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PREFACE 

Previous research in the System and Decision Sciences Area at IIASA has involved 
study of both hierarchical systems and optimization techniques . More recently , SDS re
search in optimization has concentrated on stochastic systems. This paper - the first in 
a series by an international group of researchers - fuses these strands of research. 

The central observation of the authors is that practical hierarchical planning has a 
natural temporal structure which typically involves a sequence of decisions at an increasing 
level of detail and with increasingly accurate information. Such problems may be modeled 
by multistage stochastic programs which, due to their complexity, and in parallel with 
real-life procedures, require the use of approximations and heuristics for near-optimal 
solution. 

In this paper the general modeling approach and a simple example are discussed . 
The hope is held out that these models will eventually serve as an analytical yardstick 
against which the increasingly popular computer-based hierarchical planning systems may 
be measured. 

All of the authors are active in the development of computer software for planning 
in various environments , so that in a very real sense this is theoretical research stemming 
from practice. 

M.A.H. DEMPSTER 
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Hierarchical planning systems have become popular for multilevel decision 
problems. After reviewing the concept of hierarchical planning and citing 
some examples, we describe a method for analytic evaluation of a hierarchical 
planning system. We show that multilevel decision problems can be nicely 
modeled as multistage stochastic programs. Then any hierarchical planning 
system can be measured against the yardstick of optimality in this stochastic 
program. We demonstrate this approach on a hierarchical system that can be 
shown to be asymptotically optimal for a job shop design/ scheduling problem. 

M ANY OPERATIONS management planning and control problems 
require a series of decisions over time at an increasing level of 

detail. For example, there are at least two distinct decision making levels 
in most production operations. At the lowest level, detailed production 
scheduling decisions determine who will do a particular job on what 
machine and when. Considerations at this level include minimizing setups 
and meeting due dates. At a higher level, aggregate planning decisions 
are made concerning hiring and layoffs, overtime, production levels for 
product groups, ordering of raw materials, and setting due dates. The 
time horizon for aggregate decisions ranges from several months to one 
year. At the time aggregate decisions are made, much detailed informa
tion is not known with certainty. This may include future product 
demand, job processing times, machine breakdowns, worker availability, 

Subject classification: 581 production/scheduling, 633 integer programming applications, 660 linear 
progranuning applications. 
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and raw material availability. In addition, other details are deliberately 
ignored at the aggregate level. For example, the sequence dependent 
nature of setups is usually ignored, and product groups are used rather 
than individual stock-keeping units. 

Hierarchical planning systems are becoming increasingly popular for 
multilevel decision problems. General discussions of hierarchical planning 
can be found in Bitran and Hax (1977), and Bradley et al. ([1977] pp. 
212-213). A hierarchical system uses separate mathematical program
ming models to make the decisions at each level. The solution of a higher 
level model creates some of the constraints for the model below it. Of 
course, there is nothing new about using interacting optimization models. 
What seems to be new in the hierarchical approach is the explicit 
emphasis on the linkages between the models and on designing all models 
in the system simultaneously so that they fit well together. 

There are two fundamental reasons for using a hierarchical approach. 
1. Reducing complexity. Breaking a problem into subproblems is a 

standard method for simplifying the solution process. A tenet of hierar
chical planning is that this partitioning can be done so that the interaction 
effects between subproblems are acceptably weak. 

2. Coping with uncertainty. It is important to realize that the decisions 
at the various levels in the planning process need to be made at different 
points in time. For example, aggregate planning decisions are made early 
enough to implement plans for hiring/layoff, raw materials acquisition, 
etc. On the other hand, a decision to assign a particular job to a specific 
machine can be postponed until the instant before the job begins proc
essing. This is important in light of the fact that much data at the detailed 
level is uncertain at the time aggregate decisions are made. If detailed 
and aggregate decisions were combined in a single giant optimization 
model, as is sometimes proposed, the detailed decisions would be made 
earlier than necessary and hence would be based on less reliable forecasts 
of the uncertain data. The hierarchical approach postpones the detailed 
decisions as long as possible so that they can be based on more timely 
and hence more accurate data. 

