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This paper presents a dual forest iteration algorithm for solving the 
stochastic transportation problem. The algorithm i terates  from one dual 
forest to  another  with the  values of the dual objective function strictly 
increasing in  t h e  nondegenerate case. It therefore converges in  a finite 
number of steps. A t  e ach  s tep  it is necessary to solve a t  most  two one- 
dimensional monotone equations. If the  computation is interrupted 
before completion, a primal feasible solution, and  upper and  lower 
bounds t o  the  optimal value of the  objective function can  be obtained. A 
numerical example is also presented. 
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The forest iteration method for solving the stochastic transportation prob- 

lem (SF) was Arst presented in [12].  h he major advantage of this method, and 

one which distinguishes i t  from other approaches (see [1,4,5,6,7.8,10,11,15, 

16,18,19,20,21,22,23]), is i ts  finite convergence. 

The forest iteration method iterates from one base forest triple to  another 

with the  values of the  objective function strictly decreasing. At  each s t ep  i t  is 

necessary to solve a small number of one-dimensional monotone equations. 

I t  is interesting to consider whether i t  is possible to construct a 

polynomial-time algorithm capable of solving the ST. Looking a t  t he  deter- 

ministic case, we see that  there i s  still no known polynomial-time primal sim- 

plex method For the  transportation problem (TP), but that  a polynomial-time 

dual simplex algorithm for the  transportation problem has been given by Ikura 

and Nemhauser [9], and some of the  special properties of dual transportation 

polyhedra have been explored by Balinski [2,3]. A &st step in the  direction of a 

polynomial-time algorithm for solving the  STP would therefore seem to be to 

establish a finitely convergent dual forest iteration method €or solving this 

problem. 

This paper presents such a method for solving the STP. It i terates from 

one dual forest to  another with the values of the dual objective function strictly 

increasing. A t  most two one-dimensional monotone equations must  be solved a t  

each step. In this sense i t  is simple compared with the  primal forest iteration 

method, which may require the solution of more than two one-dimensional 

monotone equations a t  each step. 

Since the graph of a basic optimal solution of an  SIT is a forest [12], it is 

clear t ha t  there are a t  least three possible iteration techniques: splitting, pivot- 

ing and connecting. However, they are quite different from their primal 



counterparts. The primal forest iteration method uses some primally infeasible 

points and a technique called cutting to  pull these infeasible points back into 

the  feasible region. In our dual algorithm we keep the whole process in the 

dual feasible region, and i t  is therefore also more direct. 

Section 2 presents the dual form of the STP. The dual forest and  the  basic 

dual forest solution are defined in Section 3. We prove tha t  the  values of the 

dual objective function corresponding to  all basic dual forest solutions associ- 

a ted with a particular dual forest a r e  the same. In Section 4 we define the 

almost basic dual forest solution. a generalization of the  basic dual forest solu- 

tion which allows us  to change the  implicit prices in order to  increase the  value 

of the dual objective function. The iteration techniques used in three  different 

cases a re  described in Sections 5, 6 and  7. Section 0 is concerned with t h e  dual 

forest iteration algorithm and the associated finite convergence theorem. In 

Section 9, we illustrate the use of t he  algorithm by applying i t  t o  an example 

first considered in [12]. 

If the  computation is interrupted, we have a lower bound to  t h e  optimal 

value of the objective function but no primal feasible solutions. However, we 

have an approximation of t he  certainty equivalent, which in tu rn  yields a pri- 

mal feasible approximation solution and an upper bound to the optimal value of 

t he  objective function. This is discussed in Section 10. 

The concept of forests i s  no t  simply a convenient computational tool; it is 

inherent  in the s tructure of the STP. We go into this more deeply in Section 11. 

2. THE DUAL FOKM OF THE SIT 

The standard formulation of t he  stochastic transportation problem with a 

dummy node is a s  follows [4,12,15,19,20,21,22]: 

m n n 
min C C cijzij + C pj(wj) 

t w  i=] j = ]  j =1 



where n +1 is t he  dummy node and 

The variables and parameters a re  defined in the following way: 

a, - total number  of items available a t  i, a, > 0 
cij - cost of shipping one item from i to  j, cij 2 0  

zij - number of i tems shipped from i to j 

w - - total number of i tems supplied to j ( to be determined) I 

, - observed value of & 
tj - random variable reflecting demand at j 

P f  - marginal distribution function off, (known) 

qj- - salvage cost per unit excess at j ,  0 

q? - penalty cost per unit shortage a t  j, qj+> 0 

Assume tha t  5 is coitinuous for all j .  We know from [10.18] tha t  (pj is 

continuously differentable and convex and tha t  

+ where qj = qj + pi-. 
Since the  feasible region is compact and the  objective function is continu- 

ous, (2.1) always has  a solution. 

