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Optimal Reinsurance and Dividend Payment Strategies

Pantelis PechlivanidesT

I. Introduction

The risk reserves* of an insurance company (I.C.) can be
viewed as a random walk over time. For the example of a dis-

crete time case, we can write

Reylr = Re ¥ Py~ &y
where
Rt: the risk reserves at start of period t;
Pt: the premiums collected during period t;

Et: the claims during period t (a random variable).

At the end of each year, the I.C. must decide how much of
the risk reserves to pay out as dividend. They must also decide
how to reinsure, this being a way to transform the risk the
company carries by sharing it with another company.

The problem resembles the consumption-investment problems
considered in the literature connected with securities markets,
and thus inspired the approach used in this study.

In the following, we will consider an I.C. with utility

over time represented by the discounted sum of utilities of

TUniversity of California, Berkeley, California, U.S.A.
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* .
The term "risk reserves" loosely refers to the reserve
capital kept by a company to face claims. In other words, it

is the working capital.



each period.** The dynamic programming relation for the N-
period problem will then be formulated. 1In Section III, we
will find a closed-form solution for a class of utility func-
tions known as the Linear Risk Tolerance class (this will be
defined later). The solutions will indicate that dividend
payments should be proportional to risk reserves.

The form of the reinsurance treaty will be independent
of the company's wealth. It will depend on its utility func-
tion, the price of reinsurance, and the probability density
function of the claims (§). The wealth of the company will
only determine the amount of reinsurance.

These results and some generalizations will be discussed

in Section IV.

II. The Model
A. Description of the Insurance Company

The I.C. is faced with an N-period problem. We will count
the periods backwards and call the interval (t,t-1), the tth
period. Thus, (1,0) is the first period (but is in reality
the last).

The relevant variables are:

P,: the premium collected during period t; (for simplic-
ity this is assumed to be collected at the end of

the period);

Et: the claims during period t, a positive random variable
over the interval Xt’ whose value will be X i (for
simplicity this is assumed to be realized at the end

of the period);

c,: the dividend payment at the start of period t for use

in period t + 1;

% o
Meyer [2] has shown that other forms for evaluating con-
sumption programs might be appropriate; we will consider such
cases in Section IV.
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R _: the risk reserves level at the start of period t
before dividends are paid;
¢t(x): the probability density function of the r.v.gt,
assumed to exist for xth.

B. Utility Function of the I.C.

We assume that the I.C. can express preferences over

streams of dividend payments c = (c .,cl,co); it does

c .
N’“N-1""
so by using a discounted form of the utilities of each period.

) , O < a <1 . (1)

Thus for uncertain dividend streams, the I.C. expresses

preferences by looking at the expected value of U(c).

Remark: As previously stated, Meyer [2] has shown that forms
other than Eg. (1) might be appropriate. Specifically, he
showed that if the individual (or company) decides on future
consumption streams independently of the (its) past consumption,

the only utility functions possible are:

| ~12

(1) U(c) = u, (e )
- k=0 N-k ""N-k
N
(ii) Ul(ec) = kE () 0o g () >0, ¥
=0
N
(iii) U(c) = - kE [-ug (e )T r u (f) <o ¥ .
=0
Setting u (*) = uku(-) we again get Egq. (1) as above.

N-k
Cases (ii) and (iii) will be discussed in Section IV where

closed-form results will be found for some one-period utility

functions.




C. Reinsurance

Let us assume that there is a reinsurer who is ready to
accept any risk for the appropriate premium. The way in which

he quotes premiums is as follows: for a r.v.y (we denote its

value as y) with range Y, he forms a price function PW(Y) > 0,
yeY, and the premium which he asks to assume y is
Pyl = J wa(y) dy . (2)

Y

If P[y] does not exist then the reinsurer does not accept
the risk ¥y. In the following we will assume that the risks
are accepted by the reinsurer, or that the above integral exists.
As a marginal case P[l] is the money the reinsurer is
required to pay $1 at the end of the period of the cedent, for

certain.

