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FOREWORD 

In recent  years,  there has been considerable interes t  in developing 
models for environmental systems, and for aquatic systems in particular.  
Much of this effort has  been directed toward large and complex simulation 
models. However, this trend has  given rise to  a number  of concerns,  notably 
those of accounting for the  effects of uncertainty.  Testing model s t ructures ,  
calibrating complex simulation models under uncertainty,  and propagating 
this uncertainty in the  predictions of models are  essential steps in establish- 
ing model validity and credibility for practical applications. 

The International Institute for Applied Systems Analysis (IIASA) is 
addressing such concerns in its work on environmental quality control and 
management,  one of the  principal themes  being t o  develop a framework for 
modeling poorly defined environmental systems. 

This report ,  based on a series of earlier papers on the  subject, discusses 
the  use of Monte Carlo methods when the  available field data  a r e  sparse and 
uncertain.  I t  examines the  problem of constructing, calibrating, evaluating, 
and applying a model for prediction - and  ultimately for management  (K. 
Fedra (1980) Mathematical modelling - a management  tool for aquatic 
ecosystems? Helgolander Meeresuntersuchungen 34:221-235, also reprinted 
as  IIASA Research Report RR-81-2). In particular,  i t  emphasizes the  impor- 
tance of model testability (K. Fedra (1981) Hypothesis testing by simulation: 
an  environmental example. IIASA Working Paper WP-81-74) and the close rela- 
tionship between the  processes of model calibration and the predictions 
obtained subsequently (K. Fedra, G. van Stra ten,  and M.B. Beck (1981) Uncer- 
tainty and arbitrariness in ecosystems modelling: a lake modelling example. 
Ecological Modelling 1387-110, also reprinted as IIASA Research Report RR- 
81-26). 

Thus, uncertainty and t h e  reliability of models and forecasts based on 
Monte Carlo simulation are t h e  key concerns of this report .  

Janusz Kindler 
Chairman 

of the  former 
Resources and Environment Area 
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ENVIRONMENTAL MODELING UNDER UNCERTAINTY: 
MONTE CARLO SIMULATION 

K .  Fedra 
I n t e r n a t i o n a l  I n s t i t u t e  for  Applied S y s t e m s  Analys i s ,  L a z e n b u r g ,  Aus t r ia  

SUMMARY 

The s t u d y  of e n v i r o n m e n t a l  s y s t e m s  a s  ecological  and  p h y s i c o c h e m i c a l  
as w e l l  a s  soc ioeconomic  e n t i t i e s  r e q u i r e s  a  h i g h  degree  of s i m p l i f y i n g  jor-  
m a l i s m .  H o w e v e r ,  a  de ta i led  u n d e r s t a n d i n g  of a  s y s t e m s  j u n c t i o n  a n d  
r e s p o n s e  to  v a r i o u s  c h a n g e s  f o r  t h e  exp l ic i t  purpose  of s y s t e m s  m a n a g e m e n t  
a n d  p l a n n i n g  s t i l l  r e q u i r e s  f a i r l y  c o m p l e z  h y p o t h e s e s ,  or  m o d e l s .  % c h  
m o d e l s  c a n  h a r d l y  be s u b j e c t e d  to r igorous  t e s t s  w i t h o u t  t h e  aid o f  c o m p u t -  
e r s .  & s t e m s  s i m u l a t i o n  is a  p o w e r f u l  tool  w h e n  s u b j e c t i n g  c o m p l e x  
h y p o t h e s e s  t o  cr i t i ca l  t e s t s  o f  t h e i r  logical  s t r u c t u r e  a n d  t h e i r  p e r f o r m a n c e  
o v e r  t h e  r a n g e  o f p l a u s i b l e  i n p u t  c o n d i t i o n s .  

Based  o n  a  f o r m a l i z e d  t r ia l -and-error  approach  u s i n g  Monte Carlo 
m e t h o d s ,  this r e p o r t  p r e s e n t s  a n d  d i s c u s s e s  a n  a p p r o a c h  t o  s i m u l a t i o n  
m o d e l i n g  u n d e r  u n c e r t a i n t y .  A n  i n t r o d u c t i o n  to the  c a u s e s  a n d  i m p l i c a t i o n s  
of t h e  p r o b l e m ,  n a m e l y  u n c e r t a i n t y ,  a n d  a  shor t  f o r m a l  p r e s e n t a t i o n  of the  
m e t h o d o l o g y  proposed are fo l lowed  b y  s o m e  m o r e  t e c h n i c a l  r e m a r k s  o n  
Monte Carlo s i m u l a t i o n .  Using t h r e e  d i f f e r e n t  a p p l i c a t i o n  e x a m p l e s ,  t h e  
a u t h o r  d i s c u s s e s  t h e  role  of u n c e r t a i n t y  in t h e  f o r m a l  t e s t i n g  of m o d e l  s t r u c -  
t u r e s ,  in p a r a m e t e r  e s t i m a t i o n ,  a n d  in p r e d i c t i o n .  I n  t h e  l a s t  e x a m p l e ,  t h e  
l i m i t s  of e s t i m a t i o n  a n d ,  with i t ,  p r e d i c t i o n  a r e  d e m o n s t r a t e d .  I n  a  c o m -  
p a r i s o n  of Monte Carlo s i m u l a t i o n  with a l t e r n a t i v e  approaches  to  i n c l u d i n g  
a n d  e v a l u a t i n g  u n c e r t a i n t y  in s i m u l a t i o n  m o d e l i n g ,  t h e  d i s c u s s i o n  s e c t i o n  
e x a m i n e s  the  i m p l i c a t i o n s  of u n c e r t a i n t y  f o r  m o d e l  a p p l i c a t i o n  in a  broader 
f r a m e w o r k .  



1 INTRODUCTION 

Environmental modeling may conveniently be understood as a tool - a 
tool for the study of systems that are large, complex, difficult to observe, and 
experimentally more or less inaccessible. It is a formal way of organizing 
knowledge (or the lack thereof) a t  the intersections of ecology and the life 
sciences, geography and the earth sciences, the social and political sciences, 
economy and engineering, and usually a few more of the classical disciplines. 

Environmental modeling and simulation is also a tool for developing and 
testing the hypotheses on which any organization of knowledge is based, and 
is therefore just one instrument of scientific research. This tool may be used 
for making "predictions," experiments with possible futures, exploring alter- 
native courses of action. It thus has potential to aid management and deci- 
sion making and to help design and explore policies. 

In the  core of any comprehensive environmental system, there is usually 
an ecological system or an ecosystem in the more classical sense (Haeckel 
1870, E.P. Odum 1971); and a close look a t  the kinds of data t ha t  are available 
on ecosystems shows mainly uncertainties, variability, and sampling errors 
(more often than not of undetermined magnitude). In addition, ecological 
theory (and whatever part of it may be relevant within the more comprehen- 
sive framework of environmental science) is full of contradictory hypotheses, 
and i t  is mostly impossible to rule out  any of those because of lack of reliable 
and sufficient data. Consequently, the coexistence of competing and eventu- 
ally contradictory model formulations (contradictory in the sense tha t  they 
will produce significantly different predictions from the same se t  of inputs) is 
notorious. A nice illustration is given by Simons and Lam (1980), when they 
observe in their critique of models used in the Great Lakes studies tha t  
"these results illustrate quite clearly tha t  one can accommodate a wide range 
of primary production formulations in a model as  long as there are additional 
degrees o:F freedom to 'play with,' in this case the uncertainty associated with 
respiration and other forms of nutrient regeneration." This phenomenon, by 
the way, can also be observed in the social or political sciences as  well as in 
economics, which, unfortunately but significantly, are also basic components 
of applied environmental research. 

Experimental evidence, as a rule, stems from microscale pfiysiological 
approaches, contradictory in their very design to the richness and variety of 
ecosystems, and deliberately neglecting a main feature of any even 
moderately complex ecosystem, which is the simultaneous interaction of 
large numbers of variables. Traditional concepts and approaches are merely 
extrapolations of ideas that  proved to be successful in physics and chemistry. 
However, ecosystems are quite different from elect.rica1 networks, the fric- 
tionless pendulum, and controlled chemical reactions of some compounds. All 
these incompatibilities can seemingly be overcome only with numerous more 
or less arbitrary assumptions, often enough implicitly hidden jn a hypothesis, 
or model formulation. The information available is of a jigsaw puzzle struc- 
ture,  and a t  best we can deduce fuzzy patterns, semiquantitative relation- 
ships, ranges, and constraining conditions, unless we blindly believe in 
numbers once they are printed, preferably by the computer. 



Chance, or random variability, plays an important and sometimes dom- 
inant role in environmental systems. This is t rue not only for the micro- 
scopic, elementary level (Monod 1970), but  also for living, evolving, dissipa- 
tive systems and structures in general (e.g. Eigen and Winkler 1975). All 
these features, including the  consequences of haphazard human interfer- 
ence, contribute to one prominent aspect of environmental systems and thus 
modeling: uncertainty. Clearly, under these circumstances the  applicability 
of traditional, fully deterministic techniques, with all their implicit and expli- 
cit assumptions on the distributions and functional properties of the vari- 
ables observed (or rather sampled), and a firm belief in numbers have to be 
questioned. Forcing environmental systems into a mathematical framework 
developed for vastly different systems, for the sake of the ease and elegance 
of the analysis, seems to me not only a futile but also a dangerous line of 
work. And as  a consequence, many model-based predictions on environmental 
systems are either trivial or false or,  a t  best, computerized intuition of the 
analyst. 

Alternative approaches are needed, if environmental modeling is to 
improve its so far meager record of impact on environmental decision mak- 
ing and public reasoning. One possibility is a formal and computer-based 
application of probably the simplest and most straightforward approach, but 
maybe also the only possible approach to  scientific research: trial and error. 

1.1 Monte Carlo Methods: Computerized Trial and Error 

"Our whole problem is to make the mistakes fast enough ..." 
(Wheeler 1956) 

Monte Carlo methods, as used and discussed in this report, are nothing 
more than computerized trial and error. It is a technique, however, to make 
extremely high numbers of errors, and to make them very fast - and, i t  is 
hoped, to learn from these errors. As indicated by the name, i t  is a form of 
gambling - picking random numbers from appropriate distributions and 
using them for numerous trials (and errors). A system of filters is then used 
to separate the solutions - if there are any winning numbers - from the 
failures. 

The method is characterized by a very appealing simplicity. This may be 
best exemplified by the fact tha t  this report is written by an  ecologist, not a 
mathematician. No implicit, abstruse statistical assumptions have to be 
made, either on the available data describing the system to  be modeled, or on 
the concept of agreement or "goodness of fit" between model output and the 
observations modeled, which is the deviation or error to  be minimized in 
"classical" approaches (Section 4.2). Arbitrary assumptions have to  be made, 
like in all other approaches, but the  simplicity of the method allows for an 
explicit s tatement  and treatment  of all the assumptions. None of the assump- 
tions are hidden within the method, they can all be made "externally." A high 
degree of flexibility in constructing an appropriate estimation scheme for a 
given application problem allows one to  structure the tool according to the 



problem - and not force the problem into the constraints of the method. 
Any simulation model can, with a minimum amount of programming 

skills, be easily incorporated into an appropriate framework for the Monte 
Carlo estimation, including the generation of trial runs, their monitoring, 
and the most crucial part, the evaluation of the trials. The model can be as 
complex and nonlinear as deemed necessary by its builder, and there is no 
limit, in principle, to the number of parameters for simultaneous estimation. 

The price for all these advantages has to be paid in terms of computer 
time: excessive trial and error, when done simply (blindly and "unintelli- 
gently," i.e. without learning from the errors within a series of trials), 
requires a comparatively large amount. In addition, the time requirements 
grow exponentially with the dimensionality of the problem, that  is, the 
number of parameters estimated simultaneously. Computer time, however, is 
becoming cheaper and cheaper, and in many cases is no real constraint for 
the analysis, as compared with, for example, the much more demanding and 
expensive collection of field or laboratory data. 

1.2 The Theoretical Framework: Models. Knowns, and Unknowns 

Some conceptual clarifications seem to be unavoidable in order to intro- 
duce the terminology used in the following sections. Calibration, in a non- 
technical definition, is the tuning of a model in order to improve the agree- 
ment  of model-generated output with the observations from the system to be 
modeled. Tuned or adjusted are coefficients describing the relationships 
between the model elements, i.e. state variables, inputs, and outputs (the 
boxes and cycles i-n flow diagrams), and auxiliary values such as thresholds, 
carrying capacities, stoichiometric constants, or any other "adjustable" 
values. If a model deals with "simple" systems arid well established laws of 
nature, no tuning should be necessary, since all the parameters required are 
well known constants. If we want to model the fall of a pebble, we certainly 
would not attempt to calibrate the constant of gravity, but would take it from 
the literature. 

In epistemological terms, the mode1in.g process involves: 

a. a theory or universal statement (the model structure), together with 
b. a set of initial conditions (the initial conditions s e n s u  s t r i c t o ,  i.e. the 

state of the elements of the system a t  time t = O ;  the parameters, i.e. 
measures quantitatively describing the relationships of these systems 
elements and any auxiliary coefficients; and, in the case of dynamic 
models, inputs into the system, or forcings or driving variables, which 
can be viewed as a time series extension of a certain subset of the initial 
conditions), to  derive 

c. a set of singular statements (the model output), which then has to be 
compared with appropriate observations. 

In a pragmatic (ab)use of the usual terminology, I will split the union set  
of parameters, initial conditions, and inputs (forcings) into two 



complementary subsets, namely the "knowns" (e.g. site constants, such as 
the volu.me of a lake or the length of a river reach, or any number in which 
we can place enough confidence to consider it "known") and the "unknowns." 
The latter have to be estimated, and will, for simplicity, be referred to a s  
parameters; the "knowns" 1 will call constants. 

1.3 Model Structure, Parameters, Inputs, and Observations: Some Implica- 
tions of Uncertainty 

If a system or process to be modeled is'well known, as, for example, in 
classical mechanics, if the initial conditions can be manipulated or observed 
without error, and if the elements of the  system and thus the outcome of an 
experiment can be observed directly and without (or with very small) error, 
calibration would, if a t  all necessary, be a simple undertaking. One could, to 
exploit a simple example given by Popper (1959), calibrate a material con- 
stant for a thread. However, one would rather call this process a direct exper- 
imental determination of the magnitude in question, as i t  can usually 
directly and analytically be inferred from the experiment. If, however, the 
required value for the material constant would have to be found by iteration. 
one might call this calibration. 

In environmental modeling, however, the problems are much more mud- 
dled and diffuse, and we have neither a well established theoretical frame- 
work (allowing us to set  up an indisputable model structure a p r i o r i )  nor 
known constants. Even the observations available in situ or from experiments 
are difficult to use, since they are generally made on a different level of com- 
plexity and on a different scale than used in our models. There are several 
generic problems associated with ecological modeling, or any large-scale 
modeling of systems and processes that  are complex, difficult to observe, and 
almost impossible to manipulate. 

The first and probably most important problem is in the discrepancy 
between the scale of model conceptualization and the scales of measurement, 
observation, and experimentation. Our knowledge of large and heterogeneous 
systems is always derived from "samples," and even these samples, generally 
associated with a certain error, are always ranges. Observations and experi- 
ments are usually made on a micro-scale, involving individual cells, 
monospecific cultures, or extremely small samples from the system (just 
consider the proportion of the volume of a sampling bottle to that of a lake). 
There exists, of course, a well established theory of sampling, and statistics 
will tell the observer or experimenter how .many and which size of samples 
should be drawn to reach a certain level of confidence for the resulting esti- 
mates. However, for reasons that  can only partly be attributed to logistic 
problems and resource limitations, sampling statistics seem to be one of the 
most neglected fields in ecological research. 

A somewhat different interpretation of the discrepanc:y between theory 
and observations - anathema to the pure empiricist - could be a claim that  
the relevant observational and experimental techniques are just insufficient 
or unreliable (e.g. Feyerabend 1975, Lakatos 1978, and Section 4.1). Empirical 



evidence and theory can eventually be even incommensurable. 
The units dealt with in formal conceptualizations of environmental sys- 

tems, i.e. the models, on the other hand, are usually large, lumped, and inac- 
cessible to direct experimentation. They are idealized functional entities, 
whereas experiment and observation usually concentrate on entities that  are 
systematic (in the biological or chemical sense). The units in the models are 
lumped and heterogeneous, such as "primary producers," "zooplankton," or 
"available nutrients." Therefore, their functional characteristics, described 
by the "parameters," can only crudely be estimated from the eventually 
measurable characteristics of their elements, e.g. an individual species 
(ignoring the additional complications of age groups, sexes, physiological 
states, etc.). As these functional attributes cannot be measured directly, and 
there is no way of reliably deriving them from the properties of the micro- 
scale components, they have to be calibrated, i.e. adjusted to values tha t  
result in an  acceptable performance of the model. Such heterogeneous 
assemblages tend to exhibit a fairly, and .sometimes surprisingly, simple 
behavior. This phenomenon, often referred to as the "linear" response of 
highly nonlinear systems (in terms of their microelements), allows -one to  
t reat  such heterogeneous elements as functional units. 

It is important to recognize tha t  neither model structures, nor initial 
conditions, inputs, and parameters, nor the observations used as the testing 
ground for a model are without error. They are all uncertain, usually to an 
uncertain degree, and all ought to be formulated in terms of ranges or proba- 
bility distributions. Parameter estimation, as a consequence, is mostly an 
ar t .  Seemingly exact approaches tha t  reduce the problem to the minimiza- 
tion of an objective function are based on numerous simplifying and often 
implicit arbitrary assumptions. Since almost everything, including the refer- 
ence values (the observations) used for calibration, is somewhat fuzzy and 
error-corrupted, derived from subjective interpretation of information rather 
than indisputable measurements and experimental design, an exact and 
"best" solution to the parameter estimation problem is only obtained when a t  
least parts of the uncertainty are ignored, thereby reducing the number of 
unknowns, although in a disputable and arbitrary fashion. 

Both parameters and model s t ructure are uncertain, and intimately 
depend on each other. 'Their estimation should therefore be made con- 
currently. This will be demonstrated in the first application example (Section 
3.1), based on a marine pelagic food-web simulation for the German Bight in 
the southern North Sea. This example illustrates the close dependency of 
parameter estimates on the model structure chosen and, vice versa, 
attempts to show how parameter space characteristics can be utilized to 
modify a model s t ructure.  

In the next step, the simple application of Monte Carlo methods for 
parameter estimation can be extended for predictions. Obviously, predictions 
and especially prediction uncertainty will depend on model and parameter 
uncertainty. The second example of application (Section 3.2), based on a lake 
water quality model, denlonstrates how the uncertainty in the parameter 
estimates obtained by Monte Carlo estimation can be preserved, and included 
in the predictions, in order to estimate the reliability of predictions. 



