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FOREWORD

Many large urban agglomerations in the developed countries
are either experiencing population decline or are growing at
rates lower than those of middle-sized and small settlements.
This trend is in direct contrast to the one for large cities
in the less developed world, which are growing rapidly. Urban
contraction and decline is generating fiscal pressures and
fueling interregional conflicts in the developed nations; ex-
plosive city growth in the less developed world is creating
problems of urban absorption. These developments call for the
reformulation of urban policies based on an improved under-
standing of the dynamics that have produced the current patterns.

During the period 1979-~1982, the former Human Settlements
and Services Area examined patterns of human settlement trans-
formation as part of the research efforts of two tasks: the
Urban Change Task and the Population, Resources, and Growth
Task. This paper was written as part of that research acti-
vity. Its publication was delayed, and it is therefore being
issued now a few months after the dissolution of the HSS Area.

Andrei Rogers

former Chairman

of the Human Settlements
and Services Area
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URBAN SYSTEM POPULATION DYNAMICS:
INCORPORATING NON-LINEARITIES

INTRODUCTION

The purpose of this paper is to examine the population
dynamics in a system of cities where the probability of migra-
tion between any pair of cities is not constant, but depends on
the population distribution. 1In this sense, I shall consider
a generalization of the models pioneered by Rogers (1975).
However attention will be restricted to the simplest possible

generalization, of the form:

myg(8) =nngfi0/ g neefix (1)

where at time t'mij(t) is the migration rate from city i to
city Jj: njt is the population of city j; and fij is a time
independent constant parametrizing the rate of migration.

This version is analyzed for the simple reason that some
analytical results are obtainable. Although it is possible in
principle to write down the dynamic equations for any functional
relationship between mij(t) and the vector of populations at
time t, only elementary cases have been analyzed with any degree

of success (Weidrich and Haag 1980Q0).



This problem has been previously analyzed by others:
notably Ledent (1978), Okabe (1979), and De Palma (1982).
However each of these authors solved a different, and in Okabe's
case an inconsistent, version of this model. Appendix A of
this paper demonstrates how the formulation chosen here is

superior to these other attempts.

Three cases of population dynamics will be considered:
the redistribution of population under the assumption of zero
population growth; population dynamics incorporating natural
increase; and change when exogenous limits are imposed on the
population of cities. The next section discusses the formula-
tion of these three cases as non-linear continuous time models,
and subsequent sections analyze the stability and equilibrium
properties of each case in turn. The equilibrium points may
be interpreted as possible long run city-size distributions,
and in each case I shall attempt to demonstrate how these
equilibrium points and their stability may be computed, sug-
gesting in turn how the model may be used to analyze empirical
data. Throughout, the effect of age distributions will be
ignored; once again an introduction of this qualitatively
increases the complexity of the analysis (Gurtin and McCamey
1974) .

1. BASIC FORMULATIONS

Consider first the case of zero population growth. Then
the population at time t+At is the sum of non-migrants, migrants

staying within the city, and inmigrants:

Ny peae = (17 Ty0tinge + rgMag (6,08) + ) riMo (e, AL

where rj is the instantaneous rate of mobility of the popula-
tion in city j (the proportion migrating at any instant of
time), and Mij(t,t+At) is the proportion of the migrant popula-
tion in city i that migrate to city j between t and t+At. The



introduction of rj implies that a mover-stayer model is being
analyzed, but cases will also be examined where the proportion

of stayers is an endogenously determined function.

The migrating population is taken to be:

Mij(t,t+At) = mij(t)At (3)

where

/T oy (£)g(yy)dgy (4)

m,
1]

Here g(yj) is a time independent measure of the 7Zn s7tu attrac-

tiveness of city j for migration, and dij is a measure of the

ease of migration from i to j. Defining:
f.. = )d. . 5
i5 G(YJ) i (5)
then:
3efi5
NS oceae S g r.n, ., : - At + (1 - rjAt)njt (6)
£ Dretik

It is readily apparent from equation (6) that migration rates
are given by a gravity-type of formulation. As discussed above,
the reason for choosing equation (4) is detailed in Appendix A.
To summarize, equation (4) guarantees that the initial popula-

tion in a city equals the sum of stayers and all migrants:

n., = (1 - r.0t)n,_ +r. ) m

jt J jt 1% ji (£) 6% 7

By substituting (4) into the right-hand side of (7) it can be
seen that (7) is true by definition. This is of course just an

origin-constrained gravity formulation.

Defining Ait as equal to % nktfik’ (6) becomes:
_ -1



This may be converted into a continuous time dynamic equa-

tion by subtracting njt

At and taking the limit as At tends to zero:

from both sides dividing through by

- -1
dn,,/dt = njt[g rinsefi5Ant rj] (9)
Equation (9) represents the first model to be analyzed; popula-
tion redistribution with zero population growth.

A natural generalization of (9) that remains simple enough
for elementary analysis is to assume that there is a constant
instantaneous rate of natural increase, Bi, in city i. As a
counterpart to equation (7), the population dynamics of an
expanding system must satisfy the accounting identity that the
total population in city i at time t, plus those born to that
population between t and t+4t, should equal the stayers in i,
plus all migrants, plus those born to the stayers and migrants
between t and t+At:

A L= - r.A )
(1 + BJ t)n (1 r] t) (1 + BJAt)

it e

*oryse( o+ BjAt)j m,, (t)

(
Kk Ik

It may be seen that if mij

is true. Thus a satisfactory model of population change with

{(t) is given by (4), then (10)

natural increase 1is:

_ =1
Ny eear - O g [1 + BjAt)rinitnjtfiint]
+ (1 + B. 1 - r. )
{ BJAt)( r]At)njt

Taking first differences of (11), and taking the limit as At - 0,
it is possible to ignore terms of the order of (At)z. Thus
under this presumption that the probability of two events (birth

and migration) occurring simultaneously is negligible:



dnyp/dt = ng, [% rinitfijAZl -+ gj] (12)
Equation (12) represents the second model to be analyzed. Note
that in this continuous version it is not important whether in
the discrete time case births were assumed to occur at the
beginning or the end of the time period. Once second-order terms
are ignored the continuous time version is identical in each

case.

The model with natural increase and migration of equation
(13) has a property that is unrealistic. Population growth
and inmigration rates are strictly proportional to the size of
the city. This implies that cities can in principle grow to an
unlimited size, which is inconsistent with recent trends in
Europe and North America (KRorcelli 1980). The phenomenon of
counter-urbanization, or reversed polarization, is of course
not a purely demographic one. The rates of population growth
of large cities depend on a complex of social, political, and
economic forces which influence the locations at which jobs
and opportunities for social advancement are available. A uni-
variate population model is certainly inadequate to capture this
phenomenon. However, one way of representing limits to growth
in individual cities, while maintaining the relative simplicity
of a purely demographic approach is to specify an upper limit,

q;, on the population of city 1i.

