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FOREWORD

The objective of the Forest Sector Project at IIASA is to study long-
term development alternatives for the forest sector on a global basis. The
emphasis in the Project is on issues of major relevance to industrial and
governmental policy makers in different regions of the world who are respon—
sible for forestry policy, forest industrial strategy, and related trade
policies.

The key elements of structural change in the forest industry are
related to a variety of issues concerning demand, supply, and international
trade of wood products. Such issues include the development of the global
economy and population, new wood products and substitution for wood products,
future supply of roundwood and alternative fiber sources, technology develop-
ment for forestry and industry, pollution regulations, cost competitiveness,
tariffs and non-tariff trade barriers, etc. The aim of the Project is to
analyze the consequences of future expectations and assumptions concerning
such substantive issues.

The research program of the Project includes an aggregated analysis of
long-term development of international trade in wood products, and thereby
analysis of the development of wood resources, forest industrial production
and demand in different world regions. The other main research activity is
a detailed analysis of the forest sector in industrial countries. Research
on these mutually supporting topics is carried out simultaneously in collabora-
tion between IIASA and the collaborating institutions of the Project.

This paper is a specific study of the Finnish forest sector. 1Its goal
is to analyze one of the main cost factors, the wood cost, and the effect of
this internally priced factor on the competitiveness of the Finnish forest
industry.

Markku Kallio
Project Leader

Forest Sector Project
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ABSTRACT

During the recent years the total cost of round wood for the Finnish forest
industry has been in the order of USS$ L.5 billion annually. The share of stumpage
price represents roughly one half whereas harvesting, transportation etc account
for the rest. The purpose of this study is to investigate long term equilibrium
prices for wood (and thereby total round wood costs) under various conditions of

world market of wood products.

In the first part of this paper a (discrete time) dynamic linear model for the
forest sector is discussed. The steady state version of it is analyzed in more
detail. An application of the steady state forestry model is carried out for the
Finnish forests. As a result, alternative sustained yield solutions for the Finnish

forests are obtained.

In the analysis of the second part, a steady state sectorial model is adopted to
carry out a Stackelberg equilibrium analysis for the round wood market. Further
elaboration appeared necessary until the steady state model became suitable for
this game theoretic analysis. This elaboration involves definitions of objective
functions of the key parties (the forestry and the industry) in the forest sector
game. A demand function of constant price elasticity is adopted for wood pro-

ducts.
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STEADY STATE ANALYSIS OF THE FINNISH FOREST SECTOR

Markku Kallio and Margareta Soismaa

1 Introduction

During the last few years a growing research effort has been directed towards
(renewable) natural resources. Since the prosperity of many nations is dependent
on a sensible exploitation of these resources the significance of studies dealing
with such problems becomes great. For the Finnish economy forests represent
the most important national resource. Not only as such but because an entire
line of production ranging from pulp and sawn goods to paper, furniture and
prefabricated houses, is based on wood not to mention industry producing machi-
nery for forestry and wood processing. This also emphasizes the importance of the
forest sector, which includes both forestry and forest based industries, for emplo-

yment and foreign trade.

In the past the total cost of round wood for the Finnish forest industry has been
of the order of USS 1.5 billion annually. The share of stumpage price represents
roughly one half whereas harvesting, transportation, etc account for the rest.
The purpose of this study is to investigate long range equilibrium prices for
wood (and thereby total round wood cost) under various conditions for world

market of wood products.



In Section 2 we will present a dynamic linear model for the entire forest sector.
In Section 3 we take forestry separately and determine the optimal harvesting
policies in a steady state. Section 4 deals with a steady state model for the
forest industries. In Section 5 we combine these two parts and formulate a steady
state model for the forest sector. In Section 6 we supplement the model of
Section 5 to make it applicable for solving the long range equilibrium wood
prices as solution to a Stackelberg game. In Section 7 we present numerical
results from experiments with Finnish data. Finally, Section 8 stands for summary

and conclusions.

2 A Dynamic Linear Model for the Forestry and Wood Processing Industry

We shall consider first the integrated and dynamic system of wood supply and
wood processing; ie forestry and forest industry. The model has been adopted
from Kallio, Propoi, and Seppala /2/. The discussion begins with the forestry part
describing the growth of the forest given harvesting and planting activities, as
well as land availability over time. The wood processing part consists of an
input-output model describing the production process as well as of production
capacity and financial resource considerations. Each part is a discrete time linear

model describing its object over a chosen time interval.