In t h e  general case some arcs  (routes between points) may not be available 

(see the numerical example given in Section 9). This may be overcome by con- 

sidering such arcs  to  be available, but  with very large cost coefficients. 

From convex programming theory [13,14] and t h e  duality theory of sto- 

chastic programming [17], the  dual form of (2.1) is: 



where c ~ , , + ~  = 0 for i = 1, ..., m. Our aim in this  paper is to  solve (2.4). Once we 

have done this, we also have the solution of (2.1). 

If 5 is not continuous, we can use a p j  instead of p' as  in [12]. We shall 
1 ' 

not consider this case any further here. 

3. BASIC DUAL FOREST SOLUTIONS 

It is shown in [12] tha t  (2.1) has an optimal forest solution ( 2 , ~ )  with mul- 

tiplier ( u , v )  such tha t  

where f is a forest. This is also a sufficient condition. In [12] we defined a 

forest a s  a union of t rees  in  the  transportation tableau, where the t r ee s  con- 

cerned a r e  not  connected to  each  other  and  the  row index se t  of the  forest is 

11, ..., m j. The properties of the  forest a r e  described in  some detail in [12]. The 

duality theory of stochastic programming [I?] implies that  the optimal forest  

solution of (2.1) is also an optimal solution of (2.4). 

We divide (3.1) into three hierarchical levels: 

1. Dual forest feasibility condition (DFF): 



2. Primal forest feasibility condition and complementary condition (PFC): 

j = 1, ..., n f l  

3. Primal non-negativity condition (PNN): 

Dellnition 3.1. Suppose tha t  we have a forest f on the m x ( n + l )  transportation 

tableau and a vector ( z , w , u , v )  E ~ m ~ ( ~ + ~ ) + ( ~ ~ ~ ) ~ ~ ~ ( ~ + ~ )  such tha t  the  DFF and 

the PFC are  satisfied. Then we call f a dual forest of (2.1) and (z ,w ,u ,v )  a 

basic d u d  forest solution of (2.1). 

Clearly, the optimal forest is a dual forest and the optimal forest solution 

(together with its multiplier) is a basic dual forest solution of (2.1). 

Theorem 3.1. m e  values of the dual objective function corresponding to basic . 
d d  forest solutions associated with a given dual forest f are the same. 

Proof. Assume tha t  ( z ,w ,u .v )  is a basic dual forest solution associated with f 

From (2.3), we know that  

We also know that  the  value of (u ,v )  is determined by 

together with a parameter at on each component t ree t of f  , i.e., 

where Mt and Nt are  the  row index set and the column index set of t ,  respec- 

tively, and (uO,vO) is uniquely determined by f .  We can use the  fact that 

v , + ~  = 0 to evaluate the parameter on the tree with the  dummy node n f l .  For 

other component trees, we know from (3.2) and (3.3) that wj  is a strictly 



decreasing function of a t ,  since 5 is a nondecreasing function. However, the 

PFC implies that  

for each component t r ee  t .  This determines at. Therefore, ( u , v )  is uniquely 

determined on f  . Now suppose tha t  ( Z , G , u , v )  is another basic dual forest solu- 

tion associated with f .  From ( 3 . 2 )  and the fact t ha t  5 is nondecreasing, we 

have 

for 0 s < s 1. The difference between the  dual objective function values 

corresponding to ( Z , Z , u , v )  and ( z , w , u , v )  is given by ( 2 . 4 )  as  

thus proving the theorem. 

We can therefore talk about the dual objective function value of a dual 

forest f  , and shall denote i t  by S ( f  ). 

4. ALMOSf BASIC DUAL FOREST SOLUTIONS 

Assume tha t  we have a dual forest f with a basic dual forest solution 

(5, G. Z, C). Assume also t h a t  i t  is not optimal, i.e., there exists a pair of 

indices ( k , l )  such t h a t  Gl < 0, ( k ,  1 )  E f .  Is i t  possible to  find another  dual 

forest r with a basic dual forest solution (Z, &, fi, v^) such tha t  s(?) > ~ ( f  )? 

