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BAYESIAN APPROACH TO PARAMETER 
ESTIMATION: CONVERGENCE ANALYSIS 

1. INTRODUCTION 

In spite of evident success in the analysis of many aspects 

of natural phenomena, uncertainty is still one of the most impor- 

tant features of the relations between human beings and natural 

systems, 

The absence of exact knowledge about the structures, 

regularities, and peculiarities of system functions, the variety 

of unknown links between subsystems, errors of measurement, and 

sometimes the practical impossibility of measuring on the one hand, 

and the need to decide on appropriate control actions under incom- 

plete information on the other, have prompted attempts to arrive 

at formal descriptions of uncertainties and to analyze their 

dynamic properties. 

One of the most highly developed formal ways of dealing with 

the dynamic aspects of uncertainties is the theory of random 



processes, but the practical application of this formal theory is 

often accompanied by long and informal procedures to identify when 

and how the basic assumptions and axioms of the theory may corre- 

spond to real situations. This aspect of the probabilistic method 

becomes especially important when we are dealing with statistical 

inference or data-processing problems. The Bayesian approach to 

statistical inference provides a way of taking into account the 

informal experience and intuition of the person dealing with a 

particular problem. 

A detailed discussion of the Bayesian approach can be found 

in Savage (1954), Edwards et al. (1963), Box and Tiao (1973), 

Lindley (1 974) , and Peterka (1 980) . Theoretical research in this 

field has been stimulated mainly by the problems of estimation and 

control under incomplete information. The main conceptual dif- 

ficulty in applying the Bayesian method is related to the interpre- 

tation of the a p r i o r i  probability, although this difficulty is 

often overcome by using subjective measures of belief in a 

"rationally and consistently reasoning person" (Peterka 1980). 

With this approach statistical analysis becomes a part of the 

man-machine interaction procedure. Such a concept widens the scope 

of the implementation of probabilistic methods for many situations 

with uncertainties, and provides a rational basis for decision- 

making. In particular, it is often used to solve identification 

problems as a first step in adaptive policy design for large-scale 

systems. 

By systematically applying the Bayesian approach it is possible 

to produce a consistent theory with a formal structure from systems 



identification. For example, combining the Bayesian approach 

with the results and methods of the general theory of processes 

developed during the last decade has enabled abstract theoretical 

results of the martingale theory to be applied, and their best 

implementation in practice to be determined (see Meyer 1966, 1976; 

Dellacherie 1972; Jacod 1979; Liptser and Shirjaev 1977; etc.). 

One of the important characteristics of the Bayesian estima- 

tion procedure is its consistency property in parameter estimation, 

which often provides high-quality adaptive control algorithms. 

Many papers have been devoted to convergence analysis of Bayesian 

estimators (see, for example, Xiefer and Wolfowitz 1956; Kraft 

1955 ; Le Cam and Schwartz 1960 ; Wald 1949 ; Ljung 1978 ; Freedman 

1963; Doob 1949; Le Cam 1953, 1958). 

Sufficient conditions for the convergence of such estimation 

algorithms was the subject of a paper by Baram and Sandell (1978), 

which included various assumptions about the properties of the 

observation process, parameter sets, and the correlation of 

parameters with the measuring process. Necessary and sufficient 

conditions of consistency of the parameter estimations for the 

diffusion observation process was the subject of a paper by 

Kitsul (1980) . 

The necessary and sufficient conditions of consistency for 

the discrete-time observation process and a denumerable set of 

parameter values were investigated in Yashin (1981). It turns 

out that the strong consistency property is often equivalent to 

the property of mutual singularity for some special family of 

probabilistic measures. The details of singularity conditions 



given in Kabanov et al. (1978) make it possible to obtain the 

convenient conditions of convergence of the Bayesian estimation 

algorithm in adaptive filtration schemes (Kuznetzov and Yashin 

1981; Kuznetzov et al. 1981). The main advantage of these 

conditions is that they can be checked before the measurement 

or observation process is begun. 

The development of the results of Yashin (1981) will be 

twofold: first, a dissemination of the conditions in that paper 

on the wide class of continuous-time random observation processes; 

and second, an investigation of the consistency property for an 

uncountable set of parameter values. 

This paper is devoted to the investigation of both of these 

problems. It turns out that in the case of continuous-time 

random processes, results similar to those of Yashin (1981) are 

true. However, the proof of the consistency property for an 

uncountable set of parameter values requires some additional 

conditions of restraint. 

2. PRELIMINARIES 

Let ( a ,  JC, HI P) be the probabilistic space, where H = (Kt) t10 

is a nondecreasing right-continuous family of a-algebras JC t>O, 
t' - 

JC C X ,  JC, =JC, and% is completed by the sets with a P-probability 
t -  

equal to zero. Consider the Xo-measurable integrable random variable 

B ( w ) ,  which talres its values in some interval I of the real line. FJe 

will interpret B as the unknown,unobservable parameter of some 

dynamic system. 