2.1 Forestry

Let w(t) be a vector determinig the number of various tree species (say pine,
spruce and birch) in different age categories at the beginning of time period t.
We define a square transition (growth) matrix Q so that Qw(t) is the number of
trees at the beginning of period t+l given that nothing is harvested or planted.
Thus, matrix Q describes aging and natural death of the trees. Let p(t) and h(t)
‘be vectors for levels of different kinds of planting and harvesting activities,
respectively (eg planting of different species, terminal harvesting, thinning, etc),
and let the matrices P and H be defined so that Pp(t) and -Hh(t) are the incre-
mental increase in the tree quantinty caused by the planting and harvesting activi-
ties. Then, for the state vector w(t) of the number of trees in different age

categories we have the following equation:



(2.1) w(t+l) = Qw(t) + Pp(t) - Hh(t)

Planting is restricted through land availability. We may formulate the land const-
raint so that the total stem volume of trees in forests cannot exceed a given
volume L(t) during t. Thus, if W is a vector of stem volume per tree for diffe-
rent species in various age groups, then the land availability restriction may be

stated as
(2.2) W(t) < L(t)

Given the level of harvesting activity h(t), there is a minimum requirement for

the planting activity p(t) (required by the law, for instance) as follows:
(2.3) p(t) > Nh(t) ,

where N is the matrix transforming the level of harvesting activities to planting

requirements.

In this simple formulation we shall leave out other restrictions, such as harves-
ting labor and capacity. Finally, the wood supply y(t), given the level of harves-

ting activities h(t), is given for period t as
(2.4) y(t) = SHh(t)
Here the matrix S = (Sij) transforms a tree of a certain species and age combi-

nation j into a volume of type i of timber assortment (eg pine log, spruce pulp-

wood, etc).

2.2 Wood Processing Industry

For the industrial side, let x(t) be the vector of production activities for period
t (such as the production of sawn goods, panels, pulp, paper, and converted wood
products), and let U' be the matrix of wood usage per unit of production activi-
ty. The wood demand for period t is then given by U'x(t). It cannot exceed wood

supply y(t):




(2.5) y(t) > U'x(t)

Note that the matrix U' may also have negative elements. For instance, sawmill

activity consumes logs but produces pulpwood as a residual.

Let A be an input-output matrix so that (I - A)x(t) is the vector of net producti-

on. If D(t) is the corresponding (maximum) external demand, we require

(2.6) (1 - A)x(t) < D(t)

Production is restricted by the capacity c(t) available:

(2.7) x(t) < c(t)

The vector c(t) in turn has to satisfy the state equation

(2.8) c(t+l) = (1 - glec(t) + v(t) ,

where g is a diagonal matrix accounting for (physical) depreciation and v(t) is
the increment from investments during period t. The vector v(t) of investment
activities is restricted through financial considerations. To specify this, let m(t)
be the state variable for cash at the beginning of period t. Let G(t) be the
vector of sales revenue less direct production costs per unit of production inclu-
ding, for instance, wood, energy, and direct labor costs. Let F(t) be the vector of
monetary fixed costs per unit of capacity, let I(t) be the amount of external
financing employed by the industry at the beginning of period t, let s be the
interest rate for external financing per period, let 1¥(t) be new loans taken du-
ring period t, let 17(t) be loan repayments during t, and let E(t) be the vector of
cash expenditure per unit of increase in the production capacity. Then, the state

equation for cash may be written as

(2.9) m(t+l) = m(t) + G(t)x(t) - F(t)c(t)

-sl(t) - I-(t) + 1*(t) - E(t)v(t)

Finally, for the industrial model, we may write the state equation for external

financing as follows:
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(2.10) 1Ct+1) = 1(t) - 1-(t) + 1+(¢t)

Figure | presents the structure of the constraint matrix of the forest sector

model for period t.

3 Sustained Yield in Forestry

In the previous section we presented a dynamic linear programming model encom-
passing both forestry and forest based industries. In this section we focus our
attention solely on forestry. We present forestry in a steady state by assuming
that one period follows another one without changes. We shall investigate alterna-
tive sustained and efficient timber yields in various timber assortments. We also

present an application to the Finnish forestry.

3.1 The Steady State Formulation

In Section 2.1 we presented a general dynamic formulation for forestry. In this

section we deal with a steady state case of this model.

We consider a forest land with a single tree species and with uniform soil, clima-
te, etc conditions. We assign the trees to age groups a, for a = 1, 2,..., N. Let d
be a time interval; eg 5 years. A tree belongs to age group a if its age is in
the interval [(a-1)d, ad) for all a < N. Trees which have an age of at least
(N-1)d belong to age group N. We consider a discrete time steady state formula-
tion of the forest, where each time period is also an interval of d. Let p be the
number of trees entering the first age group during each period (eg through
planting or natural regeneration), and let w(a) be the number of trees in age
group a at the beginning of each time period, for | < a < N (cf (2.1)). Let
h(a) be the number of trees harvested during each period from age group a. In
this case, we assume that the harvesting activities equal the number of trees
harvested from each age group during each period. We denote by Q, the ratio of
trees proceeding from age group a to group a+l in one period given that no

harvesting occurs. Without loss of generality we assume 0 < Qg < 1, for all a.