To construct a model of urban population change with limits

to growth, the following two concepts are sufficient:

Bie = Yi (93 ~ Pyy) (13)
_ _ -1
M (E b)) = g Ny (ay -ngdng £ 480 (n) At (14)
where Ny, = (1 + 8;,0)n;, and A; (n) = % (q -npn £ . Equa-

tion (13) states that the rate of population increase in city
i is bounded above by its capacity, q; - Equation (14) states
that the number of migrants from city i1 to city j is the product



of: the population of city i including natural increase (Nit);
and the fraction of migrants moving to city j. The latter term
depends logistically on the size of c¢city j relative to its max-
imum size. Thus as a city grows it becomes initially more and
more attractive to migrants, but as it approaches its maximum
size this attractiveness reduces again to zero. The constraint
imposed by Ai(n) ensures that total migration originating in i
equals the mobile population of i:

r,N, =1y % My 5 (£, £4AE) (15)

Population change in city i is then the sum of migration

[equation (15)], and natural increase in the immobile population:

-1

Ny etat = ; TNy gy - njt)njtfiint(n)At
(16)
+ (1 + BjAt)(1 - rjAt)njt
Neglecting the second order terms
_ _ -1
Dy eeat g Ty (dy - nydng Ay (RO
(17)

+ (1 + B.At - r.At)n.
3 SRCRST

Taking differences, dividing through by At, recalling equation

(13), and taking the limit as At - 0:

dnjt/dt = z r

(18)

Equation (18) represents the third model to be analyzed. Unfor-
tunately, equation (18) as it stands is inconsistent. If for
all i,ni equals q; (all cities have grown to full capacity)

then dnj/dt equals -rjnj in each city. Population is migrating

into thin air and aggregate urban population is decreasing.



This result could be interpreted as an urban to rural pop-
ulation flow that results when cities reach their upper limit.
But there is no rural sector in the model, and to include a rural
sector with a growth limit would eventually lead to the same
inconsistency. In fact to assume that the rate of mobility, Ty
is independent of the urbanization pattern is of course a
simplification; and it is this that leads to the inconsistency.

A method for overcoming this will be introduced in section 4.

A further problem with this model is the choice of upper limits
dq;. To choose these a priori is nothing less than an imposition
of a city size distribution to be reached in the limit. But

the size to which cities can profitably grow does not just

depend on internal size considerations; it rather depends on

the location of the city in the urban hierarchy and on urban
development patterns (Sheppard 1982). However, the urban dynamics
depend in turn on q;i thus it is circular to choose values for
these parameters in order to investigate a process from which

the same values should be an output. These represent significant
problems for future investigation.

2. POPULATION DYNAMICS WITH ZERO POPULATION GROWTH
2.1 The Existence of Equilibrium

Study of the dynamics of non-linear processes typically
starts with a classification of any equilibrium points in the
system. This need not imply that the process itself is equili-
brating; such points simply serve as reference points with respect
to which different regimes with varying dynamic behavior may be
traced out (Hirsch and Smale 1974). 1In the ZPG model it can
be determined that such an equilibrium exists and that it is
probably unique in empirical applications. Furthermore, its

location and stability properties may be computed.

To demonstrate that an equilibrium exists, it is first
necessary to show that negative populations cannot occur in the
model. This 1s easily done. Divide through equation (9) by

njt:



1

n>,dn. /dt = d log n. /dt (19)
jt ]/ g ]/
_ -1 _
d log njy / dt = } rinify58) ey (20)
or
t -1
njp = exp J [§ 105 Ei5AT - rj]ds +Cy 20 (21)
a
where C 1s a constant of integration. Therefore njt is always

non-negative. Thus the dynamics of population growth in a

system of H cities occurs in the positive quadrat of N-dimensional
space bounded by the hyperplanes n, = 0 for all i. Indeed under
ZPG we can go further and state that the dynamics are restricted

to those locations where E n = N; N being the total popula-

i
tion. In the case of three cities, this restricts the process

it

to a bounded plane in three-space (Figure 1). In general, the

process occurs on a bounded hyperplane of H-1 dimensions.

An equilibrium point on this surface is defined by:
n. =0 for all j (22)

where ﬁj = dnj/dt. This occurs when [from equation (9)]:

=1

n..r. = n initfiint for all j (23)

ittt d

it

Note that if ﬁj = 0 for all j, Aj = 0 for all j. Such an equil-
ibrium point is shown in Figure 1. The fact that such an equil-
ibrium always exists may be shown in the following way (Papa-

georgiou 1982).

Figure 1 illustrates that the dynamics of population change
are confined to a closed, bounded, convex set of points. Equa-

tion (23) may be summarized as:



A - equilibrium point on population plane (unstable)

Figure 1. The plane of feasible population vectors for Z2PG,
with an unstable equilibrium point.
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.
where ng is the vector [n1t,n2t,...

mapping from the bounded N-1 dimensional hyperplane into the

1. This is a continuous

same hyperplane. Under these conditions Brouwer's fixed point
theorem tells us that there exists a point where n, = f(n,);
i.e., there exists an equilibrium point satisfying equation
(23) with njt > 0. Note that this generalizes the results of
McGinnis and Henry (1973) and Ledent (1978).

2.2 Computing the Equilibrium Point

The condition for equilibrium [equation (23)] may be re-

written as:

where n*' is the vector of equilibrium populations being

sought; r' = (r1,...,r ) ; (B) is a diagonal matrix with k-th

N
diagonal entry equal to ry; (A) is a diagonal matrix with k-th

diagonal entry equal to A and F is the N by N matrix containing

k;
entries fij' From equation (25):

n*t = 'R (3 (26)
where G is equal to the inverse of F. 1In simple algebra, from
(26) =

N n
* -1 *
n. = ) r.g,. ) r. f..n. (27)
i K= 1 k7 k1 321 i 7133

Equation (27) comes from applying the definition of (A) and the
rules of matrix algebra to equation (26). But equation (27)
can also be written as:

n* = (H) (R)” 'Fn* (28)

where (H) is a diagonal matrix with i-th diagonal entry equal

to % rygyi- Rearranging (28):

(M - I)n* = 0 (29)

~
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or n* is given as that eigenvector of M which is associated with
an eigenvalue of M that is identically~equal to one. M is the
matrix product (H) (R)F. The fact that an equilibrium must exist,
proven above, 1s sufficient to show that M must have at least
one eigenvalue equal to one. This may be~confirmed by direct
investigation of M (see Appendix B, theorem 1). The associated
equilibrium vector n* may then be computed from the appropriate
eigenvector of @. Call this eigenvector, x*. Then employing

the population constraint of ZPG, the equilibrium population
vector is equal to the eigenvector scaled to sum up to the fixed

total population:

a* = x*NX| (30)

where X is the scalar (i'x*); the sum of the elements in x*.
By theorem 2 of Appendix B this equilibrium vector is the
strictly positive right-hand eigenvector of M that is associated

with its largest eigenvalue (an eigenvalue of unity).

