance function by:

'l[u] = Var[O] - Gov[u] (1)

where the Gov [u] is the covarianc e of the parameter over the distance

u [assuming isotropic] , Var[O] is the point variance, and gamma[u] is

the covariogram over u .

Subtracting the large scale trend from the spatial process produces

a residual of the process. The residual contains information about the

small scale spatial structure, which can be represented by the

covariogram [see ,eg, David,1978] . Using automatic(generalized Kriging

using BLUEPACK- described in Delfiner[ 1976], see also Journel and

HUijbregts, [1978]), as well as manual[David,1978] drift identifiers it has

been found that there is no identifiable drift in the Embabe data. Thus the

soil permeability is apprOXimately homogeneous in the mean, which can

be subtracted from the sample data to yield the residual.

The covariogram of the residuals of natural log permeability is shown

in Figure 5. It has a "nugget effect" [see Delhomme,1978] equal to 0.40.

This is probably due to sample error in the auger hole tests , which has

been subjectively estimated by local engineers to be "+ j- 25%"

[Amer,1979], as well as small scale permeability variation not captured by

the 200 meter scale grid. The range of the covariogram, l , is apprOXi­

mately 1000 meters, and the sill is 0.74. The "best fit" covariogram

which is shown is achieved with a spherical function

[David, 1978;Delhomme: 1978]. The data is second order stationary as indi­

cated by the presence of the sill, which implies a finite variance.
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Sill = 7lnK(OO)= VartnK(O)-COVtnK(OO) = VartnK(O)=a&K= 0.74 (2)

This is almost identical to the value of the variance of InK calculated from

the sample data assuming independence (see figure 4) .

The uncertainty intrinsic in the spatial variability of the permeability

can be reduced by sampling or using the estimated small scale spatial

structure of the fluctuation[as represented by the covariogram] to inter­

polate between the sampling points. This , of course, is the purpose of

Kriging[see, eg,David, 1978;Delhomme, 1978;Journel and Huijbreghts; 1978].

The degree of uncertainty reduction achieved by sampling depends on the

degree of spatial correlation and the density of the sampling network.

Therefore ,if one wishes to reduce parameter uncertainty in the design

procedure, in order to provide more reliable and less expensive designs,

then one must increase the sampling network. However, there is a trade­

off between the additional information obtained and the cost of sampling

.The correlation structure and the sample error may lead to a maximum

density of sampling above which the information returned is simply not

worth the effort. This subject will be addressed in future papers.

2.2.2. Recharge Rate Uncertainty

Recharge rate varies stochastically in both time and space, although

the former will be ignored in this analysis.Perhaps more importantly, it is

much more difficult to directly sample recharge than it is to directly

sample a property such as permeability. One indirect approach is to infer

it through an "inverse solution", but this is unrealistic in the types of

design situations faced in the field. A more common indirect approach is

to perform a local salt balance at each point in the field at which a
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permeability test is performed. The water application rate and salt con­

centration is the estimated from records, then compared to the salt con­

centration in the water found in the auger hole to yield a crude estimate

of recharge rate as a function of space. Even this test is a luxury in many

situations, and a uniform recharge rate for the entire field is estimated

via "engineering judgement."

For the Embabe drain data 154 samples of salt concentration were

made at the auger holes. The values for the salt concentration exhibited

a lognormal distribution, at an 85% significance level. There was almost

no correlation found between the permeability values and those of the

salt values, in fact there was a slight negative correlation of PKN =-.014

(see Table 1.).

2.3. Uncertainty in Prediction of the Dewatering Zone

The dewatering zone DWZ is the distance from the ground surface to

the water table. The crop response to the drainage system depends on

the size of this zone. A predictive model is used to estimate DWZ based

on estimates of recharge rate ,N, and permeability ,K, for each alterna­

tive design drain spacing,L, and depth, D. By assuming that N andK are

uniform (constant) between the drains, simple analytical expressions can

be used to predict DWZ. If the estimates of the uniform Nand K are unc­

ertain, then probabilistic models are employed to account for the uncer­

tainty of the DWZ prediction, and therefore the uncertainty of the crop

response. If Nand K are assumed to be spatially variable, numerical

models are required, with appropriate modifications to handle the sto­

chastic nature of the variables.
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The evidence collected from the Embabe area indicates that permea­

bility is correlated over large distances, of the order of five hundred

meters or so. The evidence is somewhat ambiguous because of the "nug­

get effect" observed in the covariogram(Figure 5), which may indicate

sample error or simply reflect the fact that the closest data points are

still a full 200 meters apart. If the correlation length of K is truly on the

order of five hundred meters, then permeability fluctuations between two

drains. spaced only 20 to 40 meters apart, will be relatively small. When

this is the case it is possible to assume that K is uniform (constant)

between the drains, but uncertain. It is uncertain because the samples

contain errors and because there may be no direct measurement of K in

that particular location, so that K must be inferred from measurements

at nearby stations using, for example, Kriging.