JPw(y)dy=ﬂ<l . (3)
Y

In other words 1%1 is the interest rate, and since this must
be the same for any ¥, Eg. (3) is a normalization condition.

Simjlar to expectations in probability, one can show that
if ¢ = Z(£), then

J wa(y) dy = J Z (x) Pg(x) dx (4)
Y X

where P, (x) = P, (Z2(x))|2'(x)| by a change of variables.*

3 v

*A way to think of Pw(y) is as a distortion of ¢w(y), say ,
Pw(y) = fw(y) ¢¢(Y)é For example, if fw(y) =a + by and y = (§)7,
then fg(x) = a + bx”; this means that whereas the reinsurer
calculates the premium using the first moment for y, he uses
the second moment for . However, in standard insurance termi-
nology, this implies that we have different calculation princi-
ples for different risks. But this is a matter of persuasive

definition.



Before we continue to formulate the decision problem of

our initial I.C. let us note that

1) there are no transaction costs in reinsuring;

2) borrowing and lending rates are the same;

3) reinsurance contracts have a span of one period;
i.e. at the end of the period the risks realize
whatever payments to be made are made and the con-

tract ceases to exist.

D. Dynamic Programming Formulation

We will suppose that the I.C. knows* (or is able to fore-

cast) the sequences

1 1 1
{pt}t=N ' {¢t(x)}t=N , {pt(x)}t=N .

The dynamic programming relation (D.P.) for the N-period

problem of the I.C. is

ft(Rt) = sup u(ct) + aEft_l<Rt_l(€t9 ;
CprReg ()
(5)
O<a <1 ,
subject to
| J (T
R, ,(x) P, (x) dx = — + p, - x/ P_ (x) dx ,
x, 1 e X Te t e
t t
(6)
where e = J Pg (x) dx < 1. For convenience in the following,
X, t

*

When we deal with closed-form solutions later in this
paper, we will see that we only need to know the sequences
{pt}l , Am }l , where m_ = Pt(x) dx. In other words, we

_ t . t
t=N t=N % 1 -,

need a forecast of the interegt rates it = — -
t




we will denote P,. (x} as P, (x).
E¢ t
Condition (6) is the budget constraint. Since the re-

insurer is ready to make any transaction using Pt(x), we require

that the reinsurance treaty R (x) have the same value as the

t-1
initial state of the I.C., that is

(Note that Rt - Cy is the position after dividends are paid

in period t; if the I.C. did not reinsure, Rt - Cy would grow
R, - cC
to —E————E-by the end of the period when premiums are collected

Te

and claims realized.)
Looking now at the DP relation Eq. (5), we see that
ft(Rt) is the maximum expected utility for a t-period problem

starting with risk reserves level R In each period t, the

I.C. has to maximize over all possigle functions R __; (x)

(the reinsurance treaty) and also decide on the dividend pay-
ment, ct.
The boundary condition for the DP relation is

fo(R) = u(R) . (7)

The answer to the N-period problem is fN(R).

IITI. Closed-Form Solutions

The problem formulated in the last section cannot, in
general, be solved analytically. 1In this section we will find
closed-form solutions when we additionally assume that the one
period utility function of the I.C. belongs to the Linear Risk

Tolerance (LRT) class.



The LRT class is defined as the solutions to the equation
n -1-
u = e e,a,b reals, and not both a = 0 and b = 0
u (x) ax + b
with u"(x) < O and u'(x) > O. (8)

The solutions to Egq. (7) give rise to

I) a #0 , let e = ca

u'(x) = (ax + b)c , ax +b >0 , ac < O

which in turn gives rise to the two subclasses

c+1
+ b
Ia) u(x) = i§§g—¢1% i ¢#-1 , ax+b >0 , ac < 0
1 b
Ib) u(x) = I log (ax + b) ; ¢=-1 , a>0 , x> - 2
and

II) a=0 , let % =-y , Y>0

u'(x) = &YX

ulx) = % (1 - e_YX) ; =~ < X < o

In the following we will expand on class Ia which is the richest,
and will briefly mention the results for the classes Ib and II,

as the arguments and derivations are analogous.