Finally, in a third application example, the interdependence between 
parameter estimates and performance criteria,  or objective function (which 
is derived from the available observations) used in the estimation procedure, 
will be shown (Section 3.3). By use of a simple example based on a rain-runoff 
model, two alternative parameter vectors, both minimizing plausible objec- 
tive functions but resulting in quite different model behavior, can be gen- 
erated. These obvious limits to calibration can only be resolved with addi- 
tional information from the  system, that  is to say, with an additional se t  of 
(specific) observations. 

2 THE METHOD 

The basic principle of Monte Carlo methods, as used and discussed here, 
is a trial-and-error procedure for the solution of the inverse problem, i .e.  
estimating the "unknowns" in the input of the model ( the parameters) from 
the  required output. Since complex dynamic simulation models cannot be 
solved analytically, the solution of the  inverse problem demands a more com- 
plicated procedure. 

The basic steps of this estimation procedure are as follows (Figure 1): for 
a given model s t ructure,  performance criteria describing the expected, satis- 
factory behavior of the model, based on the  available data, are formulated. 
For all the unknowns to be estimated, allowable ranges or probability density 
functions are defined. From these ranges or distributions a sample vector is 
drawn randomly and substituted in the model for one trial run. The perfor- 
mance criteria of this trial run  are then compared with, or classified accord- 
ing to, the predefined target values or ranges of the performance criteria. 
The process is then repeated for a sufficient number of trials. After some ini- 
tial trials and their analysis, the ranges t o  be sampled may be redefined, cri- 
teria may be added o r  deleted, or the model s t ructure changed. This whole 
process is repeated iteratively until the model performance is satisfactory, in 
light of the  original problem to be sol.ved, or until the user's computer 
account is exhausted. 

2.1 The Concepts of Behavior Space and Model Response Set: Defining a 
Problem-oriented Objective Function 

From a model run ,  a simulation, one obtains a vector of output values, a 
singular statement,  or prediction, which has to be testable, i.e. comparable 
(and compared) with corresponding observations from the system in order t o  
determine whether or not the model (and its piirameter set) is acceptable 
under the constraints of the predefined performance criteria. 

If one recognizes that  the entities used in a simulation model and those 
measured in the field or in a laboratory experiment are quite different, i t  is 
obvious that  they cannot be compared directly, and then used to estimate 
one from the  other. One has to  take into account the differences in scale and 
aggregation, and the  resulting uncertainties. Models, because of their high 



FIGURE 1 Flow diagram of the approach 

degree of abstraction, simulate average patterns or general features of a sys- 
t em (as  conceptualized in the model). These pat terns  have to be derived 
from the available information a t  an appropriate level of abstraction and 
aggregation. Only such derived measures can then be compared with the 
magnitudes generated with the model, in order to tes t  and improve model 
performance. 

The original set  of observations of the system to be reproduced by the 
model output can conveniently be thought of as a region in an n-dimensional 
behavior vector space. Clearly, each observable property of the system can 
form one dimension. Time, in t h e  case of dynamic systems and models, can 
be thought of as just one attribute of an  observation; tha t  is, algal biomass a t  
a certain time, say spring turnover of a lake, might  form one dimension, and 
algal biomass a t  another t ime, say summer  solstice, could be another.  Also, 



observable properties could be independent of time, such as algae biomass 
maximum, whenever i t  was observed during the year. Another class of observ- 
able properties comprises integrated properties, such as total yearly primary 
production, or relational properties, such as the ratio of maximum to 
minimum algal biomass. Each of these properties - and many more, cer- 
tainly depending on the kind of system in question - can be used in defining 
the behavior space of the system, and with it, as a subset, the set of desired, 
"realistic" model responses. 

Obviously, the great flexibility in these constraint conditions allows for 
tailoring a very detailed and problem-specific set of constraint conditions. 
Violating none of them can be understood as analogous to minimizing an 
objective function. Besides criteria that  can be easily and directly derived 
from the available set of specific observations on a given system, one might 
want to constrain more and other elements of model response, such as flows 
and relationships between integrated flows or efficiencies in ecological jargon. 
Since such magnitudes are usually not observed, one would have to resort to  
the ecological or environmental literature for appropriate ranges. However, 
such additional constraints can only help to rule out ecologically or pfiysi- 
cally implausible behavior of a model, but not to identify the parameters for a 
given, specific system as such. 

The concepts of system behavior space and model response set  are quite 
versatile and, in fact, can even accommodate measures such as the sum of 
squares of deviations of model output from corresponding observations. A 
traditional squared-error criterion can be understood as a measure of dis- 
tance, in the response vector space, between any singular model response 
and the  required target, the behavior region of the system. The latter, how- 
ever, is represented by a singular point (Section 4.1 includes a discussion of 
the different concepts and their relationships). 

Along each of the relevant dimensions of the behavior space, the set  of 
available observations can now be used to define a range, or a probability den- 
sity distribution, within which the (observed) state of the system was found 
and, consequently, within which the simulated state ought to be. Each of the 
ranges in the model response space therefore constitutes a constraint condi- 
tion imposed on an allowable model output. The defined allowable model 
response set can be understood as a filter that  will separate the class of all 
model responses into allowable ones - contained in the allowable model 
response set - and its complementary "unrealistic" subset (Section 2.3). Fig- 
ure 2 gives an  example of projections of model response on to planes of two 
constraining response variables, with each allowable range forming a dark- 
ened rectangle in the projection plane. 

2.2 The Concept of Model Parameter Space 

Similar to the behavior vector space and response set associated with 
the output side of the model, one might conceive an input or parameter vec- 
tor space on the  input side. Each of the unknowns to be fed into the model 
for a simulation run again deflnes one dimension in this vector space. The 



FIGURE 2 Model response space projection on to a plane of two response variables, 
indicating the position of the constraint conditions for (a) a pair of uncritical condi- 
t.ions. (b) a pair of critical conditions. 

allowable values of this unknown define a range or probability density func- 
tion on each of the coordinate axes. To define such ranges requires tha t  each 
of the  unknowns is physically meaningful, or measurable in principle, so tha t  
such a finite range will exist. Only if all the unknowns (and the classical 
parameters in particular) have a physical function t ha t  can be interpreted 
well, can they be reasonably constrained. The ranges within which a certain 
parameter has  to  be are  - in the worst case - given by physical limits, e.g. a 
lower limit of zero for most rate  constants, or an  upper limit of one for a 



limiting factor. In many cases,  however, one will be able to find parameter 
values in the  appropriate l i terature (e.g. Jdrgensen e t  al. 1978), or even infor- 
mation from specific experimentation or observations from the specific sys- 
tem modeled. They can all be utilized t o  define allowable ranges for the  un- 
knowns. 

The rationale for defining these ranges as  narrowly as  can be justified, 
without too much arbitrariness,  is twofold. On one hand, narrow ranges 
increase the  sampling density and reduce the number of trials necessary t o  
explore t h e  parameter space sufficiently. On t h e  other hand, if no satisfactory 
solution can be found within t h e  ranges deemed plausible apriori ,  this will 
indicate t h a t  the  model does not function as the  analyst thought i t  would. 
Obviously, the  parameters do not influence the  model behavior as assumed, 
they function differently from the analyst's perception of their function; in 
other words, the re  is something wrong with t h e  model s t ructure  (Section 3.1). 

Besides such straightforward information to  be derived from the rela- 
tionships between parameter  s e t  and response se t ,  t h e  subregions of the  
parameter  space corresponding t o  certain subregions in t h e  response space 
can give valuable insight into t h e  model behavior. Parameter  correlations, or 
any s t ructural  properties of parameter  space regions for a certain class of 
response, can be interpreted in  t e r m s  of a sensitivity analysis (Section 3.2). 
Figure 3 gives examples of projections of parameter space regions with cer- 
tain response characteristics on to planes of two parameters.  

2.3 A Formal Presentation of the Method 

Let us  suppose t h a t  a given model s t ruc ture  is assumed. The model can 
be represented by a vector function j with domain D ( j )  and range R(f ). If 
RD is a subset of R ,  then  the  inverse image of RD under j is t h e  subset of 
D ( j )  given by 

f - ~ ( R D )  = Iz: j ( Z ) E R D ~  

This subset  will be called PM, and represents t h e  s e t  of all parameter vectors 
resulting in the  defined, acceptable model responses RD. 

To identify PM,  we have to  define RD by a series of constraint conditions, 
which can include more classical objective functions, e.g. a least-squares cri- 
terion (Section 3.1). From the  plausible ranges for each of the parameters to  
be estimated, the  set  of allowable parameter  vectors, PD, is formed as  t h e  
direct or Cartesian product. Random samples a re  then  drawn from PD, form- 
ing a s e t  of trial  parameter  vectors.  Each of these  vectors is used for one 
trial  run  of t h e  model, and the resulting model response is classified accord- 
ing to t h e  s e t  of constraint conditions into those giving t h e  defined behavior: 

RS' = fRSi:(RSieRD)] n (RS1)  = M 

and those violating a t  least one of the  constraint conditions, t h u s  not  giving 
the  defined behavior: 

RS" =[Rq:(RSia RD)] n(RS") = N - A 4  



FIGURE 3 Parameter  vector space projection for a behavior-giving s e t  of parameter  
vectors. Projection from t h e  22-dimensional parameter  vector space on to a plane of 
two model parameters;  extension of t h e  individual axes indicates t h e  range used for 
sampling. 



FIGURE 4 Set diagram of the relationships between parameter space and response 
space. D ( f )  is  the set  of all possible parameter vectors (domain o f f  ); R ( f )  is the 
set of all possible model responses (range off  ); f is the model (vector function); PD 
is the  defined set  of plausible parameter vectors; RD is the defined realistic response 
region; PM is the inverse image of RD; PS represents the character vectors sampled 
in the Monte Carlo procedure; RS is the direct image of PS; PS' is the subset of PS 
that  generates plausible realistic response RS'; PS" is the  subset of PS resulting in 
an unrealistic response RS"; PS. is the mo&fied PS' used for prediction, resulting in 
RSL . 

The N parameter vectors used for the trials are thus split into the comple- 
mentary subsets PS' and PS" with M and N-M elements, respectively. The 
set  of parameter vectors PS', resulting in the defined model behavior, is then 
the solution to the estimation problem. It is a subset sampled from the 
parameter space region PM. These relationships are summarized in Figure 4. 

2.4 A Very Simple Illustrative Example: Estimating Regression Coefficients 

To illustrate the method very simply, let us  consider a data set  (Figure 
5(a)), with only one dependent state variable (y) plotted as a function of an  
independent one, which could, for example, be time. Let us also assume that  
a priori  information about the system represented allows us to construct a 
model for it. To make the example as  simple as  possible, I will propose a 
model of the form 

y( t )  =at 

(the reader might try to find a meaningful ecological example for this) with 
only one parameter ( a ) ,  to be estimated from the data. Let me assume that ,  
for reasons of "ecological plausibility," a can be constrained to the range 



FIGURE 5 (a) Data set indicating the positions of the constraint conditions c(1) and 
c(2); thin lines represent envelopes over the responses of models 1 and 2; broken 
lines show allowable model response for model 2 (note the  divergence outside the 
constraining bars). (b) Projection of model I response space, defined by the two con- 
straint conditions; the box delimits the allowable response. (c:) Projection of model 2 
response space, indicating the positions of successful trials in the parameter space; 
the parameter box represents the ranges sampled. 
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which, in fact, defines a region in the one-dimensional parameter space or a 
set of plausible, allowable a 's .  On the output side, we can formulate a 
number of constraint conditions or performance criteria based on the data in 
Figure 5(a), which explicitly include the  uncertainty around the observations 
(thought of as samples from a real-world system), indicated by the  bars 
extending from two of the points. (The points without bars represent the  typi- 
cal singular observations or measurements without replica, which are some- 
what difficult to interpret.) 

The constraint conditions or performance criteria c ( i )  t o  be met are 
summarized as: 

c(1): 2.5 < y(2) < 5.0 

c(2): 7.0 < y (8) < 9.0 

According to the terminology introduced above, the  two criteria define a 
region in a two-dimensional behavior space (Figure 5(b)), or a se t  of allowable 
model responses. 

To estimate values for a ,  we simply draw random samples from the  
interval defined around a ,  substitute these values in the model, "simulate" 
for the desired range of the independent variable, and determine the values 
of the two performance criteria, namely the values of y at  t=2  and t =8. To 
no surprise of the reader, none of the values of a that  can be sampled from 
the predefined interval will satisfy both of the constraint conditions. Conse- 
quently, the model will be rejected. Similarly, other one-parameter alterna- 
tives to the proposed model, namely 

y ( t )  = ta  

and 

also fail to meet  the constraint conditions imposed on the model output. 
Modifying the model by introducing one more parameter will lead to an alter- 
native two-parameter model, which is then subjected to the same test  and 
estimation procedure. The simplest form of the model would be 

with a simple additive second parameter (6).  This could be thought of as, for 
example, the initial state of y at  t = 0, which, in the first models, was impli- 
citly forced to take values of 0 and 1, respectively. Constraining b to the 
range 

we repeat the sampling and simulation procedure. This time, some of the 
simulation runs will meet both constraint conditions (Figure 5(c)). As can 
also be seen from Figure 5, the corresponding parameter vectors are found 
clustered in the parameter space region sampled randomly. The two parame- 
ters are clearly correlated (Table I), indicating their mutual dependency or, 
in other words, the fact tha t  a change in one: of them can, within a certain 



range, be balanced by a corresponding change in the other.  Table 1 summar-  
izes some basic statistics of the parameter  subset PS' (Figure 4),  i.e. the sub- 
se t  resulting in acceptable model behavior. 

TABLE 1 Parameter statistics and prediction (example); 5000 runs evaluated. 

Range Standard 
sampled Mean Min. Max. deviation 

Parameter a 0.500 - 1.500 0.05 0.630 1.080 0.097 
Parameter b 0 - 2.000 1.33 0.340 2.000 0.407 
Prediction (i! 12) 11.45 9.54 13.30 0.924 

Comelatwn m a t h  
1 2 

2 
Significant (p < 0.05) 
negative correlation 

3 
Significant (p < 0.05) Significant (p < 0.05) 
positive correlation negative correlation 

In a final step, the s e t  of allowable parameter  vectors can now be used 
for predictions of y ,  for example, for t= l2 .  A set  of estimates results.  If 
enough vectors are used, a frequency distribution or a probability density 
function can  be constructed for the  prediction, allowing for a probabilistic 
interpretation (Figure 5(a)). The variability of the parameters results directly 
from the uncertainty in t he  observations, and is again reflected in the output 
variability. 

2.5 Some Technical Details 

One of the major drawbacks of Monte Carlo methods is their insatiable 
demand for computer t ime. Although they are  very efficient in terms of the  
time required by the analyst or modeler to set  up an  appropriate scheme for 
estimation and evaluation, this efficiency is traded against computer t ime 
and, eventually, storage capacity. 

There are  a few basic rules t ha t  can help to  make Monte Carlo tech- 
niques more efficient in t e rm s  of computer use. 

a. M i n i m i z e  the n u m b e r  of trials 
A reduction of the number of trial ru.ns necessary to identify a set  of 

parameter vectors for a certain class of model response can be achieved in 
several ways. First, a given estimation problem can be split into several 
cycles of trial runs in an iterative way. Each cycle is analyzed before the next 
one is started. This eventually allows corrections to  be made, the ranges tha t  
are  to be sampled to  be redefined, constraint conditions to be modified, etc.  
After a relatively small number  of trial  runs  (which certainly will depend on 
the number of unknowns estimated simultaneously) one might,  for example, 
find a clear clustering of the "good" vectors in t he  parameter space already. 
If, consequently, certain regions in  the parameter space seem "empty" (in 



terms of solutions), they can be discarded (by redefining the ranges sampled) 
to improve the efficiency of the  sampling. Another example would be con- 
straint conditions, which are always violated. This should lead to  the recon- 
sideration of these conditions and the parameter ranges sampled (here they 
might have to  be extended), or  a modification of the whole model s t ructure 
itself. Clearly, if after a first screening of the parameter space all model 
responses are off their target in a systematic way (as in the  example above), 
an increase in the number of trials will probably not  be worth while. 

Some intelligent check on the number of runs can be made by defining 
complex stop rules for a cycle instead of simply using a fixed number of tri- 
als. Such stop rules, for example, can monitor the means, standard devia- 
tions, and ranges of parameters of a certain response class, and stop the esti- 
mation if new samples no longer change these values, i.e. when the estimates 
converge. Table 2 refers to  the example described above. 

TABLE 2 Convergence of parameter estimates with increasing number of 
samples (independent cycles). 

Number a b 
of samples Mean Minimum Maximum Mean Minimum Maximum 

b. *eed  up the trial runs  
Since a simulation program may run  several thousand times in a Monte 

Carlo framework, streamlining the code will pay off. This includes, for exam- 
ple, the inactivation of all statements tha t  are not  essential for the determi- 
nation of performance criteria. Examples might be auxiliary output variables, 
which are  not used in the testing procedure. Also, parts of the model tha t  are  
unchanged within a cycle of trial runs (for instance, setting up the geometry 
of the  lake in the  second application example, Section 3.2) should not be exe- 
cuted more than  once in such a cycle. This, of course, requires more pro- 
gramming effort than simply calling the entire model as  a subroutine of the 
Monte Carlo program - a compromise between programming effort and com- 
puter resource utilization has to  be found. 



A somewhat simpler possibility is to abandon a run as soon as i t  is obvi- 
ous (even during run-time) that a given constraint condition will be violated. 
Since this may happen within the first few time steps, savings in computer 
time can be considerable. 

c. Reduce input/output 
As even a small simulation program, when run several hundred or 

thousand times, can produce an absolutely incomprehensible mountain of 
output, the reduction of output is essential for more than one reason. First, 
there will rarely be enough space to store i t  all; second, nobody is going to 
look at  i t  all anyway; and third, 1/0 is time-consuming. Therefore, i t  is essen- 
tial to reduce output to a minimum and do whatever processing has to be 
done with the output (e.g. classification, and calculation of certain statistics) 
within the Monte Carlo program. Again, there is a trade-off between the size a 
program can have on a certain machine, setting an upper limit to what can 
be done simultaneously, on-line, and storage capacity. Designing "intelligent" 
programs for the automatic analysis of Monte Carlo runs is probably the most 
demanding - and most challenging - part  of the technique. 

