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Summary

Catastrophe theory is a new field in mathematical
topology that allows the formulation of comprehensive
qualitative systems models which have previously eluded
rigorous mathematical formulation. Because the models
have a topological foundation, many seemingly dissimilar
phenomena can be related to a common underlying topological
structure. The properties of that structure can then be
studied in a convenient form and the conclusions related
back to the original problem. This paper provides an
introduction to catastrophe theory and defines the
principal conditions required for its application.

The basic properties of bimodality, discontinuity
(catastrophe) , hysteresis, and divergence are defined
and illustrated using the simplest structures of the
theory.

The application of catastrophe theory to ecology is
illustrated with the spruce budworm system of eastern
Canada. With a minimum of descriptive information about
the budworm system, a qualitative catastrophe theory model
is hypothesized. This model is rich in its ability to
provide predictions on the global behavior of the system.
To further check and refine the assumptions of this
gualitative model, an existing detailed simulation model
is analyzed from the perspective of catastrophe theory.
The simulation indeed exhibits a basic underlying structure
in agreement with the previously hypothesized model. 1In
this instance catastrophe theory provides a consistent
framework with which to analyze and interpret the results
of the simulation. These interpretations are not at
variance with the first rough qualitative model based
only on a small set of descriptive information.







The Application of Catastrophe Theofy to Ecological Systems*
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Dixon D. Jones

I. Introduction

René Thom [5,6,7] has developed an elegant theory in the
mathematical field of topology that allows the formulation of
system models which are rich in their ability to capture
inherent structure and global, qualitative properties. He has
called this the theory of catastrophes. The powerful aspect
of topology compared with the traditionally used lines of mathematics
is that, by using abstract principles of "topological equiv-
alence," many seemingly dissimilar phenomena can be related to
the same underlying topological structure. Properties of that
structure can be studied in a mathematically convenient form
and the conclusions related back to the original problem.
Fortunately, although the theorem proofs and derivations are
very abstract and out of reach for most non-specialists, the
theorems themselves are often very clear and simply stated.

Thom's principal interest in biology concerns embryology
and developmental morphology. His work is illustrated geo-
metrically, as is natural for a topologist. However, geometry
in more than three dimensions often strains our intuitive
visualization. Among his many fascinating observations is
that the pentagonal symmetry of an adult sea anemone is quite

simply related to a geometric structure that develops naturally
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from the bilateral symmetry of the larvae [5].

E.C. Zeeman [8,10,11] has taken the topological structures
from Thom's catastrophe theory and applied them to a wide range
of dynamic systems. Using these structures, he has developed
models for heartbeat and nerve impulse [9]. The latter model
is simpler than the Hodgkin-Huxley equations, uses fewer ad hoc
equations, and is a better predictor of behavior.

Zeeman has also created a wide range of insightful models
for application in the social sciences [2]. His examples cover
aggression, economic growth, stock market crashes, the arms
race, prison riots, and national war-making policy.

To date there has been very little effort to apply this
body of theory to ecology despite the apparent need for models
that are global and gualitative. Holling calls for this view-
point in his development of the concept of ecological resilience
[1]. He speaks of perturbations that "flip" a system from one
equilibrium region to another. A better comprehension of how
and why this happens is critical to understanding and coping
with ecological systems. Our level of information and percep-
tion often constrains us to gualitative models. Topology and
catastrophe theory can provide us with such models that are
structurally "robust" -- that accommodate refinement of detailed
knowledge. The purpose of this paper is to introduce catastrophe
theory to the ecological literature.

Part II contains a non-technical description of catastrophe

theory as it pertains to dynamical systems. The basic elements



and properties of the theory are introduced and illustrated
with some of the simpler topological structures. In this
section, I follow closely the development used by Zeeman; it
would be presumpfuous to try to outdo his lucid explanatory
style.

In Part III a simple, but nontrivial, ecological example
is formulated into a model based on catastrophe theory.

In Part IV this model is compared with a detailed simula-
tion model of the same situation. It should be borne in mind
that in this instance the simulation model was developed
independently of our present purpose and had no a priori con-

nection with catastrophe theory.

II. Elementary Catastrophe Theory

There are four basic system properties of elementary catas-
trophe structures. Whenever observations reveal one or more of
these properties, it would be fruitful to look for others and
for an underlying catastrophe topology. If such a structure can
be found or hypothesized, the whole body of Thom's theory can
be brought to bear.

The basic properties are:

1. Bimodality

2. Discontinuity (catastrophe)

3. Hysteresis (delayed response)

4. Divergence.

These properties refer to selected system behavior. They may

not all be feasible under naturally occurring situations, but




we should be forewarned that, if conditions are perturbed, the
system may move to a configuration that exhibits additional
properties in the above list.

Bimodality refers to situations where observations tend to
cluster around two {(or more) statistical measures. For example,
the weight difference between males and females of a species
has strong ecological implications for intraspecific competition
and niche separation. Bimodality is a static property and will
not be pursued here.

Discontinuity refers to any large change in behavior asso-
ciated with a small change in some other variable (including
time). This discontinuous behavior, or catastrophic Jjumps,
inspired the name for Thom's theory. "Big effects from small
causes" is part of the ecological experience and may be applic-
able here,

Hysteresis occurs when a system has a delayed response to
a changing stimulus. Thus a plot of response against stimulus
will follow one path when the stimulus increases and another
when it decreases. Hysteresis is best illustrated graphically
in later examples.

