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BAYESIAN APPROACH TO PARAMETER
ESTIMATION: CONVERGENCE ANALYSIS

1. INTRODUCTION

In spite of evident success in the analysis of many aspects
of natural phenomena, uncertainty is still one of the most impor-
tant features of the relations between human beings and natural

systems,

The absence of exact knowledge about the structures,
regularities, and peculiarities of system functions, the variety
of unknown links between subsystems, errors of measurement, and
sometimes the practical impossibility of measuring on the one hand,
and the need to decide on appropriate control actions under incom-
plete information on the other, have prompted attempts to arrive
at formal descriptions of uncertainties and to analyze their

dynamic properties.

One of the most highly developed formal ways of dealing with

the dynamic aspects of uncertainties is the theory of random
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processes, but the practical application of this formal theory is
often accompanied by long and informal procedures to identify when
and how the basic assumptions and axioms of the theory may corre-
spond to real situations. This aspect of the probabilistic method
becomes especially important when we are dealing with statistical
inference or data-processing problems. The Bayesian approach to
statistical inference provides a way of taking into account the
informal experience and intuition of the person dealing with a

particular problem.

A detailed discussion of the Bayesian approach can be found
in Savage (1954), Edwards et al. (1963), Box and Tiao (1973),
Lindley (1974), and Peterka (1980). Theoretical research in this
field has been stimulated mainly by the problems of estimation and
control under incomplete information. The main conceptual dif-
ficulty in applying the Bayesian method is related to the interpre-
tation of the a priori probability, although this difficulty is
often overcome by using subjective measures of belief in a

"rationally and consistently reasoning person" (Peterka 1980).

With this approach statistical analysis becomes a part of the
man-machine interaction procedure. Such a concept widens the scope
of the implementation of probabilistic methods for many situations
with uncertainties, and provides a rational basis for decision-
making. In particular, it is often used to solve identification
problems as a first step in adaptive policy design for large-scale

systems.

By systematically applying the Bayesian approach it is possible

to produce a consistent theory with a formal structure from systems
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identification. For example, combining the Bayesian approach
with the results and methods of the general theory of processes
developed during the last decade has enabled abstract theoretical
results of the martingale theory to be applied, and their best
implementation in practice to be determined (see Meyer 1966, 1976;

Dellacherie 1972; Jacod 1979; Liptser and Shirjaev 1977; etc.).

One of the important characteristics of the Bayesian estima-
tion procedure is its consistency property in parameter estimation,
which often provides high-quality adaptive control algorithms.

Many papers have been devoted to convergence analysis of Bayesian
estimators (see, for example, Kiefer and Wolfowitz 1956, Kraft
1955; Le Cam and Schwartz 1960 Wald 1949; Ljung 1978; Freedman

1963; Doob 1949; Le Cam 1953, 1958).

Sufficient conditions for the convergence of such estimation
algorithms was the subject of a paper by Baram and Sandell (1978),
which included various assumptions about the properties of the
observation process, parameter sets, and the correlation of
parameters with the measuring process. Necessary and sufficient
conditions of consistency of the parameter estimations for the
diffusion observation process was the subject of a paper by

Kitsul (1980).

The necessary and sufficient conditions of consistency for
the discrete-time observation process and a denumerable set of
parameter values were investigated in Yashin (1981). It turns
out that the strong consistency property is often equivalent to
the property of mutual singularity for some special family of

probabilistic measures. The details of singularity conditions
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given in Kabanov et al. (1978) make it possible to obtain the
convenient conditions of convergence of the Bayesian estimation
algorithm in adaptive filtration schemes (Kuznetzov and Yashin
1981; Kuznetzov et al. 1981). The main advantage of these
conditions is that they can be checked before the measurement

or observation process is begun.

The development of the results of Yashin (1981) will be
twofold: first, a dissemination of the conditions in that paper
on the wide class of continuous-time random observation processes;
and second, an investigation of the consistency property for an

uncountable set of parameter values.

This paper is devoted to the investigation of both of these
problems. It turns out that in the case of continuous-time
random processes, results similar to those of Yashin (1981) are
true. However, the proof of the consistency property for an
uncountable set of parameter values requires some additional

conditions of restraint.

2. PRELIMINARIES

Let (Q, ¥, H, P) be the probabilistic space, where H = (ﬂ£)t>0
is a nondecreasing right-continuous family of o-algebras ¥ _, tzO:
nggzn H, =X, andJQ)is completed by the sets with a P-probability
equal to zero. Consider the ﬂb—measurable integrable random variable
B(w), which takes its values in some interval I of the real line. We

will interpret R as the unknown, unobservable parameter of some

dynamic system.
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Let Et(w), t20 be a H-adapted continuous-time random process,

taking its values in R™ with right-continuous, and having left li-

mits, sampling paths. Denote by H = (ﬂ£)tzol

sSu}. For simplicity we will use X to denote the o-algebra i .