Similarly, input should clearly also be reduced to the absolute 
minimum. The most obvious examples are time-variable inputs or forcings to 
a dynamic simulation model, which should not be read a t  each time step of 
each trial, but only once for a cycle of trials, and then stored in an appropri- 
ate  form within the program. Again, this calls for a compromise between time 
and core requirements. 

d. Think f i r s t  
As trivial as this last "rule" might seem, i t  is probably the most impor- 

tant  one. It is most tempting to just let  the program run (specifically when 
computer time is a free commodity) - and then to discover a little bug, 
somewhere, that makes thousands of runs worthless. Time spent in carefully 
considering the estimation scheme will certainly pay off in the long run. For 
example, if the parameter ranges sampled are fairly large, most complex 
models are bound to "crash" sooner or later - unless care is taken of zero 
divides, overflows, and underflows. Also, since operating systems tend to fail 
sometimes, provisions should be made that ,  in case of the unavoidable crash, 
only a minimum amount of information is lost, and an estimation cycle can 
be restarted. The Morite Carlo approach is very forgiving and helpful in this 
respect, as sample runs can always be pooled. 



3 APPLICATION EXA?dPLES 

3.1 Hypothesis Testing: A Marine Pelagic Food-web Example* 

The study of environmental systems as ecological and physicochemical 
as well as socioeconomic entities requires a high degree of simplifying for- 
malism. However, a detailed understanding of a systems function and 
response to various changes for the explicit purpose of systems management 
and planning still requires complex hypotheses, or models, which can hardly 
be subjected to rigorous tests without the aid of computers. Systems simula- 
tion is a powerful tool for subjecting complex hypotheses to rigorous tests of 
their logical structure, as well as a possible means for rejecting or corrob- 
orating the underlying hypotheses. 

The complexity and variability of environmental systems, the scarcity of 
appropriate observations and experiments, problems in the interpretation of 
empirical data, and the lack of a well established, comprehensive theoretical 
background make it  difficult to test  any possible conceptualization, or 
hypothesis, describing a given system. A formal approach to  hypothesis test- 
ing, based on numerical simulation and Monte Carlo methods, which explic- 
itly considers the above constraints, is proposed in this section. 

Based on a data set from the North Sea, a series of hypotheses on the 
structural relations and the dynamic function of the  pelagic food web is for- 
mulated in terms of numerical models. Hypotheses of various degrees of 
aggregation and abstraction are tested by comparing singular statements 
(predictions) deduced from the proposed hypotheses (the models) with the 
observations. The basic processes of primary production, consumption, and 
remineralization, driven by light, heat, and advection/diffusion, are  
described in systems models ranging in complexity from two compartments 
to many compartments and species groups. Yearly cycles of systems 
behavior are simulated with each of the proposed models. A comparative 
analysis of the response of each of the  models allows conclusions to be drawn 
on the adequacy of the alternative hypotheses, including their "unknowns" or 
initial conditions (i.e. This analysis also allows one to reject 
inadequate constructs, and provides some guidance on how to improve a cer- 
tain hypothesis, even in the presence of a high degree of uncertainty. 

Universal statements, describing those properties of a system that  are 
invariant in space and time, may be called models, whether they are of an 
informal (e.g. verbal or mental) or a formalized mathematical structure. 
Such models, viewed as  scientific theories, have to be t es tab le .  When one 
feeds or substitutes a se t  of specific singular statements into the  model (the 
initial conditions, which, in the case of a mathematical model, also include 
the model parameters in a general sense, as discussed in Section 2.2), i t  must  
be possible t o  deduce or predict testable singular statements (i.e. possible 
observations or the outcome of possible experiments). Disagreement between 
the  prediction deduced from the hypothesis or model and the available 

*This section is largely based on Fedra (1981a, b). 



observations would then require rejection of the hypothesis, modification and 
improvement, or the search for alternative hypotheses, which would then 
have to be subjected to the same procedure. This method, which would basi- 
cally represent the strategy of scientific research proposed by Popper (e.g. 
1959), labeled falsificationism by critics such as Feyerabend (1975) and Laka- 
tos (1978), however, has a major drawback when applied to complex simula- 
tion models or dynamic hypotheses describing ecological systems, in that  the 
so-called initial conditions to be used with the basic structure of the theory 
to deduce the testable predictions are not exactly known. In one simple 
example given by Popper (1959). where he refers to a mechanical experiment 
(breaking a piece of thread), the initial conditions to be specified are simple 
enough: a weight and the characteristics of the thread (e.g. material, diame- 
ter  etc.), which are measurable without considerable error (it is significant 
that  many examples used in epistemological analyses refer to relatively sim- 
ple physical systems). Measurements "without" error, however, are not usu- 
ally possible when we are dealing with the complex aggregates conceptualized 
as "units" in large-scale systems thinking and models. This can certainly be 
seen as the result of two basic shortcomings, one in the measurement tech- 
niques available, another in the formulation of the models themselves: if the 
models require unknowns as inputs, they are not well formulated. The latter 
is certainly a generic shortcoming of environmental models and the underly- 
ing theoretical understanding. 

The same line of argument can be followed with regard to the observa- 
tion used for comparison with model output in hypothesis testing. The break- 
ing of a thread, the singular prediction in Popper's example, is readily observ- 
able. It either happens, or does not. In most environmental applications, 
however, we have to compare predictions with measurements (as a rule, sam- 
ples) of the system, which always include some measurement error, that  is to 
say, these are ranges. Also, in environmental systems the degree of abstrac- 
tion and aggregation is quite different for measurements and for model con- 
ceptualization. Therefore, the observations and measurements can serve only 
as  samples of the properties or the state of the units conceptualized. As these 
units a re  generally heterogeneous (in terms of their measurable properties) 
and are generally characterized by a high degree of variability, further uncer- 
tainty has to be dealt with in the hypothesis-testing procedure. 

Retaining the logical structure of testing a proposed hypothesis, but  
including a t  the same tirne the appropriate (or rather unavoidable) way of 
describing uncertain "initial conditions" as well as the expected outcome of 
the experiment, involves the following procedure. It is possible to describe 
the initial conditions or inputs by several numbers (forming a vector, deter- 
mining a point in the n-dimensional input vector space) and to do the same 
for the expected result of the experiment (the observed behavior of the sys- 
tem), resulting again in a point in an n-dimensional output or behavior space. 
In the presence of uncertainty, the  two points will have to be extended to 
regions in their respective spaces. Instead of the two vectors, we have to deal 
with sets of vectors with certain statistical properties and probability struc- 
tures. 



To test any specific hypothesis, we now examine whether, for a set  of 
admissible initial conditions (i.e. the parameters), predictions (members of 
the set  of allowable outcomes) can be made. The rejection of a hypothesis, 
whenever no allowable outcome can be generated, is based on a statistical 
argument, as the number of possible initial conditions forming the admissible 
set  is infinite, and only samples can be examined. Also, the set  of admissible 
initial conditions will rarely be well defined on the  basis of ap r io r i  knowledge 
( ap r io r i  in relation to the specific experiment to be carried out). Generally, 
i t  will be possible to specify allowable ranges for the individual initial condi- 
tions. The admissible set,  however, is also characterized by the correlation 
structure, which determines the "shape" of the admissible region in the 
parameter vector space. 

This method of testing a given hypothesis does not indicate how such a 
hypothesis can be arrived at  in the first place - by "conjecture." Popper's 
rejection of inductive reasoning does not provide much help, but in practice 
hypotheses (and simulation models) are rarely generated randomly but are 
always based on empirical knowledge. However, the process of testing and 
rejecting a given hypothesis can also provide some diagnostic information 
about the causes of failure and about possible ways to improve the 
hypothesis. 

One possibility is strict parsimony: to s tar t  with the simplest possible 
conceptualization, or the least complex model one can formulate bona fide, 
which still may capture the relevant features of the system in view of the 
problem studied. Certainly, each hypothesis tested should be an honest candi- 
date for success: "What then is the point of setting up a [Poisson] model like a 
skittle, just to knock it down again?" (Finch 1981). If this simple version fails 
to give an acceptable behavior over the allowable parameter ranges, the 
model structure is modified. Complexity is increased by adding elements and 
more complex process descriptions to the model (Figure 6), until a satisfac- 
tory behavior can be achieved. However, there is in any case more than one 
way to increase the complexity of a model. A general formalization of this 
"adding of complexity" seems to be most difficult, if not impossible. Some gui- 
dance for this process can be expected from the analysis of a series of errors, 
as  will be shown below. Also, as I am only considering "conceptual" models (as 
opposed to purely statistical models, they are based on physical processes 
and only include terms directly interpretable in the "real world), additional 
observations can be exploited in many cases. Knowledge accumulated from 
the study of similar systems may also be helpful in changing a given model 
structure. 

Building up complexity and iteratively subjecting each version or level of 
the model to extensive tests should allow one to learn about the way struc- 
tural changes influence model response. At the same time, the intricate con- 
nection between structure and the parameters has to  be emphasized, since 
model behavior is certainly responsive to both. As changes in the model 
structure will, in almost every case, al.so necessitate changes in the parame- 
ters (their numbers, admissible ranges, and interpretation), comparisons of 
different versions are quite difficult. Although the approach described below is 
clearly far from being ideal, any attempt a t  a formalization of the modeling 
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FIGURE 6 Flow diagrams for t h e  models compared: P, phosphate; A, phytoplankton; D. 
detritus; 2,  zooplankton; Z1, herbivores; Z2, carnivores. 

process seems preferable to a purely arbitrary and subjective procedure. 

3 . 1 . 1  7he Empirical Background: &scribing the Environmental System 
Considering the above constraints, the direct use of the raw data avail- 

able on any ecosystem seems to be rather inappropriate and difficult for the  
testing of complex and highly aggregated dynamic hypotheses. Consequently, 
we have to derive from the  available data a description of the system and the 
processes we want to study a t  a more appropriate level of abstraction and 
aggregation. This description, which already has to be formulated in terms of 
the  hypothesis to be tested, should take advantage of all the available infor- 
mation, and a t  the same time provide an estimate of the reliability of this 
information a t  the required level of abstraction. 

To illustrate the approach, a data set  from the southern North Sea was 
used. Most of the information utilized stems from the yearly reports of the 
Biological Station Helgoland, and describes physicochemical as well as biolog- 
ical variables a t  the sampling station "Helgoland-Reede" for the period 
1964-79. 

Figure 7 summarizes the data used. The driving environmental variables, 
water temperature and radiation, were found suffiekntly smooth and well 



behaved for a direct utilization of the long-term averages, approximated by 
simple sine waves. Data for nutrients (PO4-P) and algae (measured a's chloro- 
phyll a as well as in terms of carbon, recalculated from counts) showed con- 
sistent yearly patterns.  However, when the year-to-year variations (as  well a s  
the implicit sampling errors) are  included, the high variability of the  obser- 
vations as  well as the difficulty in averaging over t ime (several years) 
becomes obvious. Although the average phytoplankton dynamics show a sin- 
gle, but extended peak around July/August, the  individual years exhibit a t  
least two peaks in the summer.  As a result  of their variable timing, the  peaks 
are  averaged out  when one looks at  the long-term mean. Also, the  long-term 
mean is about one order of magnitude below the spiky peaks of the data for 
the  individual year. Little information was available on zooplankton biomass. 
However, some additional information from independent experimentation, 
mainly on primary production, was also found. Also, the  (time-variable) ratio 
of phytoplankton carbon to chlorophyll was used for the models described 
below, and approximated by a simple exponential curve. 

Among the  invariable, generalizable conditioris derived from the obser- 
vations are  the following: 

1. Primary producers are  below a level of 4.0 mg m-3 chlorophyll dur- 
ing the first three months of the year. 

2. Between Julian days 120 and 270 there  is a t  least a twofold increase 
in biomass. 

3. There have to  be a t  least two peaks within tha t  period, with a reduc- 
tion of more than 25% of the first peak value in between the  two 
peaks . 

4. After day 270, biomass mus t  be below 4.0 mg m-3 chlorophyll again. 
5. The higher of the two peak values must  not exceed 25 mg m-3 

chlorophyll. 
6. Yearly primary production mus t  be above 300 and below 700 g C 

m-2. 
7. Herbivorous consumers (zooplankton) reach their  first biomass 

peak value (defined as a t  least a twofold increase of their initial 
biomass before a subsequent decline) after the phytoplankton. 

8. The maximum density of herbivorous consumers mus t  not exceed 
1000 mg C m-3. 

9. PO4-P concentration has to be above 20 mg m-3 between days 1 and 
90. 

10. The average PO4-P concentration between days 120 and 240 has t o  
be below 20 mg m-3. 

11. PO4-P concentration has to  be above 20 mg m-3 after day 270. 

12. PO4-P concentration mus t  never exceed 50 mg rn9 and i t  mus t  
never be below 2 mg m9. 

13-17. All s ta te  variables mus t  be cyclically stable (* 25% tolerance 
level). 
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FIGURE 7 (a) Phosphorus dynamics (PO~-P)  for selected years  from 1964 t o  1979; the  
thick line indicates monthly averages for t h e  years  1965 t o  1975 (after unpublished 
data  from Weigel and Mangelsdorf; Harms; Harms and Hngmeier; Harms, Mangelsdorf, 
and  Hagmeier; Mangelsdorf). (b) Chlorophyll dynamics for  selected years  frorn 1964 
t o  1979; t h e  thick line indicates monthly averages for t h e  years  1965 to 1975; the  
broken l ine shows microzooplankton carbon for the year  1975 (after unpublished 
data  from Weigal. Hagmeier, and Treutner; Hagmeier, Kanje, and Treutner  (yearly re- 
ports of t h e  Biological Station Helgoland, 1964-79)). 



This description of the observed systems features, defining a region in 
t he  behavior space of the system, has to be understood as a semiquantitative 
description of persistent patterns rather  than a quantitative description of 
the system for any specific period. Of course, more resourceful analysis of 
the  available data and the  incorporation of additional information would allow 
this description t o  be refined. 

3.1.2 Hypothesis  Generation a n d  Testing: Designing Alternative Models 
In t he  li terature, one can find many conceptualizations or  models of 

aquatic ecosystems, and of the  pelagic, productive upper par t  of lakes or  the  
oceans in particular. Several books have dealt with such conceptualizations 
for marine systems (e.g. Steele 1974, Nihoul 1975, Cushing and Walsh 1976, 
Goldberg e t  al. 1977, Parsons e t  al. 1977, Kremer and Nixon 1978, Barnes and 
Mann 1980). Some contributions deal with the  North Sea specifically (e.g. 
Pichot and Runfola 1974, 1975, Radach and Maier-Reimer 1975, Radach 1980). 
A wide range in detail and complexity has been covered both with respect t o  
biological and physiological factors (e.g. Steele and Frost 1977, Steele and 
Mullin 1977, Morris 1980, Greve 1981) and with the  emphasis on the physical 
and spatial aspects (e.g. Walsh 1975, Steele 1976, 1978, Dubois 1976, Dubois 
and Closset 1976). Against this  background, the models presented and dis- 
cussed below are not to  be understood as further contributions to the study of 
the  southern North Sea; rather,  they are extremely simplified examples, pri- 
marily designed to illustrate the approach. 

3.1.3 Hypothesis  Number 1:  Two Compar tmen t s  in a Simple Physical F4ame- 
work  
Let me now try to  formulate one very simple hypothesis about t he  

pelagic food web described by t he  data se t  in Section 3.1.1. Again, i t  should be 
stressed t ha t  the model described below is proposed not as a useful represen- 
tation of the  southern North Sea, but  only as an  illustrative example t o  
demonstrate t he  approach. The system is conceptualized as  consisting of 
only two compartments,  namely particulate, photosynthesizing organic 
matter ,  and mineral nutrients,  which are  coupled by the processes of primary 
production and nutrient uptake, mortality, and respiration/mineralization; 
t he  system is driven by light and heat  and by turbu1e:nt mixing (eddy 
diflusivity). Controlling mechanisms a re  light and nutrient limitation of pri- 
mary production, self-shading of algae, and temperature dependency of all 
the biological processes. A detailed description of these models is given by 
Fedra (1981b, c). 

Monod kinetics a re  used to  describe nutr ient  limitatiori of primary pro- 
duction, with a constant half-saturation concentration; maximum growth 
rate is described as  an exponential function of temperature, with a QI0 of 
about 2; light limitation is described using the double time-depth integral of 
Di Toro e t  al. (1971) of Steele's (1962) equation ( the implications of this  for- 
mulation are discussed by Kremer and Nixon (1978)). Mortality is described as  
a nonlinear, concentration-dependent function of algal biomass and is 
directly coupled to  remineralization, without any t ime lag or  fur ther  control. 



Mixing with a "deep layer" is described as the exchange of a constant fraction 
of the volume of the upper layer (10 m deep), where the  PO4-P concentration 
of the deep layer equals the initial (winter) concentration of the  upper layer, 
and the algae concentration is zero, tha t  is to say, algae can only be lost from 
the system. The rate of mixing is changed by a step function, triggered by 
temperature, such that the initial high (January) value is set  to one-tenth as 
soon as lhe surface temperature reaches three times its starting value; mix- 
ing rate  is reset to the high value as soon as the surface temperature drops 
below the trigger level. This extremely simplified variation of the mixing 
coefficient over the year comes close to the patterns used by Lassen and Niel- 
sen (1972), and is also frequently used for the description of seasonal thermal 
stratification in lakes. 

This model requires six parameters to be estimated, the initial condi- 
tions and the driving variables being "known." For each of these parameters 
or ra te  coefficients a possible, allowable range can be specified, depending on 
the available knowledge. In the worst case, a mortality rate ,  for example, has 
to be greater than zero and smaller than one. To circumvent the problem of 
uncertain initial conditions, a se t  of likely values (estimated from the avail- 
able data) was taken and allowed to  adjust by letting the model simulate a 
period of three years. This strategy (using the results of the third year after 
arbitrarily specifying the initial condition for year one instead of adding more 
dimensions to  the parameter search space) was followed with all the models 
described below. The models are formulated in terms of phosphorus, with 
constant stoichiometric conversions to  carbon and a time~~variable carbon: 
chlorophyll ratio. 

3.1.3.1 Testing hypothesis  n u m b e r  1 
To test the hypothesis formulated in Model 1, the  model was incor- 

porated into a Monte Carlo framework, which randomly sampled a parameter 
vector from the allowable ranges (Table 3), ran the model through a period of 
three years, to  allow the arbitrary initial values of the s tate  variables to  
adjust, and finally tested for violations of the constraint conditions in the 
third year of simulation. This process was repeated for a sufficiently high 
number of trials (more than 100,000 runs were performed with each of the 
models). Since 100,000 runs of even a comparatively simple simulation model 
produce a large amount of almost incomprehensible informatiori, several aux- 
iliary programs for the automatic analysis of the simulation results were 
used. Table 3 shows an example of the output of one of these analysis pro- 
grams, which includes the parameter ranges sampled and the basic statistics 
of the parameter ensemble used to generate the model response shown in 
Figure 8. 

In summary, Model 1 could fulfill all of the constraint conditions but one: 
i t  was not possible to  reproduce two algae peaks during the  summer period 
(without violating several other conditions). Figure 8 shows a sample output 
from Model 1. 