A third advantage often attributed to hierarchical systems is that they 
parallel the hierarchical organization of most firms. While this is certainly 
an important consideration, we believe that hierarchical planning orga
nizations, as well as hierarchical planning systems, are a response to the 
nature of the problems being solved, and to the need to reduce complexity 
and respond to uncertainty cited above. 

Past work in hierarchical planning has consisted mainly of building 
clever systems. This paper is an expository work that reviews many of 
the hierarchical systems that have been developed and then considers 
the question of how one decides whether one system is better than 
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another. To obtain an objective standard of performance, we introduce 
a stochastic programming model that encompasses the entire multilevel 
decision process. At each level we model lower levels accurately, but with 
stochastic parameters. The objective at each level is to minimize current 
costs plus the expected objective value of an optimal lower level solution. 
The performance of a hierarchical planning system can be studied ana
lytically by determining how close it comes to optimality in this stochastic 
programming model. 

In Section 1 we provide a rich set of examples of hierarchical planning 
systems. Section 2 describes the analytic evaluation approach in detail. 
In Section 3 we illustrate this approach by analyzing a hierarchical system 
for a simplified prototype of one of the examples given in Section 1. This 
hierarchical system is shown to have the desirable property of being 
asymptotically optimal as the number of jobs in the problem approaches 
infinity. This result provides insight into why and when the hierarchical 
approach works well. 

1. EXAMPLES OF HIERARCHICAL PLANNING SYSTEMS 

Examples are provided of hierarchical systems for four types of prob
lems. Specific implementations of each type are also referenced. 

1.1. Aggregate /Detailed Production Scheduling 

This example has already been discussed at some length in the intro
duction. The aggregate planning problem is usually modeled as a multi
period linear program with a planning horizon of about one year. The 
basic decision variables are target production and inventory levels by 
period for aggregated groups of products. These target levels are fed to 
the detailed production scheduling model which is concerned with sched
uling the actual production of each stock-keeping unit over a relatively 
short horizon. This detailed model is usually an integer program solved 
by a heuristic. It may be run much more often than the aggregate model. 

Hax and Meal (1975), and Hax and Golovin (1978a, b) have designed 
and successfully implemented a system of this type. They distinguish 
three increasingly aggregated product units: items, families and types. At 
the type level, they use a linear program to set long range target 
production levels that minimize production, overtime, and inventory 
carrying costs. At the family level, the production target for a type is 
allocated to the families within that type considering setup costs. At the 
item level, item production is planned over a short planning horizon using 
recent demand data. 

Jaikumar (1974) has developed a system for the Booth Fisheries 
Division of Consolidated Foods that has many novel features and has 
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achieved impressive economic results. At the aggregate level, a linear 
program is used to determine levels of production, marketing promotions, 
and raw material acquisitions that maximize sales revenue minus the cost 
of inventory holding, overtime, hiring/layoff, production and raw mate
rials. This model has a 26-week planning horizon with time periods 
varying from one to six weeks. The detailed model is an integer program 
with a planning horizon of one week and time periods of two hours. This 
model allocates the production of particular products to individual pro
duction lines. 

A novel feature of Jaikumar's system is the use of a dual method to 
link the aggregate and detailed models. Dual variables on the production 
capacity, raw material and manpower constraints in the aggregate model 
are fed to the detailed model and used in the objective function to cost 
out usage of those resources. 

1.2. Job Shop Design/Scheduling 

This problem is concerned with specifying the number of machines of 
various types to have in a job shop and the scheduling of work on those 
machines to minimize the total of machine costs and some job based 
measure of pe:rjormance such as average job tardiness. The first algo
rithmic approach to this problem was given by Fisher (1969). 