Factors (1-Qa) account for natural death of trees, forest fires, etc as well as
for thinning of forests in age group a. The state equations for forestry in a

steady state may then be written as follows (cf (2.1)):

(3.1) w(l) = p ’

(3.2) w(a+l) = Qgw(a) - h(a) , 1 < a < N ,
where we define w(N+1) = 0.

The land constraint prevents excessive planting (cf (2.2)). Let W, be the amount
of land consumed by each tree in age group a, | < a < N, and let L be the
total amount of land available in the forests. Alternatively, the space limitations
may be taken into account denoting by W, the volume of wood per tree in age
group a and by L the total possible volume of wood in the forests. In either

case the land constraint is given as
N

(3.3) %Waw(a) < L
a:

As a performance index for forestry we consider the physical wood supply. (Expe-
rience shows that when we maximize the physical wood supply we usually get a
policy which also meets other important requirements, such as preserving the
watershed.) The timber assortments vary in value (eg log, pulpwood, fuel wood).
Let j (=1, 2, ...) refer to different timber assortments. Accordingly, let eaj be
the yield (in m3/tree) of timber assortment j when a tree in age group a is
harvested, and let 8aj be the yield per tree in age group a resulting from thin-
ning activities. As stated earlier, our objective is to find an efficient timber yield
using the yields of timber assortments as criteria. Let e; and g5 be convex
combinations (weighted sums) of the coefficients eaj and gaj, respectively. The
objective is to maximize the weighted sum of the yields of various timber assort-
ments and it is given as

N

(3.4) 2 (eg h(a) + go w(a))
a=1

The weights to be used may be proportional to the market prices of the timber

assortments. Also other weights may be considered for studying efficient yields



(see Section 3.2 below). The forestry problem, denoted by (F), is to find nonnega-
tive scalars h(a) and w(a), for each a, which maximize (3.4) subject to (3.1)-(3.3).

The following result is used to derive an optimal solution to this linear program:

Proposition: For an optimal solution of the forestry problem (F) there is an age
group A such that h(a) = 0, for all a £ A, and w(a) = 0, for all a > A.

Thus in the optimal harvesting schedule, all trees are harvested, clearcut (besides
thinning activities) if and only if they reach age group A. Therefore, there are
no trees in age groups higher than A. Problem (F) may then be solved, for
instance, checking all alternative harvesting policies of this type. - For a proof
of the Proposition, see Appendix l.

We consider now a particular policy a = A where trees are harvested in an age

group A. Then, according to (3.2),

%

: f < A
v Qi or a <

(3.5) w(a):ﬁ

0 for a > A.

For the corresponding level of planting pa the land constraint (3.3) yields:

A
(3.6) pA = L/( a'élwa igl’a Qi)

The number of trees harvested, when policy A is applied, is given as

(3.7) h(A) = Qa w(A)

The efficient yield of timber assortment j from clearcutting when policy A is

applied is given as



(3.8) eaj h(A)

As for cutting and thinning, the efficient yield of timber assortment j under

policy A is
A

(3.9) Zgaj w(a)
a=1

3.2 Application to the Finnish Forestry

We will now apply this approach to the forestry in Finland. Let the age group
interval d be 5 years and N = 2| (so that the oldest group includes trees of at

least 100 years old). We consider two timber assortments: pulpwood (j=1) and log
(j=2).

Table | gives estimates for the transition probabilities Q,, the average volume
of pulpwood and log per tree in age group a ey| and ey, respectively, as well
as the total volume W5. We assume that all losses indicated by the Q5 coeffi-
cients for age groups less than 20 are due to thinning. Based on this, the yield

coefficients gaj can be given as

(3.10) 8aj = (1-Qaleaj ,

for 4 < a < 20. We assume 8aj = 0 for each j, for a > 20. The land constraint
(3.3) requires that the total volume of log and pulpwood cannot exceed an
amount of L=1700 million m3, which is around ten percent above the actual
current level in Finland. According to the transition coefficients, 5.6 trees have
to be planted for each grown tree harvested when policies A = 14, 15, .., 21

are applied. This number is roughly what is enforced by the Finnish law today.

Figure 2 shows the annual yield of log and pulpwood when harvesting policies A
= 12, 13, ..., 21 are applied. We may note that alternatives A = 17, 18, ..., 21
are dominated by other alternatives; ie there is another alternative whose yield
is better for both of the two timber assortments. The optimal alternative de-
pends on the weighting of log and pulpwood. If the weight for log is at least 150
percent larger than that for pulpwood, then A = 16 is optimal; ie a tree gets

harvested when it grows 75 to 80 years old. If this percentage is 100 (which
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roughly corresponds to the current price levels of log and pulpwood in Finland)
then the alternatives A = 14 and A = |5 are about equally good; ie trees in the
age interval 65 to 75 should be harvested. When the weight for log drops to only
75 percent above that for pulpwood, the harvesting age falls to 60 to 65 years.