No major spatial structure could be identified for the salt concentra­

tion data for the Embabe area. In addition ,this is a crude indirect esti­

mate of recharge rate N . Therefore it is assumed the recharge rate N is

uniform between the drains, but uncertain.

The first model presented below is based on the assumption of con­

stant, but uncertain Nand K between the drains. However. if the corre­

lation length of Nand K is somewhat smaller. approaching in magnitude

the spacing between the drains. then the spatial variation of these param­

eters becomes important. The second model examines stochastic spatial

variation using a one-dimensional numerical discretization between the

drains. A third numerical model has been formulated to examine the

more realistic two-dimensional horizontal flow pattern between two

drains,from the collector at which they discharge up to the edge of the
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field. All three models are based on the approximate probabilistic model-

ing approach called First Order-Second Moment(FOSM) analysis[see Ben-

jamin and Cornell,1970;Dettinger and Wilson,198!. 1982,and Wilson and

Dettinger,1982]. All three models focus on predicting the water table

,h ,and dewatering zone, DWZ, at the midpoint between drains, because

under most conditions the water table will be a maximum at this point

and DWZ a minimum. This mid-point is designated by the subscript L / 2.

The models are written in terms of water table height h. The statistics of

the predicted dewatering zone {)WZ are related to those of the water

table height by the expressions in which the over bar presents the

expected value.

DWZ =D - h

DWZ= D-1i.

a 2 - a2
DWZ - 11.

2.3.1. Uniform but Uncert~nPermeability and Recharge.

(3a)

(3b)

(3c)

A model of this situation is given by the Hooghoudt equation,

[Hooghoudt, 1940]. From FOSM analysis, [see, for example, Wilson and

Dettinger. 1981], the first order expected value of the water table eleva-

tion midway between the drains is

1i.L12 =f I(L ,d',N,l<) (4)

=-d' + Id" + ~r
The first order estimate is identical to the deterministic estimate, with

the parameters evaluated at their expected value. The vertical flow near

the drains is accounted for by replacing the true depth by an equivalent

depth d' , which depends on the geometry :L ,d, and type and size of drain.
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For tile drains. the equivalent depth has been expressed in closed form

[USBR. 1978]

(5)
if 0 31 < ~. L

d if 0.0 < ~ :s: 0.31

1 + ~2.55ln(: ~ - 3.55 - 1.6( ~ ~+2( ~ ~2

Ld'=

r L
2.55lln(? - 1.15

It depends primarily on design parameters. and is not a function of

recharge rate N or permeability K. Wh~n d' =d, the Hooghoudt model

becomes a simple Dupuit model. The variance of water table estimate at

the midpoint, calculated by FOSM, is [Strzepek et al., 1982; see also Wil­

son and Dettinger, 1981]

N and permeability K. and PKN is the correlation between Nand K. In

the Embabe case study, PKN is almost zero [PKN=-0,014]. When K is log

normally distributed, with Y=logK normally distributed, the ratio Ux in
K

(5) is replaced by Uy and the remaining K in (3) and (4) represent

geometric (logorithmic) averages of the permeability data. The correla-

tion coefficient becomes Pm .

