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Abstract

We exhibit a dual of a stochastic program with simple recourse -- with random
parameters in the technoloty matrix and the right-hand sides,and with quadratic
recourse costs -- that is essentially a deterministic quadratic program except
for some simple stochastic upper bounds. We then describe a solution procedure
for problems of this type based on a finite element representation of the dual

variables.
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We consider the following class of quadratic stochastic programs with simple

recourse:

(0.1) find xe¢ Rn such that
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n d L
zj=1(cJ 3 2r3 x ) E{'zh=1qh(wje e(e h(w)}
is maximized, where
0.2) v, (W = 7. "t (Wx,-p, (w).
h j=1"hj j “h
The function 6 is defined by
6(t) = |0 if T<0,
12/2 if 0sTt<1,
T-1/2 ift21;
so that the recourse cost function
-1
ph(vh)-qhehe (ehvh)

has the form

l__—......_.-.—.--__.)

< v

0.3 Figure: recourse cost function



In the limit as e, goes to 0, theffungmion,ph tends to the piecewise

linear function Di with

0 if vy < 0,

if vhz 0.

L
= %

which brings us to the case of stochastic programs with simple recourse and

linear recourse costs [1]. Note that there is no loss of generality in having

Py and Ph with slope 0 when vhso. If the original problem is not of ‘this form,
a simple transformation involving an adjustment of the Céj,j=1,.p.,ﬁj éhd the

(ay,h=1,...,2) will reduce the original problem to the canonical form (0.1,
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ph(-), h=1,...,%
argzyapﬁpp.vgriab;es with known distribution function. We assume that these
random;vayiap;ps have second moments so that,the,vh(f);defined through (0.2)
also hgve finite second moments. Consequently-the expectation that appears in
the objective of (0.1) is well-defined. We shall-assume thatv(O.l) is solvable,
i.gf,,;hangxi;ts_a vector x* that solves (0.1); in particular this implies that
the.linear system.,
- 0s X; S_'rj, j=1,...,n; ijlaijxj Sbi, i=1l,...m,.

is feasible. The coefficients rj,dj for j=1,...,n, and e for h=1l,...,% as well
as the random variables qh(-) are strictly positive. In particular this guar-
antees the concavity of the object. , ST d

MNe .regard .model (0.1) as the quadratic version of the simple .recoursé prob-
lem [2] involving random coefficients in the technology matrix, the cost and the
right hand sides. |

In the next section we show that the following problem (0.4) is dual to

the quadratic stochastic programs with simple recourse:



(0.4)  f£ind yeR™ and z(+): R suech that® R R

y; 20 i=1,...,m T -
0<z (w)sg (@) a.s. h=l,...,2 - R
and ) a 3
mn e s i 27 AITT ATLL
Lo lbl i EZh 1 {ph(w)zh(w)+ ( ) h(w)} e
+ r d 9 d . . B
ZJ 1 ( J) . : L -
is m1n1m1zed where j=1,...,m, | SRR P
LT [ o 2 - )
(0.5)., ',wj?ﬁi‘iﬁ:l?ini'E(zh=lzh(w)thj(w))' - Ceeeeeo=d o

Although this problem is related to the dual problem that would be obtaihed by a
straight forward application of the results of [3] these are significant differ-
ences. It is the specific structure of this dual problem which is exploited in
the algorithmic procedure described in Section 2.

Our work was originally motivated by a problem coming from the' diviSion™-*

15

of ITASA (International-Institute for Applied Systems Analysis) dealing with®
Resources and Environment; given the hydrodynamic flow, highly®affected* by “~ -
atmospheric conditions, between subbasins of a given shallow lake, one needs to
design (size) and locate tertiary treatment plants that will fiifer’the inflow -
so as to minimize (in a least square sense) the deviation betwéén'tﬁe obsérved’ -
concentration of certain pollutants. and given desirable levels. 'He;éibOth p(*)

and T(+) were random but q was fixed (nonstochastic). AR toolirel el

1. DUALITY AND ITS DERIVATION :
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- The.primal problem (0.1) and dual problem (0.4) are 11nked‘toget T "4ds the