(a) Model Ia:

(ax + b)StL

=al(c:—+f) , Cc # -1 , ax +b >0 , ac < 0 .

u(x)

‘1‘ 1]
ET is known as the Pratt [5] measure of risk aversion.
u '
The inverse, - E;, is called Risk Tolerance. The LRT class
u

was investigated by Mossin [3].




Theorem Ia. If u(x) is as above then the solution to the
t + 1 period problem described by Egs. (5), (6) and (8) is

given by:
Fr1Repp) = Deyu@® e qReyy + Bryg) (9)
as long as a(_At+lRt+l + Bt+l) + b > 0, where
m
- Tt+l
Dyp = 1 + Dy /e ! Diyp 21 (10)
Ay = Dl ' O <A<l (11)
t+1
B = A [p m - p + b m + EE m
t+1 t+1 [ Ft4+1 41 t+1 aAt t+1 At t+1
bm
t+1
aAta
with
Ag=1 , Dyg=1 , By=0 (13)
and Pes1’ Mesl defined as before
_ ; Piyp () e
Pe+1 = J XPryp(x) dx o my g = J <m> Py x) &
X+l Xe41
(14)
The optimal dividend is
* = A R + B
Ce+1 T Te+1Te41 t+1 (15)

The optimal reinsurance treaty transforms the assets of
the I.C. to




' 1l/c
1l/c
R (8 ) = ;A/ Ztﬂitﬂi - -——a; —% ;o oxeX ., (16)
t t+1 7 t+1 t t
where
1/c
A 1 [ b
= (1 - A ) (R + P i -0 + =— 7
aAt mt+l t+1 t+1 t+1 t+1 t+1 aAt t+1
P 5 1 ] ()
¢ tFl Ataal/c t+1
and the solution is unique. (These results will be explained
later.)

Proof. The proof first shows that the theorem holds for
t + 1 = 1; we then proceed by induction. Here we will expand
on the proof for t + 1 = 1 as the induction part is completely
analogous.

Using the boundary condition (8) for the last period,
Egs. (5) and (6) become

max [u(c )+ uEu(RO(E))] (18)

f. (R
1 1
cl,Ro(X)

l)
such that

Rl - ¢
[ Ro(x) Pl(x) dx = J (——————— + Py - x) Pl(x) dx .
X X) (19)

We use max instead of sup in the above since we are going to

*
demand that the solution be interior, i.e. ac, + b > O and

1
aRO(x) + b > 0, xeX; otherwise the function u(+) is not well
defined, at least for the case when ¢ < -1.
Now we will fix Cq- Then the maximization of the second

term in Eg. (18) subject to Eg. (19) tells us that Ro(x) must
satisfy
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u' (R (X)) ¢, (x) = Ap; (x) (20)

where A is given by substitution in (19), This result foliows
from the calculus of variations. Since u(*) is also strictly
concave Eg. (20) is necessary and sufficient and Ro(x) is unique.

Now by choice of u(+}), (Ia), u'(+) has a range of (0,x);
thus Eq. (20) always has a solution as long as A > O. Then

/c
1/c/ P, (x)
) 1 b
Ro(x) T a ¢l(x) a (21)
while substituting Eq. (21) in (19) we have:
l/C a b
A = == (Rl - Cy tpyTy tgmy - pl) (22)

1

with Pyr my defined as in (14). Since we require A > O, we

ask ﬂ/c> O or

b
a(Rl - cy + P17y + 371 pl)+ br., > 0 ., (23)