If this can be done then  we can develop an algorithm which i terates  from 

one dual forest to another  with strictly increasing dual objective function 

values; this algorithm converges in finitely many steps since the number of 

dual forests is finite. 

The following definition generalizes the above question: 

Definition 4.1. Suppose t h a t  we have a forest f on the m x ( n + l )  transportation 

tableau and a vector (z ,w ,IL . v )  E Rm X(n+l )+ (n+ l )+m + ( n + l )  such tha t  t he  PFC is 

satisfled and the DFF is partially satisfied, i.e., 



ui + v -  < C i j ,  I all other  ( i , j )  

where ( k , l )  E f  and zkl < 0. Then we call f  an  a l m o s t  dual  f o r e s t  of ( 2 . 1 ) ,  

( z ,w ,u , v )  a n  a l m o s t  b a s k  dua l  f o r e s t  s o l u t i o n  of ( 2 . 1 ) ,  and ( k  , 1 )  the s i n g u l a r  

a m o f f .  

We see tha t  a dual forest is also a n  almost dual forest. Notice t ha t  there  

a re  many almost basic dual forest solutions associated with f  . 
Suppose t h a t  7 is an almost dual forest of (2.1) with an almost basic dual 

forest solution (5, G ,  G .  C) and singular a r c  ( k , l ) .  Suppose tha t  ( k . 1 )  E t ,  

where t is  a component t ree  of 7. After deleting a rc  (k , 1 )  from t ,  we get  two 

trees  t l  and  t z .  Let M, MI and M2 be the  row index sets  of t ,  t l  and t 2 ,  and N ,  

N 1  and N2 be the  column index sets  of t ,  t  and t 2  (see Figure 1) .  

Let 

w h e r e H  = I1 ,..., m]\M,  N = I1 ,..., n + l ] \ N .  

If one of A ,  B, or C is zero, then we have a d e g e n e r a t e  situation. 

Suppose t h a t  

wherep  E M 2 .  q  E 8. Then we simply le t  a r c  ( p , q )  enter  the basis, i.e., we have 

a new almost dual forest = 7 u I ( p , q ) ]  with a n  almost basic dual forest solu- 

tion (F, G ,  21, ZI) and singular a r c  ( k  , 1 ) .  We have thus  carried out a d e g e n e r a t e  

c o n n e c t i n g  o p e r a t i o n  (see Figure 2 ) .  The number  of t rees  in r is one less than 

the number of t rees  in 7. This means tha t  t he  sets  M2 and N are  now different, 



Figure 1. Almost basic dual forest solutions 

so that  the value of A may also have changed. If not, i.e., if A is still zero, we 

can have another degenerate connecting process. Since the number of trees in 

a forest is no more than n, we must  have a positive A after a t  most (n-1) such 

operations. 

We obtain similar results if B is zero. 



Fwure 2. Connecting 

However, the situation with C = 0 is more complicated, and results in 

d e g e n e r a t e  p i v o t i n g .  We avoid this by assumption: 

Nondegeneracy assumption. We shall not encounter the case C = 0. 8 

Thus, in general, we can suppose that A ,  B, C > 0. We now discuss the 

methods used to remove the singular arc  from the basis. There are three 

cases, which will be treated separately. 



5. CASE I, n+l E N1 

In this  case, we decrease vl by a positive quantity a, and modify the  other  

components of (5, G ,  Z, 2r) in such a way tha t  i t  i s  still an  almost basic dual 

forest solution associated with f  and the  value of the  dual objective function is 

strictly increased. 

It is clear tha t  we must  modify the  components of (Z, G )  as follows: 

The components of (Z, G) should also be altered using 

and the PFC. 

To retain dual feasibility, we must  have 

It is  easy to  see that  

We know from (3.2), (5.1) and (5.3) tha t  zw is a function of a and increases  with 

increasing a. 

The following lemma states  tha t  whenever zw is negative, an increase in a 

results in a n  increase in the value of t h e  dual objective function. 

Lemma 5.1. Let G denote  t h e  v a l u e  o f  the  objec t ive  f u n c t i o n  in p r o b l e m  (2.4) 

and  cons ider  G as a f u n c t i o n  of a. m e n  

Proof. 

From Definition 4.1 and the convexity of qj we have 



for all j E N z .  Now we have 

Assume that  D = min (A,c), and let  

We can then  determine ZkL using (5.3). 

If ZH 10, then  the  value of t he  dual objective function is strictly increas- 

ing. We have 

where N *  = N\ [ n + l j .  