- A
where ﬂ£ u>tO{Es’

The process Et(w) will be interpreted as an observation process or

the results of the measurement of some system variables.

Definition 1. The H-adapted random process @t(w), t20,
is said to be a consistent (strongly consistent) esti-
mation of the random variable B if P lim ét =B

ttoo

(1im ét =B P - a.s.)
t4oo

We will deal with the properties of the conditional mathemat-
ical expectations ét = E(B|ﬂ£) as an estimation of B. The simple
necessary and sufficient conditions of consistency Et = E(Blié)
may be formulated in terms of the i%measurability of the random

variable RB.

Theorem 1. The estimation Et is strongly consistent

if and only if the random variable B (w) is H-measurable.

The proof of this theorem follows from the Levy theorem about
the regular martingale asymptotic behavior and evident property of

H-measurable functions.

The relation between the consistency property of the Bayesian
estimation of the random variable B and the same property of the

arbitrary estimation may be determined by the following theorem.

Theorem 2. Let ét be some arbitrary consistent

H-adapted estimation of B. Then the estimation

Et is strongly consistent.



Proof. According to the theorem's condition
P lim ét = B, for any t20, the random variable

~

B, 1is ﬁk—measurable; consequently B will also be

t

H-measurable. According to the Levy theorem

lim Et = E(B|i) P-a.s.
theo

and consistency follows from ﬁPmeasurability of B.

If there is no information on the convergence of some non-
Bayesian estimation, the proof of the ﬁ%measurability of B becomes
more difficult. Fortunately there is another way of proving this

property for B, as can be seen from the following.

Theorem 3. Let {8"}, n = 0,1,2,... be the sequence

of random variables such that P lim 8™ = 8. Then,
nte

if the estimations of B"™ are consistent for any

n=20,1,2,..., the Bayesian estimation of B is

strongly consistent.

The proof of the theorem is the simple consequence of the

property of the measurable functions.

Using the result of Theorem 3 we should concentrate our ef-
forts on the findings of the appropriate sequence {Bn}, n =
6,1,2,..., establishing consistency properties for EE = E(Bn|ﬁ£)

for any n = 0,1,2,....

It is clear that the variables Bn(w), n=20,1,..., should

have a more simple structure than R(w). We will use as such
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variables piecewise constant functions with denumerable sets

of values. It is well known that for any random integrable
variable g(w) there always exists a sequence of such random
integrable variables {8"}, n = 0,1,2,.... The problem therefore

is to prove the consistency property for all such Bn, n=28,1,2,....
We start with the investigation of this property for one random
variable with a denumerable set of values in a continuous-time

random observation process.

3. THE STRONG CONSISTENCY PROPERTY IN THE CASE OF A DENUMERABLE
SET OF PARAMETER VALUES
Assume that parameter B takes the denumerable set of values

{Bi}, i € ¥ and the o-algebra H£ is generated by o(B) and i£

ﬂ£ = o(B)V H%

where 6(8) is the o-algebra in Q generated by B, and N is some

denumerable set.

Let P,, P and P be the restrictions of measure P on

t t’
o—-algebras Ht, it' and i, respectively. Define the probabilistic

measures Pi(-), i € N on measurable space (§,#) using
. P(AN{B = B.1})
Pl (A) - 1
P

where p; = P(B = Bi), i €N, ZN p; = 1, A € K
i€

We will use Pl, ?t, and P to denote the restrictions of
measure P’ on g-algebras M£, i£, and ﬁ, respectively, and zi] and

. abk ap]
A% to denote the derivatives -—= (£) and — (£), if they exist.
dPi S
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Denote by Kt(B) the random process, defined by

A (B) = T T(p= )AL

t iER it
Let Wj(t) = P(B = leih) be the a posteriori probability of the
event {B = Bj}, given i£, and J0 = —Z;H_ln Py is the entropy of

i
the random variable BR.
The basic theorem about the consistency properties of the
Bayesian estimation of B establishes the relationship between the

following conditions:

(a) 1lim Bt = B P-a.s.
tte

(B) 1lim m. (t) = I(B=R.) P-a.s. , j € R
tteo J J

(© BfAPl . ¥k, 3ER e

oy B LB}, uk,jen K # 3

(E) J, = E 1nA_(B)

Theorem 4. Let (C) be true. Then
(E) » (D) < (B) * (&)
Note that the analogs of Theorems 1-4 may be formulated

for discrete-time stochastic processes Enr n20. We will give

here the formulation of Theorem 4 only.



Let (R, ¥, H', P) be the probabilistic space where H' =

>

(ﬂ'n)n>0 is a nondecreasing family of o-algebras K'n, nZo0,
]
’C ﬂ;+1 C ', and ﬂB is completed by the P-zero sets. Assume

that B(w) is the ﬂg—measurable random variable which takes its
values in some denumerable set N. Let gn, nZ0, be an H'-adapted
discrete~time stochastic process taking its values in R™. Denote

by H' = (xln)nZO’ where K'n = o{g (w) ,m<n}.