Table 1. Transition coefficients Q,, volume W,, pulpwood yield e;; and g;j,
and log yield ez7. Yield g,2 equals .0 for all age groups except
for a=13 for which gz = .003 (Volumes in m3/tree)

a Qa Wa €al €a2 8al

I .68 .0 .0 .0

2 .93 0 0 .0

3 .90 .001 .001 .0

4 .80 .006 .006 0 .001
5 .80 014 0L4 .0 .003
6 .82 .026 .026 .0 .005
7 .90 041 041 .0 004
g .93 061 061 0 .004
9 .93 .085 085 .0 .006
1o .93 14 16 .0 .008
1 .97 146 146 0 004
12 .97 .182 182 .0 .005
13 .97 222 138 084 004
1. 263 113 .150 .0
15 1. .308 .102 206 0
16 L. .353 .08l 272 0
17 L .399 076 323 .0
18 L. L6 071 375 .0
19 L. 494 064 430 .0
20 .99 .543 .060 483 .0
21 .95 .600 .060 540 .0

The yield along the line segment between the corner points in Figure 2 may be

obtained when two policies are combined. Logs may also be used as pulpwood.
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This has been illustrated for A = 21 by points along the broken line of Figure 2.
Note that each such point is inferior to the efficient frontier, and the same is
true for any other policy alternative A. Thus, in the stationary state logs should
not be used as pulpwood regardless of the price ratio of log and pulpwood. (In a

transition period this of course may not hold.)

Figure 2. Alternative yield of log and pulpwood.

Yield of puipwood
(mill. m3/year)

1005 A2
75+
A=13
50T
\ A=14
AN
AN A=15
N
I . A=16
25} N A=17
\ A=18
A=19
A=20
A=21
0 t +
0 25 50
Yield of log (mill. m3/year)
Table 2 summarizes the alternatives A = 12, 13, ..., 16. It shows, for each

policy alternative A, the yields of log and pulpwood separately from the harves-
ting and the thinning activities when the total volume L of forests is assumed to
be 1700 mill. m3. Also the number of trees to be harvested and planted annually

is shown in Table 2.

The age distribution of trees resulting from policy alternatives A = 13, ..., 16
has been illustarted in Figure 3. For comparison, the estimated age distribution

in 1976 adjusted to the same total volume of forests has been shown in Figure
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3. In Figure 4 we have presented the distribution of the volume of trees in
different age groups for policies A=13, 14, 15, and 16. The estimated distribution

of the volume for the year 1976 has also been presented.

Table 2. Yield by timber assortments, trees harvested and trees planted

for harvesting policies A = 12, ..., l6.

Harvesting policy A 12 13 14 15 16
Log yield, mill. m3/a

Harvesting 0 24.1 35.0 39.8 43.9

Thinning 0 3.7 2.7 2.3 2.0

Total 0 27.8 37.7 42.1 45.9
Pulpwood yield, mill. m3/a

Harvesting 76.2 39.5 26.5 19.7 13.0

Thinning 22.7 24.0 19.7 16.3 13.6

Total 98.9 63.5 46.2 36.0 26.6
Total yield, mill. m3/a 98.9 91.3 83.9 78.1 72.5
Harvesting, mill. trees/a 420 290 230 190 160
Planﬁng, mill. trees/a 2060 1620 1320 1090 910

Figure 3. Age distribution of trees for policies A = 13, ..., and comparison
with the situation in 1976.

Trees in age group
{bill. trees) .

304
2.5+
201
151
101

05+

0.0 + + —t
0 20 40 60 80 100 Age lyears)
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Figure 4. The volume distribution of trees in age groups for policies
A =13, 14, 15, and 16 as compared to the situation of 1976.

Trees in age group

{mill. m3)

350

300

250 1

200T

150+

100T

0 + — + +
0 20 40 60 80 100  Age (years)

4 A Steady State Model of the Forest Industries

In this section we shall consider the wood processing part of the model of Section

2 in a steady state.

Suppressing the time index t in the industrial part of the model. equation (2.5)

yields
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(4.1) U'x <y ’
ie industrial usage of wood U'x cannot exceed wood supply vy.

Equation (2.6) requires that net production (I - A)x supplied to the external

market cannot exceed demand D:

(4.2) (I - A)x < D.

As in the dynamic version (2.7), gross production is limited by capacity ¢
(4.3) x < ¢

The state equation (2.8) for capacity yields

(4.4) gc = v,

ie investments v equal (physical) depreciation gc. The state equation (2.10) for

external financing is rewritten as
(4.5) 1= =1+

in other words, the level of external financing remains constant in the steady

state formulation.