When D = A ,  we carry out a connecting operation. This is as described in 

Section 4 except t ha t  i t  is nondegenerate in the sense tha t  we have modified 

(w ,u ,u ) (see also F'igure 2). 

When D = C, we carry out a pivoting operation, which is again nondegen- 

erate.  Suppose tha t  

where T E Mz, s E N1. Then we let a r c  ( r , s )  enter  t he  basis and arc ( k , ~ )  leave 

the  basis, i.e., we have a new dual forest fn = if u l ( r , s ) ] l \ t (k ,L) j  with zkL = 0 
(see Figure 3). 

In both cases, the  other components of E can be determined using the  PFC. 

In fact, only the  components of z in tz a re  changed in the  connecting process; 

in the pivoting process we also modify components in the  cycle consisting of 

( r , s )  and members of t .  



Figure 3. Pivoting 

If ZM > 0, then we have increased the value too much. We should rather  

stop a t  Zkl = 0 t o  ensure that  the value of t he  dual objective function is strictly 

increasing. Then (3.2). (5.1), (5.3) and 



form a one-dimensional monotone equation in a. Suppose the  solution is E. 

Replacing D in (5.4) by Z yields the value of (z",G.C,v"). Let = T\ f (k , l ) j .  We 

now have a splitting process with arc (k, l )  leaving the  basis (see Figure 4). 

According to Lemma 5.1, we have a s t r ic t  increase in the  value of the  dual 

objective function. 

In a pivoting or  splitting process, we remove the  negative flow arc  (k ,1) and 

increase the  value of t he  dual objective function. Therefore, 7 and (z",G,G,v") 

are, respectively, the  new dual forest f and the  new basic dual forest solution 

( 2 ,6 ,6 ,5 )  which we sought a t  t he  beginning of Section 4. 

If only connecting occurs, we may repeat t he  procedure. Since the 

number of the t rees  in 7 is one less than in 7 when we have a connecting pro- 

cess, we should have ei ther  a pivoting or a splitting process af ter  a t  most (n-1) 

connecting processes. We then have a dual forest with an  increased dual objec- 

tive function value. 

Notice tha t  we need to solve a one-dimensional monotone equation only 

when splitting occurs. 

6. CASE 11. n+l E N2 

This is similar to  Case I, so we shall not go into so much detail here. 

In this case, we decrease uk by a positive quantity 8, and modify the other  

components of (2, G ,  Z, G )  in such a way that  i t  is still an  almost basic dual 

forest solution associated with f and the  value of t h e  dual objective function is 

strictly increased. 

We have 

To retain dual feasibility, we require 

We have 



F i i  4. Splitting 

and know that z~ is a function of @ and increases with increasing @. 

Lemma 6.1. Lef G denote fhe value  of the objective f u m f i n n  in problem ( 2 . 4 )  

and consider G as a funct ion of 8.  Then 



Assume that E = min ( B ,  C ) .  Let 

and determine Fkl using (6.3). 

If ZM 4 0, then we get a strict increase in the value of the dual objective 

function. When E = B ,  we carry out a connecting operation; when E = C ,  we 

carry out a pivoting operation. 

If Zkl > 0, then we have a splitting process. 

In this case (3.2), (6 .  I ) ,  (6.3) and 

form a one-dimensional monotone equation in p. Suppose the  solution is p. 
Replacing E in (6.4) by yields the value of (E,G,c,v"). The additional com- 

ments made in Section 5 also hold in this case. 

7. CASEIIl ,n+l E N  

In this case, we add arc ( k  , n + l )  to 7: f ' = 7 u t ( k  , n + l ) j .  

This is then the same as Case I except that  we have two singular arcs: ( k  , l )  

and ( k , n + l )  (see Figure 5).  However, all the remarks made in Section 5 still 

hold here since ( k  , n + 1 )  is only a dummy arc, with a flow which does not affect 

the value of the  dual objective function. The flow balance is given by 

- 
'k , n + l  = Zkl - 'kl 

Thus, Zk,,+l is negative after the process outlined in Section 5. We then have 

an almost dual forest with a singular arc ( k , n + l ) ,  i.e., Case 11. Applying the 

approach described in Section 6, we obtain a dual forest with an increased 

objective function value. 

Therefore, we have to  solve a t  most two one-dimensional monotone equa- 

tions in Case 111. 



auxiliary arc 

F i  5. Case 111 



8. THE DUAL FOHESL' ITERATION METHOD 

We can now outline the dual forest iteration algorithm. 

Algorithm 8.1. 