Now, by substituting Egs. (21) and (22) in (18) and manipulating,

we obtain

amy a (R, - c, +p,m; = p
£f,(Ry) = fo u(ey) + ETE_:_TT'[EI' 1 1 1'1 1
! (24)
b c+l
+ E'ﬂ'l)]

where we have used

c+l
P, (x) c 1l/c
1 _ [ p/fp _
Elle -J$($> ¢ =m . (25)
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Now the second term in Eq, (24) is strictly concave because
of Eg. (23) and the first term is strictly concave as long
as ac; + b > 0. Thus, differentiating w.r.t. ¢, and equating

to zero we obtain the unique solution

x ,
¢y = AlRl + Bl , (26)

with Al, Bl as defined in the statement of the theorem.

* *
Further, we find that for Cq the condition ac, + b > 0 is
equivalent to Eq. (23). Thus the only condition needed is

a(AlRl + Bl) + b >0 .

3
Finally, by substituting cq in Eq. (24) we obtain

fl(Rl) = Dlu(AlRl + Bl)

where D, is defined in theorem.

1
The induction step assumes

pa =1, D_>0 , A >0 , a(AtR + Bt) + b >0 ,

t

and proves the result for ). The arguments are

Eea1 Resn
analogous to the last-step case.
We will simply state the results for the other two models,

Ib and II.

(b) Model Ib

% log (ax + b) ; a>0 , ax +b >0

u(x)

(ax + b)—l .

u’ (x)
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Theorem Ib. If u(x) is as above then the solution to the

t + 1 period problem described by Egs. (5), (6) and (8) is

Eer1 Reqn) = Peyp UBaR + Beyg) + By (27)
as long as

a(A Reyy * By + >0 (28)
where

Diyp =1 +oab v Dy 2t (29)

Besr T Dl ’ O S By st (30)

t+1
B
_ _ £ b _ b
Bit1 T Penn [pt+1“t+1 P+ VA "o+l Y a Tend “EX;]
(31)
=9

Et+l = Dt[log o + qt+l] + aEt (32)
with

Do =1 , AO =1 , BO =0 , EO =0 (33)

Pevl 7 Tedl 7 Pra
defined as before, i.e.

¢ (g )
de41 = B [109 Pt+l(€t+l)] ' (34)
t+1 "7t+1
The optimal dividend is
*
c = + B . (35)

e+l - Per1iResnn t+1
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The optimal reinsurance treaty transforms the assets of the
I.C. to

R ) = L Per1tfei) b B e ex
t P t+l aAtA Pt+1(5t+1) aAt t t+1 t+1
(36)
where
l_ - (1 -A ) (R + T - p P - R + EE T
ak X t+1’ e+l T Pe+1" e+l t+1 T @A, e+l T K e+l
. At+l b (37)
At a
Further, the solution is unique.
Proof. (omitted; similar to Theorem Ia)
(c¢) Model 1II
_ 1 -YX
u(x)-?(l—e ) Yy >0 , =0 << x < ®

Theorem II. If u(x) is as above then the solution to the t + 1

period problem described by Egs. (5), (6) and (8) is

Fer1Reyr) = Peyu @ Ry + Beyy) + By (38)
where
Deyr = 1% TeyaPe i Dis1 21 (39)
A, = D]' ; 0 <A, <1 (40)
t+1
B w

_ _ t t+1

Bevl = B [pt+1“t+1 Peyr 7 A, Te+1 YA,
(41)

IR
YAt og o
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Dy
Biyp = 7 L@~ Tyl + By (42)
with
p,=1=A  , B =0 , E =0 (43)
Perl 7 g4l 7 Pey1 f
as before, and
P
W, ., = log e P, . (x) dx (44)
t+l Prpg (X7 ) Tt+lT .
X1
The optimal dividend is again
* = A R
Ce+1 = Pe+1Res1r T Besr - (45)

The optimal reinsurance treaty transforms the assets of
the I.C. to

R, (& ) = - log 1 o) - EE s E € X
t P+l YAL ¢t+l(€t+l) t t+1 t+1

(46)
or equivalently,

wt+l

1
e41) Regr T Pea1Tes1 ~ Pegn * ‘yAt)

R, (& ) = —— (1 - A
t Ct+l ﬂt+l

Bry1Be | Bggplogoe Pet1 (Beqq)
A, " A “ya. Y9 e E
t t t e+1 Erqn

(47)

Again, the solution is unique.
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Proof. (omitted; similar to Ia).