Hypothesis number 1 consequently had to be rejected. To build an 
improved hypothesis, the distributions and correlation s tructure of parame- 
ters and output variables from those runs violating only condition 3 (the two 



TABLE 3 Automatic parameter  estimation analysis program: parameter  statistics for 
Model 1. Monte Carlo run  selection: violation of condition 3 only. 

Standard Range 
Mean Min. Max. deviation sampled 

Parameters 
1 Michaelis constant  6.08 2.23 13.84 
2 Phytoplankton mortality 0.36 0.25 0.50 
3 Light optimum 410.10 301.51 497.40 
4 Mixing coefficient 0.18 0.11 0.23 
5 Maximum growth coefficient 1.03 0.70 1.42 
6 Temperature trigger 3.24 2.56 3.85 

Output constraint variables 
(concentrat ions in mg m-3) 

7 Chl. high, days 1-90 
0 Chl. s u m m e r  peak 
9 Chl. first peak 

10 Chl. low between peaks 
11 Day of first peak 
12 Chl. second peak 
13 Day of second peak 
14 Chl. high af ter  day 270 
15 Chl. maximum 
16 PO4 maximum 
17 PO4 min imum 
18 PO4 low before day 90 
19 PO4 low after  day 270 
20 PO4 average, days 120-240 
21 Primary production (g C m4) 

(not violated) 

(not  violated) 

Correlation rnatriz o f  parameters 
1 2 3 4 

2 -0.2 
3 0.1 -0.6 
4 0.1 0.7 -0.5 
5 0.5 0.6 -0.0 0.7 
6 -0.2 0.5 -0.2 0.2 

algae peaks) were analyzed. Some technical details of this kind of analysis are 
described below, in the next application example, and in Fedra e t  al. (1981). 
However, the analysis indicates that  phytoplankton mortality is a critical pro- 
cess, and its representation consequently deserves refinement. This can be 
deduced from the significant correlations between the mortality rate 
coefficient and the other parameters, as  well as from different output vari- 
ables in groups of simulations violating different constraint conditions. 
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FIGURE 8 Output from Model 1 (Figure 6): envelope over 31 runs (for the state vari- 
ables "algae" and "nutrients") contrasted with the envelopes over the field data set 
used (Figure 7). The runs shown fulfill all behavior requirements but the condition of 
two peaks of algae biomass during the productive season. 

3.1.4 m p o t h e s i s  i k m b e r  2: A F o u r - c o m p a r t m e n t  Web 
As a slightly more complex altermative to  Model 1, a second version was 

formulated t o  incorporate detri tus and omnivorous zooplankton. The descrip- 
tion of primary production and the physical framework are essentially t h e  
same a s  in  the  first version. Model 2, however, splits the  phytoplankton mor- 
tality into a natural,  background mortality, which is described as  
concentration-dependent, and losses due to  grazing. Background mortality as  
well a s  zooplankton mortality now feeds into the  detri tus pool, which in t u r n  
feeds (temperature-dependent) back into the  nutr ient  pool; detri tus is also 
available for zooplankton, for which, however, a certain preference for living 
algae is assumed. Zooplankton respiration also feeds into the  nutr ient  pool. 
Figure 6 shows the flowchart for th is  model. The descriptjon of grazing was 
based on a simple encounter theory. With this inclusion of a herbivorous zoo- 
plankton compartment,  a choice had to  be made of how to describe grazing. 
Numerous formulations abound in the  l i tera ture ,  and to give one example, 
Jdrgensen (1980a, table 3.9) lists 14 different formulations of zooplankton 
grazing rates.  Given tha t  there is no additional information available to  sup- 
port a decision on which construct should be used, one can s ta r t  with a s  



simple an  assumption as possible, and subsequently t es t  i t .  In the  tes t ,  t h e  
resulting model performance was not satisfactory either:  for low values of the 
grazing ra te  constant,  the  zooplankton did not  survive phytoplankton lows in 
winter, and died away. For high values of t h e  feeding ra te ,  in contrast ,  phyto- 
plankton was removed very quickly, as soon as i t  s tar ted growing in the 
spring, with a consequent collapse of the  zooplankton population itself. This 
does no t  rule out  the  possibility t h a t  features of t h e  model other than  t h e  for- 
mulation of grazing are  responsible for these  failures, or a t  least contribute 
to them.  

However, after "rejection" of the  encounter  theory, description of graz- 
ing was based on a saturation curve, similar to Michaelis-Menten kinetics, 
using a temperature-dependent maximum feeding ra te  coefficient, with t h e  
same temperature  dependency as for respiration and remineralization. The 
governing equations are given in Fedra (1981b, c). 

This version was also subjected t o  t h e  Monte Carlo simulation procedure 
described above. The resulting response was analyzed accordingly. The intro- 
duction of a second trophic level in Model 2 now allowed a reproduction of t h e  
well known oscillatory behavior of predator-prey systems, and thus  permit- 
ted fulfillment of condition 3, requiring two phytoplankton peaks. However, 
this version was incapable of producing enough algal carbon over the year,  
thus  violating condition 6 (Table 4). This is simply due to  the  fact t h a t  only a t  
comparatively low primary productivity levels was t h e  system stable enough 
to  stay within t h e  behavioral bounds specified. The output  or constraint vari- 
able yearly primary production showed a strong positive correlation with t h e  
zooplankton grazing coefficient (parameter  6 in  Table 4) and zooplankton 
respiration (parameter  8),  which is a major source of nu t r i en t  recycling. This 
directly points to  the  positive feedback loop in these processes, and the  
resulting stability problems in this version of the  model. 

3.1.5 m p o t h e s i s  MLmber  3: One More Trophic  Level  
Model 2 was used as  the  basis for yet another modification, namely t h e  

introduction of another trophic level of carnivorous zooplankton, to explore 
i ts  importance in controlling t h e  herbivores (Greve 1901). A sample output of 
Model 3 is shown in Figure 9, and the equations a re  given by Fedra (1981b). 
Another five parameters had to  be introduced for the  additional detail in 
Model 3, leading to further problems in t h e  estimation and analysis. For 
example, the  proportion of runs  aborted during run-time (due t o  the  violation 
of some run-time checks on t h e  s ta te  variables, confining them within cer- 
tain plausible ranges, or to numerical instabilities in solving t h e  system of 
differential equations) grew dramatically to almost 99.9% of t h e  trial  runs  
when t h e  broad initial -parameter intervals given in Table 5 were sampled. 

The second trophic level of carnivorous zooplankton feeds on the  her- 
bivores in structurally the  same way as t h e  herbivores feed on the  phyto- 
plankton; herbivores, however, have t h e  additional source of detri tus avail- 
able. Owing to  its higher complexity, Model 3 was able to  generate  a broad 
spectrum of behavioral features (Table 5); i t  could not,  however, fulfill all of 
t h e  t e s t  conditioris imposed on its behavior a t  the  same time. Obviously, the  
simple inclusion of a structurally similar additional compartment  did not 



TABLE 4 Automatic parameter  estimation analysis program: parameler. s ta t is t ics  for 
Model 2. Monte Carlo output  run selection: 43 runs  violating conditioii fi only (pri- 
mary production). 

Range sampled 

Standard 
Mean Min. Max. deviation Low High 

Parameter  va lues  
1 Michaelis constant  9.88 5.06 14.88 3.17 5.00 15.00 
2 Phytoplankton mortality 0.07 0.03 0.10 0.02 0.00 0.10 
3 Light optimum 429.54 317.58 499.78 52.08 300.00 500.00 
4 Mixing coefficient 0.05 0.01 0.10 0.02 0.01 0.10 
5 Max, growth coefficient 1.53 0.82 2.35 0.41 0.50 2.50 
6 Zooplankton grazing 1.01 0.19 1.87 0.48 0.01 2.00 
7 Zooplankton de t r i tus  uptake 0.10 0.005 0.20 0.06 0.01 0.50 
8 Zooplankton respiration 0.09 0.02 0.28 0.06 0.01 0.25 
9 Zooplankton mortality 0.11 0.012 0.28 0.07 0.01 0.50 

10 Remineralization 0.25 0.015 0.49 0.13 0.01 0.50 
11 Temperature t r igger  3.04 2.51 3.49 0.29 2.50 3.50 
12 Grazing half-saturation constant  13.80 3.94 23.44 5.07 0.00 25.00 

Output constraint  var iables  
(concentrat ions i n  mg m-3) 
13 Chl. high. days 1-90 
14 Chl. s u m m e r  peak 
15 Chl. first peak 
16 Chl. low between peaks 
17 Day of first peak 
18 Chl. second peak 
19 Day of second peak 
20 Chl. maximum 
21 PO4 maximum 
22 PO4 minimum 
23 PO4 low before day 90 
24 PO4 low after  day 270 
25 PO4 average, days 120-240 
26 Primary production (g C m-') 
27 Day of zooplankton peak 
28 Zooplankton a t  algae peak 
29 Zooplankton peak value 

resolve t h e  basic problem; since t h e  process r a t e s  of both zooplankton com- 
p a r t m e n t s  a r e  only de te rmined  by external  driving variables ( t empera tu re ,  
food availability) b u t  not  by in ternal  control  mechan i sms  (e.g. developmental  
stages,  size and  age classes,  e tc . ) ,  t h e  result ing zooplankton response was not  
adequate over t h e  whole range of driving conditiorls for a yearly cycle. The 
model does well for pa r t  of the  yea r ,  or for p a r t  of t h e  required behavioral 
fea tures  over a full year ;  if, however, t h e  model behaves well during the  
productive season,  zooplankton will s tarve  and  collapse d u r ~ n g  the  winter.  
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FIGURE 9 Sample output  from Model 3; t h e  r u n  violates only the  condition t h a t  year-  
ly pr imary production should be above 300g Cm-2. Thick line: phytoplankton 
(chlorophyll a); broken line: herbivorous zooplankton (carbon); th in  line: phosphate; 
dot ted curve: surface temperature.  

Alternatively, if all plankton groups survive t h e  winter well, t h e  onset of high 
primary productivity will quickly lead to explosive growth and consequent col- 
lapse. 

Another possible explanation, although less appealing, might be t h a t  
some of t h e  constraint conditions a r e  just too narrow or badly placed. For. 
example, the  lower bound for yearly primary production s e t  a t  300 g C m-2 
could seem unrealistically high. Another comparable estimate,  given by 
Pichot and Runrola (1975) for the  Southern Right off the  Belgian coast, is 17.5 
g N m-2, which amounts to less than half the  German estimate [from yearly 
reports of the  Biological Station Helgoland, 1964-79) when converted to  car- 
bon units.  Reducing t h e  constraint of minimum yearly primary production to ,  
say, 100 g C m-2, would make the  model "acceptable." Quite obviously, t h e  
definition of the  constraint conditions can be critical, and thus indicates 
where fur ther  effort in data analysis (or col1et:tion) would be worth while. 

This points to  one of the  principal problems in environmental systems 
modeling, namely the problem of interpretation of "micro-scale" observations 
and experiments,  eventually performed in the  laboratory, on a macro-scale 
compatible with t h e  level of aggregation and abstraction used in t h e  concep- 
tualization of t h e  system. 

As was argued above, par ts  of the  systems behavior can be reproduced 
relatively easily. The major problem was found to lie in the  reproduction of 



TABLE 5 Parameter  statistics for Model 3. Monte Carlo output: 250,000 trial runs 
made, 219 runs evaluated. 

Standard Range sampled 

Mean Min. Max. deviation Low High 

Parameter  values  
1 Michaelis constant 
2 Phytoplankton niortality 
3 Light optimum 
4 Mixing coefficient 
5 Max. growth coefficient 
6 Zooplankton grazing 
7 Zooplankton detritus uptake 
8 Zooplankton respiration 
9 Zooplankton mortality 

10 Remineral~zation 
11 Temperature trigger 
12 Grazing ra te ,  carnivores 
13 Mortality rate ,  carnivores 
14 Respiration, carnivores 
15 MM constant, algae 
16 MM constant, detritus 
17 MM constant  ,herbivores 

Uutput constraint variables 
(concentrations in mg m-3, 
production values in g C m4) 
Chl. high, days 1-90 
Chl. summer peak 
Chl. first peak 
Day of first peak 
Chl. low between peaks 
Chl. second peak 
Chl. high aft,er day 270 
Chl. maximum 
PO4-P maximum 

PO4-P minimum 
PO4-P low until day 90 
PO4-P low after day 270 
Zooplankton peak value 
Carnivores peak value 
PO4-P average, days 120-240 
Primary production 
pp January 
pp February 
pp March 
pp April 
PP May 
pp June 
PP July 
pp August 
pp September 
pp October 
pp November 
pp December 



TABLE 5 (continued) 

Standard Range sampled 

Mean Min. Max. deviation Low High 

Secondary productiol 
Tertiary production 
Algae carbon, end 
Algae carbon, s t a r t  
Phosphate, end  
Phosphate, s t a r t  
Zooplankton, end  
Zooplankton, s t a r t  
Zooplankton 2, end 
Zooplankton 2, s ta r t  
Detritus, end  
Detritus, s t a r t  
Total P, end 
Total P, s t a r t  

the full range of systems behavior over the yearly cycle, that  is, over a wide 
range of the physical driving conditions. 

Quite obviously, none of the models discussed above is entirely satisfac- 
tory in light of the constraint conditions defined. The constraint conditions, 
although seemingly liberal, are quite demanding when compared with many 
examples of arbitrary judgment, so-called "satisfactory" or "reasonably good" 
agreement between (some) output variables of a model and the observations 
one can frequently find in the literature. However, this section does not 
at tempt to propose an elaborated dynamic model of the pelagic food web of 
the southern North Sea, but rather attempts to demonstrate (using the  exam- 
ple of admittedly quite simp11.stic models) a formal Monte-Carlo-based 
approach to model or hypothesis testing. 

3.1.6 The Generalizable Lesson 
To build complex hypotheses, used to describe and explain the structural 

and behavioral features of ecological systems, a formal approach and rigorous 
testing procedures are required. As has been demonstrated, parts of the 
observed behavior of a system may easily be reproduced. This then goes 
parallel with unrealistic behavior in other parts of the system. A complex 
hypothesis or model, however, can only be accepted as a valuable working 
tool, with explanatory value and predjctive capabilities, if i t  fulfills all the 
constraints one can formulate as defining the observed systems behavior. Vio- 
lation of one single condition necessitates the rejection of such a model, 
which should be just one step in an iterative process of analysis (Figure 1). 

One basic idea of the approach is to use the available information 
according to its relevance to the model's (that is, the theory's) level of 
abstraction or aggregation.. For a given model structure, thjs information is 
grouped into a set  of singular statements tha t  are to be substituted for the 
variables oi the universal statement ( the  theory or model), and - as the 
analysis is usually done e z  post - a set of singular statements (the observa- 
tions already available from the system) describing the expected outcome of 



the  simulation experiment. 
These constraint conditions, which generally will describe allowable 

ranges, have to be understood as replacing t he  arbitrarily precise observa- 
tions t ha t  are  possible, for example, in classical mechanics.  The formulation 
of these constraints provides a high degree of flexibility. In addition to the  
direct utilization of individual measurements (including the measurement  or 
sampling error to define a range), derived measures,  relations, integrals, 
averages, e tc ,  can be used. Whatever can be inferred from the observations is 
a valid constraint on the allowable model response. In addition, certain 
bounds, although not observed in a specific case, a re  obvious, deducible from 
some basic laws, such as mass and energy conservation, or from more empiri- 
cal rules like maximum efficiencies or process ra tes .  

Obviously, the description of the (lumped) states of a system can be 
accomplished much more easily on the appropriate level than t he  descrip- 
tion of (lumped) process rates and controls (just think in t e rms  of phyto- 
plankton biomass versus production rate).  Consequently, we tu rn  the  argu- 
ment  of the hypothesis-testing process around: instead of putting the 
"known" initial conditions ( the rates,  among others) into the  model s t ructure  
and deriving the response lor comparison, we use t he  allowable response as  a 
constraint to  identify possible initial conditions. This is to say, we map a 
given region in the  behavior space of a systern back into the parameter  vec- 
tor  space (Section 2.3) .  The tes t  is then whether or not this region in the 
parameter space exists within the  specified possible or plausible bounds. 

Hypothesis generation, tha t  is, the  conjecture of t he  initigl hypothesis or 
of an alternative hypothesis after t he  failure of a previous one, is a crucial 
step: t h e  hypotheses we are  using in environmental systems research are 
fairly complex or,  ra ther ,  composite, t ha t  is, they are  built from numerous 
individual constructs,  each of them being a hypothesis in itself. Their com- 
plex, dynamic, and nonlinear interactions make i t  difficult to relate a failure 
in the overall performance of the  model to  any of the individual constructs 
used. The kind of sensitivity analysis provided by the  method described above, 
although involving all input values (or parameters) simultaneously, only 
relates model performance to the inputs,  and not t o  the s t ructural  features 
of the hypotheses pe r  se .  In principle, s t ructure  anti input  values are insepar- 
able in their effect on the model response. Also, i t  is impossible to  tes t  any 
isolated process descriptions against observations - as has been proposed by 
some authors - as soon as feedbacks exist between t he  isolated process and 
t h e  remainder of the  system. In complex environmental examples, this  will 
almost always be the case. Obviously, t he  same holds t rue  for calibration, 
which, in the above a:pproach, is part  of the  hypothesis-testing process. 

To arrive a t  an alternative model s t ructure ,  the  diagnostic information 
provided by the analysis of failures is only of limited value. However, I 
assume tha t  whoever builds simulation models has a fair understanding of 
t he  systems he is  modeling. In the p r e v i o ~ ~ s  examples, i t  is ecological com- 
mon sense tha t  predation is usually a critical component in algae mortality 
and thus  the  control of algae biomass dynamics; and tha t  herbivorous zoo- 
plankton may very efficiently be controlled by carnivorous species. Thus, the 
basic direction in which to go when adding complexity is obvious. Within a 



given level of complexity, t h a t  is, when comparing alternative process 
descriptions for the same number  of e lements  (such as in the  comparison of 
different descriptions of grazing in hypothesis number  2),  formulating an  
alternative description is again based on a simple and intuitive understanding 
of the  observed as compared with the required functioning of the model: 
when the simple encounter theory used for the  description of grazing failed 
under t h e  typical overshoot symptoms of lack of feedback, an additional level 
of feedback was included with a nonlinear density dependence. If the parame- 
t e r  describing this effect (i.e. the  grazing half-saturation constant,  Table 4) is 
allowed to vary from zero to a relatively high value, the resulting t es t  does in 
fact t e s t  the  effect of the  construct:  since all the  (conditionally) successful 
runs  have significantly nonzero half-saturation values, the  nonlinear process 
description is obviously superior t o  its l inear counterpar t .  Thus, by "parame- 
terization" of alternative model s t ructures ,  they call be tes ted and compared 
in a single t e s t  series. This approach has  been used by Steele (1974) in t h e  
context described above. In general,  by parameterizing a larger number  of 
s t ructural  alternatives, one could use the  method to identify feasible model 
s t ruc tures  in t h e  same way as i t  is here  used to  find feasible parameter  com- 
binations. Working with sets of alternative model s t ruc tures  (where usually 
only one process description is changed a t  a t ime) ,  r a ther  than extensively 
parameterizing the model s t ruc ture ,  simple reduces the  dimensionality of 
the  problem and  facilitates interpretation. 