. - o -

two halves of a certain minimax "problem. Let - oot
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(1.1) X {x=(x1,. X ) e R" | 0< xj < rj}.":;"

Y

"

{y=(y:1,.--,y)eR I0<y}
Z ={Z(-)=(z1(-),...,22( )] Q R ‘O<z (w)<qh(w) a.s.}
(where the functionssz(w)*a;e;assumed.pa be measurable and are in fact square

integrable, because the functions q (+) are). Define theé®function L on XxYxZx by

I d. » €
(1.2) L(x,y,z(-))=zj21tc.x.—iz;-x?J4-E{zhfl[ph(w)zh(w)+Ea;%syzi(w)]}

n m
1% Zj=1(ii=1yiaij {zh 1 h(w)th (“)}]

This function is obviously quadratic concave in x for flxed (y,z( )] and quadratic

* z1 1y

cppygfuin‘(y?z(-)] fpr fixed x. Two optimization problems are naturally associated
wgth-it, namely
(1.3) maximize £(x) over all xeX, where
f(x)=inf(y’z(.))erZL[x,y,z(')),
and
minimize g(x,z(-)) over all (y,z('))erZ, yhere

g(y,2())=sup, 4L (x,y,2(*)) .

As is well known in optimization theory, no matter what the choice of the sets

X,Y and Z and the formula for L, the saddlepoint condition

(l:gj ' L(x y z( ))‘<L(t y,z(* ))‘<L(x y,z(* )) for all xe X, (y,z(-)]erZ

is satisfied by elements xe X and (y,z(*)) e YxZ if and only if X gives the max-
imm in problem (1.3), (¥,z(+)) gives the minimum in problem (1.4) and ‘the opti- '

mal values in these two problems are equal.

55In fact (1.3) and* (1.4).can be identified with our’ ‘primal and dual problems

(0.1)- and.:(9.4), so?fheiaSSe}ti6n5'justimade are true of the latter. This is~ ~
shown by.directicalculation:- oné has Frofthe formulas in (1.3) and (1.4} and =

. - e .. I e e
e 9
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the definitions (1.1) and (1.2) that - . .
fz“(cx-d—szl P ()ve("(]w
RS RIS hlqh“’e hh“’) L
£(x) = | islono i TRTL L WOl Y Ione
‘ oIn ar l ZJ 1 1J J nb for,'_;l_:m].f,«.‘-.'r,m-"- LR
- QFhQrWise .ok = SRS S VI AU o s
where vh(w) is given by{(O.Z), and
g(r,z(+) = mby+522(own(w+—3—z(m2
’ i=17i"1 h=1‘"h h th(w) h
+7.0 r.d.G(dflw.) , e =
g Lo e ; ‘ =173 J ) S S R ri ¥

VIS
«-where wjis given byfwj. The calculation makes use of the fact that the conJuate

fifvEs

of the function 0 is

Jtz/z if 0st<1l,
9*(t) = SUp_ o {tr-e(r)}= L

® otherwise

DUALITY THEOREM. Swppose that the primal problem (0.1) is feasible, i.e., that
there exists xeR" satisfing o

(1.6) Oijsrj for j=1,...,n; and §.°

<b or i= 1
j= 1 ij J Y

o oLy Lo

Then the primal problem (0.1) has an optimal solution X, the duaZ problem (0. 4)
has an optimal solution (y,z( )] and the optimal values in the two problems are
equazi Mbreover,-i:qnd (9,5(')] are optimal if and only if the saddlepoint von- -
dz_t‘l,qp (:1‘__1.,5)_ 18 fulfilled. _ ) o e ldee mlomems
Eggpfﬂ ?Thgsg assertions‘will follow from the general observations. above, once

it is shown that these so exist. x € X and -(7,z(*)) € YxZssatisfying the saddie- :
point, condition., To-show this ye.consider an auxiliary -minimax’ problem in:< mi.i:

terms of the function



Y e fp e n L 2m)
[x A )]= z. l[cjx T x ]+-E \Zh l[ph(w)z (w)-r——;TaT Zh(w))j

j

22 .{Zhiléh(w)thj'(@j}xj.