Let tt(w), t'O be a H-adapted continuous-time random process, 

m 
taking its values in R with right-continuous, and having left li- 

- - 
mits, sampling paths. Denote by = (Xt)t,O, where Xt = u> n t o{tS, 

- 
s<ul. For simplicity we will use 3 to denote the o-algebra Em. 

The process tt(w) will be interpreted as an observation process or 

the results of the measurement of some system variables. 

Definition I .  The fi-adapted random process it (w) t?O, 
is said to be a consistent (strongly consistent) esti- 

mation of the random variable B if P lim it = B 
A t+m 

(lim Bt = B P - a.s.) 
t+m 

We will deal with the properties of the conditional mathemat- 

ical expectations Bt = E(BIXt) as an estimation of 8. The simple 
- 

necessary and sufficient conditions of consistency Bt = E(B(X~) 

may be formulated in terms of the %-measurability of the random 

variable B. 

Theorem 1. The estimation Bt is strongly consistent 
- 

if and only if the random variable B(w) is X-measurable. 

The proof of this theorem follows from the Levy theorem about 

the regular martingale asymptotic behavior and evident property of 

%-measurable functions. 

The relation between the consistency property of the Bayesian 

estimation of the random variable B and the same property of the 

arbitrary estimation may be determined by the following theorem. 

Theorem 2. Let it be some arbitrary consistent 
H-adapted estimation of B. Then the estimation 
- 
Bt 

is strongly consistent. 



Proof. According to the theorem's condition 
A 

P lim Ot = B, for any t>O, the random variable 
A 

- 
Bt is %-measurable; consequently B will also be 

%-measurable. According to the Levy theorem 

lim Bt = E(BIJ() P -  a.s. 
t+co 

and consistency follows from ?-measurability of B. 

If there is no information on the convergence of some non- 
- 

Bayesian estimation, the proof of the X-measurability of f3 becomes 

more difficult. Fortunately there is another way of proving this 

property for B, as can be seen from the following. 

Theorem 3. Let {f3"1, n = 0,1,2,. . . be the sequence 
of random variables such that P lim fin = B. Then, 

n+m 
if the estimations of Bn are consistent for any 

n = 0,1,2, ..., the Bayesian estimation of B is 

strongly consistent. 

The proof of the theorem is the simple consequence of the 

property of the measurable functions. 

Using the result of Theorem 3 we should concentrate our ef- 

forts on the findings of the appropriate sequence {Bn), n = 

0.1 ,2, . . . , establishing consistency properties for En = E (Bn 1 gt) 
t 

for any n = 0,1,2, .... 

It is clear that the variables Bn(w), n = 0,1,. . . , should 
have a more simple structure than B(w). We will use as such 



variables piecewise constant functions with denumerable sets 

of values. It is well known that for any random integrable 

variable ~ ( w )  there always exists a sequence of such random 

integrable variables ( 6") , n = 0,1 ,2, . . . . The problem therefore 

n 
is to prove the consistency property for all such B , n = 0,1,2 ,.... 
We start with the investigation of this property for one random 

variable with a denumerable set of values in a continuous-time 

random observation process. 

3. THE STRONG CONSISTENCY PROPERTY IN THE CASE OF A DENUMERABLE 
SET OF PARAMETER VALUES 

Assume that parameter P takes the denumerable set of values 

{ 6 ,  i E H and the o-algebra Kt is generated by o (6) and kt 

where o(P) is the a-algebra in R generated by 6, and H is some 

denumerable set. 

- 
Let Ptt Pt, and be the restrictions of measure P on 

- - 
o-algebras JCt, JCtI and X, respectively. Define the probabilistic 

measures pi ( ) , i E H on measurable space (R ,m using 

P ( A N B  = Bill 
pi (A) = 

Pi 

where pi = P(B = Bill i E  H I  L pi = ~ , A E X  
iEH 

i -i 
We will use Pt, Pt, and pi to denote the restrictions of 

i measure P on o-algebras Kt, kt, and kt respectively, and and 

XI to denote the derivatives - ( 5 )  and - ( 5 )  if they exist. 
dF2 dFL 



- 
Denote by At(B) the random process, defined by 

- 
Let IT . (t) = P (B = B . 1 % )  be the a posteriori probability of the 

I I - 
event { B  = B.1, given Kt, and JO = -L pi in pi is the entropy of 

I 3 
L 

the random variable 8. 