Divergence occurs when nearby starting conditions evolve
to widely separated final states. Thom is interested in the
divergence of adjacent embryonic cells into separate tissues.
Speciation is likely an evolutionary example. In population
dynamics initial conditions just above and just below an "extinc-

tion threshold" will diverge to very different final states.



We shall return to these properties after constructing
illustrations for the simplest catastrophes.

In Zeeman's work with the heartbeat and nerve impulse [9],
he began with only three axioms of observed behavior. These
were: (1) there exists a stable equilibrium condition, (2) there
is a threshold of a stimulating factor that triggers a fast
action away from equilibrium, and (3) there is a subsequent
return to the original equilibrium. He further subdivided the
return phase (3) into (3a), a fast "jump" return (as with the
heartbeat), and (3b), a smooth return (as with the nerve).

Starting with these axioms he developed the simplest model
possible that could exhibit the necessary dynamic behavior. The
important distinction is that he set out to model the overall
dynamics rather than (say) the physiochemistry. After develop-
ing qualitative dynamic models, he was then able to identify the
necessary measurable attributes and variables to transform his
models to quantitative ones.

Many applications of catastrophe theory to real situations
are at the stage of metaphor or simile. This in itself can be a
very useful first step because a large number of global, qualita-
tive characteristics can be carried in a simple, easily under-
stood format. The interested reader is encouraged to read
Zeeman's work on heartbeat and nerve impulse [9] as it exhibits
the full spectrum of development from the above three axioms
to a quantitative, predictive model.

We shall not follow the axiomatic approach, but shall




describe the resulting conditions that are applicable. Many of
the vulgar simplifications and the lack of rigor will disturb
the pure mathematician, but as we are interested in modelling
real, existing situations having a high degree of uncertainty
and noise, we shall dismiss discussion of the razor-thin excep-
tional cases. The rigorous route has been followed by Thom,
Zeeman, and others; the final description is consistent with
their work even if it avoids some of the precision along the
way.

The description "catastrophe" and the property of catas-
trophic jumps and fast-acting behavior point to the types of
situations that are of interest. Namely, the underlying dynamic
of our system must be capable of making fast changes. "Fast"
is of course only relative and we begin by categorizing the
variables of our system into fast variables and slow variables.
The greater the separation in the speed, the clearer the dis-
tinction between types. If the speeds are more uniformly dis-
tributed, the resulting behavior will deviate from the idealized
type that we describe here.

To help generalize, the collection of slow variables can
be alternatively considered as parameters, external variables,
driving variables, inputs, controls or causes, depending upon
the context. The fast variables can then be considered as state
variables, internal variables, outputs, behavior or effects.

Any particular discipline will find some ambiguity in these

lists. They are meant to serve only as a guide. The mathematical



ecologist perhaps will be most comfortable with the state
variable/parameter combination. Decomposition into fast and

slow variables has seldom been used explicitly although processes
that are faster or slower than an "ecological time scale" have
often been omitted to reduce complexity. Any dynamic variable
can be considered as slow if understanding is increased by

doing so. We may often begin by holding the slow variables

fixed and studying the behavior of this restricted system. Catas-
trophe theory allows us to translate this constrained behavior
into the behavior of the unconstrained system. The distinction
between fast and slow variables must be pragmatically defined,
but we will find in the example of Part IV that, even when this
separation breaks down, we can still gain useful information.

We symbolically represent the collection of fast variables
by x and the siow ones by p. The space of fast variables, x,
is taken to be of dimension n while the slow variables, p, have
dimension k. The entire system then has dimension n+k.

The major requirement for the system is the existence of
some function V(x;p), such that when p is held fixed, V(x;p) is
minimized as the system evolves. At first glance this appears
to be a highly restrictive condition, especially if we are
dealing with a system that is poorly understood. The interest-
ing and important feature of this theory is that we never have
to know explicitly what this function is, or what it represents.
It may be interesting and instructive to look for this function,

but its discovery is not a necessity.




V(x;p) can be thought of as a potential function, an energy
function, an entropy function, a cost function, .or a probability
function. (In cases where it is natural to think of a V function
that is maximized, we need only replace V by -V to obtain the
required minimization.) If these interpretations are objection-
able because they imply some internal "purposefulness" for the
system, V(x;p) can be thought of as a Lyapunov function for the
set of describing equations. There are thus two complementary
perspectives available. The first is direct information about
the existence of some V(x;p) function. This implies an equilib-
rium directed trajectory for x. On the other hand, trajectories
that are known to evolve to equilibrium states imply the existence
of V(x;p).

The effect of the minimization of V(x;p) is that for any
fixed p, the system will move to some equilibrium x*. In general
there may be more than one such equilibrium. In terms of familiar

differential equations, for fixed p, the system evolves according

to
dx _ .
at f(x;p)
to some state x* where f(x*;p) = 0. In many applications f (x;p)

can be equated with the negative of the gradient of V(x;p) with
respect to x. |

We are interested in how the various x* equilibrium points
change as we move p throughout the range of its k-dimensional

space. We call the set of equilibrium points (the points that



satisfy f(x;p) = 0) the manifold Mf. In situations of interest

Mf is a "k-dimensional" surface. That is, if k =1 (i.e. if we
consider only one parameter or slow variable), Mf is a line
traversing our n+l dimensional state space. If k = 2, Mf is
some surface. When k > 2, we have a higher dimensional "surface"
which is not as easy to visualize from common experience.