Taking into account (4.4) and (4.5) the modification of (2.9) results in the follo-

wing formulation
(4.6) Gx - (F + Eglc - sl =0

Equation (4.6) states that the net income from sales equals the expenditures
caused by capacity (fixed costs and depreciation) plus external financing (interest
payments). Alternatively we may replace equality in (4.6) by an inequality. The

slack can then be interpreted as a constant flow out from the forest sector.

It is obvious that in the optimal solution (4.3) holds as an equality:
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(4.7) X = C

We define a vector d for the external demand which equals net production. Sol-

ving x from this, yields
(4.8) u(r - A)-ld < vy

In summary, for the steady state solution we have to find d which satisfies (4.8),

(4.9) (G- F - Eg) (I-A)-1 d> o0
and
(4.10) 0 < d< D

5 A Steady State Model of the Forest Sector
Above we have presented two steady state models one, for forestry and another
for wood processing industries. In this section-we shall merge these two parts to

obtain a steady state model for the entire forest sector.

Efficient yields of pulpwood and log are shown by Figure 2, in which the feasible

region of yields can be defined by a set of linear inequalities:

Ry < s ,
where y is a vector of m components signifying the different timber assort-
ments, R is a matrix and s a vector. For the two-dimensional case of Figure 2,
the components of R and s can be obtained immediately.
Thus, for U'x, the industrial use of wood, we require

RUx < s,

or
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(5.1) RU (I - A)-Ld< 5.

The steady state solution d for the entire sector is then one which satisfies
(4.9), (4.10) and (5.1).

So far we have not included into the model any objective functions. For forestry
we might choose to maximize stumpage earnings; ie the income from selling
wood to industry less the production costs for that wood (eg harvesting and
transpoftation costs). As for industry, industrial profit, the left-hand side of equa-
tion (4.9) offers one possible objective function to be maximized. The sum of
these two could constitute a joint objective function (the joint profit) for the

entire forest sector. We shall discuss this subject further in Section 6.1.

6 A Stackelberg Game

In this section we shall discuss a specification of the steady state model to be
applied for timber market analysis. The model will be augmented with objective
functions both for forestry and wood processing industry. Furthermore, the de-
mand for final products is represented by a demand function of constant price

elasticity. The round wood market is viewed as a Stackelberg game.

It is apparent that the game situation in the forest sector involves two parties:
forestry and forest industry. So far this bipartition has been revealed by separate
models for each party. These models are interconnected through the amount of
round wood supplied by forestry to the industry and through the prices of round

wood.

The market mechanism which determines (round) wood prices may be described
as follows: Given the prices and the availability of different timber assortments
(at these prices) the industry chooses the quantity it will buy by maximizing its
profit; the problem for forestry is to choose prices to maximize its profit (given

the resulting wood demand for that price).

The decision process described above is called a Stackelberg game /4/. The party
making the first decision (on prices) is called the leader of the game and the

other party the follower. In our application, forestry acts as the leader and the
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industry as the follower. We assume that both the leader and the follower are
profit maximizers and that they both have perfect information on the game (eg

on profit functions, supply and demand).

The compexity of the game arises from the fact that the profits of both parties
depend on raw wood prices. The revenues of forestry is determined by the price
of wood and the quantity sold. In addition, the production cost for wood (eg
harvesting and transportation costs) influence the profit of forestry. For the in-
dustry, the price of wood influences the cost of production. The sales price of an

industrial product influences its demand.
At the solution of the game, ie at the Stackelberg equilibrium, prices for timber

assortments are at a level which maximizes forestry's profit taking into account

the effect of this price level on wood demand.

6.1 The Profit Functions

In order to solve the (Stackelberg) equilibrium prices we shall append to the

steady state model of Section 5 profit functions for both parties.

Let p = (p;) be the vector of unit prices for industrial products i on the interna-
tional market, let vector ¢ = (c;) stand for the costs of one unit of production
including labor, energy and fixed costs, depreciation, and real interest on total
invested capital but excluding wood cost. Let z be the vector of wood prices for

the different timber assortments. Denote
(6.1) U=uU"(l -A)-!

as the vector of timber assortments required for one unit of (industrial) producti-

on. Industrial profit, denoted by Py, is given by
(6.2) Pp = (p-c-2zU)d ,
where vector d stands for the volume of export.

As for forestry, denote by e the unit production cost for wood. Forestry profit,

denoted by Pg, is given by
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(6.3) P = (z - e)y )

where y is the quantity of wood sold to the industry.

6.2 Demand Functions and Optimal Prices for Wood Products

In Section 5, we assumed that the external demand for wood products is limited
by an (exogenous) upper bound. However, for the Stackelberg analysis it is conve-

nient to use a demand function with constant price elasticity
(6.4) d; = k; pybi ,

(for each wood product i) where p; is the price, ki is a constant, and -bj is the

price elasticity of demand. We may assume that bj is greater than I.