The basic theorem about the consistency properties of the 

Bayesian estimation of 6 establishes the relationship between the 

following conditions: 

(B) lim IT. (t) = I(B= Bj) P - a.s. , j E H  
ttw J 

t f  
Vk, j E H  , t > O  - 

(D) p k M  I Vk, j E N  

Theorem 4. Let (C) be true. Then 

(E) * (Dl * (B) ++ (A) 

Note that the analogs of Theorems 1-4 may be formulated 

for discrete-time stochastic processes 5 1110. We will qive 
n 

here the formulation of Theorem 4 only. 



L e t  ( R ,  XI H I ,  P )  b e  t h e  p r o b a b i l i s t i c  s p a c e  where H '  = 

('In) n20 i s  a  nondecreas ing  f a m i l y  of a - a l g e b r a s  XIn, n'0. 

3c1c 3c' 
n  n+ l .  .. 2 Y' , and x;) i s  completed by t h e  P-zero sets .  Assume 

t h a t  B ( w )  i s  t h e  3cA-measurable random v a r i a b l e  which t a k e s  i t s  

v a l u e s  i n  some denumerable se t  H. L e t  <,, n20,  be  an  H1-adapted 

m 
d i s c r e t e - t i m e  s t o c h a s t i c  p r o c e s s  t a k i n g  i t s  v a l u e s  i n  R . Denote 

- ' 
by i' = ( x ' ~ ) ~ ~ ~ ~  where 3c = ~ { < ~ ( w )  ,mgn}. 

- 
~ e t  pn l  p n l  and P b e  t h e  r e s t r i c t i o n s  of measure P on a- 

a l g e b r a s  XIn, 2' and %'=%'_, r e s p e c t i v e l y .  The n o t a t i o n s  P:, n  

F A #  5,. In, and n . ( n )  a r e  a s  d e f i n e d  above,  w i t h  t h e  n a t u r a l  
3 

changing o f  t h e  i n d e x  t t o  index  n .  The c o n d i t i o n s  ( A ) ,  ( B ) ,  

( C )  , ( D )  , and ( E l  may b e  r e w r i t t e n  a s  f o l l o w s :  

( A ' )  l i m  B = 6 P -  a . s .  
n-tm 

B l i m  n .  ( n )  = I ( B = B . )  P - a . s .  , j E H  
n-tcx, 3 3 

( D )  p k L ~ j  , Vk, j E H  

Theorem 4 ' . L e t  (C ' ) b e  t r u e .  Then 



Theorem 4' becomes the simple corollary of Theorem 4 if we 

define o-algebras Kt, t>O, by 

X = X for nlt<n+l, n10 t n 

To prove Theorem 4 some additional results will be useful. 

4 .  SOME PROPERTIES OF CONDITIONAL MEASURES 

The next assertion establishes a remarkable property of 

absolute continuous probability distributions. 

Lemma 1. Let (C) be true. Then the following assertions 

are true 

(a) For Bk and ~j - a.s. the following limits exist 

;b) The measures pk, k E N have the Lebesque 

representations 

(c)   he following conditions are equivalent 



The proof of the assertions of Lenuna 1 may be done in a 

similar way as in Kabanov et al. (1978) , taking into account 

the equivalence property of pk ~1 t' t- 

-k 
Lemma 2. Let (C) be true. Then measures Pt and Ft 
are equivalent and 

i 
Proof. The property P << P follows from the definition 

i 
of the measures pi ( . ) ,  i E N. The properties pt << pt and 

pi << Pt 
t 

follow from the evident property pi << P. The 

i 
definition of P (.)yieldsthe following formula for 

- 
Let y (w) be an arbitrarily bounded X-measurable' function. 

t 
We will use Ek to denote the operation of mathematical 

k expectation with respect to measure P . We have 

The arbitrariness of yt yields equality ( I ) .  



-k 
The a b s o l u t e  c o n t i n u i t y  o f  Ft w i t h  r e s p e c t  t o  Ptr k E N  

f o l l o w s  from t h e  e v i d e n t  r e p r e s e n t a t i o n  

Indeed ,  l e t  k E N  b e  t h e  a r b i t r a r y  index  and A E Rt be  such t h a t  

k  
p (A)  = 0. According t o  c o n d i t i o n  ( C )  f o r  any o t h e r  index  

j  E N  ; PI (A)  = 0 ,  and c o n s e q u e n t l y ,  a c c o r d i n g  t o  formula  ( 2 )  , 

(A)  = 0 ,  t h u s  comple t ing  t h e  p r o o f .  

Lemma 3 .  L e t  (C) b e  t r u e .  Then 3 - a . s .  f o r  k, jEN, k f j ,  t 2 0  

and 

P roop ,  From t h e  d e f i n i t i o n  of  t h e  p r o c e s s e s  z:' w e  g e t  

and formula  ( 3 )  i s  t r u e .  