2.3 Uniqueness of Equilibrium

Theorem 2 of Appendix B shows that if M is indecomposable
and primitive then there is only one eigenvalue equal to one,
and thus only one internal equilibrium vector. Indecomposability
implies that migration streams occur between cities in such a
way that each city is directly or indirectly connected to each
other city. Given the fact that migration streams are highly
dispersed, indecomposability is likely to be true of any empirical
inter-urban migration matrix. If M is indecomposable it will
also be primitive if at least one of the entries on its main
diagonal is non-zero (Solow 1952). But this is true for all
diagonal entries, by equation (29). Thus we can expect M to
be indecomposable and primitive in practical applications, the
equilibrium will be unique, and as a consequence the stability
properties of this equilibrium point will be sufficient to

characterize global stability conditions in the urban system.
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2.4 Stability of Population Change

Define the vector of displacement of city sizes from the

equilibrium point at time t:
ﬁ = n, - n* (31)

Taking a Taylor expansion about n* and retaining just linear

terms because it i1s local variations that are of interest:
dgt/dt = J1Et (32)

Here J1 is the Jacobean matrix with i,j-th entry equal to

aFi(g*),/anj, and dﬁt/dt is a N by 1 vector of entries dﬁit/dt.
Finally,

F.(n*) = n. *£..a7) - 33
5% = g\ L rini A T Ty (33)

is the dynamic model (9) evaluated at the equilibrium point.
The local stability properties depend on J which (see theorem

3 and lemma 1 of Appendix B) may be written as:

J. = [I - (n*)F'A”] 1

1 I n 1 (R) (n*)A~

~

F - (Y) - (R) (34)

*
where (n*) is a diagonal matrix with n, as the i-th diagonal

entry. (YY) is a diagonal matrix with j-th entry equal to
* v
Z rinifiin1‘ éi is defined also with respect to the equili-
i
*
' i * ; =
brium populations n*: A; % n £,

Necessary and sufficient conditions for local stability are
that the eigenvalues of J all have negative real parts. The
eigenvalues of J can be computed. From equation (34) it is
clear that they depend on: the geography of the system as
expressed in the barriers to movement and origin/destination
characteristics (fij); and the geography of exogenous mobility
patterns (g) (see lemma 1 of Appendix B). In any empirical
application stability can be determined by computing equation
(34).
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If all eigenvalues of J have negative real parts then the
equilibrium n* is globally stable when it is unique (see above).
In this case n* will express the stable distribution of popula-
tion in the various cities. This equilibrium will be approached
directly (if all eigenvalues are real) or cyclically (if some
eigenvalues are complex) as the system evolves. If one or more
of the eigenvalues have positive real parts then the equilibrium
point is a "saddle-point" in N-1 dimensional space. Any slight
deviation from n* will lead to further deviations as some cities
move away from equilibrium drawing the rest of the system along
behind (Hirsch and Smale 1974).

2.5 A Two City Example with Zero Population Growth

Consider two cities, and assume for simplicity that r, =

r2 = 1. Then
on,/dt = n1(n1ot11 + n,0s, - 1) (35)
an/dt = n2(n2a12 + n,0s5 = 1) (36)
-1
where a.. = f£._.A.
ij i3
Conditions for equilibrium, from (8), are:
-1 + njogq + nNy0n, = 0 = dn1/dt =0 (37.1)
-1 + Ny, +t N 0, = 0 = dnz/dt =0 (37.2)
or
f f
11 21
f f
12 22 _
1 + = 0+t x—n, = 0 (38.2)
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Solving for a common denominator, these conditions become:

“(Eyqng + Eyono) (Fyyng + £5on5) + £oyng (£yyny + £5505)
iy (g + £4005) =0 (33.1)
= (Egqng + Eoo) (£ + £505) + £ony(£y4ny + £550))
+ f22n2(f11n1 + f12n2) = 0 (39.2)

Cancelling out common terms, and dividing by n, in the first

equation and ny in the second, we find that dn1/dt = (0 if:

£rq(Eqq = fdny + £15(Fyy - £y5)ny =0 (40.1)
and dn,/dt = 0 if:
£a1(E1y = )0y F £45(Fyp = £5q)05 = 0 (40.2)

Five cases of equilibrium can then be identified:

(1) n1 = n2 = 0
oo (Fon = £41)
N 12 (£22 21
(ii) n, =- — n, = Bn (41)
T By (Eyp - £4q) 72 2

It may readily be checked that this is the eigenvector

of HF associated with a unit eigenvalue.

(11ii) f22 = f21, and f11 = f

(iv) ng, = 0 and f22 = f21

12

12 = F1q

(v) n, 0 and £
Cases (iii), (iv), and (v) are special cases representing
situations where the propensity for inter- and intra-urban

interaction are identical in at least one city. In case (iii),
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where the cities are collapéed into a single location, any popu-
lation pattern is stable. 1In cases (iv) and (v) one city is
absent, the population is again reduced to one location and the
other city is stable at any value. In all these cases the urban
population is essentially collapsed onto the head of a pin, and

stability (and thus dynamics) become trivial. Case (i) is also
trivial.

The stable populations in case (ii) clearly depend on the

strength of inter- versus intra-urban migration, and thus the

dynamics of population change depend on the signs of f22 - f21
and f11 - f12. Four possibilities exist:
Case A Inter—-urban migration dominates: f22 < f21; f11 <

f12. Stability occurs on the ray n, = an (8 > 0). In the posi-
tive gquadrant (ni > 0), the one of substantive interest, if

n, < an, dn1/dt > 0, and dn2/dt < 0. When n, > an then

dn1/dt < 0 and dnz/dt > 0. This is shown in Figure 2a. Clearly

the equilibrium ray is stable in this case: populations of the
*
cities will converge to the point A over time. Clearly n, =

1
N * _ NB
T+ 8’ %27 7T+5 "

Case B Intra-urban migration dominates (f12 < f11; f21

f22). In the positive quadrant, if n, < Bn,, dn1/dt < 0, and

dn2/dt > 0. But if n, > an then dn1/dt > 0 and dnz/dt < 0.

In short, the pattern is the converse of case A (Figure 2b).

<

The equilibrium ray is unstable, and depending on initial condi-

tions one city or the other will die out.

Case C Migration patterns are dominated by the pull of

city 1 (f11 > f12; f21 > f22). In this case (and case D below)
the cosine of B is negative. Thus there are no stable popula-
tion combinations in the positive quadrant. For all feasible

initial conditions dn1/dt > 0 and dn2/dt < 0. City 2 will thus

always die out.
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2
A: Stable non-zero equilibrium: B: Unstable non-zero equilibrium:
inter~urban flows dominate intra-urban flows dominate
1
™
N2 N2
C: Migration pulled to city 1 D: Migration pulled to city 2

Figure 2. Population dynamics with two cities: a graphical
depiction of alternative dynamics.
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Case D Migration is dominated by the pull of city 2 (f22 >
£aq7 Fqp > £qq)- 2> 0
then dn,/dt > 0 and dn,/dt < 0. For full results see Figures 2c
and 24.

This is the converse of case C. If n,.n

Cases C and D describe an extreme case of primacy; that
one city cannot even retain an equal proportion of its own
population. Case A suggests neither city can retain an equal
proportion of its own population. The most realistic case is
case B; where the equilibrium is unstable, and where dynamic trends
"bifurcate" around the unstable equilibrium point depending
on the initial size of city 1 compared to city 2. Once one city
has declined to zero the other city's population represents an
equilibrium. This is because the system has undergone a struc-
tural change. If one city no longer exists the other one has
nowhere to send its migrants [mij for 1 # j is zero from equa-

tion (1)] and thus the size of fij no longer matters.