If a given hypothesis does stand up t o  all the  tes ts  one can design on  the  
basis of the  available data, t h a t  is to say, t h e  hypothesis cannot (yet) be 
rejected, one can  legitimately use i t  as a working hypothesis. However, quite 
easily we can imagine a situation where the  uncertainty inherent  in  the  
behavior definition for a system is large enough to  allow for more than one 
alternative hypothesis, without the possibility of discriminating or  ruling out 
any of them (see the application example in Section 3.3). Although the  two o r  
more hypotheses do not  differ significantly in their  behavior in  the  descrip- 
tive, empirical t e s t  case ( tha t  is why no discrimination is  possible, since the  
concept of significance here  is related to  the  extent  of t h e  allowable behavior 
range, which in  t u r n  depends on data uncertainty and systems variability), 
they might  well differ significantly when used for fur ther  predictjons, t h a t  is, 
extrapolations outside the  empirical range used for tes ts  so far. Here the  only 
possible approach would be to  look for predictions from the alternative ver- 
sions t h a t  clearly (and supposedly measurably) differ, and then  perform the 
required observation or  experiment in the  field. The simulation of alternative 
hypotheses could t h u s  provide some guidelines for measurements  and field- 
work as well, allowing for a more precise formulation of questions to be 
addressed during expensive field observations. 



3.2 Estimation and  Prediction with Parameter  Ensembles: A Lake Modeling 
Example 

In cooperation with the  Austrian Lake Eutrophication Program, Project 
Salzkammergutseen, the  Attersee, a deep, stratified, oligotrophic lake of 
almost 4000 million m3 and a theoretical retention time of seven to  eight 
years, was subjected to  another version of the  Monte Carlo approach. Basic 
data are  compiled in Table 6. Investigations, carried out since 1974, and ini- 
tially within the  frame of the  OECD Lake Eutrophication Program, indicated 
increasing eutrophication of the  lake. Increasing phytoplankton peak biomass 
and decreasing transparency of the  water signaled a trend toward eutrophica- 
tion; however, t h e  variability in the  measurements  and the  comparatively 
short  t ime  span of observations make i t  difficult to identify significant 
changes. Nevertheless, a preliminary study of t h e  nutrient- 
loading/production relations seemed promising. Primary production per unit  
lake area ,  algae peak biomass, and maximum epilimnetic concentration of 
available phosphorus were taken as approximate measures  of the  trophic 
s ta te  of t h e  lake. Although the  problem setting is somewhat diffuse from t h e  
point of view of possible management  and water quality control measures,  two 
principal features of the  lake system allowed us to address practical prob- 
lems. First, the  major nu t r i en t  input s tems from one point source, t h e  
upstream Mondsee (surface area  4.2 krn2, volume 510 million m3, catchment  
area  247 km2, and a retention t ime of about two years). More than  50% of t h e  
total  phosphorus loading of t h e  Attersee is attributable to  the  Mondsee 
discharge, and a very high fraction of particulate phosphorus is contained in 
this discharge (Miiller 1979). The impact of possible changes in the  trophic 
s ta te  of t h e  Mondsee on the  Attersee is therefore of considerable interest .  
Second, sewer systems and associated t reatment  plants for t h e  sewage 
discharge into the  Attersee and the Mondsee have been recently constructed 
(Flog1 1974, 1976a,b). Again, the  impact  of these installations on the  water 
quality of the  Attersee is of in teres t .  

The data available for our analysis, comprising es t imates  of nutr ient  
inputs and outputs as well a s  lake nutr ient  concentrations, collected roughly 
on a monthly basis, were found to show a high degree of variability both 
within and between years, and this variability was especially pronounced for 
t h e  phosphorus measurements  (Figure 10). This is, a t  least  in  the  case of t h e  
orthophosphate, due to its low concentration, around 1 mg in-=, which is 
approximately a t  the  same level as  the  absolute measurement  error .  This also 
led us  t o  t h e  simplifying assumption of a horizontally completely mixed water 
body; t h e  data would not support a more detailed spatial resolution for t h e  
model. It was also decided t o  combine the observations of several years to  
obtain a picture of a typical Attersee behavior pattern.  

*This section is  based on Fedra (1980) and Fedra et  d. (1981) 



TABLE 6 Attersee: basic lake data (after Flog1 1974). 

Geographic position 

Catchment area 
Surface area 
Maximum depth 
Mean depth 
Volume 
Length 
Average width 
Total shore length 
Retention time 
Average outflow 

47" 52' N 
13" 32' E 

463.5 km2 
45.9 km2 

171 m 
84 m 

3934 million m3 
20 km 
3 km 

53 km 
7-8 years 
17.5 rn3 s-' 

FIGURE 10 Total phosphorus in t he  Attersee: average yearly pattern (1975-79) of the 
depth distribution. Since total phosphorus is essentially conservative in the hypo- 
limnion of such a large lake, the observed data variability represents sampling 
errors due to  patchiness (raw data: BEP - Salzkammergut). 

3.2.1 l h e  Simulation Model 
Rather than developing one more simulation model for this study, the 

dynamic lake phosphorus model by Imboden and Gachter (1978) was chosen 
for the prediction -of the relationships between nutrient loading and water 
quality. The model predicts primary production per unit lake area as related 
to imports of soluble (reactive) as well as particulate (algae biomass) phos- 
phorus, various forcings, aiid model parameters. The relationship between 
loading and primary production is described by means of a dynamic, one- 
dimensional, vertical (multilayer) diffusion model for the two state variables, 
particulate phosphorus and soluble reactive phosphorus concentrations. The 



model uses Michaelis-Menten kinetics and self-shading by algae, together 
with a production ra te  tha t  varies in t ime according to the  seasonal varia- 
tions in irradiance and water temperature .  Respiration, sedimentation, 
stratification with vertical eddy diffusivity and variable thermocline depth, 
lake morphometry, and hydraulic loading are all accounted for in the  model. 
A homogeneous, well mixed epilimnion is assumed, and phosphorus export is 
determined by i ts  epilimnion concentration and by hydraulic loading. Zoo- 
plankton is not explicitly included in the model; i t s  effects on phytopldnkton 
are  included in the  first-order loss t e r m  tha t  describes 
respiration/remineralization. Consequently, the  model is designed more for 
the  simulation of yearly aggregate features than  for the simulation of short- 
t e r m  algal population dynamics. Figure 11 shows a flow diagram for t h e  
model. 

A,, 45.9 krn2 
Production - 

OPE C- P P ~  ZE, 25 rn 

A E ,  40.0 krn2 

'I 
Vertical 

FIGURE 11 Attersee model: flow diagram. 

Some minor modifications of the  model were made in order to allow for a 
parameterized description of time-varying forcing functions (production ra te  
and thermocline depth).  Rather than specifying these coefficients in the  form 
of tables, as was done originally for the  model, we approximated the t ime pat- 
terns  by simple analytical functions of t ime.  Thus, the  dynamic pat tern of t h e  
production ra te  is described by a sine function with the  minimum, maximum, 
and  t ime of maximum as  auxiliary parameters .  Similarly, thermocline depth 
is a linear function of t ime, characterized by t h e  depth and t ime a t  the  onset 
of stratification and the depth and t ime  a t  the  end of the  stratification period. 
Other potentially time-varying data (e.g.  nutr ient  inputs,  hydraulic loading, 
eddy coefficients) were kept constant,  since the  available field data did not 
allow a meaningful yearly pat tern to  be specified. In view of the  morphology 
and t h e  cur ren t  trophic s ta te  of the  Attersee, t h e  back-flux of phosphorus 
from t h e  sediments was set to zero in t h e  model. 

Ultimately, a total of 22 parameter  vector elements (e.g. r a te  constants, 
forcing-function-related parameters and initial conditions) were required in 
this application. These are  listed by n a m e  in Table 7, together with the  ranges 
sampled in t h e  Monte Carlo simulation. The minimum and maximum values, 



which define the  ranges,  were obtained e i ther  from t h e  known variability of 
available e s t ima tes  (e.g.  part iculate phosphorus loading) o r  from expansion 
around values given in  t h e  l i te ra ture .  The resul ts  of t h e  method a re  not  cri t i-  
cally influenced by t h e  ranges selected,  as long as  they  a r e  ecologically or  
physically feasible. However, reduct ion of t h e  r anges  wherever possible is 
useful for increasing t h e  efficiency of t h e  computa t ion.  Thus, for several  of 
t h e  pa ramete r  vector  e lements  t h e  ranges in  Table 7 were obtained af ter  
reduction on t h e  basis of a n  initial s e t  of 10,000 pilot runs  (Section 2.5). 

TABLE 7 Parameter vector elements and the ranges used. 

Data type Minimum 

Parameters s e n s u  strict0 
1 Michaelis constant (phosphorus) (mg m4) 0.20 
2 Respiration/mineralization, epilimnion (day-') 0.02 
3 Respiration/mineralization, hypolimnion (day-') 0.01 
4 Net sedimentation rate, epilimnion (m day-') 0.01 
5 Net sedimentation rate. hypolimnion (rn day-') 0.025 
6 Diffusion coefficient, hypolimnion (cmZ s-') 0.02 
7 Diffusion coefficient, thermocline (cm2 s-') 0.01 
8 Extinction coefficient (m-I 0.20 
9 Self-shading coefficient (mJ mg-I) 0.01 

10 Thickness of thermocline (m) 5.00 

Data describing impor t s  and forc in  s 
11 Orthophosphate import (mg mqday-') 
12 Particulate phosphorus im ort (mg mbZ day-') f 13 Hydraulic loading (m day- ) 
14 Minimum production rate (day-]) 
15 Maximun~ production rat.e (day-]) 
16 Time lag of production n~aximum (day) 
17 Initial thermocline depth (m) 
18 Final thermocline depth (rn) 
19 Start of stratified period (day) 
20 End of stratified period (day) 

Maximum 

21 Orthophosphate, mixed period (mg m9) 0.20 2.00 
22 Particulate phosphorus. mixed period (mg rn-9 2.50 7.00 

The s imula t ion model was incorporated a s  a subrout ine  in a control  pro- 
g ram,  which genera ted  random sample pa ramete r  vectors  f rom t h e  r anges  
specified. Since a p r i o r i  information on t h e  probability distr ibutions and  
correlat ion s t r u c t u r e  of the  pa ramete r s  was absen t ,  independent  rec tangular  
distr ibutions were assumed.  For each pa ramete r  vector ,  one  simulation r u n  
was completed  (for a period of one  year) and  t h e  model response s tored for 
subsequent  analysis. 



3.2.2 Behavior De f i n i t i on  
The output of any given model run  has to be compared with the (defined) 

systems behavior in order to allow classification of the parameter vectors 
into a behavior-giving set and a set  tha t  does not result in the observed 
behavior. Obviously, the definition of the  behavior of the  system is a crucial 
step in the analysis. The systems behavior definition should reflect all 
knowledge of the system tha t  is available and relevant (in terms of the prob- 
lem and the conceptualization of the system, i.e. the  model). It is worth not- 
ing tha t  a definition of systems behavior ( the empirically defined region in 
systems behavior space) derived from the observations does not depend upon 
the model. However, the allowable model response set has to be specified in 
terms of model output constraint conditions, or ,  in other words, the behavior 
definition must  be cast within the  framework of the  model actually used. 

The behavior definition uses ten constraint conditions describing a 
region in a seven-dimensional behavior space for the model: the constraints 
are defined for yearly primary production, algae biomass peak (maximum and 
timing), relative increase of algae, orthophosphate maximum during the 
mixed period, yearly phosphorus output, and cyclic stability of total phos- 
phorus (maximum relative difference between beginning and end of t he  simu- 
lation year). The constraints placed on these indices for the purpose of 
behavior definition were specified such tha t  the measurement uncertainty 
and the  natural stochastic variability of the  ecosystem (including variability 
among the years) were accounted for. The resulting behavior definition is 
given below: 

1. Total primary production per year has to  be between 50 and 150 gC 
m-2. 

2. Total phosphorus export per year has to be 'between 2 and 8 tons. 
3. The peak value of particulate phosphorus in the epilimnion has to  

occur between Julian days 60 and 210. 
4. The peak value of particulate phosphorus in the epilimnion mus t  

not exceed 15 mg P m-3. 
5. The concentration of orthophosphate during the mixed period mus t  

not exceed 2.5 mg P m-3. 
6. The peak value of particulate phosphorus mus t  be a t  least twice the 

minimum value. 
7 .  The maximum total phosphorus content of the lake during the year 

must not exceed twice the  minimum value. 

In this way the behavior definition can be viewed as a seven-dimensional 
box in the behavior space and a model simulation run has to lie completely 
within this box in order to be classified as a simulation belonging to the  se t  of 
allowable model responses. 



3.2.3 Analysis: Parameter  Vector Space Structure 
Out of 10,000 runs  only 293 parameter  vectors were found t h a t  gave rise 

to a model output fully within the  behavior constraint conditions given in the  
previous section. Inspection of t h e  sample ranges of individual elements of 
t h e  293 vectors showed t h a t  no fur ther  "rectangular" reduction of the param- 
e te r  vector space (PD in Figure 4) was possible. In other words, the  boun- 
daries of t h e  behavior-giving parameter  vector space region (PM, as sampled 
by the  293 behavior-giving vectors (PS'), extended to the  boundaries of the  
22-dimensional parameter  vector box (PD). Figure 12 shows t h e  distribution 
of the  behavior-giving values for each of three  parameter  vector e lements  in 
order to  illustrate this point. The figure also suggests t h a t  the re  are  regions 
in the  parameter  vector space (PD) where one is more likely to find an allow- 
able model response than in others.  

The high dimensionality of the  parameter  vector space means t h a t  t h e  
geometry of t h e  behavior-giving region is in general difficult t o  investigate. 
However, a tentative exploration of t h e  distributions can be made by project- 
ing these distributions on t o  a two-dimensional surface. An example was 
given in Figure 3. From this  figure i t  is apparent t h a t  the  behavior-giving 
parameter  combinations are  more densely clustered in certain regions. I t  is 
also evident t h a t  other regions in the  22-dimensional box are "empty." How- 
ever, in  view of the  large number  of combinations tha t  are  not  behavior- 
giving, we m u s t  conclude t h a t  almost every individual value of a parameter  
vector e lement  can give rise to the  behavior or  not,  depending on the sample 
values of t h e  other elements.  Thus, as also suggested by Figure 3, i t  is r a ther  
the  (multiple) correlations between t h e  parameter vector elements t h a t  
determine t h e  shape of t h e  behavior-giving parameter  space. 

To gain insight into the  s t ructure  of t h e  model (and, i t  is hoped, of t h e  
system) a correlation analysis was performed. Consequently, 13 of the  22 
parameter  vector elements were found to be significantly correlated with one 
o r  more of the  other parameter  vector elements.  The most complex relations, 
with four or  five significant pairwise correlations, were found for the  
respiration/mi:neralization ra te  in the  hypolimnion, t h e  ne t  sedimentation 
velocities, t h e  particulate phosphorus import,  and the hydraulic loading. Also, 
production ra te  maximum and t ime lag showed more than one significant 
correlation. 

Correlations between the  parameter  vector elements of t h e  behavior- 
giving class reflect t h e  ability of the  model to  balance one extreme with 
another ,  while still fulfilling the  behavior definition constraints.  This immedi- 
ately makes i t  obvious t h a t  they can:not be estimated individually. A typical 
example was presented by Simons and Lam (1980), who demonstrated the  
ability of a lake model to balance a considerable change in the  nu t r i en t  load- 
ing with some change in t h e  settling r a t e  in order to  obtain basically t h e  
same model response. Parameter  vector elements t h a t  would force t h e  
behavior-defini.ng variables in  the  same "direction" (relative to  t h e  boun- 
daries of t h e  seven-dimensional behavior box) can be expected to  be nega- 
tively correlated, and vice versa for the  positive correlations. In this way, the  
strong positive correlation of particulate phosphorus import and sedimenta- 
tion velocity (epilimnion), for example, indicates t h a t  t h e  constraint 
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FIGURE 12 (a) Frequency distributions for individual parameters  ( thick bar indicates 
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variables yearly primary production and/or  the  allowable algal biomass peak 
value a re  sensitive to the  "net" effect of these counteracting processes. The 
constraint of maximum allowable orthophosphate concentration provides 
another example. IIypolimnetic remineralization - a major process affecting 
t he  orthophosphate concentration - is consequently negatively correlated 
with orthophosphate import and with t he  initial phosphorus concentrations. 

In geometric terms i t  can be said t ha t  the  correlations indicate the main 
axes along which the  behavior-giving parameter vector region (PM) is 



oriented. Consequently, the model response (of giving the defined behavior) is 
most strongly influenced by varying the parameter values in a direction 
orthogonal to these axes. In this sense the correlation matrix can also be 
interpreted in terms of a sensitivity analysis. 

According to the parameter vector correlation structure, the Attersee 
system, as  defined by its geomorphology and the behavior definition, is 
characterized by a delicate balance between the processes responsible for 
primary production and phosphorus export (which is mainly determined by 
the epilimnetic phosphorus concentration) and those determining the ortho- 
phosphate peak concentrations, namely (besides the imports) sedimentation 
to the comparatively large hypolimnion and hypolimnetic remineralization. 
This balance can only be achieved with a high phosphorus turnover in the epi- 
limnion and comparatively slow net  remineralization in the hypolimnion. For 
a lake in the geographic positioil of the Attersee and with the Attersee's mor- 
phometric features and associated temperature distributions, this seems to 
be a reasonable interpretation. 

3.2.4 7h.e Role  o f  t h e  B e h a v i o r  D e f i n i t i o n  
Choosing values for the constraints on the allowable behavior patterns is 

subject to  solving a two-sided problem. On the one hand, the constraint 
ranges should be sufficiently narrow to restrict the allowable patterns such 
tha t  they unambiguously represent the empirical behavior of the system in a 
meaningful way. On the  other hand, all the variability in systems behavior 
and the uncertainty in the observations should be taken care of with a 
minimum of arbitrariness. Since a reconciliation of these two objectives is 
rather difficult in practice, the effects of the constraint setting on the param- 
eter  vector classification were examined. For this purpose, the  model 
response space was projected on to the individual model output variable axes. 
The positions of the constraints in relation to the resulting frequency distri- 
butions (Figure 12) give some indication of the  relative importance of the 
individual constraints. Figure 2 shows two contrasting examples for a pair of 
critical constraints and a pair of uncritical constraints. 