Let P _, ﬁn, and P be the restrictions of measure P on o-
algebras ' , iln and i':ﬂnm, respectively. The notations P;,

ﬁ;, gn, Xn' and ﬂj(n) are as defined above, with the natural

changing of the index t to index n. The conditions (A), (B),
(C), (D), and (E) may be rewritten as follows:

(A') 1lim B_ =B P~ a.s.

n->o n
(B') 1lim w.(n) = I(B=R.) P-a.s. , jEN
¢y BX . B ¥k, jEN nzo
n n ! v ] ’ =
1y 5K L 5] :
(D') P P , ¥k, JEN
(E') J, = E 1nk_(B)

Theorem 4'. Let (C') be true. Then

(E') ¢ (D') ¢ (B') < (A')
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Theorem 4' becomes the simple corollary of Theorem 4 if we

define c-algebras H£, t20, by

ﬂk = ﬂh, for nst<n+1, nz20

To prove Theorem 4 some additional results will be useful.

4. SOME PROPERTIES OF CONDITIONAL MEASURES

The next assertion establishes a remarkable property of

absolute continuous probability distributions.

Lemma 1. Let (C) be true. Then the following assertions

are true
(a) For BF and B - a.s. the following limits exist
lim ztj -2kl ok, jen

the

k

{b) The measures B", k € ® have the Lebesque

representations

_k k- - _k . -—
P (a) = [zwj aBl + B (an g ==}, a€d, x,jen
A

(c) The following conditions are equivalent

-k = —k kA o 1k
p*Llp) o p (zooJ =w) =1 pl(z = ©) = 1,k,jERN

oo
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The proof of the assertions of Lemma 1 may be done in a

similar way as in Kabanov et al. (1978), taking into account
the equivalence property of §i, ﬁg.

Lemma 2. Let (C) be true. Then measures P_ and ﬁt

are equivalent and

-k

-k dpt_ﬂk(t)

At= = T 5 (1)
dPt k

Proof. The property PT << P follows from the definition

of the measures Pl(-), i € 8. The properties Pt << Py and
?i << ﬁt follow from the evident property P << P. The
definition of Pl(-)yields the following formula for
i, A api
A (w) = 35
At (w) = Ijj%§f§iL
i

Let yt(w) be an arbitrarily bounded ¥H-measurable function.
We will use Ep to denote the operation of mathematical

expectation with respect to measure Pk. We have

ﬂk(t))
|&

_ k _ k2 —
Ey ¥, = E(A yt) = E[ytE(A |Ht{] = E(yt

The arbitrariness of Ye yields equality (1).
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The absolute continuity of Et with respect to Bk

p

S
t'kR

follows from the evident representation

(2)

k

Indeed, let k €RX be the arbitrary index and AGEi% be such that
Pt(A)==0-

According to condition (C) for any other index
jEER,‘Pj(A) = 0, and consequently, according to formula (2),

§t(A) = 0, thus completing the proof.

Lemma 3. Let (C) be true. Then Ej-a.s.for k, J€N, k#j, t=20

™ ()

Px _xj

___=—Z 3

Trj(t) P t (3)
and

—k ﬂk(t) _5 ™ (t)

P O<W %_1=P 0<

— ey < (4)
ﬂj(t)

Proof, From the definition of the processes th we get

_.k _k -

K3 dp, apf dp, . (t) Py

;-Lt =__—j (W) =—— - —T = D .1T (t):PJ—a,s.
dp; dpy dPy k 3 t

and formula (3) is true.

The equivalence of the measures §k

¢ and 1‘»%, k,jEN, k#3 yields
j_ _ 53 ,2kd _ _
Blil=0) = Blz7=0) =0_

which vields (4).



Proof of Theorem 4.

(B) ® (D). From (B) and the condition T ﬂi(t)

follows that

T () {
lim ——— I{B
the Ty (H)
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Taking (5) into account we can get

lim 250 1{8 =
thoo

or
plgzkd = o) =

Using the Lebesque

[ part (b) of Lemma

Bizkd - o)

ieR
=Bj} =0 7 kl jeN ’
Bj} =0 , P-a.s. k, jEN ,
1, k, JER ,

representation we get for §k{Z£J

11, and using (6) we get

=0 ’ kljeNl

Comparing (6) and (7) we get (D).