In a hierarchical approach, the higher level decision is obviously how 
many machines to have, and the lower level decision is how to sequence 
jobs in the shop. Armstrong and Hax, and Shwimer (1972) have described 
hierarchical systems that use an integer programming model and a 
simulation with an embedded heuristic sequencing rule to make the 
higher level decision. The lower level decision is made with the heuristic 
sequencing rule. 

1.3. Distribution System Design/Control 

The higher level problem includes the distribution design questions of 
where to locate plants and warehouses, whether to expand capacity at 
existing plants and warehouses, whether to install automatic materials 
handling equipment, etc. The lower level problem concerns questions 
such as the allocation of customers to warehouses and the determination 
of commodity flows through the system. 

Hax (1977) describes a system that he developed in the aluminum 
industry. The higher level problem is a linear program that is run a 
number of times for different cases. In addition to the standard distri
bution system design questions, this model is concerned with whether or 
not the firm should enter into long term product swapping contracts with 
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competitors. The lower level problem is concerned with which sources 
should supply a set of orders in hand. It is modeled as a linear program 
~ith a h1uristic post-adjustment of the solution to eliminate order split-
tmg. . 

Glover et al. (1979) describe a comprehensive production and distri
bution planning model developed for the Agrico Chemical Company. 
This is a network flow model explicitly concerned with the lower level 
decision of scheduling the flow of shipments from plants through the 
distribution system to warehouses. The model has also been successfully 
used in a case-study mode to analyze higher level decisions on capacity 
expansion and equipment modernization at the plants and warehouses. 

Federgruen and Lageweg (1980) describe a distribution system devel
oped for a producer of industrial gases in the Netherlands. At the higher 
level, the number and locations of national distribution centers and the 
associated territories are determined. At the lower level, the commodity 
flows are routed from distribution centers through regional depots to 
final customers. The system is modeled as a network flow problem and 
uses a vehicle routing algorithm to calculate routing costs. 

1.4. Vehicle Routing/Scheduling 

Many organizations operate vehicle fleets to deliver their products to 
customers. Frequently, for administrative convenience and other reasons, 
the fleet is scheduled using a fixed route system. In a fixed route system, 
particular customers are assigned to a vehicle and this assignment is 
revised infrequently (e.g., every 6-12 months). Daily customer orders are 
random. A customer orders on a given day with some probability, and 
the amount of any order is random. On any given day, a delivery schedule 
must be developed for the customers that have ordered for each vehicle. 
In this daily problem one can consider the possibility of delaying delivery 
of a customer order, or of using an alternative mode of delivery such as 
airfreight. 

This problem suggests an obvious hierarchical system in which one 
model is used to assign customers to vehicles to form the fixed routes, 
and another model is used to solve the daily scheduling problem ("cluster 
first, route second"). Fisher and Jaikumar (1981) have developed a 
partitioning algorithm for vehicle routing which follows the hierarchical 
structure just outlined. Customers are assigned to vehicles using a gen
eralized assignment model. Each vehicle is scheduled using a traveling 
salesman model with side constraints. This algorithm has been imple
mented at a large chemical company and produced significant economic 
benefits. Golden and Yee (1979) have also suggested a general framework 
for this problem. 
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2. A STOCHASTIC PROGRAMMING FRAMEWORK FOR 
EVALUATION OF HIERARCHICAL PLANNING SYSTEMS 

Past work on hierarchical systems has concentrated on building clever 
systems, many of which were chronicled in the previous section. This 
paper is concerned with the question of how one evaluates the quality of 
the decisions produced by a hierarchical system. One is interested both 
in comparing different systems and in direct evaluation of a single system. 

Some methods already exist for partially answering these questions. 
Different systems can be compared empirically by Monte Carlo simula
tion. In this approach, higher level models are run with forecasts of the 
uncertain lower level data. Lower level models are run with actual data 
values generated randomly by the Monte Carlo method. Hax and Golovin 
(1978b) have used this approach in evaluating their system for different 
settings of various parameters. One can also evaluate either by analytic 
or empirical methods the degree of optimality in the solutions to the 
submode! at each level. 