The original constraint values were altered and the effects on the param- 
eter vector separation were studied by recordirig violations of the constraints. 
For the standard set of constraint values the numbers of violations together 
with a relative coincidence matrix of violations are shown in Table 8. Clearly, 
the allowable phosphate level arid the first permissible day for the algal peak 
are the major c0nst.raint.s on achieving an overall "acceptable" model 
response. Some of the other constraints are either not violated a t  all, for 
example, minimum relative biomass increase, or are rarely violated, such as 
the upper limit of total phosphorus output. There are also some notable rela- 
tionships in the violations observed. For example, in almost all cases in which 
condition 5 is violated (upper liinit for biomass peak) so too are conditions 1 ,  
3, and 8 violated (primary production t.oo low, biomass peak too early, phos- 
phorus export too low); however, only 1% of this subclass violates the most 
critical condition, 7, on maximurn phosphate level. Excessive primary pro- 
duction always occurs together with an excessive level of phosphate, and 
about half of this subclass gives the biomass peak either in the required 



TABLE 8 Constraint violations (standard definition, 10,000 runs). 

Condition Number of cases 

1 Primary production too low 
2 Primary production too high 
3 Biomass peak too early 
4 Biomass peak too late 
5 Biomass peak too high 
6 Relative biomass increasc too low 
7 Phosphate level too high 
8 Phosphorus export too low 
9 Phosphorus export. too high 

10 Relative change in phosphorus content  too high 

Coincidence w ~ a t r i z  of cons t ra in t  v io la t ions  (Z) 
1 2 3 4 5 6 

1 100.0 0.0 77.8 8.2 28.5 0.0 
2 0.0 100.0 13.3 39.5 0.4 0.0 
3 18.8 2.4 100.0 0.0 6.9 0.0 
4 6.8 23.9 0.0 100.0 0.3 0.0 
5 98.9 1.1 98.9 1.1 100.0 0.0 
6 0.0 0.0 0.0 0.0 0.0 0.0 
7 6.1 12.6 42.9 18.5 0.1 0.0 
8 34.9 0.0 77.7 5.1 14.7 0.0 
9 0.0 100.0 0.0 100.0 0.0 0.0 

10 10.1 4.0 81.0 9.5 0.1 0.0 

interval of time or  too late (40%). Excessive variations in  the  total phosphorus 
content of t h e  lake are mostly paralleled by too early a biomass peak, but  
almost never. occur in conjunction with an excessive peak value. 

Changing condition 7 from the initial 2.5 mg P m-3 to 3.0 mg P m-3 
allowable in the mixed period decreased the  num.ber of violations of this con- 
dition from 7,201 to 5,680, and resulted in 665 "behavior-giving" parameter  
vectors. Thus, 372 of the 1,521 vectors located in t h a t  "interval" (compare 
with Figure 2) do not violate any other condition. Further  change in the allow- 
able phosphate level from 3.0 to 3.5 mg P m-3 increased the number  of 
behavior-givjng vectors to  1,127, with 4,126 residual violations of the  con- 
s t ra int  condition, indicating a fraction of about 500 potential "behavior" vec- 
tors within tha t  interval. For comparison, a reduction of the  allowable value 
from the original 2.5 to 2.0 mg P 171-~ decreased the number  of behavior runs  
quite dramatically to  68, with a corresponding number  of constraint viola- 
tions of 8,565. Again, a considerable number  of the  vectors in tha t  interval 
(more than 1,000 of the total of 1,350) were already violating a t  least one 
other constraint condition. In addition, as another example, changing condi- 
tion 3 from day 60 to  day 50 resulted i n  only two additional "behavior" vec- 
tors,  although the  number of violations of condition 3 dropped from 5,108 t o  
5,074. The remaining 32 samples thus  give a model response tha t  violates a t  
least one 0 t h ~ :  condition. 



In conclusion i t  can be said that  although the  specification of some of 
the constraint conditions is ra ther  critical for the  resulting parameter vector 
separation, the high degree of coincidence makes the  method less sensitive 
to the individual conditions. This analysis may give some indication of where 
further efforts in data collection or analysis should be concentrated. Admit- 
tedly, however, evaluation of the  sensitivity of t he  approach to the behavior 
definition should be carried out  in t e rms  of response probability distributions 
for predictions. This remains to be done. 

3.2.5 P r o j e c t i o n s  i n t o  t h e  f i t u ~ e  
Having established a set  of "model calibrations" for the range of empiri- 

cal conditions covered by the behavior definition, we can  now use this ensem- 
ble for making predictions of the  response of the  lake system to changes in 
nutr ient  loading. The mean total phosphorus loading in this "empirical" 
ensemble was estimated to  be 1 mg P m-2 day-' (standard deviation 0.33), 
which corresponds well with independent field estimates (Miiller 1979). For 
the  predictions, the loading (parameter vector elements 11 and 12 in  Table 7) 
was varied systematically from 0 to  5 mg P m-2 day-' in steps of 0.25. The 
proportion of available phosphorus in the total loading was se t  to 10% after a 
series of runs in which ratios of 0, 10, and 25% were compared. For each of 
the  21 new loading values t he  first 150 sample parameter  vectors from the  
behavior-giving se t  were taken, thus generating a se t  of 150 estimates for 
several output variables (yearly primary production, algae peak biomass, 
phosphate maximum, phosphorus export, and phosphorus sedimentation) for 
each loading value for a series of 10 years. Figure 13 summarizes the  results 
for primary production, showing the situation after years 1 and 10. 

Another s e t  of predictions of future systems response to  changes in the  
phosphorus loading conditions was made by subsets of the  behavior-giving 
parameter set ,  where the load-determining parameter  values were changed 
by a certain factor. This "relative" change no t  only accounts for the uncer- 
tainty in the  panme te r s ,  but also preserves the correlation s t ructure  of the 
behavior-generating set  of parameter vectors. Input changes representing 
increases of 50 and 100% (to simulate the  effect of no control actions but  
increasing nutr ient  release in the catchment area) and reductions to  75, 50, 
and 25% of the 1975-78 empirical range of loading were simulated for a 10- 
year period. Some examples of these scenarios, again showing the stochastic 
mean with a minimum/maximum envelope, are  given in Figure 14. 

To estimate prediction accuracy as  related to  the changes in the phos- 
phorus loading ( the degree of extrapolation i n  input space),  and as  related to  
simulation time ( the extrapolation in t ime),  the coefficient of variation was 
plotted against these extrapolations. Figure 15 shows one example for the  
model output variable, yearly primary production. The plot shows an  
increase of prediction uncertainty with time, stabilizing when a new equilib- 
r ium is reached after a transient period following the change in the phos- 
phorus loading. The plot, also indicates an  increase of uncertainty with the 
amount  of change in the input  conditions, showing a minimum of the 
coefficient of variation in  the  empirical range. In summary, prediction 
uncertainty (measured as  the  coefficient of variation of the Monte Carlo 



FIGURE 13 Probability distributions for model output variable, yearly primary pro- 
duction, for different total phosphorus loadings, in the Attersee phosphorus budget 
model. (a) First year of lake response; initial state represents the empirical range of 
lake behavior. (b) Lake response after 10 years of changed phosphorus loading. Note 
the extremely flat distribution in the  high-loading classes. 

ensembles) increases with the extrapolation in time as well as in input space. 
Since prediction reliability is related to  the  initial variability in the descrip- 
tive empirical case, there is an obvious (and intuitively to be expected) rela- 
tion of prediction reliability or nontriviality to the  magnitudes of the input 
variability (incorporating data uncertainty and systems variability in time), 
the degree of extrapolation in the controlling inputs, and the degree of extra- 
polation in time. Obviously, the more precise the original knowledge about 
the system is, the larger the extrapolation in the controlling conditions and 
in time can be, before the limits of predictability are reached; or, the larger 
the change tha t  is to be simulated, the better the knowledge about the sys- 
tem has  to  be. 



FIGURE 14 Ensemble of behavior runs for the Attersee model. (a) Mean of 39 runs 
with minimum/maximum envelope. (b) Prediction in terms of envelopes. 

A different representation of prediction accuracy was shown in Figure 13 
(where prediction refers to the  mean estimate, and accuracy is measured in 
terms of confidence intervals). The probability distributions fitted for the 
response variable frequency distributions can be read in the above terms. 
These probability distributions are not primarily to be understood as the 
probabilities of certain systems states in t he  future - they are rather 
representations of prediction uncertainty, or the  propagation of the initial 
uncertainty and variability in the available information. 

The above analysis and the generalizing conclusions to be drawn are cer- 
tainly biased with regard to the model used and, to a lesser extent, with 
regard to  the data set  used. The arbitrary selection of any model for a given 



FIGURE 15 Representation of prediction uncertainty ( ~ o e f f i c i e n ~  of variation for an 
ensemble of plausible model runs) plotted against input change (extrapolation) and 
time. 

system seems to be unavoidable in light of the meager data available; the 
model order and structure cannot be derived from the  available data, and one 
has to use a priori information about the system to be described. However, 
the  thus conjectured model might well tu rn  out  to  be inadequate, and 
changes in the model structure will become necessary. One indication of 
inadequate model structure, in te rms  of the above approach, would be that  no 
behavior-giving parameter combination can be found in the specified region 
(compare the  above example); or tha t  the distributions of the  single parame- 
ters  within the ranges sampled suggest a high number of possible solutions 
outside the specified "plausible" bounds. If a combination of unrealistic 
inputs still results in a realistic behavior of the model, one has to question 
the validity of the model structure. This of course requires tha t  the expected 
behavior is defined in sufficient detail. 

As indicated in Figure 15, the probability distributions in the higher- 
loading classes level out with time. If one takes the  coefficient of variation as 
a measure of prediction uncertainty, a saturation-curve-type pattern in time 
can be observed for this measure (see also below). When this coefficient of 
variation is plotted against loading for the first year's response, a distinct 
minimum - in the empirical (observed) range of loadings - can also be 
observed (F'lgure 1.5). One may conclude, therefore, that  prediction uncer- 
tainty increasrs with extrapolation away from both the  present time and the 
presently observed input loading conditions. Certainly, the predictions for 
larger deviations from the empirical situation are rather trivial after only a 



few years: an estimate of yearly primary production between 100 and 1000 g C 
m-2 for a phosphorus loading of 5 mg m-2 day-' is certainly of little value as 
a prediction. However, i t  should serve as a warning to the analyst that the 
uncertainty in the data available or the variability of the system itself simply 
does not support such an extrapolation. 

The samples of predictions can now be interpreted in terms of the origi- 
nal problem setting. Only the loading values close to the empirical range 
result in meaningful distributions in the 10-year projections, but these are of 
course the most interesting and "realistic" alternatives to be studied. At the 
end of the 10-year period of simulations, the. lake system is found to be in a 
kind of new dynamic equilibrium with regard to the output variables con- 
sidered. Whereas the variability of the predictions rapidly increases during 
the transient stage of the first six years (or less in some cases) after a change 
in the loading, this variability stabilizes by the end of the simulation period 
(the somewhat unrealistic zero-loading class is omitted from these evalua- 
tions). The time to reach a new equilibrium was found to be connected with 
the relative change in the loading. The comparison of different loadings in 
terms of primary production, peak biomass, or phosphate level can now be 
made by comparing either the mean levels and their confidence intervals or 
the probabilities for reaching or exceeding certain levels. This is especially 
interesting, as in fact almost all of the probability curves fitted are skewed, 
which clearly implies that a simple comparison of mean values might be 
misleading for certain problems. 

The above analysis indicated that  for a model with 22 input data (which, 
a t  least for ecological models, is a rather low figure) or "degrees of freedom" 
in the estimation procedure, behavior-giving values can be found all over the 
ranges (independently) sampled. On the other hand, only a small percentage 
of the possible combinations resulted in a satisfactory model response. As a 
consequence, the ranges for the search should be constrained as much as 
possible, for reasons of efficiency as well as to avoid "unrealistic" input data 
combinations (where the unrealistic value in any of the parameters or inputs 
will be "balanced" by some changes in all the other values) in the behavior 
ensemble. This of course requires tha t  all the parameters used in the model 
are physically interpretable and can be measured or a t  least estimated from 
field measurements or experiments. The same holds true for the state vari- 
ables of the model and measures derived: only if they are measured (or are 
a t  least measurable) can their allowable values be reasonably constrained in 
the definition of the behavior of the system. Including unmeasured (and 
unconstrained) state variables will result ip  behavior runs (in terms of the 
constrained measures) where the uncertainty is all transferred to this uncon- 
strained "leak" in the behavior definition (compare the following application 
example). The ability of even a simple model to balance its (constrained) 
response in terms of some variables by (unconstrained) changes in others 
requires that  all model behavior (and, of course, output) should be interpret- 
able in physical (measurable in the field) terms. Also, the approach described 
above raises some doubt whether models, by including more and more detail 
(requiring more and more state variables and parameters, and consequently 
more data for the "calibration"), become more realistic. Obviously, 



increasing model complexity without increasing the available data for con- 
straining input data ranges as well as allowable response ranges just adds 
degrees of freedom for the calibration or estimation procedure. Undoubtedly 
such models can be very useful, especially in more qualitative "hypothesis- 
testing" approaches. But their value for. prediction might well be questioned. 

3.3 The Limits of Estimation: A Simple Rain-Runoff Model 

For the study of water quality problems of lake systems, generally due to 
eutrophication resulting from excess nutrient inputs, the more traditional 
approaches concentrated on load-response models of various degrees of com- 
plexity and resolution (Park e t  al. 1974, Chen and Orlob 1975, lmboden and 
Gachter 1978, Vollenweider and Kerekes 1980; see also Section 3.2). These 
were primarily designed to  predi.ct the  changes in lake water quality as a 
result of changes in the nutrient loading. Lakes, however, are only one ele- 
ment  in regional water resource systems; they have to be understood as being 
linked to  a physical as well as a socioeconomic watershed, which affects them 
and vice versa; and, by their outflow, they affect also downstream water 
bodies. 

As most of the control options for lake water quality are based in the 
lake catchment, this catchment has to  be included in the analysis. Land use, 
i.e. agriculture and silviculture, and domestic, commercial, and industrial 
activities, tie up with lake water quality by affecting the quantity and quality 
of the runoff from the catchment. The pollutant loads in the runoff, with or 
without treatment, form the inputs to the  lakes. To predict the effects of any 
change in land-use patterns, or the effectiveness of any control action such 
as sewering and interceptor systems, models to do so have to explicitly 
include these activities. Consequently, watershed models and lake water 
quality models have to be coupled, if the  input to the lakes is to be traced 
back to its natural and man-made causes. 

To be useful in a framework oriented toward planning and management, 
simulation models have to incorporate the relevant planning and manage- 
ment  variables with a time and space resolution appropriate to the s tructure 
and dynamics of the real system. The time and space scales should be 
appropr.ate for the planning and management decisions that  can be imple- 
mented. 

On the other hand, there are always severe limitations on the data avajl- 
able. Hydrometeorological networks are usually very coarse in relation to the 
scale of regional or local problems, which is even more pronounced under 
complex orographic conditions such as in the mountainous areas of Austria. 
Also, measurements of precipitation, temperature, and flow are often made 
on a daily (or 12-hour) basis. Especially in the case of flow measurements, 
these data may contain considerable errors (e.g. Winter 1981). 

Many hydrological models, in contrast, require extensive input data, but 
models calling for data tha t  are just not available are of little practical use. 
Therefore, while a sufficient degree of disaggregation should be maintained on 
one side, modesty in data requirements on the  other is an  absolute must  for a 



useful approach. Consequently, the simulation model discussed below 
operates on a daily time step, using daily input values for precipitation and 
temperature ,  and a very coarse and lumped representation of major 
processes. Only one precipitation value for the whole watershed is used 
(which, however, is corrected for changes in altitude within the catchment).  
If no observations are  available from the catchment ,  data from the nearest 
hydrometeorological station will have to  suffice. The same applies to  daily 
average air temperatures.  All the additional information required on basin 
morphology and land use can normally be obtained from standard maps. It is 
important t ha t  this information is readily available to the analyst and does 
not require the launching of an  expensive and time-consuming measurement 
program in the field. A useful tool for those responsible for current  planning 
and management  should also be able t o  answer questions more or less 
immediately, without requiring additional years of research to compile the 
necessary, problem-specific input data. The basic design principle of the 
model is ruthless or sometimes naive parsimony in the description of the 
individual processes; the basic constraint is imposed by data availability and 
thus testability of the model formulations. 

Another reason t o  strive for maximum simplicity is computational 
efficiency and cost. Whenever a simple version is sufficient within the limits of 
detail s e t  by the purpose, a more complex one is obsolete. Although computer 
time is  not a real constraint as compared with data availability, the linking of 
numerous modules for a comprehensive system simulation requires simple 
elements if the whole is to be operational. As one of the purposes of such 
simulation systems is to learn about the systems behavior by performing 
numerous and extensive numerical experiments, comparing management 
alternatives, or exploring the (model) systems sensitivity to different 
assumptions, parameters,  data. or the lack thereof, small and quick is beauti- 
ful. Small and quick may also be an  essential requirement for the effective 
communication of results.  Simulation models are ,  a t  best, one element in an 
array of methods and approaches for planning and decision making; there- 
fore, t o  be used, they have to be attractive to the user.  This means they 
should be quick and easy to use and of comparatively low cost, and should 
generate results in a format that  is interactive, attractive, and educational. 

3.3.1 A Descr ip t ion  o f  the Model: The Basic  C o n c e p t s  
The rain-runoff model used for this example is based on the  principle of 

mass conservation. I t  performs a dynamic accounting of water in different 
parts of the watershed, i.e. the soil-channel system, transforming precipita- 
tion in the watershed into runoff a t  its outlet. Figure 16 is a fiowchart of the 
model, indicating the  basic elements and the major processes considered. A 
detailed description of the model, including several examples of application, 
is given by Fedra (1983). 

The model is spatially dimensionless. The whole soil system is conceptu- 
alized as  one single block (or ra ther  column) of soil, with its lumped proper- 
ties derived from land use as weighted averages. Designed for temperate 
mid-latitude zones, the model explicitly describes snow accumulation and 
snowmelt. Water available for runoff, tha t  is, water i n  excess of infiltration 
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capacity, or, in the  root zone, in excess of field capacity, and after allowing 
for loss due to evapotranspiration, is divided between percolation and runoff, 
using a concept of variable source areas.  The runoff is routed from this 
column of soil to the  channel, and from the  channel to the  outlet .  Percola- 
tion feeds the  groundwater reservoir, which in turn contributes to channel 
flow by a base-flow component, coupled to  the  groundwater budget. Ground- 
water is only simulated as a balance between percolation and base flow. A crit-  
ical assumption of t h e  model is t h a t  all groundwater will leave the  ca tchment  
through the  channel as  base flow; no other  groundwater inputs or outputs are  
considered, tha t  is, surface and underground recharge areas a r e  assumed to  
overlap fully. 

