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VARIATIONAL INEQUALITIES REVISITED

Jean-Pierre Aubin

Let K be a closed convex subset of a reflexive Banach space X

*®
and A be a set-valued map from X to X satisfying

(1)

A is finitely upper-semicontinuous with

(1)
nonempty closed convex bounded images.

Our purpose is to solve variational inequalities (or generalized

equations)
i) x €K
(2)
ii) 0E€A(x) + Nyg(x)
*
where Ny (x) := {p€X |sup (p,x-y? > 0} is the normal cone to K
veK

at x€XK, by balancing

a) the lack of boundedness of K, measured by its "barrier cone"

b(K), defined by

(3) b(K) := {peX |sup{p,x) < +=}
x€K

(because the larger b(K), the lesser is K unbounded)



b) with the degree of monotonicity of A, measured by a
nonnegative proper lower semicontinuous function B

from X to IR V {+=} satisfying
(4) ¥(x,p), (y,q) €graph(a), {p-q,x-y) > B(x-y) .

We shall say that such a set-valued map A is B-monotone. We

(2)

*
denote by B its conjugate function .

For instance, we can take

i) BR(z) := 0 (and thus, B* = w{o},Dom B* = {0})(3)
. * * (4)
(5) ii) B(z) := llzll (and thus, 8 = wB ,Dom B = B,)
*
o
iii) B(z) := = lzl® (and thus, 8% = Z0-I *,1+1=1,poms*=x")
* *

In the following theorems, we shall measure the degree of mono-
E
tonicity of G through the size of the domain of 8 : the larger

* .
Dom B , the more "monotone" is G.

Theorem 1. We posit assumptions (1). Assume that A is B-

monotone.and that
(6) 0cInt (b(K) + A(K) + Dom 87) .

Then there exists a solution X €K to the variational inequality
0 €A(X) + Np (%) A

Assumption (6) shows how the lack of boundedness of K is
compensated by the degree of monotonicity of A. We point out

that (6) is satisfied when one of the following instances is

satisfied.
i) K is bounded (b(K) = X')
ii) A is surjective (A(K) = X*)
(7) iii) A satisfies (4) with 8(z) := S llzI%, c>0, a>1
iv) A satisfies (4) with B(z):= cllzll, ¢ >0 and
A(K) N=-b(K) # 4.
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Naturally, these examples are known (See Brézis (1968), Lions
(1969) and Browder (1976)). The novelty lies in the introduction
of the function 8 as a parameter in assumption (6).

We recall that N_(x), the normal cone to K at x, is the

(3) K

subdifferential of the indicator wK. Therefore, variational

inequalities are particular cases of inclusions of the form
(8) fea(x) + V(x)

when V : X+ IRU {+x} is a proper lower semicontinuous convex func-
tion and A is a set-valued map from the Banach space X to x*,
which were studied by Brézis-Haraux (1976) , when A is maximal
monotone, for solving Hammerstein equations (see Brézis-Browder
(1976)). We shall extend Theorem 1 to this case. To this end,

we assume once and for all that

(9) Dom V CDom A

and we observe that a necessary condition for the existence of
a solution x to (8) is that

*
(10) febom V + A Dom V .

We shall prove that this condition is "almost sufficient".

Theorem 2. We posit assumptions (1). Assume moreover that
A is B-monotone. Then there exists a solution X to the inclusion
(8) when

* *
(11) fe€Int (Dom V + A Dom V + Dom g ) .

*
Remark. The size of Dom B8 balances the interiority condition

in assumption (11), as the following corollary shows.

Corollary 3. We posit assumptions (1).

a) If A is monotone, (i.e., B=0), then

* *
(12) Int (DomV + A Dom V) CIm (A + 3V)CDhom V + A Dom V .



b) If there exists ¢ >0 such that

(13) ¥(x,p), (y,q) €graph (a), {p-q,x-y’> > clx-yll ,
then

%k
(14) Im (A+93V) =DomV + A Dom V

c) If there exist ¢ >0 and a >1 such that

(15) ¥(x,p), (y,q) €graph (a), {p-q,x-y> > < lx-yl®
then

* *
(16) Im (A+9V) =DomV + A Dom V = X .