(D) = (B). Let rkj

P and 53 such that

pJ (T

X (T

kj

kj) we get

sk
p (ij

) = 1. Using

1 it

k# 3 (5)
k# 3

k# 3 (6)

= 0}

k# 3 (7)

be the singularity set for measures

ﬁk(ij) = 0, and consequently

the Lebesque representation of measure

) = J 2k ap? + 5% (eI - e = o

[ee]

k, JER ,

k# 3 (8)
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It follows from (8) that
kj _

HEHF=0) = 1, kK, JER , k # 3 (9)

[=0]

Lebesque respresentation of the measure ﬁk(sz==0) yields

ka0 =0 K, JER , k # 3 (10)
kj . . =k =J
Consequently, the{Z =0} coincide with the Tky P and P -a.s.
It follows from (5) and (9) that for any k, JER, k# j
™ (t) .
limﬁt—)-= 0 7 Pj—a.s. ’ k,je& [ k #J
tte J
or
My (€) -
lim T I(B=B.) = 0, P-a.s. , k, JEX  , k #3
tteo Ty (F) ]

Property (B) follows from the condition

r w.(t) =1
ien *

(B) = (E). It follows from (2) and (B) that the following
is true
_ =i _ -
I(B—-Bi)lnAOo = I(B—Bi)lnpi (11)
Summing both parts of (11) over i yields

I I(B=8;)Inh_(B) = -3 I(B=8;)1lnp; BP-a.s. (12)
ien i€R +

Averaging both parts of (12) over P yields
_ k
ElnA_(B) =EZ I(B=28,) lnp, =Elim I [-1(B=8,) 1np,] (13)
iER 1 T ke =1 * *
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k
Since the variables J, = = [—I(B= Bi)]lei] increase

k .
i=1
monotonically as k grows, it is possible to change the
orders of integration and to go to the limit in (13). This

yields (E) because

ElnA_(B) = -1

(E) = (B). Condition (E) and formula (5) yield

EZ I(B=B;)1lnm,(») - EZ I(B=B.)1lnp, = - I p:lnp. (14)
ieR 1 1 i€R 1 1 jex 1 Pi
Since

EX I(B=RB.)lnp., = Zp, lnp.
ieR * o5t

it follows from (14) that

EZII(B=R.)1lnmw,(») =20 (15)
iEN 1 1

It is clear that equality (15) may be true if and only if
I(g=8;) Inm (») =0 P-a.s. , ¥, EN

Taking into account the equality I ﬁi(w) = 1 we get
i€ER
property (B).

(B) = (A). Property (B) yields that the indicators I(g=B8;),

i € 8 are H-measurable, and consequently the random variable 8
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is H-measurable. According to the Levi Theorem for regular

martingales

lim 8, = B, = E(B|0
thw

Since 8 is H-measurable,

E(Bli) =8 P-a.s.

(A) = (B). Property (A) yields that random variable B is

measurable and consegquently I(R = Bi), i€ N are H-

measurable random variables. The processes

mi(e) = E[I(s = 8.) |Jct]

are H-adapted regular martingales.

Conseguently,

1im 7. (t) = 7.(®), j € B exists P-a.s. The H-measurability

t 4o J
of the indicators I(B = Bj) yields

proof of Theorem 4.

(B) and completes the

The results of Theorem 4 are too general to be implemented

in practical convergence analysis of Bayesian algorithms. The

applied statistician expects from statistical theory more conven-

ient conditions which are formulated in terms of parameters and

probabilistic characteristics of the systems and processes with

which he deals. As will be seen later,

stem immediately from our results if we

formation about the observation process.

situation here when this information is

martingale properties of the observable

such forms of conditions

have some additional in-
We will consider the

concentrated in the semi-

process Et.
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5. THE PROCESS Et' t20 AS A SEMIMARTINGALE

The semimartingale is one of the key concepts of modern
martingale theory. It accumulates the common properties of a
wide class of random processes, which can be investigated in
the framework of martingale techniques. This idea appeals to
human intuition, which is inclined to represent dynamic processes
describing natural phenomena as the sum of two components: slow
(trend) and quick (noise). Before giving a formal definition we

will introduce several new concepts.

Let the notations H, #_, P be as defined above 1in Section 2.

y
We will use M(H,P) to denote a class of H-adapted martingales with
respect to measure P with regular (i.e., right-continuous and
having left limits) sampling paths. The class of H-adapted,
nondecreasing processes having a P-integrable variation with
regular sampling paths will be denoted by A+(H,P). The notation
A(H,P) = A+(H,P) - A+(H,P) will be used for the class of arbitrary
H-adapted regular processes with an integrable variation. In a
similar way we can introduce the notation V(H,P) for the class of
H-adapted processes with a bounded variation. The class of
continuous sampling path martingales will be denoted by MC(H,P).
The notations My _(H,P), M] _(H,P), 4;_ _(H,P), and V;_ _(H,P) will
be used for the classes of local martingales, continuous local
martingales, the processes of locally integrable variation, and
locally bounded variation, respectively. Predictable c-algebra

in Q x R, generated by H-adapted processes will be denoted by
m(H), and d-algebra w(H) x B(Rm) in @ x R+ X Rm denoted by 7 (H).