The rationale for this simplification is mainly based on the  problem of 
determining groundwater budgets experimentally; if estimated as the  resid- 
ual t e r m  in the  water budget (which is exactly what the  model does), they are  
as uncer ta in  as all t h e  factors considered in this water budget. Only if 
independent measurements  exist, can groundwater interaction between 
neighboring catchments  be reasonably included in the  model. 

3.3.2 Inpu t s  and  Parame te r s  
The model requires t h e  following inputs to be specified for the  character- 

ization of a watershed: 

a .  Watershed character i s t ics  
Drainage area  (km2) 
Landcover: forests (%) 
Landcover: agriculture (75) 
Landcover: pastures  (%) 
Basin length (km) 
Altitude difference (m) 
Main-stem channel length (km) 
Total channel length (km) 
Number of elevation bands considered 
Height of each elevation band (m)  
Area in each elevation band (%) 

Drainage area,  o r  catchment  size, can easily be determined from an  
appropriate map with contour lines. The landcover information can be 
obtained from the same source, or from aerial photography, or satellite 
remote sensing (e.g. Salomonson and Bhavsar 1980). The basin length 
represents t h e  longitudinal (along the  major channel) dimension of the  
catchment ,  as would result  from a rectangular approximation of its shape. 
Similarly, t h e  main-stem channel length should approximate the  total (or 
average, if more than  one) length of the  major draining channel,  which will 
usually be somewhat shorter  than the basin length. Altitude difference is just  
t h e  difference between t h e  average elevation of t h e  watershed boundary 
"opposite" the  basin outlet  and t h e  lowest point ( the  outlet) of t h e  watershed; 
however, since the  estimates of average slopes will be based on these figures, 
some flexibility in their  estimation, representing special shapes of a 



catchment,  may be necessary. The total channel length describes all observ- 
able permanent  channels in the catchment ,  including the main channel. I t  is 
used to  estimate drainage density. The areal altitude distribution, which is 
used for correcting precipitation, temperature values, and snow cover, is read 
in as  a number of percentages of the areas of elevation bands, proceeding 
from the lowest (at  the level of the outflow) t o  the top of the watershed. 

In addition to  these watershed characteristics, the model requires the 
specification of initial conditions. 

b. Initial conditions 
Initial flow (m3 s-') 
Initial base-flow contribution (m3 s-') 
Initial snow pack (rain equivalent) (mm) 
Initial interception storage (full/empty) 
Initial soil moisture (%) 

Finally, six parameters have to be estjmated. For the estimation pro- 
cedure (Section 3.1) ranges have to be specified; acceptable parameter esti- 
mates have to be within these ranges. 

c. Parameters 
1. Altitude correction factor for precipitation 
2. Altitude correction factor for temperature 
3. Field capacity (root zone) (mm m-') 
4. Maximum percolation rate  (mm day-') 
5. Average runoff speed (root zone + surface) (m  dayw1) 
6. Groundwater response time lag (day) 

1. The altitude correction factor for precipitation will increase the raw 
input value (thought of as representing the lower end of the  
watershed) for a given percentage per elevation band. Altitude 
correction factors for precipitation will usually be of the order of a 
few percent per hundred meters .  

2. The altitude correction factor for temperature is used to represent 
the  temperature gradient with altitude within the catchment.  The 
parameter value represents the  average difference between tem- 
peratures a t  the lowest and highest elevation bands. I t  can be 
estimated from the  differences in average temperature between 
m.easurement stations a t  different altitudes, or approximated with a 
value around 0.5"C per hundred meters,  t imes the altitude 
difference of the basin. 

3. Field capacity, i.e. the amount  of water the  soil can retain against 
the pull of gravity, is a function of soil properties. Depending on the 
type of soil, values can range from 20 m m  m-' for sandy soils to  300 
m m  m-' for clays. 

4. Percolation, i.e. the  downward movement of water under hydro- 
static pressure, conveys water in excess of field capacity from the  
root zone to  t h e  groundwater. Percolation rates  again depend 
largely on the  type of soil and on moisture content. Literature 



values for the coefficient of permeability range from lo7 mm day-' 
for gravel to mm dayA1 for clay. 

5. The velocity of runoff is used to estimate the travel time of water to 
the channel system. This composed runoff is based on the concept 
of a variable source area, and incorporates small-scale surface 
runoff (large-scale runoff for extreme precipitation events is 
accounted for in a different manner), return flow, runoff through 
small ditches and temporary channels, and finally subsurface storm 
flow or interflow (Chorley 1978). Since such a large variety of 
different processes with pronounced local variability on a scale 
much below the resolution of the model are lumped in this one 
number, any estimation from watershed characteristics will be 
difficult. However, the distribution of slopes, surface roughness, 
amount of detention storage, proportion of impervious areas, and 
the structure of the drainage system (i.e. drainage density) are 
important factors. A simple first estimate can be based on the aver- 
age time lag of a flood wave after a rain event. The average distance 
to the nearest channel divided by this lag time is a rough estimate 
of the average runoff speed, which will be of the order of a few hun- 
dred meters to kilometers per day. 

6. The groundwater response time lag determines the rate at which 
the base-flow contribution to the channel flow will react to changes 
in the groundwater budget. The value depends on catchment size 
and geology and is of the order of weeks or months. 

3.3.3 Parameter Estimation 
The model, as described above, requires six "free" parameters to be 

estimated. These six parameters represent physically meaningful magni- 
tudes, and, a t  least in principle, are measurable or could be experimentally 
determined. Consequently, the values of these parameters have to be within 
physically or hydrologically feasible ranges, which should be related to cer- 
tain watershed characteristics as discussed above. 

In the estimation procedure, these ranges are used as the starting point 
for the calibration. For each parameter an allowable range is specified, within 
which acceptable solutions to the estimation problem are constrained. From 
these ranges, independent random samples are drawn and used for one run of 
the model. This run can extend over any arbitrary period in time, for which a 
set of inputs (precipitation and temperatures) and a set of outputs for com- 
parison (runoff from the catchment) are available. This simple Monte Carlo 
method is repeated for a sufficient number of trials, in order to minimize a 
certain objective function or to meet a set of performance criteria. The result 
of these trials, which may be repeated in an iterative manner, will be either 
an "optimal" set of parameters (according to the objective function minim- 
ized) or an ensemble of admissible parameter sets, meeting certain perfor- 
mance criteria. 

In an estimation run, the model is run several thousand times (each run 
requires less than half a second of cpu time on a VAX 11/780), and for each 



run the parameter set  and the performance criteria of the run are recorded 
for la ter  analysis. In addition, a record of the "best" parameter se t  (according 
to a weighted combination of the  performance criteria) is kept. 

3.3.4 P a r a m e t e r  Ranges  
Because of their physical interpretation, the six parameters to be 

estimated have to be within well defined bounds. These ranges will differ from 
catchment  to catchment ,  but there  certainly exists an  overall admissible, or 
physically plausible, range for each of them. Table 9 summarizes these 
ranges. 

TABLE 9 Admissible ranges for the model parameters. 

Parameter Minimum Maximum 

1 Altitude correction factor for precipitation 0.000 0.500 
[(loo m)-'1 

2 Altitude correction factor for temperature 0.000 1.000 
["C (100 m)-' ] 

3 Field capacity (mm m-l) 50.000 300.000 
4 Percolation rate (mm day-') 1.000 100.000 
5 Speed of composed runoff (m day-l) 100.000 1000.000 
6 Groundwater response lag (day) 1.000 1000.000 

3.3.5 P e r f o r m a n c e  C r i t e r i a  a n d  Object ive  F u n c t i o n s  
The use of the simple Monte Carlo method described above allows max- 

imum flexibility in the formulation of performance criteria or objective func- 
tions. For the parameter estimation runs used in the  example described in 
detail below, a number of very simple criteria were formulated. From a daily 
error factor (err),  an  allowable range extending around the observed value 
(flow) was calculated: 

upper = flow x e r r  

lower = flow/ err 

On any given day, the  model-generated runoff is either within or outside tha t  
range, the latter. being considered a violation. A subroutine of the simulation 
program keeps track of the total number of violations, violations for critical 
flow events (i.e. observed runoff above a certain level) or during a special, 
limited period, e.g. during snowmelt. In parallel, the  sum of squares of the 
deviations from the observations is calculated, together with the first day of a 
failure to occur, and the maximum difference between observed and simu- 
lated runoff. Similarly to  the  daily error  range, progressively narrower ranges 
for monthly and yearly totals are defined. Again, any subset (e.g. a certain 
month deemed critical in the context of the  analysis) can be specified, fo r  
which a performance criterion can be formulated. As a criterion, a maximum 
allowable deviation from a certain reference value or range, a maximum in 



absolute or relative terms, or a maximum allowable number of failures for a 
certain class of events during a certain period may be specified. 

For the application described below, the following performance criteria 
were used: 

Sum of squares 
(simulated runoff - observed runoff)' 

Total n u m b e r  of violations 
(number of days when simulated runoff was less than half the  observed 
runoff or more than twice the observed runoff) 

Number of significant violations 
(number of days with an observed runoff above a certain critical level, 
when simulated runoff was outside the  allowable interval) 

Several other criteria were defined for some of the calibration runs, e.g. 
the maximum difference between observed and simulated runoff, the  number 
of days until the first violation in a given run ,  the relative difference between 
observed and simulated yeirly runoff totals, and a similar criterion for 
selected monthly totals. 

3.3.6 Application &ample: A h a l l ,  Mountainous Watershed: Kienbach, 
Upper Austria 

The example of a n  application is a small, mountainous watershed in the 
catchment of the  Attersee, Upper Austria. The catchment extends over only 
12.5 krn2, spanning an altitude difference of 540 m on average, the highest 
point on the  watershed being 1,600 m above sea level. Landcover is almost 
exclusively forest, with some rangeland and pastures. Table 10 summarizes 
the catchment  characteristics. 

The driving variables, precipitation and temperature, are  taken from the 
neighboring meteorological station in Weyregg, situated also on the shoreline 
of t he  Attersee, some 8 km from Kienbach. Flow measurements are  taken 
from daily gauge readings, converted to flows by means of a simple power 
function. 

There exist interesting and somewhat puzzling relationships between the  
parameters and the performance criteria, and among the performance cri- 
teria themselves. Table 11 compares t he  parameter values for three small. 
neighboring watersheds in the Attersee catchment,  resulting from 30,000 
Monte Carlo runs, sorted for two different objective functions, namely the  
average sum of squares (ssq) and the number of significant (sv) violations 
(see above) for storm runoff events. 

Whereas t he  first three parameters (precipitation correction, tempera- 
ture  gradient, and field capacity) are  largely unaffected by the choice of 
objective function, t he  remaining three, namely the maximum percolation 
rate ,  speed of runoff, and t he  groundwater response lag and damping, change 
considerably. The two cases of extreme behavior, contrasted in Figure 17, 
clearly show the  diflerence in  the groundwater response. 
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FIGURE 17 Output of rain-runoff model for Kienbach: (a) minimization of sum of 
squares; (b) minimization of number of violations (storm runoff). 



TABLE 10 Watershed characteristics (sample output) for Kienbach. 

Inputs  a n d  wa te r shed  character is t ics  
Drainage area  (km2) 12.500 
Landcover: forests (%) 80.000 
Landcover: agriculture (%) 0. 
Landcover: pastures (%) 10.000 
Basin length (km) 5.500 
Altitude difference (m) 542.000 
Main-stem channel length (km) 6.300 
Total channel length (km) 31.000 

Initial condi t ions  
Initial snow (rain equivalent) (mm) 
Initial interception storage (0/1) 
Initial soil moisture (relative) 
Initial base flow (m3 s-l) 

Range sampled: 

Parame te r s  Minimum Maximum 
1 Altitude correction for precipitation 0.050 0.110 
2 Altitude correction for temperature 0.200 1.500 
3 Field capacity (rnm m-') 150.000 250.000 
4 Percolation rate (mm day-') 3.000 60.000 
5 Speed of composed runoff (m day-') 100.000 250.000 
6 Groundwater response lag (day) 3.000 90.000 

TABLE 11 Best parameter se t  (from 30,000 Monte Carlo runs) for two different perfor- 
mance criteria: ssq, sum of squares; sv, number of significant violations. 

Kienbach 80/81 Weyreggerbach 80/81 Alexenauerbach 79/80 

Parameter  ssq sv ssq sv ss9 sv 

The explanation is trivial: since basically all of the s ta te  variables of the  
model a re  unconstrained as such, and the only constraint is put  on the out- 
put "runoff" (which is a kind of weighted sum of the  s ta tes  tha t  represent the  
water storages in the system), there  is more than one cluster of "solutions" 
to the  parameter  estimation problem (Figure 18). For each performance cri- 
terion, all the  e r ror  is  pushed into the  unconstrained parts of the models (by 
adjusting t he  relative role of the underground storage via percolation and 
base-flow response). If the  estimation scheme optimizes "significant events," 
i.e. s torm runoff events, the groundwater response has t o  be quick. If the  
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overall performance is optimized, low-flow events play a more important role, 
and the  groundwater response has to be damped in order to sustain low flows 
a t  a sufficiently high level. 

Since the observed lower limit in t he  flow record looks very artificial (see 
Figure 17; in fact, i t  is more likely determined by the method of observation, 
namely a staff gauge, than by the "real" low flow), the problem is difficult to  
resolve without additional constraints, based on additional information. One 
possibility without having to resort to observations of the groundwat.er 
directly - which are just not available in the given case - is to exploit the  
low-flow conditions. Even i f  the records ar.e unreliable, there is a certain 
minimum flow i n  the creek for a norrnal year. Clearly, this minimum flow is 
attributable, in terms of the model, t o  the  base-flow contribution only. 
Therefore, by constraining the allowable minimum flow to, say, 0.2m3s-', the  
groundwater response will be constrained. Figure 18 contrasts the resulting 
parameter distributions with t h e  "tlnconstrained" versions described above. 
Runs with S I X  or less "violaiions" for s torm runoff conditions were selected for 
the  comparison. The two parameters (percolation rate  and groundwater 
response lag) tha t  largely determine the base-flow contribution show quite 
different frequency distributions for the two sets of estimation runs. With t he  
minimum flow constrained, distributions are  narrower - tha t  is, the parame- 
ters  a re  more easily identifiable. Also, whereas parameters 4 and 6 (Table 10) 
are  found to show significant negative correlation in the  first case, there is no 
more significant correlation after t he  introduction of the  low-flow constraint. 

The basic lesson from this example is simple enough: unconstrained 
state variables will just be acting as a residual term,  where all the error can 
be dumped. Model response will be satisfactory for the constrained variables 
or the  constrained part of the  response, but  a t  the  expense of rather unrealis- 
tic behavior of the unconstrained variables and behavioral features. The cali- 
bration exercise degenerates into mere curve fitting. Parameters may turn  
out t o  be highly correlated (and thus a t  least one of a correlated pair is 
obsolete) and practically unidentifiable. Consequently, for a meaningful cali- 
bration, constraining all the  s tate  variables a t  least to a certain degree, and 
eventually in an indirect way (as demonstrated above), is essential. Uncon- 
strained s tate  variables will just increase the  degree of freedom in "curve 
fitting," but  they have no justifiable role whatsoever in a model. 

4 DISCUSSION 

"But as for certain t ru th ,  no man has known it  ... 
For all is but a woven web of guesses." 

Xenophanes 
(Diels-Kranz, Fragmente der Vorsokratiker, B 34) 

"A nice adaptation of conditions will make almost any hypothesis 
agree with.the phenomena." 

(Black 1803) 



4.1 A Philosophical View: Pragrna tic Instrumentalism 

I t  now behooves us to  establish, with respect to  t h e  problem of uncer- 
tainty,  a viewpoint, a perspective, a method of approach, t h a t  has  hi ther to  
received i ts  principal development and application outside the  boundaries of 
environmental modeling. Such prior development and application, however 
extraneous to  our  chief line of interes t  here ,  may  very well be in a position t o  
profit by t h e  precedents established in  methods, in conclusions, and,  most 
particularly, in habit  of thought*. 

Uncertainty may have two basically different sources: mere  "ignorance" 
in one of i ts  numerous manifestations, or t rue  indeterminism of t h e  system 
under observation. The sources of uncertainty in environmental sciences and 
modeling are  certainly of both kinds. 

Macroscopic forms of elementary indeterminism are  quite obvious, from 
t h e  genetic variability within a species to  the  vagaries of the  weather. 
Ignorance is usually blamed on t h e  lack of sufficient and adequate data.  This 
chronic lack of sufficient and adequate data,  however, can only to  a l imited 
degree be blamed on the  logistics of data  collection or experimentation. It 
seems worth while to examine, therefore,  the  relationship between data  and 
modeling. This relationship obviously suffers from a two-sided shortcoming, 
in tha t ,  on one hand, measurements  a re  usually precedent and  independent 
of t h e  modeling efforts (and therefore more often than  not  t u r n  ou t  to  be 
inadequate), and on the other ,  models a re  rarely formulated in t e rms  of the  
measurements  available. 

Pure operationalism would hold t h e  doctrine tha t  theoretical constructs,  
i.e. the  models, have to be formulated in t e rms  of "measuring operations." 
(An elaborate discussion of all t h e  "-isms" involved can be found, for example, 
in Popper (1953), and some critical discussion of Popper's ideas in Feyera- 
bend (1975) and  Lakatos (1978).) In other words, each of the  elements 
described in a model would have to be directly measurable or experimentally 
accessible. However, i t  is obvious t h a t  measurements  presuppose theories, or  
models for t h a t  mat te r .  New theories may  therefore well clash with t h e  evi- 
dence, collected within t h e  framework of an older theory. Lakatos (1978) p u t  
i t  in this  way: "the contemporary observational theories,  in the  light of which 
the  t ru th  values of the basic s ta tements  of the  (model) theory have to  be 
established (i .e.  by comparison), are  false." In a similar line of argument ,  Fey- 
erabend (1975) notes t h a t  "...observational reports, experimental results,  
'factual' s ta tements ,  e i ther  contain theoretical assumptions o r  asser t  them 
by the  manner  in  which they are used ... as a result ,  a theory may clash with 
t h e  evidence not  because i t  is not correct,  but  because the  evidence is con- 
taminated" - or, as I would say, perhaps even incommensurable. 