We want to find the changes in system behavior when we
change p, or when the slow variables evolve. To aid this search

we construct the projection . of the equilibrium manifold Me

£
onto the space of p. The projection locates the parameter values
corresponding to important features of Mf.

Let us pause and review graphically what we have done thus
far. In Fig. la is a fwo—dimenSional space with one fast vari-
able x (a population density, say) and one parameter p (e.g. a

carrying capacity). With the conditions that we have imposed,

that the value

we assume for some fixed p = P and initial x Xq

of x moves "quickly" to an equilibrium point xI according to
some function %X = f(x;pl). For another p = P, and another x = X,

the system goes to x The collection of points connecting all

*
L
equilibrium points is the manifold (line) Mf in Fig. lb. The

projection N_ is just the p-axis.

£

The reason for and effect of making the fast/slow distinction
in our state variables can be seen in this figure. If p is at

Py, X will be at xi. Now if p moves to Py either by external

manipulation or by its own dynamic process, x will go from xi

to XE along the manifold Mf. In the idealized case where the
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ratio of fast to slow speeds is infinite, trajectories would

follow the manifold M_. exactly. When the fast/slow separation

f
becomes blurred, trajectories will be displaced from the mani-
fold. However, even then the trajectories will be "organized"
around the manifold.

As we noted previously, for any fixed p there can be more
than one equilibrium. Fig. lc shows several trajectories to
final equilibria. The complete manifold is shown in Fig. 1d.
This manifold differs fundamentally from that in Fig. 1lb. First,
the sequence of equilibria is broken between Tl and T2. The
broken line is part of the manifold since it satisfies the
condition that X = f(x;p} = 0. It represents the locus of
unstable equilibria separating the upper and lower attracting
surfaces. In any real system there will always be a certain
amount of noise which will carry x off any such unstable equilib-
rium. The segment Tl--T2 then acts as a repellor for trajectories;
the solid branches are attractors.

The second major feature éf Fig. 1d is that the projective

map . is no longer one-to-one onto the p-axis. Between Tl and

£

T, three branches of Mf correspond to the same section of the

"

<

p-axis. At both T, and T, the vertical mapping projection coin-

1 2
cides tangentially with the manifold Me. The projections of Tl

and T., appear at the parameter values S, and S,. These points

2 1 2
are called singularities of the projection Me.
The manifold in Fig. 1d schematically represents the first

principal type of catastrophe -- the fold catastrophe. The
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simplest (lowest degree) polynomial that is equivalent and

representative of the fold catastrophe is
_ 3
f(x;p) = -(x7 - x + p) .

The singularities occur whenever

|
% Hh
[
(=]
L]

In the above polynomial case

%)
Hh
[ZY)

= =3x"+1=0 .

|

@
b

Substitution gives the singularities at

_ .2
P =iz

oy

The fold is the simplest catastrophe. With it we can
demonstrate three of the four basic properties that we presented
at the start of this section. First, bimodality: this is a
consequence of the double equilibria for a portion of the param-
eter range. Repeated observations can detect the system on
the upper attractor at some times and on the lower at others.

To visualize catastrophic jumps, consult the folded mani-
fold in Fig. 2. Initially p = Po and the system is at A. As
we increase p to Py the system moves along the manifold to B.
But when p crosses beyond the singularity Sl’ the system is
forced off the manifold at T, and makes a catastrophic, "fast"

1

jump to the upper branch at C. Continued increase carries the
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system again smoothly along the manifold to D. It is this
behavior that gives the theory its name. The significant fact
is that the specific form of f(x;p) is not important for this
behavior, but only the existence of the fold singularity in the
projection onto the slow variable axis.

Hysteresis is easily shown with this same manifold. We
begin with the system at D (Fig. 3) and retrace our steps. At
C we do not make a jump return to Tl but rather continue along

the manifold to T, above the other singularity S Now at

5-

this point there is a jump return to the lower attractor and

the system proceeds on to A. The property of following a dif-

ferent return path after a reversal of input is called hysteresis.
Why we do not jump from C down té Tl requires an explana-

tion. When p = Sl both C and Tl are possible equilibria and

therefore both are minima of V(x;p). The value of V at T, could

1
actually be less than V at C, but the transition would not be
allowed as it would require a temporary increase in V when we
move away from the manifold at C. 1In other words, the system is
following the local minimum. The theory can be adapted to
systems that seek a global rather than local minimization but
the ecological applicability would be limited.

An example of divergence is not possible on the fold catas-

trophe. To include it we must use a minimum of two slow dimensions

and introduce the cusp catastrophe.

Consider one fast variable x and two slow ones p and gq. The

simplest polynomial representation of the cusp catastrophe is
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X = £(x;p,q) = —(x3 + gx + p) .

The manifold is the surface generated by f(x;p,q) = 0. The
two-dimensional Fheet corresponding to this function is
embedded in our three-dimensional state space. It is illu-
strated in Fig. 4.