-k 
t 

' E H I  k  # j y i e l d s  The e q u i v a l e n c e  o f  t h e  measures P and IS:, k 1 3  

which y i e l d s  ( 4 ) .  



Proof  o f  Theorem 4 .  

(B) * (D) . From (B) and the condition C ni (t) = 1 it 
iEH 

follows that 

Taking (5) into account we can get 

-k kj = O l  Using the Lebesque representation we get for P { Z m  

[ part (b) of Lemma 'I1 , and using (6) we get 

Comparing (6) and (7) we get (D) . 

(D) (B) . Let r be the singularity set for measures 
k j 

hk and ~j such that hk (I' ) = 0 , and consequently 
k j 

j P (Tkj) = 1. Using the Lebesque representation of measure 

-k P (Tkj) we get 



~t follows from (8) that 

;j (*!I = 0) = 1 , k, j E H  k f j 

Lebesque respresentation of the measure ~ ~ ( t k j  = 0) yields 

k j -k Consequently, the {Zw = 0 } coincide with the rk P and $-a. s . 
It follows from ( 5) and (9) that for any k, j E HI k f j 

n,(t) 

lim n. (t) = O  , 
t ? ~  J 

.rrk (t) - 
lim --- I(@= B . )  = 0, P-a.s. , k, j E H  , k f j 
ttw 'j (t) I 

Property (B) follows from the condition 

B E It follows from (2) and (B) that the following 

is true 

Summing both parts of (11) over i yields 

Averaging both parts of (12) over P yields 

- k 
E i n  A,(B) = E Z I(@ = 6.) I n  p = E l i m  E [-I (B = Bi) I n p i ]  (13) 

ia 1 i 
k t m  i=l 



k  
S i n c e  t h e  v a r i a b l e s  J = k  L [- I ( 6  = B i )  I n  p  i n c r e a s e  

i = l  il 
monoton ica l ly  a s  k  grows,  it i s  p o s s i b l e  t o  change t h e  

o r d e r s  o f  i n t e g r a t i o n  and t o  g o  t o  t h e  l i m i t  i n  ( 1 3 ) .  T h i s  

y i e l d s  ( E )  because  

~ - 

E 1 n T m ( B )  = - l i m  6 p i i n p i  = J O  
k i = l  

( E )  * ( B )  . Condi t ion  ( E l  and formula  ( 5 )  y i e l d  

S i n c e  

it f o l l o w s  from (14)  t h a t  

It i s  c l e a r  t h a t  e q u a l i t y  (15)  may be  t r u e  i f  and o n l y  i f  

Taking i n t o  accoun t  t h e  e q u a l i t y  6 n . ( m )  = 1  w e  g e t  
i € N  

p r o p e r t y  ( B )  . 

( B )  A . P r o p e r t y  ( B )  y i e l d s  t h a t  t h e  i n d i c a t o r s  I ( B  = B i )  , 

i E H a r e  X-measurable, and c o n s e q u e n t l y  t h e  random v a r i a b l e  B 



is x-measurable. According to the Levi Theorem for regular 

martingales 

- 
Since is K-measurable, 

(A) * (B). Property (A) yields that random variable l3 is 

measurable and consequently I (f3 = Bi) , i E H are 2- 

measurable random variables. The processes 

are H-adapted regular martingales. Consequently, 
- 

lim IT. (t) = .rr. (a) , j E H exists P-a. s. The x-measurability 
t+w I 
of the indicators I(@ = B j )  1-islds ( 6 )  and cor.iplstes the 

proof of Theorem 4. 

The results of Theorem 4 are too general to be implemented 

in practical convergence analysis of Bayesian algorithms. The 

applied statistician expects from statistical theory more conven- 

ient conditions which are formulated in terms of parameters and 

probabilistic characteristics of the systems and processes with 

which he deals. As will be seen later, such forms of conditions 

stem immediately from our results if we have some additional in- 

formation about the observation process. We will consider the 

situation here when this information is concentrated in the semi- 

martingale properties of the observable process Ct. 



5 .  THE PROCESS S t ,  t > 0  AS A SEMIMARTINGALE 

The semimar t inga le  i s  one of  t h e  key c o n c e p t s  of modern 

m a r t i n g a l e  t h e o r y .  I t  accumula tes  t h e  common p r o p e r t i e s  of  a  

wide c l a s s  of random p r o c e s s e s ,  which c a n  be  i n v e s t i g a t e d  i n  

t h e  framework of m a r t i n g a l e  t e c h n i q u e s .  T h i s  i d e a  a p p e a l s  t o  

human i n t u i t i o n ,  which i s  i n c l i n e d  t o  r e p r e s e n t  dynamic p r o c e s s e s  

d e s c r i b i n g  n a t u r a l  phenomena a s  t h e  sum of two components: s low 

( t r e n d )  and q u i c k  ( n o i s e ) .  Before  g i v i n g  a  fo rmal  d e f i n i t i o n  w e  

w i l l  i n t r o d u c e  s e v e r a l  new c o n c e p t s .  