The theory, or model, will in tu rn  have to be responsive to  t h e  problems. 
Science, and  mos t  obviously applied science, s t a r t s  from the problems, not  
f rom the observations or  measurements .  Yet observations may give rise to  

*The well read will recognize these sentences, which I could not resist adapting from p.41 of 
the 1956 Dover edition of A.J. Lntka's Elements of Mathemtieai (Physical) &logy. 



problems, especially if they were u n e ~ p e c t e d ,  contradictory to  our expecta- 
tions, tha t  is, previous theories. The (scientific) problem is then solved 
through the construction of a theory t h a t  explains the  unexpected and hith- 
er to  unexplained. And "... every worthwhile new theory raises new problems, 
... problems of how to conduct new and previously unthought-of observational 
tests" (Popper 1972). As long a s  the  model is testable in principle, its predic- 
tions (in t e rms  of t h e  corresponding measurements  to be carried out ,  if not  
invented) could as  well be taken as  a challenge for field research and t h e  
experimenter.  In fact,  although stimulated by quite different motives, new 
measurement  and observational techniques (in particular, by-products of 
space technology: satellite reconnaissance, aerial photography, radar-based 
weather observation, etc.; see,  e.g., Lillesand and Kiefer 1979, Salomonson and 
Bhavsar 1980, Deutsch e t  al. 1981, and the remarks in Klemes 1983) a r e  
beginning to  be recognized as an invaluable testing ground for hi ther to  next- 
to-untestable models. 

Still, however, most  of the  measurements  available are  uncertain,  or,  a t  
best, "statistical in nature." t h a t  is, based on samples. Uncertainty of a meas- 
ure,  however, also considerably depends on the  yardstick used for the  meas- 
urement .  "All clocks a re  clouds, to some considerable degree - even t h e  most  
precise of clocks" (Popper 1979), if  one just takes a close enough view, t h a t  is, 
employs a sufficiently microscopic yardstick. The yardstick, in. t u r n ,  is deter- 
mined by the  theoretical basis and conceptualizations used, and, from a more 
pragmatic point of view, by the  problem (which, in tu rn ,  will influence t h e  
conceptualizations of the  system, constrained by theory). Dealing with 
environmental systems we ought to use a "macroscope" for t h e  yardstick (e.g. 
H.T. Odum 1971, de Rosnay 1975). Simulation models, in fact,  a r e  usually 
based on macroscopic conceptualizations. The basic problem, as discussed 
above, is in their  reliance on data  usually collected on a microscopic scale as  
a testing ground. 

Scale is a key issue related to uncertainty. It  has  a bearing on the  length 
of observation - a beautiful and a p t  example from statistical mechanics is 
given by Lotka (1924): "... for a long s t re tch of t ime the  wholly determinate  
periodicity (with a period of 7,385 years, however) of the motion of t h e  system 
of (26) pendulums (with periods of 0.5, 0.6, ..., 3.0 seconds, s t a r ted  simultane- 
ously) is very effectively masked under the  aspects of 'chance'." The impor- 
tance of sampling frequency is highlighted, for example, by Kelley (1976) and 
Mejer and Jdrgensen (1983). The role of scale for conceptualization of 
processes, which will influence sampling ra ther  directly, was only recently 
addressed by Klemes (1983). 

Simulation models, viewed as universal s ta tements ,  or  theories,  
transform a se t  of singular s ta tements  ( the  initial conditions) into another  
se t  of singular s ta tements  ( the  predictions). Since the  first a r e  uncertain,  t h e  
la t ter  have to be uncertain too. This, in light of an objective theory of t r u t h  
as  correspondence to the  facts (what are t h e  facts, then?) ,  is certainly annoy- 
ing as  i t  very much  affects the  testability of these  theories o r  models and, 
with i t ,  the i r  credibility. However, by humbly taking recourse to  pragmatic 
instrumentalism, we  may claim t h a t  our models are m e r e  ins t ruments  for 
prediction. Models a re  sets of instructions t o  derive predictions, they a re  



technological computation rules and, in fact, algorithms and computer pro- 
grams. We do not use them in the search for objective t ruth,  but rather to 
make sufficiently useful predictions. "A theory is a tool we test by applying it ,  
and which we judge as to its fitness by the results of its applications." This 
"Darwinian" instrumentalism, cited from Popper (1959, p.108), is criticized by 
Popper himself only a few pages later. It is, however, in keeping with the best 
tradition of the Vienna Circle of Mach, Wittgenstein, and Schlick. 

This, however, will lead to some more problems for the credibility and 
applicability of models, and a slightly different interpretation of the testing 
process as compared with "pure" scientific theories. Theories are tested by 
attempts to refute them. For models as  instruments, we can usually always 
find a "test to destruction" (see the application example in Section 3.1). In 
terms of the above approach, we will almost always be able, for any even only 
moderately complex nonlinear simulation model, to find an "allowable" input 
combination that  results in unacceptable model response (at  least from a 
very critical purist's point of view). Consequently, from the point of "pure" 
hypothesis testing, the model as a theory ought to be rejected. We still use i t  
- within the limits of its applicability. What the severe and critical test  can 
establish, under all the uncertainty associated with inputs and test condi- 
tions, is the range of applicability of the model. This range is an essential 
property of each model, and therefore it has to be well explored. Find the 
boundaries within which your model behaves properly (Meadows 1979), which 
is easy enough by means of numerical experimentation on the computer, e.g. 
Monte-Carlo-based trial and error. I t  should be made clear that  Popper's 
falsificationism (from naive to sophisticated, as labeled and criticized by 
Lakatos (1978, p.93ff.)) can only strictly be applied to the lowest operational 
level of theoretical constructs, i.e. the individually testable hypothesis. In 
environmental applications, which, as a rule, are a t  the intersections of ecol- 
ogy, technology, and socioeconomic and polit,ical problems, models are of a 
more complex, composed nature. They may be closer to Lakatos's research 
programs than to Popper's theories. And, in fact, they may be best 
approached in terms of Feyerabend's (1975) creative anarchism of "anything 
goes." 

Since it is obvious, fully intentional, and also inevitable that  all models, 
and numerical simulation models in particular (and even such supposedly 
elementary precise and well established models as Schrodinger's equation 
describing the hydrogen atom), are (pragmatic) simplifications, and thus 
include uncertainty, we have to be aware of the implications and conse- 
quences in r e la t i on  to the p rob l em to be so lved .  

4.2 Uncertainty Analysis: Alternative Approaches 

Uncertainty inherent in environmental modeling is inevitable - sto- 
chastic variability, heterogeneity, rjch behavioral repertoires, and time- 
varying structural and functional attributes are all basic features of environ- 
mental systems. Thus, i t  seems unlikely that  any moderately complex 
environmental system can be well defined in the traditional physicochemical 



sense (Hornberger and Spear 1981). In fact, environmental systems have 
been described as  being "poorly" or "badly defined" (Young 1978, 1983). 

For a considerable t ime, this uncertainty and its inevitable conse- 
quences have been ignored altogether, resulting in a most misleading 
pseudo-precision in the  results - and consequently overly optimistic and 
unrealistic expectations, failures in applications or rather,  to  be applied, 
disappointments, and finally a bad reputation for modelers in the scientific 
community (e.g.  Biswas 1975, Watt 1977, Hedgpeth 1977, Hilborn 1979, Fedra 
1980). 

Uncertain systems require a different approach, profoundly different 
from the regular, orderly, and highly predictable "clocks" - they are  "clouds," 
highly irregular,  disorderly, and more or less unpredictable (Popper 1979). 
Rather than t rea t  the variability of ecosystems as  an  annoying smokescreen 
tha t  obscures their  "true" behavior, we may t rea t  this variability as a basic 
characteristic of such systems (SiIvert 1983a, b). 

As one consequence of all the uncertainty in environmental modeling, 
model development, parameter estimation, and "prediction" have to  be 
understood as  inseparably linked parts of one and the same process, i.e. 
modeling (which, as a mat te r  of fact,  is just one formalized way of doing 
scientific reasearch).  The approach described above, linking a formal t e s t  of 
model s t ructure ,  parameter estimation, and estimation of prediction uncer- 
tainty, is one approach to rational modeling under uncertainty. 

Alternative approaches involve the direct apriori use of the  probability 
density functions (Silvert 1983a,b), which are  arrived a t  in the Monte Carlo 
approach a posteriori. Although this alternative approach is much more 
elegant in i ts direct way of treating variability or uncertainty, there  are a few 
restrictions. The method requires the representation of the elements or 
features of a system in terms of (sampling) distributions, their  mean values, 
and their  moments .  However, in practice, the  "sample" may consist of only 
one measurement ,  making t he  estimation of t he  moments more or less 
impossible. And although many natural distributions are  found to  be skewed 
to a considerable degree, ease of mathematical t rea tment  may lead t o  the  
assumption of normality or log-normality of the  variables describing an  
ecosystem. Nevertheless, practical implementation of this type of approach 
requires a fair arnount of mathematical sophistication and a willingness to be 
quite ruthless about model simplification (Silvert 1983b). Although "proba- 
bilistic model structures" make i t  possible to carry out  stochastic modeling 
without extensive Monte Carlo simulations, the covariance calculations add a 
substantial  computational burden. For a certain class of problems, where 
sufficient data are  available t o  define probability density distributions, and 
where a structurally simple model will suffice, a s  for example in population 
dynamics, the approach adopted by Silvert (1983a,b) is certainly a -  comple- 
mentary alternative. 

Another s e t  of alternatives, or ra ther  complementary methods and 
approaches, can be subsum.ed under the te rm error analysis or uncertainty 
analysis (e.g. Reckhow 1979, 1981, Di Toro and van Straten 1979, O'Neill and 
Gardner 1979, O'Neill and Rust 1979, Gardner e t  al. 1980, 1981, Scavia et al. 
1901, Gardner and  O'Neill 1982). These methods use maximum-likelihood 



techniques and first-order variance propagation to estimate overall model 
variance (or uncertainty) originating f rom uncertain initial conditions, 
parameters,  or driving variables. They also require a fair degree of 
mathematical and statistical sophistication, and may involve considerable 
computational burden. And most important of all, they require several 
assumptions to be made about the  model as  well as about the s e t  of data used 
for comparison. First-order error propagation employs a first-order lineariza- 
tion of the model, tha t  is, the original nonlinear model is linearized and 
replaced by its first-order Taylor series approximation. This may eventually 
t u rn  out to be inadequate. Since the  second-order propagation equation 
involves second partial derivative matrices,  "which are somewhat cumber- 
some to handle" (Scavia e t  al. 1981), a significant simplification of the  model 
might have to be made to make the computational burden feasible. Also, vari- 
ance around a mean behavioral value can eventually be a rather  misleading 
measure of uncertainty, if the underlying population is strongly skewed (Sec- 
tion 3.2 and Scavia et  al. 1981). In fact, Monte Carlo simulations - which, by 
comparison with the above-mentioned methods of error  analysis, entail the 
complete nonlinear simulation model - may produce even bimodal distribu- 
tions for certain state variables, indicating bifurcations (Section 3.3). Clearly, 
means and variance estimates are of little significance then. 

Finally, for determining the deviation of s ta te  variables from the "true" 
values, usually by employing least squares, the error analysis has t o  make the  
assumption tha t  either the observations are without error,  i.e. they 
represent the "true" s tatus  of the system, or the error around them is of a 
known kind, usually Gaussian white noise, or  the "true" values are 
represented by the deterministic model solution (Scavia e t  aL. 1981). Clearly, 
in light of the above sections, these assumptions may seein unrealistic, and 
a t  best, are untested. 

Recently, formalized parameter calibration routines have begun to be 
applied in the field of modeling complex aquatic ecosystems, for example by 
Lewis and Nir (1978), Jdrgensen e t  al. (1978), Di Toro and van Straten (1979), 
and Benson (1979). In these methods a loss function is defined, usually in a 
squared-error form, and subsequently a parameter vector is sought tha t  
minimizes this loss function. This procedure thus avoids the analyst's subjec- 
tive perception of which parameter ought to be adjusted t . ~  improve the  fit. 
Also, t he  equally subjective judgment of agreement between simulation and 
observation is replaced by a more formal quantitative notion. However, 
although frequently called "objective function," this does not imply tha t  the 
criterion chosen is free from subjective elements. For example, in problems 
with s tate  variables with different physical dimensions, some (subjective) 
form of weighting is required in the formulation of a single-valued loss func- 
tion. Furthermore, i t  is not easy to account for uncertainty in the field data,  
although methods to do this have 'been attempted (Beck and Young 1976, 
Lewis and Nir 1978, Jolankai and Szijllosi-Nagy 1978. Beck 1979. Di Toro and 
van Straten 1979). 

Finally, however, it has to  be recognized tha t  the assumption tha t  a sin- 
gle 'best' parameter vector exists is a t  least questionable, especially if data 
uncertainty is considered, and, in any case, experience shows tha t  it is 



extremely difficult to find such a unique vector if the number of parameters 
to be estimated is larger than, say, six to  ten. If, however, such a best param- 
eter  vector exists - by definition - and can be identified by whatever method, 
its meaning and interpretation would still be problematic. 

One way of comparing such approaches looking for a "best" solution with 
the methods described above is the following: if a "best" (by whatever set  of 
criteria) parameter vector is sought, the "target" of the estimation procedure 
is a point, and the measure of success is some measure of the distance of the 
model response from this point. In the examples presented in this report, 
this point is  extended to a region - acknowledging the  uncertainty in the  
observations tha t  define this point - and the  measure of success is whether 
or not the model response is within this region. Instead of a continuous meas- 
ure of distance, a discrete classification into "inside" and "outside" is used. Of 
course, any combination of the methods could be imagined and, in fact, the  
gradual shifting of t he  target region in the analysis process as described in 
Sections 3.1 and 3.2 is one such possible extension of the basic procedure. 

As stated in the introduction, the Monte Carlo method is nothing more 
than computerized trial and error.  As such,  the method would be very 
inefficient for the calibration of complex simulation models and their 
repeated testing, since i t  is, principally, blind and unintelligent. This prob- 
lem, however, can be overcome by a more s t ructured design of the estimation 
scheme, with iterative cycles of estimation and analysis. The main 
justification for the use of Monte Carlo methods, however, is in their concep- 
tual simplicity. This simplicity, and the resulting flexibility, allows for the 
accommodation of uncertainty, and a t  the same t ime i t  permits a very 
problem-specific exploitation of all the available information. 

The method requires the formal definition of an acceptable model 
response a priori. I11 this definition, arbitrary classifications and subjective 
judgments cannot always be avoided. Although based on the available field 
data, the definition has to be formulated on the level of abstraction of the 
model. This involves subjective interpretation of the raw data, and conse- 
quently introduces some fur ther  uncertainty. This uncertainty is a problem 
common to any modeling approach. However, this inevitable subjective ele- 
ment  has to be made explicit, open to criticism, arid ready for easy revision 
on the  basis of fur ther  experience (Figure 1). On the other hand, the 
approach allows for the easy inclusion of all kinds of additional information, 
not usually included i n  a "data set," such as  some time series of observations 
on s ta te  variables. Much of the information available on environmental sys- 
tems, however, is of this more general, semiquantitative type, resulting from 
many qualitative observations ra ther  than quantitative measurements.  
Nevertheless, this information is most valuable, as  the  specific data  available 
are usually scarce, scattered, error-corrupted, and typically on the wrong 
items. 

Any model response generated can be classified as  either "acceptable" or 
"not acceptable." The classification is discrete, a:nd once the constraint condi- 
tions are  formulated there  is no more ambiguity, no gradual or partial agree- 
ment  or disagreement between t he  model response and the observations, cal- 
ling for arbitrary judgments. How small would the sum of squared errors have 



to be for a given state variable to make a model acceptable? Although a 
least-squares criterion may be helpful in finding a "best" parameter set  
(according to  the least-squares criterion with its implicit bias and problems) 
for a given model structure, i t  does not allow one to conclude whether or not 
the model structure is adequate. Subjective judgment a posteriori has to be 
used. Examples abound where only partial agreement of model output and 
observations is described as "acceptable or of reasonably good fit," ignoring 
the fact that  severe discrepancies exist between parts of the model response 
(e.g. for some of the state variables) and the observations (Reckhow 1981). 
This is most obvious in the case of the introduction of unmeasured (and con- 
sequently unconstrained) state variables into a model (compare the applica- 
tion example in Section 3.3) - bacteria are an almost classical example in 
water quality modeling. 

4.3 Consequences and Implications: Uncertainty and Forecasting 

Uncertainty in ecological modeling is certainly an  inevitable element in 
the method as well as in the object of study, which is most obvious when one 
tries to predict the future on the basis of a fuzzy present. The analysis of 
model uncertainty together with appropriate methods for model calibration 
under uncertainty, and of its consequences, i.e. i ts "inverse," prediction 
accuracy, is certainly a t  an early stage of development. However, being 
aware of model and especially prediction uncertainty and the thus obvious 
limits of predictability, i.e. the range within which a given model may reason- 
ably be applied, might well help to avoid too naive a t rust  in numerical 
models. Analysis of the various sources of model uncertainty and their rela- 
tions and interdependences will be necessary to improve model applicability. 
And the least impact from model error analysis on model application should 
be a critical reevaluation of the questions that  can reasonably be addressed 
and answered by means of numerical models. 

The implications of uncertainty are many: there are implications for the 
testability of hypotheses, which, in terms of simulation modeling, is primarily 
on model development. This may cast new light on the principle of parsimony 
adopted in Section 3.1. Citing Popper (1972) again, "...it can be shown tha t  
what is usually called the simplicity of a theory is associated with its logical 
improbability, and not with its probability, as has often been supposed. This 
indeed, allows us to deduce ... why it  is always advantageous to try the sim- 
plest theories first. They are those which offer us the best chance to submit 
them to severe tests: the simpler theory has always a higher degree of testa- 
bility than the  more complicated one." 

In addition, there are consequences for prediction accuracy, which 
largely influences model interpretation and, consequently, applications. How- 
ever, since the uncertainty is a basic characteristic of the systems dealt with, 
we have to live with it, and exploit i t  wherever possible (Holling 1978). One 
possibility, as demonstrated above, is to estimate over which time span and 
over which range of conditions useful predictions - in terms of the problem 
to be solved - can be made. A major result of the prediction is thus in the 



determination of i ts  reliability and applicability. Clearly, this calls for an 
appropriate se t  of methods in planning, decision making, and management ,  
where the  uncertainty inherent in model-based forecasts needs t o  be fully 
acknowledged. Simulation models rarely a t t empt  to  predict the  "future" in 
a n  absolute sense. They are  designed t o  address questions of the  "what if?" 
kind, which are  explicitly based on (additional) a s s u m p t i o n s  or more or less 
speculative scenarios about t h e  future .  Complex environmental models 
should probably be understood a s  educational tools ra ther  than engineering 
tools: they do not provide solutions to  be readily implemented, but ra ther  
clues as to how a system might evolve if cer ta in  actions are  taken,  which 
should help to shape policies and assist decisions. 

After all, much of the uncertainty associated with large-scale modeling, 
and environmental modeling in  particular, is a necessary and direct conse- 
quence of the  same causes t h a t  create the  need for these models: these  
models a re  built exactly because the  systems modeled a re  no longer directly 
experimentally accessible; and this  for good reasons. 
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