In this example when g > 0, M_ is single sheeted; when

f
q < 0, it is triple sheeted. Note that for a fixed negative

q, we have the fold catastrophe as a special case. If p goes
from P, to Py the state trajectory follows the manifold smoothly
from A until it becomes tangent to the x-axis, at which point
there is a catastrophic jump to the lower attractor before
continuing to B. A path with fixed positive g (C to D) does

not cross a singularity in the projection map 1 and thus

fl
avoids the fast jump.
The critical feature is the mapping of the manifold onto

the space of the parameters (p,q). The outer edges of the folds

project down to the curved bifurcation lines. The point where

the manifold changes from triple to single sheeted (the origin
in this example) is a cusp -- giving the name to this configura-
tion. The entire situation depicted by Fig. 4 we call a cusp
catastrophe. It involves the fold singularity discussed above
and the cusp singularity where the bifurcation lines join.

To illustrate the fourth property, divergence, consider
two nearby states E and F in Fig. 5. If the parameter q is
reduced to a negative value, the two states will move steadily
to points G and H, respectively. Thus, even though both paths

start arbitrarily close, and both experience the same parameter
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change, they end up at widely separated final states. The
reason, of course, is that their paths take them on either
side of the cusp, and EG ends on the upper sheet while FH
is on the lower.

Besides divergence there is another important point which
is characteristic of the cusp catastrophe but not of the fold.
In Fig. 2, movement from A to D is accompanied by a jump at T
The only way to return from D to A is as shown in Fig. 3 --
that is, by return jump at T,. This jump return is also shown
on the cusp manifold in Fig. 6. However, there is now a way to
obtain a smooth return by going around the cusp on the return
from D to A, As a first approximation Zeeman used the fold
catastrophe as in Figs. 2 and 3 to model the heartbeat, but was
requirad to use the cusp catastrophe to produce the smooth
return of the nerve impulse.

Now that two elementary catastrophes have been described,
we are in a position to state Thom's theorem (in a casual but
usable manner) and to comment on its fundamental importance.

Recall the conditions that we have set out. The fast
variables form a vector x with dimension n. The slow variables
(or parameters, or whatever) consist of a space of dimension k,
the whole system being of dimension n+k. Next, the fast vari-
ables obey a dynamic flow %X = f(x;p) that places the state some-

where on the manifold M given by

f{x;p) =0 .



- 15 ~

Additionally there is a projection I, of Mf onto the space of

f
slow variables.

Theorem (extractgd freely from Zeeman)
If k < 5 and £ is generic (an abstract mathematical con-
dition expected in almost all
real situations) ,
then
1L Mf is a manifold with dimension k,

2) The projection II_ is stable under small

f
perturbations of the function £,

3) Any singularity of Te is equivalent to
one of a finite number of elementary

catastrophes.

The number of elementary catastrophes for each k < 5 is

k = 1 2 3 4 5
Number of

elementary = 1 2 5 7 11
catastrophes

First note that n, the dimension of the fast variables,
does not appear anywhere in the theorem. 1In the simple examples
used above, we let n = 1, but we could just as well have let
n = 10,000. This feature makes it possible to apply catastrophe
models to embryology where there are a staggeringly large number
of variables associated with the physical and chemical states

in all the cells. The potential for ecology is obvious.
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The second point to note is that there are only a finite
(and small) number of elementary catastrophes (for k < 5). 1In
fact, while considering our first example with k = 1, we found
the only type -- the fold catastrophe. Likewise, when k = 2
we found all possible cases with the combination of the fold
and the cusp. The classification of catastrophes becomes con-
tinuous rather than discrete when k exceeds five. In many practical
situations, the assessment of five simultaneocusly changing param-
eters will be rich enough.

We have proposed

£(xip) = =(x> - x + p) (k

1)
and
f(x;p,q) = —(x3 + gx + p) (k = 2)

as the simplest representations of the first two catastrophes.
But in the phrase of Zeeman, these are the most complicated
representations as well. That is, the generated catastrophes

are the only ones for k = 1 and k = 2. By gaining an understand-
ing of the properties of these elementary catastrophes, we will
know in advance a great deal about the global properties of any
situation that fits the requirements.

Primarily the models of catastrophe theory serve as hypo-
theses for further testing. The models also show that there can
be a sound, deterministic‘mathematical foundation underlying
some perverse phenomena that would otherwise prevent analytic

investigation. Finally, for the manager of ecological systems,
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catastrophe theory provides a warning that continuous changes
and perturbations of a system may lead to very discontinuous
outcomes. And recovery may require much more than simply
restoring the system to the conditions that prevailed prior
to the change.

Most discussion to this point has talked about dynamic
systems in general and very little specifically about ecology.
In the next section we consider the classic situation of the
spruce budworm of eastern Canada. It clearly exhibits cata-
strophic jumps in abundance. A very qualitative model is proposed
using the fold and cusp catastrophes. This model carries with
it all the properties that are inherent in that formulation. It
suggests some qualitative features that should exist even though
they have not yet been recognized. Finally, as this case is of
serious economic and managerial importance, we can call on the
qualitative features of the cusp catastrophe for preliminary
policy.