Denote by P; the world market price which results in the (reference level) of
demand dj. For example, if d; is the current (external) demand, then p; shall
refer to the:current price. Using p; and d; we solve for kj. Substituting into
(6.4) yields

(6.5) di/d; = (pij/pj)-bi

Inserting d = (d;) from (6.5) into (6.2), we can solve the (profit maximizing)

optimal price pf for wood products. As a result we have

(6.6) p; = (by/(bj-1))(c; + zU) .

6.3 The Profit Maximization Problem for Forestry

In (6.6) we obtain the optimal price pf’ as a function of wood price z; in other
words, pj = pi{z). Thus, external (optimal) demand dj is actually a function of
wood price z. We shall denote the vector of optimal demand quantitiés as a
function of z by d(z). The wood usage y = y(z) corresponding to the optimal

wood product prices is then given as a function of wood price:
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(6.7) y(z) = U' (I - A)-l d(z)

According to (5.1), the wood availability from forests restricts wood consumption

as follows:
(6.8) R U (I -A)-Ld(z) < s .

We have combined the two models, one for forestry and another one for indust-

ry, to yield the following optimization problem for forestry:

(6.9) max Pr(z) = (z - e) y(z)
subject to
(6.10) R y(z) < s

The forestry profit maximizing wood price vector, denoted by z*, is the (Stackel-

berg) equilibrium price.

7 Equilibrium Solutions for Finland

In this section we shall present numerical results for the Stackelberg game with
Finnish data. We will carry out the numercal tests using a model dealing with
two timber assortments (log and pulpwood) and with seven wood products: sawn
goods, panels, other mechanical wood products, mechanical pulp, chemical pulp,

paper, and converted paper products.

For the forestry sector we employ the alternative sustained yield solutions deri-
ved in Section 3. The set of sustained yield solutions of Figure 3 is used to
define the constraints (6.10) defining the convex polyhedral set of feasible round

wood vyield.

For the industrial model, we assume demand functions with price elasticity coef-
ficients bj=b being equal for each product. According to the representatives of
the Finnish forest industry, a reasonable assumption concerning the value of b is
the range between 10 and 30. However, sensitivity analysis shall be presented for

the whole range of 1 < b < =
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Another highly sensitive and uncertain figure in the analysis is the reference
level p; of the world market price. For sensitivity analysis, three price scenarios
were constructed for each forest product. Scenario l: an optimistic world market
price is defined as total production cost in Finland (including wood cost at pre-
sent prices and a ten percent real interest on total invested capital). Scenario 3:
a pessimistic price is defined reflecting such production costs for the major future
suppliers (such as North American and Latin American producers) in the world
market /1/. Scenario 2, a more likely scenario, is the average of the two above.
According to our data, the price in Scenario 1 is higher than in Scenario 3 for

each wood product separately.

7.1 The Single Product - Single Timber Assortment Case

For qualitative analysis of the model we shall first study the case of a single
timber assortment and a single product. In this case, the equilibrium can actually

be solved analytically.

Depending on the value of b the results shall be studied in two cases. We consi-
der first the case when b is small and when forest land is not fully exploited. To
solve the equilibrium wood price z* we maximize forestry profit as defined in
Section 6.3. Taking into account (6.5) and (6.6) and omitting constants we have

(7.1) Pr = (z-e)d pP(b/(b-1))-P(c+z)-b

(z-e) (c+z)-b

The equilibrium wood price z* from (7.1) is

(7.2) z*¥ = (c+be)/(b-1)

Notice that z* is independent of the world market reference price p. It is a
decreasing function of b, which asymptotically approaches wood production cost e

(harvesting, transportation, etc) as b increases.

Inserting z* into (7.1) the maximum forestry profit is
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(7.3) Pr = ((c+e)/(b-1))[(b/(b-1))2((c+e)/p)}-Pd

As for industrial profit given by (6.2), the following formula results

(7.4) P; = (p-c-2")d = (b/(b-1))PE

Along with b, forest utilization increases until the total forest land area is exp-
loited. In this second case, when forest land is fully exploited, we solve the
equilibrium wood price z* assuming that the demand for round wood equals the
maximum supply. The maximum production is denoted by d*. From (6.5) and (6.6)
we get

(7.5) d* = d(b/(b-1))-b((c+z)/p)-b

Solving the equilibrium wood price z* from (7.5) results in

(7.6) 2% = (3/d*)L/b((b-1)/b)p - <

In this case, the equilibrium price z* is a concave function of b which asymptoti-

cally approaches (p-c) (the unit profit when wood cost is omitted) as b increases.
Inserting (7.6) into (6.6) yields the optimal wood product price
(7.7) p* = p(3/da*)1/b

which asymptotically approaches p (the world market price) as b approaches infi-

nity.
Using (7.4), (7.6), and (7.7) the industrial profit is defined as
(7.8) P; = (1/b)(d/d*)1/b pa*

As b increases the equilibrium price z* asymptotically approaches a level absor-

bing all profit of the forest sector into wood price.