2.6 Summary

For the ZPG model it has been shown that an equilibrium
combination of populations always exists, in the sense that
if the city size distribution matches this equilibrium there
will be no change in city populations in the absence of some
external shock. In short, in equilibrium total inmigration
equals total outmigration for each city. This equilibrium
distribution can be computed [equation (29)], and it depends on
the mobility rates, and the geography of migration as expressed
through fij' Further, we can expect this equilibrium distribu-
tion to be unique. The stability or instability of the popula-
tion dynamics about this equilibrium can be determined by com-
puting J and its eigenvalues [equation (34)]. These stability

properties also depend only on r; and fi Because of the unique-

ness of equilibrium, the stability of J ;lso characterizes the
global stability of the systemn, compleEing the qualitative
analysis of inter-urban population dynamics with zero popula-
tion growth. Finally a two-city example was presented to illus-

trate the analysis.
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3. POPULATION DYNAMICS WITH NATURAL INCREASE

The model to be analyzed here is:

- -1
dnjt/dt = nj [z £iny £ 5AT Tyt Bj] (12)

3.1 Equilibrium States

In order to achieve a state of static equilibrium, it is
clear that some rates of natural increase, Bj, must be negative.
This case will not be dealt with here, since it does not repre-
sent typical real world characteristics of urban population
change. Thus equilibrium must be conceived of dynamically, and

two cases seem worthy of consideration.

TYPE A: Simple dynamic equilibrium. Here equilibrium is
given by:
dnjt/dt = knjt V3 (42)
This equilibrium can be regarded as equivalent to that achieved
in linear multiregional demographic projection models (Rogers

1975); population growth is identical everywhere, and a stable

vector of relative population sizes exists.

TYPE B: Welghted equilibrium with geographically varying
growth rates

dn.,/dt = k.n. 4
nyp/dt M3t (43)

In this case the growth rate in each city may be different,

but in each it is constant over time.

3.2 Simple Dynamic Equilibria

The existence of such an equilibrium can be concluded if
there exists a set of relative population sizes that solves

the following problem:
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where

kn* = S (n¥*) (45)

This is a non-linear eigenvalue equation, where k is an eigen-
value and n* an eigenvector of the vector function S = [S1,...,

Sj""’SJ]'

The results assembled by Nikaido (1968) can be used to show
that at least one simple dynamic equilibrium exists, with a
positive identical growth rate for all cities, and a correspond-
ing positive vector of relative population sizes (a city size
distribution). (See theorem 1, Appendix C.) Indeed all solu-
tions to (45) are positive, according to this theorem. This
generalizes the results of Feeney (1973) and Ledent (1978).
Solutions for the equilibrium growth ray(s) may be obtained by
use of a non-linear eigenvalue program (cf. Andersson and Pers-
son 198 ) and each solution must be treated as a candidate whose

stability should be analyzed.

3.3 Geographically Variable Dynamic Equilibria

Theorem 2 of Appendix C shows that no relationship satis-
fying (43) can be characterized as an equilibrium ray. There-

fore equilibria of type B do not exist.

3.4 Stability

Having shown that dynamic equilibria for this system are
characterized by equation (42), and that such equilibria exist
and can be computed, it remains to test such equilibria for
stability. This is most easily checked for by using the logar-

ithmic form. Dividing (12) by njt:



- -1 _

d log n. /dt [? £y FiqBie ~ Ty ¥ Bj] (46)
But in equilibrium

d log njt,/dt =k (47)
Thus defining

njt = log njt -k (48)
we wish to show that
(49)

d njt,/dt <0

Taking a Taylor expansion around the equilibrium point and

retaining linear terms:

d gt,/dr =J Et (50)
From theorem 3 of Appendix C:

Jy = (R)X - X' (R) (n*)X (51)
Using the definition of X as (é)—1§:

(52)

3, = [I-F@ a1 ® @) F

~

The stability of equilibrium will depend on whether the eigen-

values computed for Js have negative real parts.

3.5 Endogenizing the Propensity to Migrate
Suppose that the fraction of population migrating is related

in some positive manner to the accessibility of opportunities
The validity of this notion

(as represented by other cities).
when choices are available has been rigorously derived in
One way of representing this is:

Sheppard (1980).
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B

rit =M % (fijnjt) (53)

where M is a very small number designed to keep Tie less than
one. Substituting (53) into (44); Sj(E*) splits into two terms,
one of which is homogeneous of order 1, and one of which is

homogeneous of order greater than one:

s;(%) = sim® + si@®)
where
s?(n*) = (B, - r)n" (54)
52 5 T T3R5
Then if o 1s a scalar:
+
s;(an%) = o' sl + as?me) (55)

This difference may be critical. The research of Okabe
shows that simple population equilibria in his model only exist
when the non-linear model is homogeneous of order one (Okabe
1979, theorem 6). Further, it seems that the parallels that
Nikaido (1968) was able to draw between linear and non-linear
eigenvalues may hinge on homogeneity of order less than or equal
to one; he provides no results for homogeneity of higher orders.
On this basis it may be reasonable to speculate that endogeniz-
ing rj as a function related to accessibiiity of other cities
may substantially reduce the probability of finding simple

dynamic population eguilibria at all.

3.6 Summary

The introduction of natural increase leads to the conclu-
sion that simple dynamic population equilibria, with properties
analogous to the multiregional stable growth projections of
linear models exist. This would explain why simulations of a
non-linear model by Ledent (1978) always led to such results.
However it should be noted that several equilibrium paths can

be expected, and there is no reason to believe that they will
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be necessarily stable. This all depends on analysis of the

eigenvalues of J, [equation (51)] for each given equilibrium

2
path calculated from solving the non-linear eigenvalue equation

(45) .

The presence of several equilibrium paths means that the
population dynamics are governed by more than one regime, and
it becomes difficult to make statements about global stability
unless Lyapunov conditions can be derived (Gandalfo 1971). The
sort of possibilities for urban population dynamics are illus-
trated in Figure 3, which for graphical purposes is presented
as a two—-city problem. Lines OA, OB and OC represent three
dynamic equilibrium paths; three solutions to equation (45).
Analysis of (51) for each case in this hypothetical example
shows that OA and OC are stable (having eigenvalues with nega-
tive real parts), while OB is unstable. As a result, the pop-
ulation dynamics split into two regimes. To the right of OB
populations tend away from OB, into the domain of attraction
of OC (represented by the dashed line), leading to a stable
pattern dominated by city 2. To the left of OB the converse
occurs. Thus the outcome depends critically on what happens
when the city size distribution is near OB. No matter how
accurate forecast models may be, random external shocks, such
as international migration, may push the process from one regime
to the other, leading to dramatically different outcomes. The
best way to counter such unexpected outcomes is to have as
complete knowledge as possible about the various equilibria
and their stability.

In a system of many cities, the picture can be much more
complicated, and a pattern of population change that fluctuates
widely and is difficult to predict can result. In such situa-
tions external shocks can play a far more vital role than is
desirable (Allen 1976, 1982). A final point to note is that
the number, location, and stability of equilibrium paths depends
ultimately on the model of migration and on the relative loca-
tion of cities, as expressed in (g) and g. This is as true in

this case as in the case of zero population growth.
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\)

City 2

Figure 3. Multiple equilibrium paths for population changes
with natural increase.
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Making rates of mobility, rj, endogenously depend on acces-
sibility to other cities leads to a model which seems to exhibit
properties suggesting that it cannot be treated as a non-linear
model that is homogeneous of order one. It seems that a pos-
sible result will be a reduction in the number of equilibrium
paths, perhaps to zero, and also a reduction in the likelihood

that stable equilibria exist.