Before proving Theorem 2, we shall characterize problem (8) by
equivalent problems. For that purpose, we associate to the
function V, to the map A and to an element f €X the function 9

defined on Dom V by:

(17) o(y) := V(y) + inf (V' (f-u) - (f-u,y))
ueA (y)

We observe that

(18) ¥y E€Dom V, &(y) >0 ‘

*
since, for all uea(y), V(y) + V (f-u) - (f-u,y):_o, thanks to
the Fenchel inequality.

We can also characterize the set-valued map A by the function

Yy defined on Dom A x Dom A by

(19) Y(x,y) := inf (p,x-y)
P€A (x)



Proposition 4.

Assume that the images A(x) are nonempty, closed, convex

and bounded for all x€Dom V. The following problems are equi-

valent
i) = XeDom V such that feAx + 3V (X)
- — *
ii) = peDom V such that fe€ep + A3V (p)
(20) iii) = X €Dom V such that ¥y € Dom V,
Y(X,y) - (£,X-y) + V(X) -V(y) <0
iv) 3 X€Dom V such that ¢(x) = 0 (= min ®(y))
yEDom V
Proof.
a) Let x be a solution to (20)i): then there exists
-— — —_ — * —
p €93V (x) such that f-p €Ax CA3V (p). Conversely, let p be a
— * _
solution to (20)ii). Then there exists x€ 93V (p) such that

fE€Ep + AX. Since p€5V(X), then f belongs to 3V(x) + AX.

b) Let X be a solution to (20)i). There exists u€A(x)
such that fe€3V(X) + u, i.e., such that ¥y €Dom V,

(W,x-y) = (£,X=y) + V(X) - V(y) <0 .

By taking the infimum on A(X), we deduce inequalities (20)iii).

¢) Inequality (20)iii) can be written

inf inf  [V(x) -V(y) ={f-u,x=-y)] < 0 .
y€EDom V. u€A (x) -

Since Dom V is convex, A(X) is convex weakly compact, the lop-
sided minimax theorem implies that

sup sup [V(X) = V(y) =( f-u,x-y)]
ueA (x) yebomV

= inf_ [V(X) +V (f-u) = ¢f-u,x)] = (3 .
u€A (x)



Hence 2 (x) < 0.

d) Let x€Dom V satisfy ¢(x) = 0. Since A(X) is weakly
compact and V is weakly lower semicontinuous, there exists
uEA(X) such that

O(X) := V(X) + V (£-7) - (£-T,E) =0 .

This is equivalent to saying that: f-ue€a3v(x), i.e. that X solves
(20)1).

The equivalence between (20)i) and (20)iv) allows to inter-
pret the solutions to problem (8) as a solution to a minimization
problem (minimization of the functional ¢) and provides a vari-
ational principle. The equivalence between (20)i) and (20)iii)
allows to solve problem (8), (and, in particular, variational
inequalities) by applying minimax inequalities to the function
defined by

(21) o (x,y) = vi(x,y) = {£,x=y) + V(x) - V(y) .
We observe that

i) ¥x, y~>o¢(x,y) is concave

(22)
ii) ¥y, ¢(y,y) =0 ,

that ¢ is "monotone" in the sense that

(23) ¥x,y €Dom (V), ¢(x,y) + o(y,x) > 0
and that
(24) ¥y eX, X>¢(x,y) is lower semicontinuous

for the finite topology(1).
Therefore, if Dom V were compact, we could apply the generalization
of the Ky Fan inequality (1972) due to Brézis-Nirenberg-Stampacchia

(1972), which would imply the existence of a solution X € Dom V
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to the inequalities (20)iii), i.e., a solution x to problem (8).
When Dom V is not compact, we shall prove by approximation that
assumption (11) is sufficient for the existence of a solution to

inequalities (20)iii).

Proof of Theorem 2.

We set K := {x€Dom V/V(x) <n and [Ixll <n}. The subsets K
o ]
are weakly compact and convex and Dom V = U K because X is
n=1
reflexive. Since Kn is weakly compact and convex, Ky Fan's

inequality for monotone functions implies that, for all n>1,

there exists xnesKn solution to
(25) ¥y €K, ¢{x ,y) <O

thanks to properties (22), (23) and (24).

We shall now use assumption (11) for proving that X, remains
in a weakly compact subset of X. For that purpose, thanks to the

uniform boundedness theorem, it is sufficient to prove that

%
(26) ¥peEX , = n(p) such that sup (p,xn) < 4o
n >n(p)

* *
By assumption (11), there exist n>0, r€Dom R , g€Dom V ,
vyE€Dom V, u€A(y) such that

(27) f+n—r§|—=r+q+u .