L e t  t h e  n o t a t i o n s  H ,  Kt, P  b e  a s  d e f i n e d  above i n  S e c t i o n  2 .  

W e  w i l l  u se  M(H,P)  t o  d e n o t e  a  c l a s s  of  H-adapted m a r t i n g a l e s  w i t h  

r e s p e c t  t o  measure P  w i t h  r e g u l a r  ( i . e . ,  r i g h t - c o n t i n u o u s  and 

hav ing  l e f t  l i m i t s )  sampling p a t h s .  The c l a s s  of  H-adapted, 

nondecreas ing  p r o c e s s e s  having a  P - i n t e g r a b l e  v a r i a t i o n  w i t h  

r e g u l a r  sampling p a t h s  w i l l  be  deno ted  by A + ( H , P ) .  The n o t a t i o n  

+ + 
A (HIP) = A (HIP) - A (HIP) w i l l  be  used  f o r  t h e  c l a s s  of  a r b i t r a r y  

H-adapted r e g u l a r  p r o c e s s e s  w i t h  an i n t e g r a b l e  v a r i a t i o n .  I n  a  

s i m i l a r  way w e  can  i n t r o d u c e  t h e  n o t a t i o n  V(H,P) f o r  t h e  c l a s s  of 

H-adapted p r o c e s s e s  w i t h  a  bounded v a r i a t i o n .  The c l a s s  of 

con t inuous  sampling p a t h  m a r t i n g a l e s  w i l l  be  deno ted  by M ~ ( H , P ) .  

C 
The n o t a t i o n s  Mloc (HIP) , Mloc (HIP) , Aloc (HIP) , and Vloc (HIP) w i l l  

be  used  f o r  t h e  c l a s s e s  of  l o c a l  m a r t i n g a l e s ,  con t inuous  l o c a l  

m a r t i n g a l e s ,  t h e  p r o c e s s e s  of l o c a l l y  i n t e g r a b l e  v a r i a t i o n ,  and 

l o c a l l y  bounded v a r i a t i o n ,  r e s p e c t i v e l y .  P r e d i c t a b l e  a - a l g e b r a  

i n  R x R+ g e n e r a t e d  by H-adapted p r o c e s s e s  w i l l  be  deno ted  by 

n ( H )  , and 8 -a lgebra  c ( H )  x B ( R ~ )  i n  R x R+ x R~ deno ted  by 3 ( H )  . 
n(H)-measurable p r o c e s s e s  w i l l  a l s o  b e  c a l l e d  H-pred ic tab le .  



D e f i n i t i o n  2 .  A random process 5 = (St,xt) is called 

a semimartingale if gne can identify the processes V 

and M such that 

We will also use the concept of H-predictable projection 

of the random process. 

P D e f i n i t i p n  3. The H-adapted process 'X = ( X ) 
t t10 is said 

to be an H-predictable projection of process X if, for any 

H-predictable non-negative function y and arbitrary H- 
t 

predictable non-decreasing process A, the following holds 

The class of H-adapted semimartingales with respect to 

measure P will be denoted by S(H,P). 

It is not hard to see that local martingales, supermartingales, 

and submartingales are semimartingales. Arbitrary processes with 

stationary independent increments are semimartingales. A process X 

with independent increments will be semimartingale if 



is a function of locally bounded variation for any X E R 

(Shirjaev 1980). The concept of a semimartingale is applicable 

to many processes governed by stochastic differential and 

integro-differential equations. 

The class of semimartingales is invariant with respect to 

equivalent transformation of probabilistic measures and random 

change time transformations (Shirjaev 1980) . Finally, if X E S (H,P) 

and f = f(x) x E R is a twice continuously differentiable function, 

then the process 

is also semimartingale. Finally, any stochastic discrete-time 

process is semimartingale too. 

In the next section we will give the singularity conditions 

for some probabilistic measures corresponding to semimartingales. 

6. LOCAL ABSOLUTE CONTINUITY AND SINGULARITY OF PROBABILISTIC 
MEASURES 

FJe start this section with an analysis of the properties of 

absolute continuity and singularity for local absolute continuous 

probability distributions (Kabanov et al. 1978). 