T (H) -measurable processes will also be called H-predictable.
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Definition 2. A random process £ = (§,,¥) is called
a semimartingale if qne can identify the processes V

and M such that

€ 16
ME M (HP) (16)

Vloc(H’P)

We will also use the concept of H-predictable projection

of the random process.

Definition 8. The H~adapted process Py = (pXt) is said

t20
to be an H-predictable projection of process X if, for any
H-predictable non-negative function Y and arbitrary H-

predictable non-decreasing process A, the following holds

[ee] [ec]

> _ T p
E [OXthdAt E JO XtytdAt

The class of H-adapted semimartingales with respect to

measure P will be denoted by S(H,P).

It is not hard to see that local martingales, supermartingales,
and submartingales are semimartingales. Arbitrary processes with
stationary independent increments are semimartingales. A process X
with independent increments will be semimartingale if

f(t) = EeiAXt
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is a function of locally bounded variation for any X € R
(Shirjaev 1980). The concept of a semimartingale is applicable
to many processes governed by stochastic differential and

integro-differential equations.

The class of semimartingales is invariant with respect to
equivalent transformation of probabilistic measures and random
change time transformations (Shirjaev 1980). Finally, if X € S(H,P)
and f= filx) x € R 1is a twice continuously differentiable function,

then the process

f= [-f(xt) ,Jct]

is also semimartingale. Finally, any stochastic discrete-time

process 1is semimartingale too.

In the next section we will give the singularity conditions

for some probabilistic measures corresponding to semimartingales.

6. LOCAL ABSOLUTE CONTINUITY AND SINGULARITY OF PROBABILISTIC
MEASURES

We start this section with an analysis of the properties of
absolute continuity and singularity for local absolute continuous

probability distributions (Kabanov et al. 1978).

Let probabilistic measures P and P be defined on measurable
space (2, #, H), where all notations are the same as in Section 2.

Assume that measures P and P are locally equivalent (P'2°P), and
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the local density is given by
dPt

= Fp 7
t dPt

/ t20

which is the Radon-Nicodin derivative of measure ﬁt with respect
to Pt’ where ﬁt and Pt are the restrictions of P and P to
o-algebras ﬂ£, t20. Notice that for any tz20 ﬁ(zt>0) = P(Zt?O) = 1.

We now introduce the process
t 1

M, = [' Zs— dZS
2 0

It is easy to see that process Mt’ t20, is H~local martingale and,

by definition,

Let u(M)(dt,dx) be the integer-valued random measure,
corresponding to the jumps of M, and let v(M)(dt,dx) be its dual

H(P)-predictable projection. Define
t 2
X M 20
0 I+ x|
R\ {0}

_ C
Bt(M) = <M >t + J

The following theorem was proved in Kabanov et al. (1978).

~ loc
Theorem 5. Assume that P << P. Then

v

<< P ® ﬁ[ﬁw(M)<w] =1

it
—_—

1l pe ﬁ[Bm(M)=w]

v I,

where B (M) = 1lim B, (M)
® the ©
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The equivalent formulations of the theorem are as follows:

I
—

P << P * §[<Mc>w +J L;(1—/1+x)2dv(M)< w]
: 0

[+ ]

p L pe §[<Mc>m +[ I (1=/TF%) 2av M) < oo] .
B

0

or passing from M to Z,

P << P © P[B_(2)< | =1

P L Peb[B_(2)= w] =1

where
t t (2)
B, (2) =[ (z”1)2a<z% +f J (1-/1+xz" 1%y (ds,dx)
t -S s S—
0 0‘E
and v(z) is the dual H-predictable projection of measurelg(z)

corresponding to jumps of 2 t20.

tl

These general results become more accessible for applications.
if they are reformulated in terms of characteristics and parameters
corresponding to some particular processes, We will give these
conditions for semimartingales in terms of their predictable

characteristics (Kabanov et al, 1978).

Assume that the observable process Et, £20 is semimartingale
on probabilistic space (f, #, H, P), where og-algebra # and the family

H=(ﬂk) t20 are as defined above in Section 2.

According to Kabanov et al. (1978) any H-adapted semi-
martingale may be represented in the form
c t t
gt = § + @y + m + J J ){dus + I J xd(u-v)

0
[x|>1 | x| <1



-22_

where

c
oy Aloc (H,P) O ©w(H),
c c
m. € Mloc (H,P),

u(ds,dx) is the measure of jumps Et’

v(ds,dx) is its dual H-predictable projection with

respect to measure P.

Assume that process Et, t20, is also semimartingale with
respect to probabilistic measure P that is on probabilistic space
(e, ¥, ﬁL and consequently may be represented by

~ ~C t t ~
Et = 50 + at+ m, + Io I xduS + [ J xd(u-v)s
|x|>1 x| <1

where

t Aloc (P, H),

Q2
m

Cens (p,mH),

mt loc

v(dt,dx) is the dual H~predictable projection of

M (ds,dx) with respect to probabilistic measure P.