All of these evaluation methods fail to answer the nagging question of 
how good a particular hierarchical system is when compared with an 
optimal system. To answer this we need a measure of optimality for the 
overall system, not just for each subproblem. Put differently, hierarchical 
systems are often called suboptimizing systems. If so, what is the opti
mization problem being suboptimized? 

A little thought should make it clear that the answer to this question 
cannot be a deterministic mathematical programming model if we wish 
to accurately capture the uncertainty that exists at lower levels of the 
global decision problem. However, this phenomenon can be nicely 
modeled by a multistage stochastic program. The stochastic program 
would model lower levels accurately, but with stochastic parameters. The 
objective at each level is to minimize known costs at that level plus the 
expected objective value of an optimal lower level solution. For example, 
consider the form such a model would take for the example given in 
Section 1.2. At the time the job shop is designed, only probabilistic 
information is available on the jobs to be processed by the shop. A two
stage stochastic programming model of this problem would select the 
machine configuration of the job shop so as to minimize the cost of 
machines plus the expected cost (e.g., job tardiness or flow time) of 
operating the shop optimally with the given machine configuration. 
Similar stochastic programs can be created for all of the other examples 
given in Section 1. We note that all of these models would have integer 
variables at one or more of the levels. 

We are not suggesting that any of these models should be solved 
optimally. Such an endeavor would be foolhardy given the reputation for 
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intractability enjoyed by both integer programming and stochastic pro
gramming. Rather, we suggest that a hierarchical system for a multilevel 
decision problem can be usefully viewed as a heuristic applied to a 
multistage stochastic programming model of the problem. Worst-case 
and probabilistic analysis techniques are now widely used in the study of 
integer programming heuristics (e.g., see Fisher [1980]). There is no 
reason why these same techniques could not be applied to stochastic 
programming heuristics. This would allow objective statements about 
how closely a particular hierarchical system approaches the ideal of 
optimality in the appropriate stochastic programming model. 

Although the observations of this section are apparently straightfor
ward, they have been the well-spring of some extensive analytic work on 
our part that we believe provides some interesting insights on the per
formance of hierarchical systems. In the next section we prove a result 
for a simplified prototype of the job shop design/scheduling example 
given in Section 1.2 and survey other results from a companion paper 
(Dempster et al. [1981]). 

3. ANALYSIS OF A HIERARCHICAL SYSTEM FOR A JOB SHOP 
DESIGN/SCHEDULING PROBLEM 

We are given n jobs to be processed on identical parallel machines. 
The problem is to decide how many machines to buy and how to sequence 
the jobs on the machines to minimize machine cost plus the maximum 
job completion time. Job processing times are independently distributed 
random variables whose values all become known with certainty at time 
t = 0 after a decision has been made on the number of machines to buy. 

This problem is a simplified prototype of the job-shop design problem 
described in Section 1.2. In this section we will propose and analyze a 
hierarchical heuristic for this problem. 

Define 

c = cost of a single machine, 
m = number of machines to be bought, 
Pi = processing time of job j, 
p =(pi, • • • ,pn), 

C*(m, p) =earliest time at which all jobs are completed when sched
uled optimally on m machines, beginning at t = 0, and with 
known processing times p = (pi, · · ·, Pn). 

A tilde (-) under a variable will indicate that it is a random variable, and 
E will denote expected value. 

The problem is to choose m prior to t = 0 to solve 

Z* = minm{cm + EC*(m, E )}. (1) 
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Let m * denote the optimal solution to (1). Then at time t = 0, sequence 
n jobs with known processing times on m * machines to achieve the 
optimal completion time C*(m*, p) . 