Let probabilistic measures P and P be defined on measurable 

space (R, 3C, H), where all notations are the same as in Section 2. 
- 

Assume that measures P and P are locally equivalent ($'ccp), and 



t h e  l o c a l  d e n s i t y  i s  g iven  by 

which i s  t h e  Radon-Nicodin d e r i v a t i v e  of  measure Pt  wi th  r e s p e c t  
- 

t o  Pt, where Pt and P a r e  t h e  r e s t r i c t i o n s  of 5 and P t o  t 

0-algebras  t > O .  Not ice  t h a t  f o r  any t > O  ( Z t > O )  = P ( Z  > 0) = 1.  t f  t 

We now in t roduce  t h e  process  

I t  i s  easy t o  s e e  t h a t  p rocess  M t ? ~ ,  i s  H-local mar t inga l e  and,  t f  

by d e f i n i t i o n ,  

L e t  p ( d t  ,dx)  be t h e  in teger -va lued  random measure, 

corresponding t o  t h e  jumps of M, and l e t  v ( d t  ,dx)  be i t s  d u a l  

H (P) -p red ic t ab l e  p r o j e c t i o n .  Define 

The fol lowing theorem was proved i n  Kabanov e t  a l .  (1978) .  

- l o c  
Theorem 5.  Assume t h a t  P < <  P. Then 

where B_ ( M )  = l i m  Bt (M) 
t 1.m 



The equivalent formulations of the theorem are as follows: 

or passing from M to Z, 

where 

and v (') is the dual H-predictable projection of measure u (Z) 

corresponding to jumps of Zt, t20. 

These general results become more accessible for applications 

if they are reformulated in terms of characteristics and parameters 

corresponding to some particular processes, We will give these 

conditions for semimartingales in terms of their predictable 

characteristics (Kabanov et al, 1978) . 

Assume that the observable process 5 t20 is semimartingale t' 

on probabilistic space (R, X, HI P), where a-algebra 3C and the family 

H= (Kt) t?0 are as defined above in Section 2. 

According to Kabanov et al. (1978) any H-adapted semi- 

martingale may be represented in the form 



where 

p (ds,dx) is the measure of jumps St, 

v(ds,dx) is its dual H-predictable projection with 

respect to measure P. 

Assume that process St, t>0, is also semimartingale with 

respect to probabilistic measure b that is on probabilistic space 

( R ,  K, P), and consequently may be represented by 

where 

; (dt ,dx) is the dual H-predictable projection of 
" 

p(ds,dx) with respect to probabilistic measure P. 

- 
Let as above, fi = (Kt) , where Kt = o{Ss, sit), and Pt and 

" " - 
Pt are the restrictions of P and P on o-algebra Kt , t?O. 

" 

Denote by <m> (<m>t) the H-predictable square characteristic of 
t 

C the martingales mt (5;) respectively. 

Let (qn,0 be a sequence of stopping times with respect 

to H such that rnt" P-a.s. The processes xt. P)t,O and 

" 

(St-'n, jet, p) are also semimartingales with triples of 



characteristics 

aTn, <m>Tn, VTn 

n <fi>Tn, <Tn 
and 

D e f i n i t i o n  4 .  The measure P is said to have the property of 

(T,) -uniqueness if the triples (tiTn, <fi>'", cTn) uniquely de- 

termine the restrictions 6 of measure P to the u-algebras X . 
'I- n 'n 

The next conditions will be useful in an analysis of the 

absolute continuity and singularity properties of probabilistic 
- 

measures P and P (see Kabanov et al. 1978). 

There exists an (H) -measurable function Y (t,x) such that 

11. (a) dc = Ydv 

(b) v({t), E) = 1 *c({t}, E) = 1, t10 

(c) <m> t = ~ f i > ~ ,  t2o. 

There exists an H-predictable process ys  such that 

Define the H-predictable process Bt as follows: 

+ H I(O<as<l) 
slt 

I - s  1 -a s ) '  (I-as) 



where 

~efine the stopping times r by 
n 

r = in£ {t?~: Bt>n) n 

IV. The measure 5 is ( r  ) -unique. n 

Theorem 6. (Kabanov et al. 1978) The following state- 

ments hold for the semimartingales (Et, xt, P) and 

- 
3 )  If I, 11, IIIa, and IV hold, then IIIc * PLP. 

The proof of this theorem may be found in Kabanov et al. (1978; 

Theorem 13) . 

The results of Theorem 6 are very useful in specifying 

the strong consistency conditions, as we will do in the next 

section. 



7. CONSISTENCY CONDITIONS FOR BAYESIAN ESTIMATIONS 
WHEN OBSERVATIONS ARE SEMIMARTINGALES 

The condition of absolute continuity and singularity of 

probabilistic measures 6 and P formulated in Theorem 6 are given 

in terms of measure PI that is, in terms of an upper measure which 

is calculated in the likelihood ratio 

d6, 
z, = - , tlo 

when it exists. 