In Section IV, as a test of our qualitative model, we shall
examine a detailed budworm system simulation model constructed
previously for quite different purposes. If the simulation has
a comparable catastrophe structure, we will be in partial fulfill-
ment of demonstrating a hard example of an ecological system

fitting the characteristics of the theory.
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ITI. A Qualitative Ecological Model

The spruce budworm of eastern North America serves as a
specific example. Details of this intensively and extensively
studied insect can be found in Morris [3]. We present only a
very brief summary of the budworm system here, but from a small
amount of information, we can propose a richly predictive model
of the global dynamic structure of this ecosystem.

In the maritime provinces of eastern Canada the budworm
strongly favors balsam fir as a host. Balsam has a large geo-
graphic distribution and in many regions well over half the
land area is forested with this species. As a first approxima-
tion, we consider this as a two-species herbivore/plant system.

The budworm is characterized by long periods (40-70 years)
when it is extremely rare, but at a seemingly stable density
level. Following this period of low endemic population, the bud-
worm enters an outbreak phase where in three to four years its
density increases by upwards of five orders of magnitude. At this
population density all of the newly produced foliage, and some
of the older, is completely consumed over vast areas of forest.
After four or five years of such heavy defoliation, tree
mortality becomes nearly complete. The understory 1is primarily
young balsam fir that are effectively immune to budworm attack.
They are "released" to grow by the removal of the older parental
overstory. Meanwhile, the budworm is faced with an increasing
threat of predators, parasites and disease as well as a very
diminished food and oviposition resource. The population guite

rapidly returns to the endemic state -- the whole outbreak cycle
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lasting only seven to fourteen years.

A great deal was known about this cycle in anecdotal form
long before any scientific investigations were begun. We
hypothesize that’ the outbreaks (and perhaps the declines) are
catastrophe jumps and fit the budworm/forest system to the
catastrophe framework. Even at this level of detail some
interesting conclusions can be drawn.

Our fast variable is the density of defoliating budworm
larvae, NL. We begin with only one slow variable which we call
F. This is a gualitative measure of the available foliage in
the forest; the exact interpretation is not important at this
stage. We recognize that the intrinsic growth rate of NL can
be much faster than that of F. We aré in a case with k = 1,
and therefbre use the fold catastrophe as our model (Fig. 7).

We begin Qith the system at point A: The forest is young
and the budworm are at the endemic level NL,. ‘As the forest

0
matures, we move to point B, still with NL = NL,. At T, the

0" 1

budworm are forced off the lower equilibrium level and rise
guickly to the upper attracting line. The path is not exactly
vertical because the forest continues to grow during the two
or so years required to reach this upper level. With this time
lag imposed by a finite (yearly) generation time, we might expect
some over-shoot,

Almost no mention has been made of the dynamic processes
that govern the movement of the slow variables on the fast mani-

fold Mf. The functions that describe this slow flow are under

no restrictions other than relative speed. However, it is the
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specifics of the slow flow that determine the system response --
it is the slow flow that carries the system over or around the
catastrophe singularities.

Typically the preponderance of an investigation is centered
on the dynamics of the fast variables while only minor consider-
ation is given to the dynamics of the slow ones. This is certainly
the case with the spruce budworm. Research on the population
dynamics of the insect far outweighs that done on forest response.

Returning to Fig. 7, we propose a reasonable feedback rela-
tionship of the budworm on the forest. At high levels of NL,

defoliation by the insect decreases F until T, is reached, where-

2
upon there is a jump return to the endemic level at C. The
accumulated stress on the trees continues to decrease F as the
affected trees die. At A the cycle begins anew.

A simple, descriptive feedback dynamic for the forest

variable could be
=~ = r*F+ (1 - F/K) - m+NL*F .

When NL is small(NLO), the forest grows toward F = K according
to the logistic growth curve. The term m<NL-F is the "mortality"
of F due to budworm consumption. When NL is on the upper

attractor, we have
meNL > r

and F begins an exponential decline. To incorporate the delayed
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effect of accumulated stress, we could replace NL by NL(t) +

NL(t - 1) to give
= r+Fe(1l - F/K) - m*F«(NL(t) + NL(t - 1))

This equation is meant to be only descriptive. Its exact
form is not important here. What is required is that F respond
to NL so that the flow moves to the right on the lower branch
and to the left on the upper. The overriding feature of impor-
tance is that Mf is shaped into a fold catastrophe as we have
hypothesized.

The folded Mf carries with it some important implications
for this system. (Refer to Fig. 8.) ' First, if the foliage, F,
can grow toward an upper asymptote, K, that lies beyond Tl, an
outbreak is inevitable. If, however, this level is reduced to
K', below Tl {(by tree thinning or logging, for instance), the
system is held on the lower attractor at endemic population
levels.

With K at K', we are at the stable equilibrium point A'.
But even then an addition of a (perhaps small) number of in-
migrating budworm is enough to move the population from A' to B.
An outbreak is triggered.

If during an outbreak (point C) insecticide control is
used (as is the present policy in Canada), the system will move
to some new point D. This point will be to the left of C because
of the decrease in F due to current and past defoliation. Unless
D is below the T

- T, branch, the system will return again to

1 2
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the upper attractor. The same displacement at C' will carry NL
across the Tl - T2 boundary. A collapse will occur even though

D' is still to the right of T Note that the earlier in the

1°
outbreak, the larger must be the downward displacement to effect
control.

Through continual insecticide application, we may be able
to hold the system at some point E where intrinsic growth of F
is just balanced by defoliation losses due to NL. The conse-
quences of any relaxation of control are obvious. 1In fact, this
situation appears to be what is at present occurring in many parts
of eastern Canada.