Let as above, H = (i£), where ﬂ£ = o{gs, s2t}, and Pt and

~ —

Pt are the restrictions of P and P on c-algebra ﬂ£, t20.

Denote by <m> (<m>t) the H-predictable square characteristic of

t

the martingales m’

t (ﬁg) respectively.

Let (Tn) be a sequence of stopping times with respect

n20
to H such that TnTw P-a.s. The processes (EtATn, ﬂ£, P)tEO and

@t“Tn’ ﬂ£, ﬁ)tZO are also semimartingales with triples of
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characteristics

T T T
o™, <m>™, n

and
~T ~ T ~T
an’ <m> n, \)n

Definition 4. The measure P is said to have the property of

&Tn >Tn ~TI

(Tn)-uniqueness if the triples ( , <m , V ) uniquely de-

termine the restrictions ﬁT of measure P to the og-algebras ﬂ}
n n

The next conditions will be useful in an analysis of the
absolute continuity and singularity properties of probabilistic

measures 5 and P (see Kabanov et al. 1978).

There exists an (H)-measurable function Y(t,x) such that

II. (a) 4V = Ydv

I
—_
ot
v
o

(b) v({t}, B) =1 =3({t}, E)
(c) <m>, = <ﬁ>t, t20.

There exists an H-predictable process Yg such that

~ t t
— — — = >
(4) A =0y f J x[Y(s,x) 1]6» J 7Sd<m>s, t20.

0
| x| <1
Define the H-predictable process Bt as follows:
(t t 5
Bt =J v _d<m> +J I [1—/Y(s,x)] dav
o S S 6 B S

+ I(0<as<1) (1—

1
s<t 1

-a 2
s (1-a )
a ) S
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where
a, = v({t}, E)
a, = v({t}, E)
ITT. (a) P{Bt<w} = 1, t20
(b) P{B_<»} =1
(c) P{B ==} = 1

Define the stopping times Th by

= i >q. >
T, inf {tZ0: Bt_n}

IV. The measure P is (Tn)—unique.

Theorem 6. (Kabanov et al. 1978) The following state-

ments hold for the semimartingales (at, ﬂ£, P) and

(€., ¥, P)

1) 1, II, ITI,, IV = D << P

bl

~

2) P << Pp=1I, II, IIIb

3) If I, II, ITI_,and IV hold, then IIT_ * P|P.

The proof of this theorem may be found in Kabanov et al. (1978;

Theorem 19).

The results of Theorem 6 are very useful in specifying
the strong consistency conditions, as we will do in the next

section.



7. CONSISTENCY CONDITIONS FOR BAYESIAN ESTIMATIONS
WHEN OBSERVATIONS ARE SEMIMARTINGALES

The condition of absolute continuity and singularity of
probabilistic measures P and P formulated in Theorem 6 are given
in terms of measure P, that is, in terms of an upper measure which

is calculated in the likelihood ratio

Z, = — , t20

when it exists.

In practical situations, however, the properties of observable

processes are usually defined by the measure P which is the lower

measure in the likelihood ratio Zt‘ In order to reformulate the

results of Theorem 6 in terms of measure P, some auxilliary infor-

mation about local martingale properties will be relevant.

Let m, €y (H,P), mt>0 P-a.s., t20, and E(m;1)<oo for any

t20. Denote by u(dt,ds) the integer-valued random measure,

corresponding to jumps of m and let v (dt,dx) be the dual H(P)-

tl
predictable projection of u(dt,dx). Denote also by u'(dt,ds)

the integer-valued random measure and the dual H(P)-predictable

projection of the process mé = m;1, and <mc>t,

square H(P)-predictable characteristic of the continuous part

t20 is the local

of the process m t20. The formulas for local H(P)-predictable

tl

characteristics of the process gt can be given as follows.
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-1, .
Lemma 4. The process m% = m_ 1S H (P) -submartingale. The

process <mC>', t20, and the measure v (dt,dx) are charac-

terized by
t Cc, -2 c t 2
1 - L - c
Jo(mS ) “d<m > = L)(ms) d<m~>
and
t , x
J fﬂs,x) v(ds,dx) = r:Jgfs, _— v' (ds,dx)
0 ‘E 0

m'(m' + x)
s'''s

Proof. The submartingale property of m!, t20, follows easily
from the Jensen inequality for conditional mathematical
expectations.

Using the ﬂb—stochastic differentiation formula for

m' = m. | we get

It follows that
t -—
<m'C>t = L}(mg)

Ya<m'S> 20
S

and consequently

t( 1) 23<m' S = | (@) %am®>
0 Mg m s Mg S

This proves the first part of the lemma.

In order to prove the second part of the lemma, consider

the arbitrarily bounded ﬂ%-measurable random variable Ny
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and the ﬁ(H)-measurable function f(t,x), such that

t
E J Lﬂs,x) v(ds,dt) < =
0

for any tz20.