In practical situations,however,the properties of observable 

processes are usually defined by the measure P which is the lower 

measure in the likelihood ratio Z t' In order to reformulate the 

results of Theorem 6 in terms of measure PI some auxilliary infor- 

mation about local martingale properties will be relevant. 

- 1 Let mt E M (H,P), mt>O P-a.s., t10, and E(m ) < c o  for any 
t 

t10. Denote by y(dt,ds) the integer-valued random measure, 

corresponding to jumps of m and let v(dt,dx) be the dual H(P)- 
t' 

predictable projection of y (dt,dx). Denote also by y' (dt,ds) 

the integer-valued random measure and the dual H(P)-predictable 

projection of the process m; = m - 1 
t 1  

and <mC> t2O is the local 
t' 

square H(P)-predictable characteristic of the continuous part 

of the process mt. t?O. The formulas for local H(P)-predictable 

characteristics of the process 5 can be given as follows. 
t 



- 1 
Lemma 4. The process m' = m is H(P)-submartingale. The t t 

C process <m > '  tZ0, and the measure v(dt,dx) are charac- t' 

f erized by 

and 

6 bs , x )  ~(ds,dxl = 
-X 

v ' (ds, dx) 

Proof. The submartingale property of m;, t?~,follows easily 

from the Jensen inequality for conditional mathematical 

expectations. 

Using the %-stochastic differentiation formula for 

- 1 m' = m we get 
t t 

It follows that 

and consequently 

This proves the first part of the lemma. 

In order to prove the second part of the lemma, consider 

the arbitrarily bounded JC -measurable random variable nt t 



and the (H)-measurable function f(t,x), such that 

for any t2O. 

We have 

Notice that the jumps of processes mi and mt are related 

by 

Am; 
Amt = - 

(mt-+A mi- 

Taking this into account for Lt, we can get 

t 
-X 

Lt = E jo 1 E(ntl%-) f[., ] !~'(ds,dx) 
E (ms-+x) ml- 

The arbitrariness of n yields the proof of the second 
t 

part of the lemma. 

8. EXAMPLES 

(1) Assume that the observation process is a sequence of random 

variables [Xn ( w ) ]  n20 , taking their values in R adapted to some 
L J - 

nondecreasing family of o-algebras H = { % I .  n=0,1 , 2  , . . . . 



Introduce the family of o-algebras H = (Xt)t20 and the process 

St(d by 

St(u) =Xn(u) for n < t < n + l  - 

Let B(w) be an %-measurable integrable random variable taking its 

values in the set of non-negative integer numbers. Xt is defined 

in the normal way. 

Denote by p (ds ,dx) the integer-valued random measure of 

jumps of the process St. The problem is to define the necessary 
-. 

and sufficient conditions for consistency of the estimation 
- B Bt = E ( I %) . Let V (ds, dx) be the dual H-predictable projection 

of p. It can be easily shown that 

where AXm - - 'm - X  . 
m- 1 

-k Denote by Qm (A. B) the probabilistic measure on [R x 0 ,  o (R) €3 2m-1] 

which is defined as 



k j 
Assume that the measures Qm( . , . )  and Qm( . , . )  are equivalent and 

denote by ykj (m,x) the derivative 

where we omit for simplicity the symbol w in ykj (m,x) . Let 

and 

where i (a: = 1 ) is the indicator of the event {a; = 1 1. Assuming 

that PI -a.s., the following inequality is true for any t 1 0 ,  

Let also the measures P: and pJ be equivalent for any k, j E H  0 

and the event {ak = O} yields the event {a: = 0) for any k, j E H .  m 

Then, from the results of Kabanov et al. (1978), it follows 

that P: ( ) and F! are equivalent for any k, j E H  and t?O. The 

conditions of singularity for the measures gk ( - )  and ~j ( * )  may 

also be represented with the help of the results in Kabanov et al. 

(1978), taking into account the equivalence of measures pk and F!: 
t 



for any k, jEH, kj!j, pj-a.s. This is also a condition of 
- 

consistency of the Bayesian estimation 6 to 

(2) Let the process tt be the Markovian jumping process on any 

probabilistic space ( R ,  XI  PI) , j E HI which is characterized by 
j the family of functions X , a,yEI' where I' is some denumberable 
aY 

set on R ,  j E H. 

Let the processes Xj (t) be the measurable functions of t 
aY 

for any a,y E r, j E H  and let the following conditions be true: 

iii) sup 1 1' (s) 1 ds < aa 
aEr 

Assume also that measures pk ( ) and F ( ) are equivalent and the 0 0 

following conditions are true for any t >  0 and k, j E N ,  - 5' - a.s. 

t 
ii) - k 

J' (1 - ) aY 
I (FS- - a) lay (5) ds < a 

0 

where 



Then the condition of singularity of measures pk and 6' will be 

According to Theorem 4 this is equivalent to the almost certain 

convergence of Bayesian estimation. 