So far we have used only one slow variable which necessarily
requires a jump return to the lower level. As a transition to
the next Section, we develop an alternate model using the cusp
catastrophe. Since the fold is a special case of the cusp, we
retain the fast return in our repertoire and add the possibility
of a smooth return. We also add the possibility of eliminating
the catastrophic jumps altogether.

In the above discussion the variable F was only vaguely
defined. We now split this slow variable into its two primary
components. The first is the amount of habitat available to
the budworm per unit of land area. The normal field measure is
in units of branch surface area, SA. There is a nearly monotonic
increasing relationship between SA and average tree age, SO we
have SA increasing with time if we begin with a young forest.

The other slow component is the total amount of foliage



- 23 -

available on each unit of branch area, FT. As a first approxima-
tion we assume this to be independent of tree age and largely
subject to decrease by defoliation. SA is then a measure of
available real estate, and FT is a measure of available food
resource.

Fig. 9a shows a possible configuration of a cusp manifold
with k = 2. The surface has been rotated 180° and distorted
slightly, but it still maintains the features of the cusp.

A typical path begins at A with full foliage and a low
branch area. As time passes, SA increases until the trajectory
intersects the fold curve at Tl' This corresponds to the point
where the trajectory passes out of the cusp region in the SA-FT
plane. The system is quickly drawn to the upper attracting
sheet. Again we allow for some over-shoot. The path from here
has two distinctly different possibilities. In (a), FT is reduced
and the resulting food shortage quickly, but smoothly, returns
the budworm to endemic levels. The dynamic flow on the manifold
is such that the reduced foliage causes increased tree mortality
and a lowering of average tree age and branch area. Foliage
then recovers as young trees begin to grow into the population.

Path (b) differs from (a) in that tree mortality begins at
a lower level of defoliation (higher FT). The flow on the mani-
fold bends sooner than in (a) and is carried back over the cusp,
giving a jump return ﬁo endemic levels.

We emphasize again that it is the slow flow equations that

separate path (a) from (b) and determine when and where the




catastrophic jumps will occur.

In Figs. 9b and c are two alternate configurations of the
manifold. In 9b there are two cusps in the (SA, FT)} plane. In
this case the return to endemic is a jump except for a very
narrow path between the cusp points. In 9c the cusp lies out-
side the region of possible values of SA and FT and thus we have
returned to the fold catastrophe.

It is not possible to distinguish between these various
manifold configurations simply from the description in the open-
ing summary. These are alternates from which to launch further
investigations. In the next section we shall examine a surrogate
for the real situation using a previously constructed simulation
model of the budworm/forest system. That model was not created
with any mind to catastrophe theory. It was part of a program
with quite different goals. The simulation was designed to
mirror explicitly the functional relationships of the underlying
population processes. In other words, the simulation models the
biology while catastrophe theory models the dynamics.

As a model, its mathematical structure can be precisely
examined. We shall see that this model contains the fundamental
features required by catastrophe theory. We will be able to

locate the catastrophe manifold M. and the singularities of the

f
projection ﬂf. Even in those places where the fit with theory
is not close, the global, structural viewpoint of catastrophe

theory will lead to some conclusions and understanding that were

not appreciated previously.
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IV. The Catastrophes of a Budworm Model

In this section we shall examine the structure of a detailed
budworm simulation model to see whether we can identify any of the
general catastrobhe structure that we have hypothesized. There
are several good reasons for taking this approach. First, the
simulation incorporates biologically realistic functional rela-
tionships that accurately portray the qualitative aspects of the
real situation. It is based on an intensive set of data covering
more than 25 years of study as well as the collective experience
and judgment of many of the principal investigators. There is
considerable reason to believe that this is a reasonable approxi-
mation to reality.

Second, the simulation was constructed with no intent to
"map" it onto catastrophe theory. If we find a correspondence
with that theory when there should be none, it will be coincidence
and not an unconscious bias of the model.

Third, the simulation is a concrete set of mathematical
equations and as such will yield a precise set of characteristics
without the distractions of random noise and statistical uncer-
tainty.

Fourth, and not the least compelling, is the following:
we have made various claims that when a system displays one or
more of the basic catastrophe properties, we have reason to
suspect that it fits into the catastrophe theory framework. Once

built, the budworm simulation, as a dynamic system itself,

exhibits some of these properties independent of the ecological
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process it was meant to imitate. It will add credence to those
claims if we can show that the simulation, as a dynamic mathe-
matical entity, has a catastrophe structure.

The simulation was the core of a program to develop and test
a range of integrated techniques and methodologies for resource
management and_policy analysis. An outline of that program is
in [4]; a detailed monograph is in preparation.

We shall not trace through the inner workings of that model
here, but some comment should be made on the state variables
used. The budworm generations do not overlap, so the density of
any one of its life stages will serve as a single variable for
the insect. The density of large larvae (instar III) is chosen
for convenience and designated NL. Dénsity is scaled to that
used in field measurements -- number of individuals per ten square
feet of foliage surface area.