We choose n(p) to be the smallest n such that yeEKn. By taking
the duality product with X, we get

(28) W%W (p,xn) = (r,xn-y) + (q,xn) + (u,xn-y)
- (f,xn-y) + (r+u-£f,y) .

We use Fenchel's inequalities (r,xn-y) < Blx -y) + B*(r) and
" =
(q'xn) < Vix,) +V (q). We obtain



JL(pmn)i(umn—y)+Vma —VW)-(fmn-y)

(Bl
(29)

* *
+ B(Xn—y) + B8 (r) +V (q) + V(y) + {r+u-£f,y)> .
Since A is R-monotone, we deduce that

y(x_,y) - (u,x_-y) = inf (p-u,x_-y) > B(x_-vy) .
n n PEA (x_) n - n

Therefore, inequality (29) becomes

n -— - -
el (Prx ) < (v (x,,y) (£,2, -y) + Vix,) V(y))

* *
+ B (r) +V (q) + V(y) + (r+u-£f,y).
Consequently, for all n >n(p), we deduce from (25) that
l il * *
(30) (p,xn) < - (B (r) + V (q) + V(y) + {r+u-£f,y)) .

* *
The right-hand side is finite because r€Dom 8 , g€ Dom V and
y&€Dom V. Hence the sequence is bounded and thus, weakly rela-

tively compact.

So, a subsequence of elements X, s converges weakly to some
x€X. Since V is lower semicontinuous, we deduce from the mono-

tonicity of A and from the variational inequalities that

V(x) < liminf V(xn)
n
< liminf [(V(y)-+(f,xn-y)-ky(y,xn)) =y (yrx)) = v(x ,y)]
n

| A

limsup [V(y) + (f,x -y + v(y,x )]
n

| A

Viy) + (£,x-y) + v(y,X) .
Therefore, x belongs to Dom V and

(31) ¥yeDom V, 0<¢(y,X) .



d) We deduce from properties (22) and (23) that
(32) ¥z E€Dom V, ¢(x,2z) <0 .

Indeed, if the conclusion is false, there would exist
zeDom V such that 0 < ¢(x,2z) and by (24) there would exist

te10,1[ such that

6 (X + t(z-X),2) .

o
A

By taking y = X + t(z-X), inequality (31) implies that

0 < ¢(X + E(z-%),X)

Hence, the concavity of ¢ with respect to the second variable
yields that

(33) 0 < ¢(x + t(z=X) , X + t(z=X))

a contradiction to (22)ii). Then Proposition 4 implies that the

solution X of (32) is a solution to the problem (8).
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Notes

(1)

The finite topology on a convex subset N of a vector space

is the topology for which the maps BK from the simplex

st := {XGJREI.E A;=1} to N defined by
1:1
B () 2= i£1xixi
are continuous for all finite subsets K := {x1,...,xn} of N.

It is stronger than any vector space topology and any affine
map is continuous for the finite topology (see Aubin (1979),
§7.1.3). A finitely upper semicontinuous map from K to X*
is a set-valued map upper semicontinuous from K supplied
with the finite topology to X* supplied with the weak *-
topology. When A is finitely upper semicontinuous, then the

map x » inf (u,x-y) is lower semicontinuous on K for the
u€A (x)
finite topology (see Aubin (1979), §13.2.4).

%
The conjugate function 8 of a function B:X+ R U {+=»} is

%
defined on X by

*
B (p) := sup [{p,x)-B(x)] .
xeX

A function B is convex and lower semicontinuous if and only

%
if B=8 . It satisfies the Fenchel inequality
E 3
(p,x) <B(x) + 8 (p) .

The indicator of a subset K is the function wK defined by

wK(x) = 0 when x€K and wK(x) = 4+ if not.
B, denotes the unit ball of the dual.

The subdifferential of a convex function V is the subset

* *
V(x) := {peX |[(p,x) =V(x) + V (p)}
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of gradients of the affine functions x-+({(p,x?) - V*(p)
below V and passing through (x,V(x)). When V is Giteaux-
differentiable at x, then 3V(x) = {VV(x)}. The set of
points x € X for which 9V(x) # # is dense in Dom V.
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