Using the data from the Embabe area, (Table 1 with

UN=0.0004m / d). the predicted (3) water table elevation above the

drains, and an estimate of its reliability (5) are given in Table 2. The

drain spacing in this example is L =40m. and the depth to the impervious
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Table 1. Field Data for the Embabe Case Study

Properties for Mean
Standard
Deviation

Sample K 0.OB5m/day 0.OB2m/day

Sample Y=lnK -2.830 0.B63

K calculated 0.OB6m/day 0.090m/day
from Sampled Y (geometric mean)

Sample W=LnS l 3.75 0.B15

N calculated 0.0004m/day 0.0006m/day
from Sampled W

Subjective
0.0004m/day 0.0004m/dayEstimate s for N

Sample correlation of Nand K: PKN = -0.014

1 S = samples of salt concentration

Table 2. Statistics of Water Table Elevation for Uniform but
Uncertain Parameters

Uncertain Correlation 1i.L r 2 UhL/2

Parameters PKNorpYN (m) (m)

K,N 0 0.299 0.396

K,N -0.014 0.299 0.399

K - 0.299 0.275

N - 0.299 0.2B5

Y,N 0 0.299 0,374

Y,N 0 0,396· 0.374

• Second Order Estimate of Expected Value

bottom is d. =3m =d.' (neglecting vertical flow lead losses). The first order

expected value ot the water table height at the midpoint is 0.299 meters.

assuming K is normally distributed. The standard deviation ot this esti-
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mate is 0.396 m. neglecting the slight negative correlation between Nand

K, and 0.395 m accounting for it. In this example, the correlation is

unimportant and is ignored below. If only the permeability is uncertain,

then the estimated standard deviation drops to 0.275 m, while if only the

recharge rate is uncertain, it still drops to an almost identical value,

0.285 m. RecogniZing that K is log-normally distributed hardly disturbs

the first order estimate of the water table height, but it does decrease

the estimated standard deviation by 6%. Because in this example the.

coefficients of variation of K and N are on the order of one, FOSM may be

only approximate, having neglected higher order terms in the relation-

ship between the estimate forh and the moments of K and N.

A second order estimate of the water table height can be found that

depends only on the first two moments of K and N, Following the pro-

cedure in Benjamin and Cornell [1970], and Wilson and Dettinger [1981],

this estimate is

1iLl212n~OrdeT =f 4(L,d',N,K,ay)

=1iLI211RorlteT + N
L2

!d,2 + ~rl/2 x (7)
8K 4K

fl ..!.... - N L
2

!d ,2 + !J2 t
1Ia 2

2 16K 4KJ Y

where K is log-normally distributed. The importance of this additional

term for the example is shown at the bottom of Table 2, where it adds

almost a tenth of a meter to the expected height of the water table. The

log-normality of the permeability data does not change the reliability of

the prediction significantly, but the large coefficients of variation for N

and K imply that first order estimates may be non-conservative, as illus-

trated in the example. In the remaining analyses and designs described
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in this paper, K will be taken as normal. and only first order estimates of

expected water tables height will be made. In practice, log-normality and

second order estimates would be the rule.

2.3.2. Spatial Variation in I-D Between the Drains.

Permeability and recharge may vary between the drains. Assume

that the statistics of this stochastic spatial variation are known a priori,

and are represented in terms of expected values and a covariogram or

variance-covariance. If the spatial scale of the fluctuations are large com-

pared to the distance between the drains. then the analytical Hooghoudt

model based on uniform but uncertain parameters should accurately

represent the uncertain physical system. If, on the other hand, the scale

of fluctuation is small compared to the distance between drains. then

spatial variability between the drains becomes important and a stochastic

. distributed parameter model for the physical response must be used.

In most cases, this model will be solved numerically using Monte Carlo

Simulation [see, for example, Freeze, 1975, or Smith and Freeze, 1979],

or FOSM [see Dettinger and Wilson. 1981,1982]. Consider the drain design

explained above with the Hooghoudt model, in which

L =40m ,andd =d' =3~. For spatially varying K and N, the groundwater

response to this design is described by the Dupuit model

~ [K(h + d):] =-N Q,;, z '" L (Bl

with boundary conditions (neglecting the vertical flow under the drains.

Le .. d=d'). This model can be transformed to

d rKd~ =-N
d;l~

O~x ~ L (9)
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where ~=[ (h ~d)'1. which has boundary conditions ~= d
2
' at" =0, L.

Solved on Dettinger and Wilson's [1981] FOSM stochastic numerical model

of groundwater flow, the results , in terms of mean and standard devia-

tion of ~L12 at the midpoint between the drains are converted to the

statistics for hL 12 via

1i.L12 = (2~)1/2 (lOa)

atL/2
a - (lOb)

"'L/2 - 2'"
'¥L12

Spatial variation of Nand K is somewhat arbitrarily represented by an

exponential variogram/variance-covariance. For example. the spatial

structure of logK is described by

or

")'(u) = a~K(1 - e-ulI )

where l is sometimes referred to as the "correlation length".