IV. Remarks

1. Looking at the formulas for dividend payments Eqgs. (15),
(35), and (45) we see that they are linear in the risk reserves

level Rt+l'

*
However, we did not constrain the problem to c ., > O.

Thus it is possible to have negative dividends.

Specifically, for Model Ia we have the following cases:

*
A, c >0 , a<ao =>ct < -

»|o

(a) b>oa—§>o

*
Thus, c can be positive or negative
* -
(b) b < Ozzéct always negative .

Case Ab can be viewed as a charitable organization that expects

to lose all the time.

*

B. c <O R a >O==}~ct > -

PO

*
(a) b > O:%ct positive or negative ,

%k
(b) b < O=:>ct always positive

For the other cases, negative dividends simply mean that
it is to the benefit of the stockholders to increase the capi-
tal of the I.C. in expectation of future returns, once they
have decided that they will stay in business until the N periods
have elapsed.

2. All Models can be extended to the infinite horizon

stationary case simply by taking N > o,

3. The terms describing the assets of the I.C. after the
reinsurance treaty can be explained for Model Ia (16), (17) as
follows:
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B
b t .
The I.C. borrows the amount ' + . ﬂt+l (which grows

B t t

to b + _t by the end of the period) from the reinsurer. It

aAt At

sells its portfolio of premiums and risks and in return accepts

the amount Prt1Te+1 ~ Pee1- It then forms the sum

B
b t
(Revl ¥ Pea1"e4l ~ Pesl T 3AL "e4l 7 A Tev1!

from which it gives a portion At (recall O < A< 1) to the
stockholders. They pay back to the I.C. the amount of

Beyr P My
At a al/c
Bty b
(which is the cost of buying ——chunits of risky invest-
b (e )\ Ay ad
t+1 Ct+1
ment, 3 G y .)
t+1 " t+1

Then the I.C. uses what is left, i.e.

B
b t
(1 = AR )+ PeyaTesr ~ Pear T ah_ Terr K, Tes1)
L Perl bm
N . o1/ "
£ o

to buy the risky investment at a cost of m,,, per unit.
(Similar explanations hold for Models Ib and II)

Py (x)
4. If oY increases in x, then Rt(x) decreases in x

¢
t+1
for all models. This is easy to check and means that the cedent

participates positively in the losses; that is, the higher the

claim the lower his risk reserve level will be at the start of

period t.



-17-

P (x)
+ . . . . .
Also, "—E—l7§T increases with x" indicates that the premium

t+1 "
the reinsurer assigns to risks with high dispersion is higher

than to the premium with low dispersion--this is quite reason-

able.

5. A generalization of the problem can be achieved if we
introduce the decision to spend money for sales promotion. It
turns out that current policies do not change except for the

value of B the constant amount paid to the stockholders.

tl
For further details see [4].

6. Our results resemble those of Hakansson [1] for the
investment consumption problem of the individual. Hakansson
was able to find closed-form solutions for the one period

utility functions: u(x) = xY, 0 < Yy < 1; u(x) = -x_ ', Y > O;

u(x) = log x and u(x) = —e_Yx, y > O. Apart from deciding
on his level of consumption, the individual had to decide on
forming a linear combination of a fixed finite number of in-
vestment opportunities.