4. POPULATION DYNAMICS WITH LIMITS TO GROWTH

The model proposed is:

dnjt/dt = ny [g rinit(qj -njt)fiint(n) - T,
(18)
+ Yj(qj - njt)}
where Ait(n) = Z njt(qj -njt)fij and qj represents the growth
limit. As poin%ed out in section 1, this model is inconsistent
as it stands since rj is exogenous. Thus when qj = nj for all

j, all migration should be zero since Aj(n) would be zero. But
rj is still positive, implying that people are leaving the cities.
This inconsistency can be resolved by making rj endogenous. The

solution to be used here is:

Substituting into (18):

dnjt/dt = njt (qj--njt)[i a.n. A (n) - a-A-t(n)

+ Yj(qj - njtﬂ

For this model a series of static equilibria exist. No
dynamic equilibrium exists because the populations are bounded
from above and below making unlimited growth or decline impos-

sible. The static equilibria are listed in theorem 1 of
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Appendif D. They consist of all possible combinations of n; =
qj or nj = 0, plus any interior equilibrium points that might
exist where some or all equilibrium populations are between
zero and qj: 0 < n; < qj. For example in a two city system,

the following equilibria are possible:

* *
n, =49y » Dy =4
* *
n, =gqq , n, = 0
* *
ny, =0 , np=gq,
* *
n, = o , n2 =0
* . C s
0 < n. < g, for either or both cities
i i

QOf these five possibilities the fifth one may occur in
more than one way: multiple interior equilibria are possible.
This is because solutions for the fifth type are solutions to a
non-linear eigenvalue equation (theorem 1, Appendix D), and

several eigenvectors may exist for any eigenvalue equal to one.

For a system of H cities, there will be 2H boundary equil-
ibria, and an indeterminate number of interior equilibrium
points. Fortunately, in the case where Yj’ the rate of natural
increase, is non-zero for all cities, only one boundary equil-
ibrium point is stable, thus the others may be ignored. This
can be shown by analyzing the Jacobean matrix that determines
local stability conditions about any equilibrium point (lemma 1,

Appendix D).

To illustrate this, consider Figure 4. Here a two city
case 1is illustrated. Population dynamics are confined to the
rectangle QOACD, due to the growth limits q, and q,. Points
C, A, B, and O represent the four boundary equilibria listed
above, and D,E represent possible interior equilibria points.

For further analysis it is useful to distinguish two cases.
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Figure 4. Population dynamics in a two-city system with limits
to growth.
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4.1 Natural Increase in All Cities

If Yj is poiitive in all cities, then the only stable
equilibrium is nj = qj for all j. This is because this equil-
ibrium is the only boundary equilibrium that is stable (corol-
lary 1 and 2 of Appendix D), and because no interior equilibria
can exist (corollary 3 of Appendix D). Thus if Yj is positive
everywhere the limiting city size distribution is given by the
growth limits imposed. Population change may oscillate before
equilibrium is achieved (see lemma 2, Appendix D), but the

equilibrium is globally stable.

In light of this, the critical comments made in section 1
about imposing such limits are particularly important. The city
size distribution is predefined, whereas in reality the benefits
of city size should be deduced since they vary from place to
place, depending on the geography of the urban system. Any
attempt to define an optimal city size that ignores this con-
text is fraught with problems (Richardson 1973), and in this
sense the model of population dynamics with limits to growth
can give little insight into how city size distributions are

generated.

By a similar argument, if Yj is negative everywhere then

the city system will die out.

4.2 Natural Increase and Decrease Both Exist

If the set of cities 1is divided into cities j with natural
increase (yj > 0), and the other cities k experiencing natural
decreasi (yk < 0) then the only stable boindary equilibrium is
where nj = qj for the former group, and n, = 0 for the latter
group {corollary 4 of Appendix D). However, in this case
interior equilibria may also exist, so this boundary equilibrium

may not be globally stable.

In the absence of such interior equilibria, the city size
distribution is ultimately dependent solely on which cities
experience natural increase, and which experience natural

decrease. Thus the city size distribution would be defined
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qj and Yj‘ However, because such interior equilibria cannot be
ignored, the first step should be to determine whether, and
how many, such equilibria exist by solving the non-llinear
eigenvalue problem of equation (D.4) in Appendix D. Then the
stability of these points may be determined using lemma 1 of
Appendix D to construct the Jacobean matrix for each interior

equilibrium point. This would complete the picture.

For example, in the two city case of Figure 4, suppose
that Y4 is negative and Y5 is positive, that interior equili-
brium point D is unstable, whereas E is stable. Then the quali-
tative behavior of the two city system is depicted by the flow
lines on the figure. It can be seen that, depending on the
starting point, any one of two static city size distributions
can evolve. 1In addition, if the system is at any point in time
near the dotted line on this figure it may 'flip' from tendencies
toward B, say, to changes leading to E, simply as a result of
some small external shock. That several interior equilibrium
points may exist even for a simple two city system is shown by
Weidlich and Haag (1980). Thus for a many city system a large
number of such equilibria could exist, making the population
dynamics complex and the equilibrium outcome highly dependent
on random fluctuations that cannot be foreseen in forecasting

populations.

Ultimately, the number, position, and stability of equili-
bria will depend on the migration model and on the relative
location of the cities. It is thse factors that determine fij‘
Note that limit cycles around an unstable equilibrium point
will not be expected to occur. One of the boundary equilibria
is always stable, implying that the Poincaré-Bendix theorem,
which would deduce the dxistence of a limit cycle, cannot be
applied (cf. Weidlich and Haag 1980). Notice also that the
analysis is somewhat more complicated if Yj is zero in some
cities (corollary 5 of Appendix D). Here, for example, stability
of at least one boundary equilibrium point is not guaranteed,

and thus the possibility of limit cycles cannot be ruled out.



-29-

5. GENERALIZATIONS

The model examined in detail in this paper has represented
the rate of migration between two regions as:

(t) = £

5y nienyefig /) Ppefig (58)

ij K
In the model with natural increase, the proof of the existence
of simple dynamic equilibria depended crucially on this speci-
fication, because of the necessity to show that dnj/dt is homo-
geneous of order one (Appendix C). However, it seems possible
that this assumption may be relaxable to allow any functional
form of the distribution component of themigration model, of

the form:

m gy (t) = nithi(njt,fij(t)),/g hy (ny o £5, (£)) (59)

Here hi could be any function relating n._ and £, One

jt i3°
example is a generalized gravity or intervening opportunity

type of model:

hy (ns  £5.(8)) = ng‘tfij (60)

jt’Ti]
The reason for believing that stable equilibria still exist
for this more general model is because the normalization process

guarantees that:
; mij (t) = nit (61)

implying that the sum of population change is homogeneous of

degree one:
% d(unjt),/dt = g % dnjt,/dt (62)

A formal proof of this would require a relaxation of (a) in
Appendix C in proving theorem 1 there. 1If this speculation

is correct, it would suggest that any empirically useful model
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of migration behavior may be used for hi(njt,fij), and the
existence of simple dynamic equilibria would still exist.
Whether such equilibria are stable, however, is another ques-
tion. This would depend on the form taken by the Jacobean
matrix. Similarly, in the model with limits to growth, the
stability of the boundary equilibria, and the existence and
stability of interior equilibria, would depend on the function

chosen for hi(njt,fij(t)).

Introducing an exponent exceeding one on n,. in equation
(59), however, would seem to introduce the same problems as
exist if homogeneity of order greater than one is assumed in

theorem 1 of Appendix C.