(lla)

(llb)

Figures 6 plots dimensionless correlation length, II L. versus a[hL 12]

, using the data of Table 1 (with aN =0.0004 m/day), for uncertainty in

K and N. In both cases, the uncertainty of the water table elevation pred-

iction converges to the value predicted by the uniform parameter model.

For II L~l , there is essentially no difference. The first order predicted

mean is constant for all l. Thus, the uniform but uncertain model pro-

vides an accurate indication of prediction uncertainty. for spatial varia-

tion scales on the order or larger than the spacing of the drains.



0.3

0.2

CT
Tl

(m)
l./2

0.1

- 22-

____ ....!~~5, uniform, but uncertain N
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Figure 6. CT"LI. versus correlation length of K&N
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2.3.3. Spatial Variation in 2-D between the Drains and Collector.

Figure 7 is a plan of a section of a drainage project, bounded by

drains to the left and right, by a collector at the top and the edge of the

drained field below. Although it is not strictly correct for spatial stochas-

tic systems, assume that the top and bottom boundaries are exact "no

flow" boundaries of symmetry. Following the assumptions of the previous

case, the groundwater flow in the field. for spatially variable K and N is

described by

:x [K(h + d) :: J + d: [K(h + d) :;I=-N

equation with boundary conditions

OSx sL
O~y ~B

(12)

(h - d) dh = 0 Os x ~ L,y = O,B
dx

h = 0 Os y s B , x = O,L

In the transformed state with variable cP, this becomes

(13a)

(13b)

d 2cP 2 d 2cP 2
K--+ K--= -N (14)

d,x2 d y 2

with bounda~ies cP= ~2 on the drains and ~= = 0 at the collector and at

the lower edge of the drained field. Modeling this situation using Det-

tinger and Wilson's [1981] FOSM stochastic numerical model yields identi-

cal results to the previous models for the first order expected value of

the water table. The sensitivity of the water table uncertainty in the mid-

dIe of the field [x =L 12,y =B 12] to permeability correlation is shown in

Figure 8. In this multi-dimensional case. permeability variation results in

a reduction of the water table uncertainty because water is now able to

flow around areas of low permeability. Nevertheless. the predicted uncer-

tainty converges to the value found for uniform but uncertain parameters
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Figure 8. rTJ&.L/2 versus Correlation length K in 2-D

for l/ L >5 . once again demonstrating that for sufficiently large correla-

tion length the simple uniform model can be reasonably employed.

2.3.4. The PDF of h and DWZ.

The FOSM models used above to examine the uncertainty of water

table predictions are, by definition, second moment models. They pro-

vide estimates of the first two moments of the probability density func-

tion (PDF) of h and DWZ via (2). However. the drainage design depends on

the full PDF, not solely on its moments, when the decision is based on rell-

ability, as in this paper, or expected loss, as in Strzepek et al., [1982].

For small water table standard deviation relative to the water table height

above the drains, the PDF of h or DWZ is normal. This has been
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demonstrated by full distributional Monte Carlo simulations for similar

problems [see, for example, Freeze. 1975: Smith and Freeze, 1979], which

show that the farther from the boundaries (drains) one gets. the more

normal the distribution. For larger relative variance of the water table

prediction, due to increasing variance of K or N, the distribution on h or

DWZ becomes skewed. Since the water table cannot rise above the

groundsurface, and if we presume it will not fall below the drains (steady-

state), then it is clear that the true distribution on h or DWZ is finite.

0-5.h~D , and O~DWZ-5.D , but with various shapes depending on the posi-

tion between the drains and the expected height and variance of the

water table elevation.

A finite distribution that would allow for varying shapes of h would be

the p distribution. Further experiments need to be performed to confirm

the validity of the p distribution for the pdf of h. The results of the FOSM

analysis provide 1i and an which can be directly used to estimate the p

distribution. However. in this series of papers to demonstrate the pro-

cedures, h will be assumed to be normally distributed which is true for

aN aK
small values of -=-and ~

N K

3. Optimal Design of Agricultural Drains.

The goal of agricultural drainage is the establishment or mainte-

nance of soil water conditions for the optimal utilization of agricultural

lands. The dewatering zone that is created by the drainage system should

provide for optimal crop production given that all other factors are as

assumed . In present design procedures, a design dewatering zone is

selected, a drain depth is fixed due to institutional or hydraulic
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considerations and then the design equation is solved for the drain spac­

ing that achieves the desired dewatering zone, assuming the system to be

deterministic. The issue of determining the optimal combination of depth

and spacing that meets the design criteria rather than fixing the depth a

priori is seldom addressed. Given a cost function for tile drainage, the

selection of the optimal design can be cast into a Mathematical Program­

ming Problem (MPP) which would determine the depth and spacing that

minimize the cost of achieving the desired drainage performance as

defined by the drainage equation and the deterministic parameters.