There is a natural two-stage hierarchical system for this problem in 
which the higher level problem is problem (1) and the lower level program 
is sequencing the jobs once processing times are known. It is not obvious 
how to solve (1) optimally. Determining C*(m, p) for fixed m and p is 
itself an NP-hard problem so finding EC* (m, p) as a function of m seems 
virtually impossible. We circumvent this difficulty with an idea that is 
fundamental to all of the hierarchical systems described in Section 1. In 
solving the higher level problem we suppress the combinatorial fine 
structure of the lower level problem by replacing C*(m, p) with P/m, 
where P = ~J=I Pi· The quantity P/m is a lower bound on C*(m, p) for 
any m and p. This bound is quite good if n is large and Pmax = maxi {Pi} 
is sufficiently small. This replacement leads to the higher level problem. 

minm{cm +EE /m}. 

The derivative of the objective function is zeroed by m = ../EI!/ c. Since 

m must be a positive integer, we choose mH E ff../(Ef! /cl, L../(Ef! /c J} to 

minimize cm+ EI! /m subject to mH 2:: 1. Here f al denotes the smallest 
integer not less than a and LaJ denotes the largest integer not greater 
than a. 

The lower level problem is the problem of sequencing n jobs with 
known processing times on m H machines. In our hierarchical system, we 
simply solve this problem by list scheduling (LS). This heuristic assigns 
jobs in arbitrary order, placing each job on the machine that has the least 
processing already assigned. Let 

CL8 (m, p) = earliest time at which all jobs are completed when sched
uled by list scheduling on m machines, beginning at t = 0, 
and with known processing times p = (p1, · · ·, Pn). 

The overall value achieved by our hierarchical planning system is 

zH = cmH + ECL8 (mH,!!,). 

This value is compared with the optimal value in the following theorem. 

THEOREM 1. ZH/Z* :5: 1 + Epmax/2../(cEf ). 

Proof Consider an arbitrary schedule produced by the list scheduling 
rule, and let T denote the latest time that all machines are occupied. Let 
k denote the index of a job completed last. For any instance of p the 
following inequalities hold by the nature of list scheduling. -

CL8(mH,!!,) $ T + I}_k $ r /mH +!}_max· 
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Hence, for any instance of!!, we have 

cmH + CLS(mH, !! ) :S cmH + f /mH +!!max· (2) 

'faking expectations gives 

zH :s cmH + EP /mH + Epmax (3) - -
:s cm*+ EP /m* + EPmax (4) - -
:S Z* + Ep_max (5) 

where (3) follows from (2), (4) from (3) and the fact that mH minimizes 
cm+ Ef /m, and (5) from (4) and the fact that C*(m*,p)::::: Elm* for 
any instance of p. -

Finally, we observe that 

Z* 2:: mi11m{cm + Ef!. /m} 2:: 2 JcEf!.. (6) 

Combining (5) and (6) establishes the theorem. 

In Dempster et al. we show that, if the pi have independent identi
cal distributions with finite second momen( then the hierarchical plan
jng system is asymptotically optimal in the sense that limn-+oo(E[!max/ 

EI}_)= 0, and hence lim,.__.oo(ZH/Z*) = 1. 

Under the same assumption we have for any E > 0 

limn--.ooprob.{(cmH + CLs(mII,p_))/(cm* + C*(m*,p_)) :S 1+E}=1. 

This is a strong result that says that with high probability the hierarchical 
planning system finds a near optimal solution for any instance of p. 

These results are extended in Dempster et al. to the case where the 
jobs are to be processed on uniform parallel machines (i.e., with different 
speeds) and the problem is to minimize machine cost plus the maximum 
job lateness with respect to a common constant due date. Under appro
priate assumptions, it also appears possible to extend this approach to 
the case where n is random. 

What are the implications of these results? Although the model we 
have considered here is a simplified prototype of a real problem, we think 
these results provide insight into why and when the hierarchical approach 
is reasonable for more complicated problems. The hierarchical system 
given here makes the same assumptions at the higher level that one sees 
in more complicated systems. Namely, all jobs are replaced by the 
aggregate processing requirement and complicating details are omitted. 
Moreover, this hierarchical system has the theoretical properties we have 
discussed. More complicated systems work well because the instances for 
which the higher level assumptions are severely violated occur with 
decreasingly small probability as the problem grows larger. 
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