In this case,

y d(ongy) /dt > a ) dn. /dt (63)

d it
3 j
and even the existence of simple dynamic equilibria for the

model with natural increase becomes questionable.

A second generalization of the investigation here is to
examine other problems of spatio-temporal change than migration.
Examples are the dynamics of commodity flows, information difus-
sion, and individual spatial behavior. Any model of the follow-

ing form:

dsy, /dt = z I, (t) /dt + gys. (64)
Ti508) = e38;¢84¢F44 /]Z Skefik (65)
has the dynamic properties shown in this paper. Here Iij(t)
is a spatial flow from i to j at time t, and s.,  represents a

Jjt
spatial stock at location j, time t. gj and e; are parameters.
Finally, there is no reason to restrict the indices i and
j to refer only to location. For instance they could represent

any states in a multi-state demographic, economic, or sociological
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model for which equations (64) and (65) hold. Indeed Volterra
(1939; see also Rugh 1981) originally developed a quadratic
model of multi-state dynamics for the simple reason that incor-
porating second order polynomial relationships could provide

a better approximation to some general non-linear dynamic model
than would a linear model. 1In this sense, the use of a model
of the type analyzed in this paper can be regarded as a natural
generalization of linear multi-state models with constant

transition rates.

6. CONCLUSIONS

This paper has examined the effects of incorporating simple
non-linearities in a model of migration rates on the dynamics
of population change in the absence of age distributions. In
particular, given a set of cities, the dynamics and predictabi-
lity of a city size distribution is the subject of investiga-

tion.

In the case of zero population growth with constant mobil-
ity rates, the existence of one static equilibrium city size
distribution is guaranteed. However, stability is another
issue. Indeed in the two city case it was shown that the more
plausible scenario of migration behavior (intra-urban migration
exceeds inter-urban migration) that the equilibrium is unstable.
This tends to support the conjecture (Sheppard 1982) that the
concept of a stable city size distribution is called into ques-

tion once non-linearities in migration behavior are allowed for.

When natural increase is introduced with constant mobility
rates, it seems that a number of equilibrium city size distribu-
tions exist, in contradistinction to the expectation that
generally only one will exist in the previous case. On the
one hand, this fact alone should increase the probability that
at least one such distribution is stable. Thus non-linearities
here would certainly not preclude a stable city size distribution.
However, there is also the likelihood that several city size

distributions represent stable equilibria, which makes it
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harder to predict the outcome. Furthermore, once endogenously
determined mobility rates are introduced, then it seems quite
likely that few or no such equilibria exist. This issue cer-

tainly requires further investigation.

Introducing limits to growth implies again that at least
one stable, static, city size distribution exists. However,
this one is basically determined by the exogenously introduced
growth limits, so it reveals nothing about now city size dis-
tributions are generated as a result of inter-urban and rural-
urban migrations. Other static equilibria may also exist, if
some cities exhibit negative rates of natural population change.
These will not be fixed by the exogenously imposed limits, but
once again the possibility of multiple stable city size distribu-

tions is real.

From the point of view of city size distributions, then,
a single stable distribution can no longer be guaranteed, but
is also not precluded, once non-linearities in migration are
allowed. As to the shape of such distributions however, nothing
useful can be deduced from this analysis, except a confirmation
of the notion that no single shape can be expected (Sheppard
1982). The shape will depend on migration behavior and on the
relative location of cities, as expressed in the variables r;
(mobility rate) and fij (the rate of migration from city i to

city j, when both cities are of unit size).

From the point of view of developing population forecasts,
the possibility of multiple stable equilibria once non-linearities
are allowed in transition rates may have significant implications.
As suggested in the paper, the outcome of population change when
multiple stable equilibria exist can lead to different long run
behavir as a result of relatively small and uncontrollable fluc-
tuations. If so, then the most accurate prediction of migration,
birth and death rates would not be enough to generate a general
population forecast that is accurate, or even approximately
accurate. This would suggest a different strategy for population
forecasting. 1Instead of concentrating on a single long run pop-

ulation distribution, it would be necessary to attempt to generate



-33-

the full range of possible stable distributions in a way suggested
by the analyses here. The differences between these forecasts
(which can be large) can then be evaluated, and an attempt made

to evaluate the probability that each outcome will occur, given
the current population distribution and a model of non-stationary
transition rates. Perhaps the central message here is that the
likely long-run outcome will depend on the initial population
distribution as well as the model of transitions, in contradis-
tinction to the linear case where only the latter information

is required.



APPENDIX A: Choice of a Functional Form for Migration

Okabe (1979) has published a paper on urban population
dynamics where the following functional form was used (see
also Wikdar and Karmeshu, 1982):

* *
dn; /dt = 8,n;, + g (Mjl(t) - M (E) (A.1)
where
* _ a vy .-k
Mij(t) = Ginit:njt i (A.2)

Model (A.1) is consistent in the sense that total populations

are accounted for:

gdnit/dt = ;sinit (A.3)

as can be seen by summing equation (A.1) over i. However, as
Ledent (1978) notes, there is no reason why the sum of out-
migrants should be less than or equal to the total population
in i. As a result, more people may move from a city than

actually live there, and populations for individual cities

-34-
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would be negative. Both of these results are clearly un-
desirable. 1In addition, model (A.1) assumes that the entire
population is mobile. ©No distinction is made between stayers
and migrants that stay within a city; the sum of the two is
supposed to be captured by Mzi. In continuous time, however,
such a presumption is clearly unrealistic. It seems more
reasonable to introduce a rate of mobility, L, stating what
fraction of the population in city i are migrants at any one

time, and to separate migrants from non-migrants.

Ledent (1978) introduces this modification; and indeed
constrains the values of r; so that the sum of stayers of
outmigrants equals the total population for each city. The
resulting model is the one used in this paper (Ledent, 1978,

p.8):

) n . £
" kt

ik
However, Ledent chooses not to model migrations directly using
this form, but rather to use equation (A.1) in combination
with a second constraint equation ensuring that migrants equal
the total population. The strategy is then to model the dyna-
mics by iterating between the constraint equation and the
equation for population dynamics (Ledent, 1978, p.14). This

is clearly rather cumbersome.

The second approach to this problem is used by DePalma
(1982):

dni /dt = B., n,

1]

and Haag (1980) and Papageorgiou (1982) for similar formula-

subject to the constraint that %vv..= 1. See also Weidrich
)

tions. 1In this case the constraint on wij ensures the con-

sistency missing in Okabe's model. 1Indeed an appropriate

choice of constant Gi in (A.2) would convert (A.1) into the

form of (A.5). Equation (A.5) results from the classic
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Kolmogorov equations or probability theory.

However, once wji is time variant (due to a dependence
on population) version (A.5) is also difficult to handle
analytically if the accounting identity on migrants is to
be retained. This is because the dynamics of the constraint

equations must also be modeled.

In this paper, the version given by (A.4) will be directly
analyzed (cf. also DePalma and Lefevre, 1982). It has the
advantage that the constraint equation is incorporated directly
into the migration function, ensuring that the accounting re-
lations are continually satisfied. Despite the relatively com-
plex nature of (A.4) as compared to {(A.2), it turns out that

this does not greatly hinder the search for analytical results.