Since the physical parameters of the drainage equation are not

deterministic, the performance of the drains becomes uncertain. This

translates into uncertainty in achieving the desired soil water conditions

upon which the drainage benefits are estimated. The problem then

becomes how to design economically efficient drainage systems when

there is uncertainty in meeting the design criteria. Mathematical Pro­

gramming under uncertainty was developed to address this type of issue.

Two main approaches can be identified. The first, "Chance Constraint"

Programming, was presented by Charnes and Cooper [1959], and is based

upon the concept of reliability in system performance. The second

approach. "Stochastic Programming", uses an economic response of the

system output. together with the probability distribution of the system

output, to determine an expected system response. This approach was

developed by Dantzig [1955]. This paper presents a "Chance Constraint"

approach to optimal drainage design given uncertainty in system perfor­

mance and no information about the economic response of crops to

drainage. In the second paper in this series, [Strzepek. Marks, and
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Wilson, 1962]. a "Stochastic Programming" approach based upon empiri-

cal data of the crop response to drainage is developed, and a comparison

of the two approaches and the implications of each are presented.

3.1. Chance Constraint Model

The optimal design of drains is made more complex by the fact that

the design criteria for the soil water condition. the dewatering zone, can-

not be met with certainty. Instead, there is a probability distribution

describing the depth of the dewatering zone, DWZ. The question becomes

how to account for this uncertainty in the drainage design process. The

performance criteria for drain performance is a specified value of the

dewatering zone, which represents the optimal condition for crop produc-

tion. Many times there is no information about the response of crops due

to variations from this optimum. In these cases. it is assumed that the

design DWZ represents some threshold value. For DWZ depths greater

than this design value, the yield is assumed constant at the optimal value,

while for smaller DWZ there is a decrease in benefits. Strzepek et al.,

[1962], will show that this is seldom the case and that this assumption can

lead to poor results. However, if no data exists on crop response, then an

approach based upon this single value must be developed.

In the drain design MPP. there is a constraint that requires the dewa-

tering zone midway between the drains to achieve a certain design value.

This constraint can be met with a specified reliability, and thus a certain

probability, a. A generalized "chance constraint" is defined as

Pr(a. z S b)~ a (15)

which states that the constraint a.z~b must be met with a probability a .
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when x represents the decision variables. 11 represents the coeffi-
;

cients. and b represents the resource limitations. The "chance con-

straint" can be transformed into a deterministic equivalent constraint

when b is a random variable with known probability distribution. From

the properties of the distribution of b , a value of b that satisfies the

condition that ex % of the distribution will be less than the value b IX can

be found. The deterministic equivalent constraint becomes

11 X ~ b IX

which satisfies the "chance constraint".

(16)

(17)

To this point, all discussion has been applicable to the analysis of

both surface and sub-surface drain design. For clarity, the remainder of

the paper focuses on the tile drains. All developments presented can

easily be modified to address the analysis of surface drainage design.

In the drainage design MPP, the chance constraint on the drainage

performance as defined by the Hooghoudt equation is

P,!DWZ(D,L) '" DWZ'j =P,(D+d' - ~'2 + ~;rl2 '" DWZ'J'" a

where DWZ· is the design value of the dewatering zone. The chance con-

straint must now be transformed into a deterministic equivalent. It was

shown above that the dewatering zone can be assumed normally distri-

buted with a mean and variance defined by a FOSM analysis of the

Hooghoudt equation, when certain conditions on the uncertainty in the

output parameters are met. A property of the normal distribution is that

a random variable X will exceed a certain value x with a probability ex

when the mean of X minus "A" times the standard deviation is equivalent

to x, where "A" is a function of ex defined by the standardized normal dis-
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tribution. With this property of the first and second moments of the

dewatering zone constraint, (17) can be transformed into the following

deterministic equivalent constraint

DWZ + A X (jDWZ::?!: DWZ· (18b)

where d' is the Hoodhoudt equivalent depth (5) which must be included

in the constraint set. To complete the Chance Constraint formulation of

the tile drainage MPP, the complete constraint set must be defined. The

depth of the drain will be constrained to be less than the maximum grav-

ity flow in the main drainage system. Finally, the depth and spacing must

not be less than zero.