As for forestry profit, (6.3) gives us
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(7.9) PE = (z% - e) dF

which asymptotically approaches (f - ¢ - e)d* (the maximum profit of the entire

forest sector) as b approaches infinity.

In Figure 5a we present the equilibrium price z* of raw wood as a function of
b. Figures 5b and 5c show the behavior of forestry profit Pg and industrial

profit Py as functions of b, respectively.

Figure 5. Equilibrium prices and profits as function of the price elasticity

coefficient b for the single product - single timber assortment case.
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7.2 The Seven Products - Two Timber Assortments Case

For each wood price vector z, the profit maximizing solution for industry, and
thereby wood demand y(z), can be expressed analytically. Thus the problem of
determining the equilibrium price z* can be stated as an explicit nonlinear prog-
ramming problem (6.9) - (6.10) with nonlinearities both in the objective and in

the constraints.

We shall redefine the variables so that the resulting problem has nonlinearities

only in the objective. Let the inverse function of y(z) be defined as
(7.10) z = gly)

Substituting this into (6.9) - (6.10) yields the following problem with linear const-

raints

(7.11) me;’x PE(y) = (gly) - e)y
subject to

(7.12) Ry < s

For moderate values of b we can solve this problem using standard nonlinear

programming codes. The MINOS code /3/ was employed in this study.

Since we only know g(y) through its inverse function, the following procedure
was implemented for evaluating the gradient: (i) Employing iterative methods,
solve for the price vector z corresponding to the current value for y; (ii) deter-
mine the Jacobian matrix E(z) = (3y;(2) /azJ-) for current y and z, and finally, (iii)

calculate the gradient as v, Pgly) = v, Pg(z) E-1(z).

For large values of b, the problem is illbehaved and thereby nonsolvable. Howe-
ver, for b = o we obtain the equilibrium price z* from the dual solution of the
following linear program maximizing joint profit for industry and forestry as fol-

lows:
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Figure 6. Equilibrium round wood prices as functions of the price elasticity

coefficient b for world market price Scenarios 1-3.
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(7.13) max (p - ¢ - eU)d
d,y

subject to

(7.14) ud -y =0

(7.15) Ry < s

(7.16) d, y > 0

Proposition: Assume problem (7.13-16) to be nondegenerate. If p* is the dual
optimal solution corresponding to constraint (7.14), then z* = e+p* is the Stackel-

berg equilibrium price for b = .

When forestry sets the stumpage price at p* and y < y* (the optimal wood
consumption) it will maximize its earnings, which, in this case, are equal to the
total profit for the entire forest sector. - For a proof of the Proposition, see

Appendix 2.

In Figures 6a and 6b we have the equilibrium wood prices as functions of the

elasticity parameter b for the three world market price scenarios.

Figures 7a and 7b show the profits for forestry and for industry at the equilib-
rium. For large values of b (ie b =« ), forestry, absorbs the total profit of the
sector. (Note that the necessary return on capital has been taken into account
as a cost factor for the forest industry. Zero profit for industry means, therefo-

re, that return on capital equals this minimum.)

For b = 10, 20, 30 and «» , the numerical results have been given in Table 3.
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Figure 7. Equilibrium profit for the forestry and the industry as a function

of the price elasticity coefficient b for world market price Scenarios 1-:
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Table 3. Equilibrium prices for pulpwood and log as compare d to

current prices when b equals 10, 20, 30 and =

Current Equilibrium Price ($/m3)
b = 10 Price Sce 1 Sce 2 Sce3
($/m3)
Wood Log 48 34 28 23
Price Pulpwood 38 28 28 26
Stumpage | Log 30 17 11 5
Price Pulpwood 15 6 6 3
Table 3a. The case of b = 10.
Current Equilibrium Price ($/m3)
b = 20 Price Sce 1 Sce 2 Sce3
($/m3)
Wood Log 48 41 32 24
Price Pulpwood 38 33 28 25
Stumpage | Log 30 | 23 14 7
Price Pulpwood 15 | 1l 5 1 2
Table 3b. The case of b = 20.
Current Equilibrium Price ($/m3)l
b = 30 Price Sce 1 | Sce 2 Sce3 |
($/m3) ! 3
Wood Log 48 43 ; 34 25 ?
Price Pulpwood 38 38 1 29 24
Stumpage | Log 30 ! 26 é 16 8
Price Pulpwood 15 ? 12 % 7 i 2

Table 3c. The case of b = 30.
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Current Equilibrium Price ($/m3)
b = e Price Sce | Sce 2 Sce3
($/m3) I
Wood Log 48 43 39 L3l
Price | Pulpwood | 33 38 133 28 |
Stumpage | Log 30 x 30 F 21 s
Price l Pulpwood 15 i 15 10 5

Table 3d. The case of b = = ,

Generally, we conclude that the current price levels for pulpwood and log are
much higher than the equilibrium prices resulting from our analysis. On the other
hand, there are substantial differences between prices resulting from the diffe-

rent price scenarios.