APPENDIX B: Equilibrium and Stability for the AGP Model

Consider the matrix M of equation (29):

M = (H) (R)" (F). (B.1)
THEOREM 1. M has at least one eigenvalue equal to one.
Proof. 1If

E 3
(M - I)n =20 (29)

then M must have an eigenvalue of one; or equivalently M - I

must be singular. Define §_1 = G. Then:

M-1) = [@ R -GlF (B.2)
Therefore

Det(M - I) = Det[(H) (R)™' -G].Det F (B.3)
Thus if [(g)(g)_ -g] is singular, so is (@ - ;), since in each
case the determinant will be zero. Define Q = [(H)(R)—1-G].

~ ~ ~

-37-
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Then Q has elements:

-~

g:s = ) T, q,./r. (B.4)
ii ki i kZ3ki’ "1
qij = gij j#1 (B.5)

Now create the vector U, with elements My defined as:

u, = Z gy: T. (B.6)
i K73 ki~1i

Thus u is the sum of all rows of Q except for the j-th row,
each row i being first weighted by -r;. Substituting (B.4)
and (B.5) into (B.6):

B, = = ) r.g .+ ) rqg .= -r.g.. (i#3) (B.7)

i ki k°ki m#i, 3 m=mi jji

., = Z r. g,. (B.8)
.k 7k

] k] ]

But from the definition of Q [equations (B.4) and (B.5)], if u
is divided by rj then Y becomes simply the j-th row of Q. Thus

~

the j-th row of Q is a linear combination of the other rows. It

~

then follows that Q has a zero determinant and is thus singular.

THEOREM 2. If M is tndecomposable and primitive, then the
equilibrium vector n* is the right hand eigenvector associated
with the largest eigenvalue of M. This largest eigenvalue ts
equal to one, and no other eigenvalue is as large. Then the
internal equilibrium vector is unique. (This generalizes a
result of Ledent (1978, p.34)).

Proof. M is non-negative (equation (B.1), and by assump-

tion indecomposable and primitive. For such a matrix, from
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the Perron-Frobenius theorems, the eigenvector associated with
the largest eigenvalue is strictly positive. But we know by
Brounier fixed point theorem that a nonnegative equilibrium
vector exists, and we know from equation (29) that it is an
eigenvector of M. Finally, only one eigenvector of M may be
non-negative due to the orthogonality of eigenvectors in a
primitive matrix. Therefore the equilibrium vector is given
by the eigenvector associated with the largest eigenvalue of
M, and that eigenvalue equals one. If M is primitive, no
other eigenvalue is as large. Therefore only one eigenvalue
of M equals one, ane the equilibrium associated with that

eigenvalue is unique.

THEOREM 3. The stability of the equilibrium point in the

ZPG model depends on the eigenvalues of:

3, = (RIX(n%) - (@MX'(R) (a9)X - (¥) - (R) (B.9)

J 18 the Jacobian of the ZPG model.

In the above theorem;

x= @7'r

~

(n*) is a diagonal matrix with the elements of n* on the main
diagonal, and (Y) is a diagonal matrix with the row sum of the
i-th row of X in the i-th diagonal entry.

Proof. Define:

= f,..A, (B.10)

Then
* = * * -
F.(n*) nj 2 r;ny X, .-r. (B.11)

Bxij/ank = -f..f.. A = —xijxik (B.12)



-40-

Now, if k # j:

= * *
aFj/Bnk n*ry xgy + n gri n} Bxij/Bnk

J J
=n*|r x,. - )r,n¥*¥x, .x, (B.13
i [ k 7kj g 1 i_xlj lk] )
But
2
OF./dn. = ) r. n*x.. +n* PL X. .= r.n*x..]-—r.(B.1u
37305 = LEgnfxggnd|ryxgm Iryntag g |- )

Substituting (B.13) and (B.14) into the definition of the

Jacobian matrix gives rise to equation (B.9). QED.

LEMMA 1. The stability of equilibrium depends on the
geography of migration, F, and the mobility rates (R).

Proof. Expanding (B.9) to incorporate the definition of

3

3, = [I-(nH)F' (&) 1(R) (n$)a"'F - (¥) - (R) (B.15)

-~

Recalling the definitions of (Y) and of n* completes the proof.

-~



APPENDIX C: Equilibrium and Stability for the Model

with Natural Increase

Preliminaries. Consider the function Sj(g) of equation
(44):
_ -1
Sy(n)y = ny gri ny £i4B5, - Tyt By (C.1)

It can be shown that:

n) >0 if n > 0. See the equations (19)-(21).
S(n) is a continuous mapping from Rﬁ R
n

) is homogeneous of the first order:
S(a.n) = a.S(n)

where o is a scalar constant.

S(n) is monotonic, in a weak sense (Nikaido, 1968,
p.150): 1i.e., 1f there are two population vectors
n, m; whose n > m, but with n, =m; =n for some 1i,
then Si(g) b Si(m). This is because:

si(E) > S.(m).

-41-
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-1 -1
r.n, + r |nf,./A.-1| +8. r, A, +r [nf../A.-l
Lgl 33 Jl J k 3373 j:l L’El J J Jl ] k™33 3

+B}
J

Suppose nj > mj for all j # i. Then, within the square

brackets, the second and third terms on each side of
the inequality are equal, but the first term on the
left hand side is greater than that on the right hand

side.

(e) S(n) can be said to be indecomposable according to the

definition of Nikaido (1968, p.156). This requires

that, for the case outlined in (d) above,

Si(g_) > Si(r_n_)
for at least some elements i from the set of elements
where n, =m,. This was proven for all i in this set

in the analysis of the inequality of point (4).

THEOREM 1. There extsts at least one solution k >0, n*>0
to the equilibrium equation (45): At least one stable popula-

tton dynamic equilibrium exists.

Proof. Due to properties (a) and (b), at least one solu-
tion to (45) exists (Nikaido, 1968, theorem 10.1). Due to
properties (a), (c), (d), and (e), all solutions k,n* to equa-
tion (45) yield positive values for the non-linear eigenvalue
and eigenvector (Nikaido, 1968, theorem 10.4). QED.

THEOREM 2. No state of geographically varying growth

rates can represgsent a dynamic equilibrium growth ray.

Proof. From equation (43), and equation (44):
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-1
where Ln is the vector [d logrmv/dt | logan/dt]. Equating

(C.2) and (C.3) it is obvious that this equation can only
hold for an instant of time, since (C.3) depends on the time-

varying vector n whereas (C.2) is time invariant. But for

_t’
a relationship to represent dynamic equilibrium it must persist

in time, in the absence of external shocks. QED.

THEOREM 3. The stability of stable population dynamic
equilibrium in the model of population change with natural

increase depends on the etgenvalues of:

J, = (R).X - X'(R) (n*)X (C.4)

Proof. The Jacobian of the system (46) is the matrix of
partial derivatives Bﬁi(g*)/anj , Where

- -1

F.(n*) = r.n., £f.. A -r.+28. Cc.5
% = Tryn £y 8y (C.5)
Now
aFj (n*) /3n, = X3~ gri Dy X;5 Xy (C.6)
_ -1 . , .
where xij = fiin . Thus in matrix form:
3, = (RIX = X' (R) (n¥) X



APPENDIX D: Equilibrium and Stability for the Model
with Limits to Growth

THEOREM 1. PFour types of equilibrium solutions exist:

a) n* = q; for all j
(7
b) n* =0 for all g
J
e) n* equals zero for some cities, and equals q; for

all other ctties

d) An interior equilibrium exists such that, for some

etties:

0 < n* < .
i

Of these four, types a) to c¢) always exist, but d) may

or may not exist.