ontxong wbe;g XO?;ong?gts}qﬁpheivectors x which:satisfy (1s56). (Note that Lo
differs from L only in the absence of all y terms.) Again Lo[x,z(-)) is con-
cave in x}gqqiconvex in-z(*) and it.is continuous in x and z(*) relative to the
usual topology on X< R" and the norm topology that Z receives-as a subset of a
Hilbert space of square integrable functions. Any convex function which is con-
tinuous in the norm topology on a Hilbert space is also lowerxéemiédﬁéinuous‘in
the weak topology, and in the latter topology the convex set Z is compact. Of
course the convex set xo is also compact. Thus we are deal}ng with a function
on a product of two nonempty compact convex sets, which is <n particular upper
semicontinuous and concave in the first argument and lower semicontinuous and

convex in the second. According to the minimax theorem of Ky Fan, see [4],such

a functlon is sure to have a saddlepoint.

SR .o
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Denote such arsaddlep01nt by (x,z(*)): one has xeX, z(*) € Z and
(r7n . Lo(i,z(-)) < Lo[i,i(-)) < Lo(i,z(-)] for all xe X , z(*) € Z.

Since the quadratic concave function xH-Lo[x,E(-)] attains its maximum at x rela-
tive to the set X , i.e., relative to the linear constraints (1.6), there exists

a Lagrange mu1t1p11er vector ye Y such that

(1.8) L (x,2()) + Z;:l;’i (bi’zjzlaijxj

)

<L (x,z( )) + Zl i (izj =1%13 J]

sLo(%,2()) + L0y, (b,-1.0 3%, s

J=1137]

for all xe X and y& YT ST



e i - S . — = . . Y
Inasmuch as o A . -

Ly (2] + Iy (bi_zjzlaijxj] SLloy,zed)

=

by definition, the combination of (1.7) and (1.8) is eqﬁi\}alent to the desired

saddlepoint condition’ (1.5) thus: (xi¥,Z(3)) is 'a'v"-s:'a;cidléﬁbiﬁf"':afr,i R XKYKZ .[]fﬁ‘c'
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COROLLARY. sSuppose (x,2(*)) is an optimal ‘solution to the dual préﬁieﬁ (0.45%"

AN ST

Then the sunique optimal solution x to the primal problem (0.1) & giden’by -+
WOORD L -”x z iL 2\ STANE TRen .l
(lg)rl'rxl-%rgmax{wjxj ) er xj J P wolonD FLogTT
0 if wj-.< 0 - . : % LLonT dREe inT

= I‘jwj“f/dj-, if OSwj sdj S

T if wj,> dj’ : |
- X TIIMUILINET
where wj 18 given by (0.5). o
The corollary follows from the saddlepoint conditioh: L[x,')-",'i ()) ﬁxﬁ‘sti‘;i}:h;ieve
its maximum over X at )-(, and th'is expression is strictly' cgn;:a'veﬁ,’“' e
L 0 S d- 5 ' . ConLs

L3 E0) = Ty by - 725 ) e e

2. A SOLUTION PROCEDURE FOR THE DUAI:; PROBLEM

R R A
BRI H [

We are concerned with problem (0.4), repeated here for convenient reference,

(2.1) find y RT and z(*): Q=+ R2 measurable Suéh that

Oszh(w) th(w) a.s. h=1l,...,2 | o .
and ¢(y,z) is minimized,
where fio - : .
o
T m 2 h 2
(2.2)  e(y,2) =], 0,0,y + L g E {ph(w) 2, (@) + 7, @) __zh(wl} B

n -1
) .d.e(d> "w,
+ZJ=1rJ Je[dJ WJ]



with, for j=1,...,n “ L -
m A
(2.3) wj- Cj-zi=laijyi' E{Zh=1zh(w)thj(w)}.

Here Q denotes the support, smalest closed set of measure 1, of the random vari-

ables. If has been shown [S5] that the solution to (2.1) remains unaffected if

the condition
OSzh(w)th(w) a.s. PR
is replaced by the condition

(2.4) 0< zh'(}tl):)ﬂ’s q;(w) for all we Q.