8 Summary and Conclusions

In the first part of this paper a (discrete time) dynamic linear model for the
forest sector was discussed. The steady state version of it was analyzed in more
detail. An application of the steady state forestry model was carried out for the
Finnish forests. As a result, alternative sustained yield solutions for the Finnish

forestry were obtained.

In the second part of the paper, a steady state sectorial model was adopted to
carry out a Stackelberg equilibrium analysis for the round wood market of Fin-
land. Further elaboration was needed for the steady state model until it became
suitable for this game theoretic analysis. This elaboration involved definitions of

objective functions for the forestry and for the industry.

For the industrial model, a demand function with a constant price elasticity
coefficient b was chosen for each product. A reasonable assumption conserning
the value of b is in the range between 10 and 30. If b is greater than 30 we
price ourselves out of the market with a |0 percent increase in price. On the
other hand, when b is under 10 the demand is very rigid; in other words, chan-
ges in price do not affect demand, which does not correspond to the present

market situation. However, sensitivity analysis was carried out on the whole range
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of 1<b< = . The other highly uncertain and sensitive figure in the analysis is
the world market price (defined as sales price when b approaches infinity). For
sensitivity analysis, three price scenarios were constructed for each forest pro-
duct as follows: (1) An optimistic world market price is defined as total production
cost in Finland (including wood cost at present prices and a ten percent real
interest on total invested capital), (3) a pessimistic world market price is defined
as being roughly equal to the production cost of our major future competitors in
the world market, and (2) a likely scenario which is the average of the two

above.

As the numerical results presented in Section 7 show the current price levels for
pulpwood and log are much higher than the equilibrium prices resulting from our
analysis. On the other hand, there are substantial differences between prices
resulting from the three price scenarios for the world market prices of wood

products.
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APPENDIX 1.

Proposition: For an optimal solution of the forestry problem (F) defined on page
6 there is an age group A such that h(a) = 0, for all a # A, and w(a) = 0, for
all a > A,

Proof: Clearly, for an optimal solution w(l) = p > 0. Let a = A be the smallest
age group for which w(A+l) = 0. Then h(A) > 0 and w(a) = h(a) = 0 for all a >
A. To show that h(a) = 0 for a < A, we consider the optimal basis for (F)

partitioned as follows:

p w(1) w(2)...w(A) h(A) other bacic variables

|
|
|
|
B11 | By Constraints (3.1)—(3.3)
l
l
|
|

foralla< A

|
821 =0 || 822 QOther Constraints
|

Figure: An optimal basis matrix for (F).

Here B is square and Bp| = 0. Thus, B22 is nonsingular and therefore, h(a) is

nonbasic for a < A.l|
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APPENDIX 2.

Proposition: Assume problem (7.13-16) to be nondegenerate. If p* is the dual
optimal solution corresponding to constraint (7.14), then z* = e+p* is the Stackel-

berg equilibrium price for b == .

Proof: Consider the problem (G) of maximizing the profit for the entire

forest sector:

(G.1) max (p - ¢ - eU)d
(dy y) > 0

subject to

(G.2) Ud -y =0

(G.3) Ry <'s

Let (d*, y*) be the optimal primal solution for (G), and (u*, x*) the optimal dual
multipliers (for constraints (G.2) and (G.3), respectively). Let £¢> 0 and define a
wood price vector z(e) = e + (1-g)u®. For this wood price the profit maximization

problem (I) of industry is the following:

(I.1) max (p - ¢ - z(e)U)
(dyy) > 0
subject to
(1.2) Ud -y =0
- (1.3) Ry < s

Optimal primal and dual solutions for (I) are denoted by (d', S") and (', A Y,

respectively.

To prove the proposition, we shall show that an optimal solution (d', y") for (I) is



32

optimal for (G) as well, and that the profit thereby obtained by forestry can be
made arbitrarily close to the optimal profit for (G), the profit for the entire
sector. The latter is achieved when ¢ approaches zero corresponding to the limi-

ting wood price z(0) = e + P*‘

One can readily check the optimality conditions for (I) and observe that the
primal and dual solutions (d¥, y*) and (sp*, £ A¥), respectively, are optimal for
(D. Because of the primal nondegeneracy assumption for (G), and thereby for (I),
the dual optimal solution for (I) is unique. Therefore (p', A7) = ( 8|J*,£>\ *). This
together with the optimality condition for (I) applied to the primal solution (d',y")
and the dual solution (p', A"), imply the optimality conditions of (G) for (d', y)
and (P*’ A*), ie an optimal solution (d', y") for (I) is optimal for (G) as well.
From the optimal profit (p - ¢ - eU)d* of (G), an amount of € A*y* belongs to

the industry, and this share approaches zero withe . 1|
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