In our case, the company chooses the reinsurance treaty
(thus its investment) for solving a calculus of variations
problem, thus satisfying Eqg. (20). This is exactly the reason
why we were able to find closed-form solutions for a wider

class (the LRT class) than that of Hakansson.

7. We will now discuss the cases when the utility of a
consumption stream is not given by (i) or Eg. 1 but by cases (ii) and
(iii) multiplicative forms from page 4. First we let uk(')

= u(+), ¥k. The D.P. relation can again be formulated as

£ (

£+l ) = max {u(c

) Ef_ (R.)} , wu{(<) >0
t t
ct+l’Rt

Rivl £+l

(48)

along with the budget constraint and the boundary condition

fO(RO) = u(RO)
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where we have assumed that uk(') =u(), k=1,...,N., The
formulation for u < O is similar:

f (R

t+1 ) = max {~u(c

) Eft(Rt)} (49)
Ces17Re

t+1 t+1

and has the same constraints and boundary condition.
We note right away that discounting has no meaning here,

as it will not affect the policies. Using Eqg. (48) and

c+l
u(x) = é%%-%—%% , a>0 , -l<c<o0O ,
ax + b >0 (50)
or Eq. (49) and
c+1l
u(x) = é%%—%—%% , a>0 , c<+~1 , ax + b >0 ,
(51)

we can again find closed-form solutions to the D.P. problem
of the I.C.

The solution to the t + 1 period problem for Egs. (48)
and (5) is

Frp1 Regq) = Dy U@ 4Ry Bt+l)]t+2 (52)
as long as a(At+lRt+l + Bt+l) + b > 0, where
Byl T € 1 3 (53)
Dl = Myl %Zle e D¢ » (54)
Beel = Pea1lPra1Meqnr ~ Peer 7 g'ﬂ;:l * ;f Te+1 ~ g(t + 1)1

(55)
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where
1
P (x) (t+1 (c+1) -1
m, .. = t+l P (x) dx (56)
t+1 ¢t+llx5 t+l "
e+l
and

pt+l ’ pt+l [4 ™

t+1
are as before.
The optimal dividend payment is

*

Ce+1 T Pea1Resr T Beyr - (57)

The optimal reinsurance treaty transforms the wealth of
the I.C. to

b
_ _a _ _ b+l
Re(Eeq1) = 7 [G‘ At+l><Rt+l P Pei1Te41 T P+l Tz Rt
t+1 t
1 (58)
(t+1) (c+1)-1
+ At+l g] rPt+1(£t+l)—| __b EE
Be a3l p4n (Epyy)] ahy B¢

The solution is again unique.
The proof is similar to that of the discounted sum of
utilities case and will not be presented here. In addition,

the above solution is the same for Egs. (49) and (51), except
that now

t+1

t+2
D1

f ) = (-1) [u(a + )] .

e+1 Regr t+1%+1 T Beyr

EEH
+
At t+1

)
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We see that the optimal policies found for the multi-
plicative utility cases are essentially the same as that of

the discounted sum approach. We should note, however, that

__1 ; - o
At =+ I (recall that At is the portion of Rt distributed
as dividend). This occurs because of the form of the multi-

plicative utility which gives equal value to the consumption
(dividend) of all periods.
We cannot argue about what happens in the limit, as

t » © as D, has no limit (see Egq. (54)).

t
Finally, we must realize that concerning the discounted
N
sum of utilities U = ) aku(xk), a change of u to the one-
k=0

period utility equivalent au + b produces a utility equivalent

change in U (to aU + b); in the multiplicative utility case

N
(U= u(xk), however, a utility equivalent change in u does

k=0
not result in a utility equivalent change in U, i.e. A, B are

such that

[au(xk) + b] = A u(xk) + B) .

s 2
=2

k=1 k=1
Thus the closed-form results found for Egs. (48) and (49)

are limited to the specific utility functions (50) and (51),

respectively, and do not hold for any other function that is

utility equivalent to them,
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