The age structure of the trees is contained in twenty-five
three-year age groups. Group 25 also holds all ages greater than 75
years. The contribution of branch surface area by each group is
summed to give the total surface area SA. This gquantity is then
scaled between 0 and 1 and shown as SAR in the following figures.
Although the time course of SAR will depend on the particular age
distribution of trees, we shall consider it as a proper slow
state variable in this discussion. SAR, and not the age distribu-
tion itself, affects budworm survival.

Balsam fir retains its needles for an average of eight years.

In the simulation, foliage is aggregated into new growth and old
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(> 1 year), and averaged for all tree age classes. In the
following discussion the variable used is the total foliage
available (per unit of surface area) in the spring prior to
defoliation. We scale this also between 0 and 1 and call it
FTS.

A stochastic yearly index of weather was an additional
element in the simulation. Weighted measures of accumulated
heat units and precipitation were combined into a three-level
index: "poor" (w = 1), "average" (w = 2), and "good" (w = 3)
weather. A statistical model was constructed to provide a
synthetic weather trace comparable to an historical one. We
will not consider this element at the moment but will return
to it after looking at the model with the weather held constant
at its average value (w = 2).

In the following figures NL (the density of larvae) is
the fast variable and SAR (surface area) and FTS (foliage) are
the slow ones. During the endemic phase the forest is young
(SAR < 0.1) and the trees have full foliage (FTS = 1.0). Because
the budworm is so rare at this time, very little is known about
the population controls in effect at this density. As a prag-
matic move, an absolute floor of NL = lO_5 was built into the
model to represent the endemic density.

The equilibrium manifold M

¢ was found by holding SAR and
FTS fixed and searching for NL values that did not increase or
decline through one iteration of the model. A cross-section of

the budworm manifold for FTS = 1.0 is shown in Fig. 10. The
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"+" traces the attractor surface and the "x" the repellor. This

is easily recognized as equivalent to the fold catastrophe. The

lower attractor is at NL = 10_5, though it appears as zero on

an arithmetic scale. The usual fold points are marked at

T, : SAR = 0.260
and
T, : SAR = 0.175
A series of FTS = constant cross-sections was made and

assembled into the perspective plot in Fig. 11. Note that the

upper-back curved line is the same as the cross-section in Fig. 10.

The flat area in the lower left of the FTS - SAR plane is the
-5

endemic level NL = 10 ~. The upper fold curve (dashed line)

goes from T, (as before) to the cusp point at

2

FTS = 0.60 ,

SAR

The shaded area is the projection 0. of the fold onto the plane

f
of the slow variables.

Fig. 11 clearly shows that for average weather conditions,
the budworm manifold is formed into a cusp catastrophe. Given
that such is the case, we would expect the system to progress in

a manner similar to Fig. 9a. We now follow the course of a

typical cycle.
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In the absence of budworm the forest will progress to a
steady-state age distribution with a surface area value of

SAR = 0.65. As this is beyond the fold point T, of Fig. 10, at

1
least one outbreak is inevitable. Continued periodic outbreaks
require the slow flow to carry the system off the upper surface
and onto the lower. We again call attention to the importance

of the dynamics of the slow flow.

In Fig. 12 we repeat the fold curve at FTS = 1.0 and project
the first few cycles onto the plane of FTS = 1.0. The first
cycle begins at point A and moves horizontally to the right. The
fast-rising section is still in the plane of FTS = 1.0, but the
diagonal decline moves up out of the\figure to a point near
FTS = 0.3.

Although the vertical rise is rapid, it does not occur at
T, - The reason for this discrepancy will point us to a special
consideration for ecological systems. Fig. 13 is exactly like
12 but with NL on a log-scale. The curve does indeed start its

ascent at T, but, because the fast dynamic is proportional to

1
the population, we find that it is slow when NL is low. We should
bear this in mind whenever the fast variable is a species popula-
tion.

To complete the picture, Fig. 14 shows the same cycles
projected onto the plane of SAR = 1.0. When log(NL) is used, the
manifold appears as shown -- though not quite a fold, it is very

steep. Fig. 15 is a view of the trajectories on the FTS - SAR

plane showing the portrait of the slow dynamic.
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We find that, even though NL is not particularly "fast" at
low levels, the general conclusions of catastrophe theory are
still upheld. A second discrepancy with our idealized require-
ments is the speed with which FTS drops during defoliation.
However, this does not eliminate the catastrophe framework as
a useful model.

Consider the following: foliage has a stable equilibrium
at FTS = 1.0. Periodically it drops quickly to a low level and
then slowly recovers to 1.0 again. Can we find an elementary
catastrophe in this situation? The answer is yes.

If we temporarily think of FTS as the fast variable and SAR
and NL as the slow ones, it is possible to construct the corre-
sponding manifold. A cross-section at SAR = 0.8 is shown in
Fig. 16. As NL increases, defoliation carries FTS past Tl where,
due to reduced photosynthetic ability, the foliage is unable to
replace its losses, and it drops to the "lower" attracting surface.
This surface is not at zero because new foliage is being added as
young trees grow into the tree population. Once the budworm
density drops below T2, the foliage recovers again. Thus, a
seeming fault in our formulation has led to additional, but
consistent, understanding about our system.

The conclusions that we reach from this look at the catas-
trophe structure of the simulation model are not qualitatively
different from those discussed in relation to Fig. 8, which was
based only on limited descriptive information. This says a great

deal for the potential of the catastrophe viewpoint.
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All ecological systems are continually subjected to random
perturbations and noise. The global perspective we have presented
here makes it possible to qualitatively predict the outcome of
shifts in state location. One need only know where the new point
is in relation to the fast mainfold. But what of perturbations
that change the structure of the manifold itself? The budworm
simulation gives us a first look at this problem.