Proof. A vector of populations n* represents a static

equilibrium solution to this model if:

44—
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* o * B—] _ 8 _ _
dnj/dt = nj Zul ifis i (n) uJA (n)+"y qJ nJ =0 (D.1)

a) 1If n: = q_.l for all j, Ai(n) equals zero and it follows that
equais zero

b) If n

; 0 for all j, (D.1) equals zero
ES

c) If n’

3 0 or qj, for all j, Ai(n) equals zero and (D.1)

equals zero.

d) Equation (D.1) 1is zero if the expression in square brackets

is zero:
* ¥ B-l %
.-n> )a.n.f. A, (n) - Q.A. + Y. q.-n, =0 (D.2
q] n] Z lnl 1] l(n J J(n) YJ q] n] )
Rearranging (D.2):

-l * B—l B *

. e o £, - a.A7 + q. =n, ¥, D.3
Y5© ay7n] Z 0y 13 (W - agAl(n) + g ny ¥ (D.3)

It can be seen that (D.3) may be interpreted as a non-linear

eigenvalue equation:
T(n*) = n* (D.4)

where T(g*) is the left hand side of the equations (D.3). If
a solution to this eigenvalue equation exists with an eigen-
value of one, and an associated eignevector such that O<n;<qj

for some j, then the fourth type of equilibrium will exist.
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LEMMA 1. The elements of the Jacobian matrix of partial

derivatives are:

e - _ _ 2 ,B-2 B-1
T4 = (qj 2n;)[(8 l)n; (qJ n*)Za nyf; A (n)+i2ain;fiin (n)
B-1 2 B-1

. n* £, A, “|q.-n*| n* £, A"
* Baj "3 %5357 (n)}aj (qJ nJ)nJ 3Py @
—OL.AE.g(n)+OL.(q.-2n’.*) (D.5)
i3 A s

[
]

* —_r * B * Bl
ki nk(qk nk)EB-l)gainifikA. (n)( -nj)f J+0L £, AJ (nﬂ

* B-1
(qj-2nj) Bakfijk (n) (D.6)

where ka, the k,j-th element of the Jacobian matrix, s

aﬁk(g*)/anj.

Proof. Taking a Taylor expansion around an equilibrium

point, n*, and retaining just linear terms:

~ ~

n, /dt = g @F(n)/anknkt (D.7)
where 8Fj /Bn are the elements of the Jacobian matrix, and
nkt is n]t n§ , and:

* g- < \
F.(n*) = n* ,-N, .n*f A - o A + v.|{q.-n* D.8
J(E ) ny [{qj n])z o, n} 1521 ](n) OLJ J(n) Yj(q:| nj):l ( )
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Therefore
8;.(n*)/8n. = (B—l)n*(q.-n%) ZG.n?f .A?-z(n)(q.—2n#>f .
j = B j\\3 3,7 11131 I A |
B-1
+ (qj—an)gtain;fiin (n)
+ n?a.f..As—l(n) B(q.—Zn".f\I + a.(q.-n?)
3737333 J 73] s
- a.As(n) - Y. (D.9)
J 3] J
and
- -2
BFk(gf)/an = (B—l)nﬁ( k—ni)g(a nyf. A (n)(q —n*)flJ
B-1
+n.]*<f(qk—ni)OLJkaAj (n)
- Ba B—l(n)(q —2n*)f (D.10)
x Px 57285 ) k5 .
Q.E.D.

COROLLARY 1. A necessary and sufficient condition for
the equilibrium point n; = q; for all j to be locally stable

18 that Yj > 0 for all 7.

Proof. 1If ng = qj for all j, Ai(n*) equals zero. Sub-
stituting into (D.5) and (D.6):
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J.. = v. =2% = -qg. y. D.1
33 YJ q] 3 qg. v ( 1)

ij =0 (D.12)

Thus, if Yj > 0, the Jacobian is a diagonal matrix with nega-
tive elements on the main diagonal. Therefore the eigenvalues

are all negative and the equilibrium point is stable.

COROLLARY 2. If Yj > 0, for all §j, then any equilibrium
point of type (b) or (c¢) from Theorem 1 is unstable.

Proof. 1If ng equals 0 for some j, and perhaps also equal
to 9 for some other cities k, then Ai(n*) is zero. Thus for

those cities where n§ = Q:

L. = gLy D.1
JJJ quJ ( 3)

whereas elements ij

positive, some diagonal elements and therefore some eigenvalues

for j # k are still zero. Thus if Yj is

of the Jacobian, are positive. Therefore these equilibria are

unstable.

COROLLARY 3. If Yj > 0 for all j, then no equilibrium
point exists where 0 < n? < q; for some j, Z.e., equilibrium

of type (d) in theorem 1 7s not possible.

Proof. In equilibrium total inmigration equals total

outmigration:
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But if 0 < ng < qj for some j;

d N,/dt = . n*¥ . - n¥ > 0
¢/ % Y3 Py 93704

where Nt is the total population in the system. Thus the

population is increasing, and stable equilibrium is impossible.

COROLLARY 4. If v, is negative for cities (k:k € K},
where K is a subset of the complete set of cities {J}; {K}E{J},
then only one of the equilibria of types (a), (b), and (c) of
theorem 1 are stable. The one which is stable Zs that one

where nz = 0 for all k € K; and n; = q; for all other cities.

Proof. If n§ is zero, then Jjj is negative only when Yj
is negative (equation (D.13)). TIf n§ is equal to qj, Jjj is
negative only when Yj is positive (equation (D.11)). ij is

always zero for j # k and n% equal to qj or zero.
Q.E.D.

COROLLARY 5. If the cities of the system are split into
three disjoint sets {J}, {K} and {L} such that

Y, >0 ¥

J JEJ
Yk < 0 VKEK
Y, =0 Yier

then the equilibria given by: n; = a; for all j € J, n; =0

for all j € J and nz equal to zero or q7 for all 1 € L may

possibly be stable. All other equilibria are unstable.
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Proof. By corollary 4, all other equilibria are unstable.

For the equilibria defined in corollary 5, J and Jkk are

negative whereas Jll is zero. Also the off-éiagonal elements
in the Jacobian are zero. Thus the Jacobian has some negative
and some zero eigenvalues. When zero eigenvalues are present
then the values eigenvalues alcne are not sufficient to deter-
mine stability. All that can be said is that necessary condi-

tions for stability exist (Hirsch and Smale, 1974, p.187).

LEMMA 1. If one city (j) has a population that approxi-
mates 1ts limiting population, some while other cities have
not yet approached this limit, then the population in city
J will decline; dnjt/dt < 0.

Proof. Consider

_ _ B-1 . 8 _
dnjt/dt = njt[g ainit(qj njt) fiin ](n) OLjAj(n) +Yj (qj njt)] (D.1)

obtained by substituting (56) into (18). Suppose that:
S
n, << g for some k # j.

Then in (D.1), the first and last terms in the square

brackets are zero, whereas the second term is approximately

8 : :
aj [k;j (qk-nk> fjk} . Thus dnjt/dt < 0, since qy-n), is non-

zero for some k.
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