We have

t t
L, = Eng Jo I%f(s,x)v(ds,dt) = E L JE E(nt|Hg_) f (s,x)u(ds,dx)

Notice that the jumpé of processes méwand m, are related
by

T
Amt

"t '
(mt_+A)mt_

Taking this into account for L,, we can get

t

-X

(o
il

u'(ds,dx)

t
E J' J‘E(n |7 ) fls,
t o /g t S (m_+x)m!_

Il
=
=3
+
S—
t
—
[ea]
l“ﬂ
0
{
b
<
Q
0
o
b

The arbitrariness of n_ yields the proof of the second

t
part of the lemma.

8. EXAMPLES

(1) Assume that the observation process is a sequence of random

variables [Xn(wi]n>0’ taking their values in R adapted to some

~

nondecreasing family of o-algebras H = {Hh}, n=0,1,2,....
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Introduce the family of o-algebras H = (ﬂf)t>0 and the process
Et(w) by
th=§(n for n<t<n+1
Et(w) = Xn(w) for n<t<n+1

Let B(w) be an ¥y-measurable integrable random variable taking its

values in the set of non-negative integer numbers. th is defined

in the normal way.

Denote by up(ds,dx) the integer-valued random measure of

jumps of the process Et. The problem is to define the necessary
and sufficient conditions for consistency of the estimation

ét = E(B|ﬂ;). Let VB(ds,dx) be the dual H-predictable projection

of u. It can be easily shown that

vB({m},a) = Elu({m},n) |X_ .1 = P(AX CA|X ) if m=1,2,...
vB({t},a) =0 if t#Fm=1,2,...
vi(m},n) = pl(axealX ) , i€8 , m=1,2,...

where AX = X - Xm—1'

Denote by ég(A,B) the probabilistic measure on |Rx 1, o(RH9ﬁ£_1

which is defined as

—k _k = -k
0% (dx,dw) = p*(AX_€ax|¥ )P, (dw)
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Assume that the measures Qﬁ(.,.) and Q%(.,.) are equivalent and

denote by ij(m,x) the derivative

. .
i d dx,d
Yk’J(m,x) = Qj( Xy w)
do- (dx,dw)
where we omit for simplicity the symbol w in ij(m,x). Let

k _ sk oy
an = PU(AX 0|3 _.)
and
J o (1240 3
no (1 am)I(am"1)
where I(a% = 1) is the indicator of the event {a% = 1}. Assuming

that PJ —a.s., the following inequality is true for any t >0,

kK#3, k,jEN

Z ([[1‘VYEJ(m,x) ] Vj({m},dx)-+(1—

m_<_t JR

Let also the measures Eg and EJ be equivalent for any k, JER

and the event {ai = 0} yields the event {a% = 0} for any k, JEN.

Then, from the results of Kabanov et al. (1978), it follows
that ﬁt(-) and Eg are equivalent for any k, jJE€N and t20. The
conditions of singularity for the measures ﬁk(-) and ﬁj(-) may
also be represented with the help of the results in Kabanov et al.

(1978) , taking into account the equivalence of measures ﬁt and 5%:

b (J[1‘VYE3(m,x£lVj({m},dx) + (1—
m=1 R
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.

for any k, JE€ER, k# 7, pj—a.s. This is also a condition of

consistency of the Bayesian estimation ét'

(2) Let the process Et be the Markovian jumping process on any
probabilistic space (Q,jﬁ pj), j €N, which is characterized by
the family of functions AgY ; 0,YET where I' is some denumberable

set on R, jE€N.

Let the processes ng(t) be the measurable functions of t

for any a,YE€Tl, jE€XY and let the following conditions be true:
. 3 "
i) 0 < AaY(t) <

ii) ng(t) <0
YET

iii) sup I 2] (s)] as <o
a€l 7o

Assume also that measures 5%(-) and ﬁg

following conditions are true for any t>0 and k, JER, pJ -a.s.

() are equivalent and the

. t _ k _t _ j k+ k
i) I(Es_— a)laY(S)dS = I(ES_— OL)AOLY AaY(s) AaY(s)ds

0 0
t - 2
s _ 3 k+ _ k -
ii) J OLZ_YEF(1 //gaY(s)Aay(s)) I(Es_ a)AaY(s)ds<<
O r
where
(k)1 if AK s o0
K ay ay
ay
0 if 2K -
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Then the condition of singularity of measures Ek and EJ will be

5 (1- A (a3 )'1)21{5; = 0} (s)ds =« pI-a.s.
RS, ay oy s oy

According to Theorem U4 this is equivalent to the almost certain

convergence of Bayesian estimation.

(3) Let observation be a continuous-time diffusion-type

process:

]

t t
Et EO + J A(B,S,w) dS +J B(S,(L)) dws

0 0

where W is the Wiener process on (Q,#,P), which is H-adapted

and, as before, ﬂ£ = o(B) V H%.