It is this last version of these constraints that we shall use’
The main idea of the algorithm is to substitute fdr‘(z.i) a finite dimen-
sional approximation based on a finite element representation of (2.1) for z.

We restrict zh(') to the linear span of a finite collection of functions, i.e.,

Vv
20 () = Lyl MBhi () L .

where the Z,, () are given and the A,, e R. With this representation for z, prob-

lem (2.1) becomes:

(2.5)  find yeR] and Mg € R for k=1,...,v, h'=’1;“'...,9., such that

e A e Te

"'o" (w) for all w Q, h=l, )

zk =1’ hk k(“’) <y

_..tm R | _
Loy =T Zi:laijyi 2k=IAth {Chk(w)thj(w)l for j=1,...,n,

" and 6”(y,\) is minimized

~dﬁhéréfd EIRY
o (y, =L . e

i= I 1 i

*Zh 1 -1’ hkt {Chk(“’)Ph(“’)}
Pl . 'e
o Zh 1(Zk -1 Zk' =1 hk>‘hk' E {th(w) Chk(w)chk'(w)}]

+Z _lrJdJe(d w) T ]



Let us denote the integrals that appear in (2.5) by R . & e R S A
thkj = E{Chk (w)thj (LO)‘}, C : g ..:. o ;-_; - - L :‘ = [ LA
ﬁhk::E{chk(Q)phgwl}% ©5. o DeRC T Tmeinr IToean e ée:cx:b Soewsh

and e’ ' Sl A C et pwen @m0 Lzpiif

_ eh“" i . PSR S A S AR -
®hkk' {qh(w) Chk(w)chk‘(w)} miitiinne Lot

we then get the following form for (2.5): & N
T srpImeT il

(2.6) find y e R} and Mg € R for k=1,...,v, h=l,...,2 such that

= m v _
Y5 E 65T i=1 11211 1zk 1 Mkt nkj for 3'1’“-’“;_{__ e iie L
o ¢v(x,k) is minimized = o ' . .
and €." ‘ . - ' S VIR LTl
v
(2.7) 0L Al @) € qw) for all we®, h=l,...,L. c moger 2

The function ¢° taking on the form SER
o Voocsy o Rarew 2 g0 lev e v - TR
(2.8) N =Ly () Py Mk * T ka1 k=1 Chkk “hi Mhkt )

m n -1
1210175 * ngljrjd. 8 (dj wj)

o
1]

Except for the stochastic constraints (2.7) this is a deterministic. quadratlc pro-

gram for which efficient subroutine are available; for example MINOS [6], recall
that 6 is a piece-wise quadratic and linear functiog,' Thus thé.anly;serious

obstacle is the fact that the simple upper-bounding constraints (2.7) are stochas-

oy

tic. We overcome this difficulty by constructing the representations of the .func-
tions 2z (-) so that they automatically satisfy these consnra;pQ§[

Suppose that functions Shi 2Te themselves bounded below by 0 and above by

G, then the constra1nts(2 7) will-be satlsfled if rather than taklng linear com-

binations of the functlons Chk wé limit ourselves to convex combinations. Assuming

i

that we proceed in this fashion, problem (2.6)'beéomeszi"i:f:.5.



(2.9) find ye R‘f and A eR, for k=l,...,v; h=l,...2 such that
- m 2 V + 3 -
W= es - LioyayYy - 2h=12kF1 Mk thgy foT I=le-m,

v
1= Zk=1 Mk h=%,...,£,
v S
and ¢ (y,A) 1is minimized.
The choice of the functions Chk is adaptive. We viewﬂﬁfoblem'fz.Q) as the
v-th iteration of an approximation process, in the sense that the convex combi-
nation of the functions Chk only yields a finite element representation of the
functions zy - The choice of h v is such that it guardnféég'é"décrééseiiﬁﬁtﬂé"
H
value of ¢(y,z) when the solution to the v-th quadratic program is used to repre-