The objective function for the Chance Constraint MPP for tile

drainage design is to minimize the cost of drain installation. This cost is

related to the number of tiles needed, which is a function of the drain

spacing, and the cost per meter of laying the tiles ,which is a function of

the laying machine, the depth of the drains, labor costs, fuel cost etc.

These functions can vary from nation to nation, or from region to region.

Christopher and Winger [1975], have developed generalized cost functions

for three types of drain laying machines, based upon US Bureau of Recla-

mation drainage projects. El Berry [1979] has developed a detailed cost

function for tile drainage installation in the Nile Delta in Egypt. The gen-

eral form of the El Berry function is

(19)
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where C I,C 2,c3,andc4 are coefficients specific to the region and the type

of machine used. This paper will look at a case study of tile drain design

under uncertainty in the Nile Delta using the El Berry function for the

Embabe region.

A Chance Constraint MPP for tile drainage design can be formulated

as follows

drain design described above has a non-linear objective

MIN CapitalCost =COST(D ,L)

Subject to:

DWZ + A x (]mtz ~ DWZ·

DWZ =D -n.
(] 2 _ (]2

DWZ - h

n.L/2 =f I(L,d',N,K)

d' =f 2(L,d,r)

2 f --(]hL/2 = 3(L ,d ',N,(]N,K,(]K,PKN)

D ~ D max

d=Z-D

D,L ~ 0.0

The MPP for tile

(20)

(21a)

(21b)

(21c)

(21d)

(21e)

(21f)

(21g)

(21h)

(2li)

function and a non-linear constraint set. The objective function is a con-

vex function and the constraint set defines a convex region for the Egyp-

tian case study conditions. These two properties are necessary and suffi-

cient conditions for obtaining a globally optimal solution to a minimiza-

tion problem. An algorithm, [Wismer and Chattery, 1978], using Newton's

method to solve for L in the implicit non-linear boundary to the con-

straint set, and a one-dimensional golden section search over D was used

to find the optimal drain design for each reliability and dewatering zone
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chosen.

If the conditions on the uncertainty of the input parameters exist as

outlined above. then the Chance Constraint MPP for drainage design is a

possible tool when there is no information on the crop response function.

The model can be used in many ways to aid decision makers and

designers in decisions effecting drainage design under uncertainty. The

next section presents an application of the model to tile drainage design

for the Embabe case study region in Egypt.

3.2. Case Study Application

The results of the analysis of the uncertainty for the soil parameters

in the Embabe region are used as a data base for an application of the

Chance Constraint approach to drainage design.

Table 3. Parameters for Drain Design MPP

I.Physical Parameters

fJ =0.0004m / day aN =0.0006m / day

K =0.085m / day aK = 0.082m / day

DWZ· =1.0m

Dmu =2.0m

II. Objective Function Parameters

C 1 =52.2

C2 =1.646

Cs =0.365

C4 =55.892
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Table 3 lists the statistics for the input parameters Nand K as well

as the design parameters; Dmax =2.0mandDWZ· =1.0m for Egyptian

clover. With these values and a choice of a design reliability, the con­

straint set is defined. Table 3 also lists the parameters for the EI Berry

cost function in the Embabe region of the Nile Delta. The function pro­

vides for the cost per feddan in Egyptian pounds (1 L.E. = 1.5 U.S. Dollar)

of tile drain installation using a Hoes drain laying machine [EI

Berry,1979].

For each reliability of the depth to the water table midway between

the drains, a new optimal tile drain design is found. Curve 1 in Figure 9 is

a plot of the cost per feddan of the optimal solution for a given reliabil­

ity. The results show that the greater the reliability, the greater the cost

of the design. As the reliability of the design dewatering zone increases,

more and more of the probability distribution of the dewatering zone

must be greater than the design value. This is accomplished by increas­

ing the value of the m,ean dewatering zone or reducing the variance, both

of which require more costly designs. This curve could also be viewed in

economic terms as a supply curve for reliability on a fixed dewatering

zone. If the drainage project budget was limited and a maximum invest­

ment per feddan was determined, then a decision maker could determine

the optimal reliability available with that investment.