Assume that for any k and j k,j €Y the measures Pk(-) and
PJ(-) are equivalent and pl-a.s. the following inequality is

true for any t >0 and k,jEN

t .
J [A(k,s,w) - A(j,s,wﬂzds < Pj—a.s.
0
Then for any t >0 the measures Pt and P% are equivalent and the

strong consistency property is equivalent to the pJ
of the integral (Kitsul 1980)

[ [A(krsrw) “A(j,S,w):Izds =
%
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(4) Assume that Et(w) is the multivariant point process that is

the sequence of (Tnﬁgﬁ nz,I,where Tn are the stopping times with
respect to H = (M£)t20’ ﬂ£ = o(B)\]ﬂ%, such that the following
conditions hold
i) T, >0
ii) Tn+1 > Tn , 1if Tn <
iii) Tn+1 = Tn , 1if Tn = o

and Xn are W& -measurable random variables taking their values
n

in[R,B(R)]. The random variable B is as defined above.

The multivariant point process can be represented with the

help of the integer-valued random measure u(-) on (J0,x[,R)

u(lo,t],T) = I I(T_<t)I(X_ €T), IE B(R)
n>1 n n

Let Vl(dt,dx) be the dual H-predictable projection of u on

(2, ¥, PY), i€ER . Denote by ag = VJ({t}, R\ {0}) and assume that
. k_ . Jj k
for any k,Jj €N the event {at-—O} yields the event {at==0} and L

is equivalent to pJ_ Assume that there is a function Yk](w,t,x)

such that

k A L] _-
ve(at,dax) = Y9 (u,t,x) vJ (dt, dx) Pl -a.s.

and for any t > 0

N Tk

. ) 1 - : R
J (1-/ YEJ(s,x) 2 43 (ds,dx) + I I(0<ad<1) (1-/ %s (1 -aJ)
0 s<t S Vo 1-3a) S
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Then it follows from Kabanov et al. (1978) that the measure Pt

is equivalent to 5% for any k, j € 8.

The condition that is equivalent to an almost certain con-

vergence of Et to B is

o ~ k.2
2 . . / 1-a 5
(1—/ ¥ (s,x) ) v (ds,dx) + I I(0 <ag <1) (1— S) (1 -a;) =

s<t 1-a
- S

Pl -a.s. for any k,JE€ER, k#3J

g, THE UNCOUNTABLE SET OF PARAMETER VALUES

Consider now the case when B takes its values in some inter-
val I of the real line. Let {8"} be the sequence of piece-wise

constant functions of w such that

Plim g™ (w) = B(w)

Denote by PX(+), Xx€1I the family of probabilistic measures on

¥ which are defined by the equalities

P*(a) = p(AlB=x) , AEX

Denote bv §x(_) the restrictions of P~ on X, .
v Py t

Theorem 5. For any x,YyE€ I let the measures Pz(.) and p{(.)
be equivalent and for any sets A,BEB(I), ANB=¢ the

Ay = 1 X B 1 -x
measures P ( ) —WLP (o))\(dx) andP (-) =WJBP ('))\(dX)

be orthogonal., Then the estimation Et is stongly consistent.
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Before proving this theorem we will give some additional statements.

Lemma 4. For any X,y €I let the measures ﬁi and i{ be

equivalent and A(-) some probabilistic measure on (I, B(I)).

Then for any sets A,B€ B(I), AfWB==¢, the measures 5?(-)

J P°(-)A(dx) and 52(') = J PXA(dx) are equivalent.
t
A B
Proof. Let T €J¥ be such that Pt(F) = 0. Then Pt(F) =0

A - a.s., and consequently ﬁB(P) = 0.

Lemma 5, Let the conditions of Theorem 5 be true. Then for

any n the estimations EE are strongly consistent.

Proof. According to the choice of the sequence of {s™} for
any n the random variable B™ has a denumerable set of

values. According to the conditions of Theorem 5 the

— 1 — 1 -ﬂ n= r'l
measures P T (-) and Pnk(-), where Pnl(-) = B {8 Bl}, are
P(8"=8})
orthogonal. It follows from Lemma 5 that the
measures le(-) and sz(-) are equivalent. The result of

Theorem 5 then follows from Theorem 4.

10, CONCLUSION

This paper represents the results for the strong consis-
tency property of Bayesian estimation in two cases: a
denumerable and uncountable parameter set and wide class of
continuous-time stochastic observation processes. In the case

of the denumerable set of parameter values the necessary and
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sufficient conditions of consistency are formulated in terms of
absolute continuity and singularity of some special family of
conditional probabilistic measures. In the case of an
uncountable parameter set the sufficient condition of strong
consistency is formulated. The results of consistency may be
specified when more details of the properties of random observa-

tion processes are available.
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