(3) Let observation be a continuous-time diffusion-type 

process: 

where ws is the Wiener process on (fi,X,P), which is H-adapted 
- 

and, as before, Xt = o ( B )  V Xt. 

k 
Assume that for any k and j k,j E N  the measures P ( - )  and 

Pj ( ) are equivalent and PI-a. s. the following inequality is 

true for any t 2 0 and krj E N  

Then for any t > 0 the measures pk and pi are equivalent and the - t 

strong consistency property is equivalent to the P j 

of the integral (Kitsul 1980) 



(4) Assume that Ct(w) is the multivariant point process that is 

the sequence of (TnIXn) nZII where Tn are the stopping times with 
- 

respect to H = (Xt)t,OI = o(B) v%, such that the following 
- 

conditions hold 

and Xn are $ -measurable random variables taking their values 
n 

in [R, (R)] . The random variable 6 is as defined above. 

The multivariant point process can be represented with the 

help of the integer-valued random measure ~ ( 0 )  on (]O,m[,R) 

Let vi(dt,dx) be the dual A-predictable projection of P on 

( ~ , g , p ~ ) , i E H .  Denote by a: = vJ({t}, R - \  {O}) and assume that 

k for any k,j E H  the event {a:= O} yields the event {a:= O} and Po 

is equivalent to P i .  Assume that there is a function ykJ (w,t,x) 

such that 

k v (dt,dx) = ykj (w,t,x) vJ (dt,dx) -1 P -ass. 

and for any t > 0 - 

/t(l-i~kJ(St~/ ) 2 ~ j ( d S I d ~ )  + I ~(o<a!<I) 
0 Sft 1 S -a;) 



Then it follows from Kabanov et al. (1978) that the measure 6: 

is equivalent to ~j for any k, j E H. t 

The condition that is equivalent to an almost certain con- 

vergence of to 6 is t 

k 2 

~j(ds,dx) + L I(O<ai < I )  -a; )(I -a:) = m  

s<t - 1 -as 

PI - a.s. for any k. j E H. k 2 j 

9. THE UNCOUNTABLE SET OF PARAMETER VALUES 

Consider now the case when B takes its values in some inter- 

val I of the real line. Let (@") be the sequence of piece-wise 

constant functions of w such that 

Denote by ? ( - ) ,  x E I  the family of probabilistic measures on 
- 
3C which are defined by the equalities 

- 
Denote bv px ( * )  the restrictions of pX on Xt. 

.- t 

Theorem 5. For any x, y I let the measures P; ( . ) and pY ( . ) 
t 

be equivalent and for any sets A,B E B (I) , A n B = (I the 

A = - 1 ix(-)A(dx) and P B ( 0 )  = - QiX(*)~(dx) measures P ( 

- 
be orthogonal. Then the estimation Bt is stongly consistent. 



Before proving this theorem we will give some additionalstatements. 

Lemma 4. For any x,y E I let the measures and 5; be 

equivalent and X ( ) some probabilistic measure on (I, B(I 1 ) . 
-A 

Then for any sets A,BE B(I), A ~ B = $ ,  the measures pt(-) = 

i - d ' (  X idx) and P: ( .  ) = ptX (dx) are equivalent. 
-x 

P r o o f .  Let r E 2 be such that ?;(r) = 0. Then F: (r) = 0 

-E X - a. s .I and consequently P (T) = 0. 

Lemma 5 ,  Let the conditions of Theorem 5 be true. Then for 

any n the estimations E: are strongly consistent. 

P r o o f .  According to the choice of the sequence of (Bn) for 

any n the random variable Bn has a denumerable set of 

values. According to the conditions of Theorem 5 the 

-ni -nk ni n- n 
measures P ( and P ( ) , where P ( = p(.n(B -BiI, are 

P ( Bn=8;) 
orthogonal. It follows from Lemma 5 that the 

ni measures P ( ) and pnk( a )  are equivalent. The result of 
t t 

Theorem 5 then follows from Theorem 4. 

- 
1 0. CONCLUSION 

This paper represents the results for the strong consis- 

tency property of Bayesian estimation in two cases: a 

denumerable and uncountable parameter set and wide class of 

continuous-time stochastic observation processes. In the case 

of the denumerable set of parameter values the necessary and 



sufficient conditions of consistency are formulated in terms of 

absolute continuity and singularity of some special family of 

conditional probabilistic measures. In the case of an 

uncountable parameter set the sufficient condition of strong 

consistency is formulated. The results of consistency may be 

specified when more details of the properties of random observa- 

tion processes are available. 
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