sent z, i.e.,

e -

V VI Lomnt S
20 (*) = Do Mg ) _

instead the coefficients that would be generated through ealier versions of (2.9);
here th are the optimal solutions of (2.9). Let

v \
X., =],...,n,
3 J

be the (dual) multipliers associated with the equations

m 2 v )
wj = cj-zi=1aini = Zh=1 Zk=1 )\hk thj , J_l, ...,n,

at the optimum. For h=1,...,%, we define

(2,10, & ;I:,Cf*’-):,? a, @) 8" (e} (552 thy @) X; - pp @1k~ el

where 8' is the derivative of 8, i.e.,

g'(t) = | 0 if tT<0,

-

It if ost<,

L_l if t=21.

In view of (2.10), we always have that
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v+l Cye T oa b T rLooT
0=<¢g h ( ) S qh( )'..* I D L S i A T
N V+l \)+1 B \)+1 - J-: al . '.. . 'r;- - _-”"--;t‘_:j_ T
The functions g = [Cn seeabg ] are- such that - - -
L I=n . =
2.11) "} ¢ argmin [8(y",0) |0 g <a,(+), hel,...,2].
Torin z
To see this.simply note that TTEUR T BT S S S S
s h_w?,'crﬁ,‘%h J j I I ;.osar Toognite
from,whlch 1t follows gthat. s S ST Ll oenuiToin®
wgmas T 9 . - > i L&
ahd’ a0 2+ Py - lehJJ o
since 52— w.=t, . and from (1.9) and the definition of 6' we get -
z, ] hj AP
X, = 1! [d-.lwé.] =-_.—O"' if w.<0, ¢ 8
b) J ] ] " J
r.dtw, if Osw.sd;,’- Y e
J J J
rj if dj < wj .
L A
. - ol AT VS PRV T
This then yields (2.10) since we obtain Cv;I from the equatioﬁ
aé b=0 : B S
“h . e a ot wE

if it turns out that the resulting value is between 0 and 9y, -
. V+ - T : - S T

The choice of 1 guarantees that unless we already have found the optimdl
solution, the new presentation

v+1 v+1
()= Loy Mg Shi () . -

will yield an improved solution, here the ihk being thelcqgfficients obtained by

solving (2.9), setting v=v+1 in (2.9).
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The algorithm thus proceeds as follows:

y &!A:._

Step 0. Choose any function C such that

0< Ch(w) < qh(w) h=1,...,2,.

:v:;$¢¥f”? Lo ' BRE Lo

T PN e

Ame

'Step~1 SoLve (2 9), recordlng [x , J =1,.v¢;N ] ‘the dual varmﬁbles asééc1ated to

the constraints def1n1ng wJ Let A denote the opt1ma1 values of the k—__ﬁ

A-&- K . ", o K N i R T
-

varlables ' s

e Eyem
STL LD A ke e
T W Lo

tep 2.0 Define CV+1 tﬁrough (2.10).

gave! AT '. R U i
If Ty = h- kahkchk’ terminate: ~ the (xj, J—l,...,n] solve problem (0.1).
” Otherw1se return to Step 1 w1th V=Vl S e,

Observe that having Cv+1= 2” implies that no function of type [ can be found
that could give a representation for z generating a decrease in ¢. The fact that
the (x;, j=1,...,n] are then optimal solutions of the original problem (0.1) fol-
lows from the Duality Theorem of Section 1.

We conclude by making a few comments about implementation. First note that
to store the function CV it really suffices to store the finite dimensional vector
[x;, j=1,...,n]; the definition of CV, though (2.10) corresponds to a simple proba-
bilistic subset (event) of O completely determined by xv. This is also all that
is necessary to compute the quanities Ehkj, ﬁhk and éhkk, which are obtained by
numerical integration. Finally, one should not really rely on the stopping crite-
rion given in Step 2, but on bounds that can be obtained from the optimal value of

(2.9) similar to those used in the Frank-Wolf algorithm [7].
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o--:-time: Ll-muitipliers for 1nequ311ty constfaints, SIAM-J. Eénfhol opEim:,
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