Many times in the design process the drain depth is fixed due to

institutional or hydraulic considerations. This adds a new constraint to

the model. Curves 2 and 3 in Figure 9 show the results when the drain

depth is fixed to 1. 75 and 1.5 meters respectively. It is seen that the cost

increases for the same reliability when the depth is fixed. This increase
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follows optimization theory. which states that as a minimization problem

becomes more constrained, the cost of the optimal solution increases.

The effect of a priori fixing the drain depth is examined in more detail in

Figure 10 for a reliability of 93%. It shows for this case study that as the

drain depth increases, the cost of the optimal solution decreases. The

decision maker could use this type of result to examine the economic

trade-offs between the cost of modifying the drainage system, (especially

main drains), in order to allow deeper drains, and the cost saving result­

ing from installing the drains at a deeper depth.

Figures 11 and 12 are plots of the cost of the optimal solution as a

function of uncertainty in the recharge rate, N, and the permeability, K,

respectively. In each figure are curves for 63% and 93% reliability which

are found by solving a series of models with all factors constant except

the single input parameter being analyzed. The results show that the

model solution is equally sensitive to the uncertainties of Nand K, over

the range of values expected for the case study conditions. These results

provide a measure of the benefits in reducing the uncertainty about the

input parameters. This type of information could be used to aid decision

makers in designing data sampling networks for tile drainage.

Figure 13 illustrates the dilemma facing the designer as a result of

the shortcomings of the Chance Constraint approach. The Chance Con­

straint approach is based upon achieving a desired reliability on a single

value of the dewatering zone. The question facing the designer is not just

what reliability to choose, but also upon what value of the dewatering

zone to impose that reliability. In Figure 13 a series of curves reveal this

problem. It shows that for a given reliability, the cost increases as the
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design dewatering zone gets larger. The figure also emphasizes that

increasing reliability increases cost. It does not show how the benefits to

the crop increase with reliability. The decision maker must choose a de­

watering zone and a reliability with no information about benefits.

The optimal solution from an economic efficiency viewpoint is to

obtain the design in which the marginal benefits of drainage equal the

marginal cost of drainage. In the Chance Constraint approach, a judg­

ment decision has to be made as to a design criterion that meets this

requirement. The choice of the wrong reliability could result in lost bene­

fits due to over- or under-design. Incorporating information about the

economic response of the crop to the output of the drainage system

would allow for explicit consideration of the economic efficiency of the

crop/drain system.

4. Conclusions

The results of the applications in this paper have shown that the

assumptions of deterministic and homogeneous soil properties in

drainage design are not valid and uncertainty in these properties must be

accounted for in the design process. The uncertainty in soil properties

was identified to take two forms, informat,ion uncertainty and spatial vari­

ability. A First Order-Second Moment analysis of the Hooghoudt steady

state drainage equation was performed which allowed for the uncertainty

in tile drainage performance to be quantified given data on uncertainty of

the soil parameters between two drains. It was shown that spatial varia­

bility does exist in the soil properties. It was demonstrated that for the

analysis of uncertainty in the dewatering zone midway between two drains
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that both small and large scale spatial variability could be ignored.

A Chance Constraint programming model for the optimal design of

tile drains was developed which minimized the cost of drainage installa­

tion while meeting reliability criteria on drain performance. The results

showed that the present deterministic approach provides only a 50% reli­

ability on the design performance. It was shown that there are trade-offs

between increased reliability of drain performance and the capital costs

of drain installation, as well as increased costs due to a priori fixing the

depth of the tile drains. The Chance Constraint model can be used to pro­

vide valuable information for the designer when faced with little data on

the response of crops to drainage. However, it is difficult for the designer

to choose a reliability for which marginal benefits equal marginal costs. A

drawback of the Chance Constraint approach is that it does not take into

account the optimal drain design when there is more than one crop being

grown on the land being drained.

In the second paper of this series, a stochastic programming model

will be presented that will incorporate the crop response function into

the optimal design for tile drains. This model will be extended to include

the design under a multiple cropping regime, and the results will be com­

pared with those from the Chance Constraint approach.
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