As was mentioned above, the simulation contains an aggregated
stochastic weather index. It enters the model dynamics by chang-
ing the rate of survival from the larvae to the pupae stage.
Relative to the average (w = 2), weather class 1 lowers survival
while class 3 promotes it.

First, we look at the manifold for these other two conditions.
The case when w = 1 is shown in Fig. 17. Note that the fold is
deeper than before and that the cusp has moved outside the region
of feasible (SAR, FTS) values. The upper fold curve is the dashed
line ending at T2. The shaded region is the visible portion of
the fold projection. Recall that in the absence of the budworm,
the flow on the lower attractor will bring the state to FTS = 1.0
and SAR = 0,65. This point is at the intersection of the two
heavy arrows. (The actual point is hidden by the fold in this
projection.)

If the weather were constantly "bad", it would be possible
to place the system at that point and it would remain there, and
an outbreak would no longer be inevitable. However, if the bud-

worm density were ever to fluctuate above NL = 10, the repelling
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surface would be crossed and an outbreak would occur. Tests
with the simulation at constant w = 1 confirm these observations
and further show that the slow flow is unable to sustain a
sequence of outb}eaks.

In Fig. 18 is the manifold when w = 3. It has lost its
catastrophe configuration -- and with it the ability to exhibit
outbreaks! The system oscillates rapidly with a period of six-
seven years. The location of the activity is shown on the FTS - SAR
plane in Fig. 19.

To observe what the budworm is doing, we look at the cross-
section A - A (Fig. 20). The system is hanging very near the
cliff edge, being continually drawn under the manifold by the
increase in SAR.

The section of Fig. 19 through B - B is shown in Fig. 21.
The fluctuations along the FTS dimension are much larger. We can
see from this that, even though we lose the fold in the budworm
manifold, the system still operates back and forth on the foliage
catastrophe shown in Fig. 16.

In total, the system operates by three different modes.

When w = 3, the final state is an oscillation around the FTS fold
catastrophe. When w = 2, the budworm cusp catastrophe is added
and an approximate limit cycle results. When w = 1, the cusp
becomes a fold which is located so as to allow a stationary final
state.

What happens when these three forms intermix is not clear

a priori. If budworm densities were to rise quickly from endemic
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levels whenever a lower fold singularity (T was crossed, we

l)
would expect good weather to have a substantial triggering
effect. However, because the rise begins so slowly, weather
triggering is mﬁéh diminished. Indeed, simulations with histor-
ically realistic weather index sequences produce trajectories
that differ only slightly from those with weather held constant
at 2.

This last conclusion is at odds with the accepted evidence
[3]. Tree ring data have identified a strong association between
sequences of "good" weather and outbreaks. The simulation shows
only a very weak association. I suggest that intersite migration
1s the key to resolving this issue.

The initial rise is slow because population growth is
proportional to population. However, additions to the population
through migration will not in general be highly correlated with
the density on site. These population increments are in absolute
terms rather than relative ones and will have a great effect in
carrying the population up into the faster-moving regions. We
therefore expect that fluctuating weather and intersite migration
will mix synergistically and affect the outbreak dynamics pro-

foundly. Simulation experiments with a constant level of in-

migration confirm this conclusion.




V. Conclusion

The application of catastrophe theory to ecological situa-
tions will have to develop as an art before it becomes a science.
Experience in bo%h success and failure will help in that transi-
tion. As a technique or "style" fdr analyzing an existing model,
it has been very successful. It provides a rigorously based
viewpoint from which an organized set of conclusions can be
drawn. We have only begun to probe its significance for ecolog-
ical management. With it, a sound model can often be proposed
where none was thought possible. Being global, it addresses
issues where new events may take a system to unexplored ground.
Being qualitative, 1t provides guidance as we live and operate
in a world of whose nature we are grossly ignorant.

Holling's development of ecological resilience [1l] sought
generalizations from observed cases. Catastrophe theory provides
a model upon which some of those cases can be framed. It
satisfies the call for an orientation that is qualitative,
structural, and global, and it provides a starting point for
generating hypotheses when answers are needed and information

scarce.
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Table of Symbols

A general vector for variables with a fast dynamic
behavior.

Parameters or slow variables.
The dimension of x (the number of components).
The number of parameters under consideration.

An equilibrium of x for fixed p.

The time derivative of x (=g%).
The dynamic function that determines the behavior
of x for fixed p. (x = £(x;p)).

An unspecified function, minimized as x approaches x*.
Catastrophe manifold defined by f (x;p) = 0.

The projection of M_ onto the parameter space.

f
Locations of folds on the manifold Mf.

Locations of the projections of T in the parameter

space.

1772
The population density of budworm larvae.

The endemic level of NL.

A general measure of forest resource availability.
The upper asymptote of F.

"Intrinsic growth rate" of F.

"Mortality rate" of F due to budworm.

Time delay for mortality of F.

A unit of branch surface area.

SA scaled between 0 and 1.

Total foliage (needles) per unit of SA.

FT scaled between 0 and 1.

An index of weather.
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