1 .  Start from a dual forest f 0  with a basic dual forest solution 

( 2 0 ,  wO, uO, vO).  

2. Having obtained a dual forest f with a basic dual forest solution 

( zk ,  w k ,  uk. v k ) ,  check its optimality. If the PNN is satisfied, then it  is 

optimal and we stop. Otherwise, go to Step 3. 

3. Using the iteration techniques discussed in Sections 4-7, find a new dual 

forest f k + l  with a basic dual Forest solution (zk+'. wk+', uk+', vk+').  

k + l  + k .  Go toStep2.  

Theorem 8.1. Under the n o n d e g e n e r a c y  a s s u m p t i o n  g i v e n  in S c t i o n  4 ,  Algo- 

rithm 8.1 converges  i n f i n i f e l y  m a n y  s t e p s .  

Proof. Since the value of the dual objective function is strictly increasing a t  

each step and the number of dual forests is finite, the theorem is proved. rn 

We shall now give one way of initiating a run of this algorithm. Note that if 

we have f < mini l c i j l  for some j ,  then we do not send any goods to j because 

the shipping cost is not less than the penalty cost. We can delete all such 

demands. Now let  up = 0 for all i and Y? = mini [ c v ]  for all j .  Since 

-q;h 0 Sv? S gt. we can solve w: using (3.2), where j = 1. .... n .  We obtain 

w i c l  by subtracting the sum of the other wj's from the sum of the 4 ' s .  The 

value of z0 can be found from the PFC. Clearly, (zO.wO,uO,vO) is a basic dual 

forest solution. 

In Cases I and I1 it  is only necessary to solve a one-dimensional monotone 

equation if we have splitting a t  that  iteration. In Case I11 it may be necessary to 

solve two one-dimensional monotone equations. 

We illustrate the use of the dual forest iteration algorithm by applying it  to 

an example first considered in [12]. 

In this example m = 4, n = 5 ,  and cells (2, I ) ,  (3 , l )  and ( 3 , 3 )  are not avail- 

able. We take column 0 rather than column 6 as our dummy node column. The 

other data are given in Table 1. 
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Table 1 

The j - th  random demand is uniformly distributed on [0, Dj] and 9,- = 6Dj, 

gf = 0. Therefore 

and 

pj (w,) = ' 

i f w j  <O 

- D )  if wj  E [o. D,] 

if wj  > Dj 

f 

3Dj! - 6Djwj if wj < 0 
3(Dj - wj)2 if wj E [O. D,] 
0 if UJ, > Dj 

4 

for j = 1,2.3,4,5. 

0. Initial Step 

To obtain an initial dual forest and an  initial starting basic dual forest solu- 

tion, we let  

u, = min [cij I i = 1, ..., rn j . V j  

The corresponding values of (u, + vj  - cij) a re  given in Table 2. 

We have f = [(1,0),(2,0),(2.3),(3,0),(3,2),(3,4),(3,5).(4,0),(4,1)]. From (3.1) 

and (9.2), we deduce t h a t  

Solving the  PFC, we obtain the  values of z given in Table 3 (see also f igure 6). 



F i  6. Initial dual forest 

Table 2 

Table 3 



We see that  ( z , w , u , v )  is a basic dual forest solution. The value of the  dual 

objective function is 870.5. 

1 .  Step 1 : Pivoting 

From Table 3, we see tha t  either (3 ,0 )  or (4,0) can be taken a s  t h e  singular 

arc. We choose arc (3,0). 

We now have ( k , l )  = (3 ,0) ,  M 1  = 133, M 2  = 11,2,4j, N1 = 12,453, N2 = 10,1T3j. 

From Table 2, we know tha t  c25 - u2 - v5  = C = 3. 

We then decrease lug] from 101 to  1-33, and increase 1 v 2 , v 4 , v 5 ]  from 

110,9,6j to  113,12,9j. This decreases 1w2.w4. w5j to  U 7 f  .8.11+{. From (6.3). 

we now have ~3~ = -1234 

We therefore have a pivoting process: arc (3,O) leaves the basis and arc 

(2 ,5 )  enters  t h e  basis (see Figure 7 ) .  The new values of ( z , w  , u ,  v )  and 

(I+ + v j  - ci,) are given in Tables 4 and 5 .  

The corresponding value of the dual objective function is 909.75. 

2. Step 2: Pivoting 

We choose a rc  (4 ,0)  as the  singular a rc  (see Table 5) .  

We now have ( k , l )  = (4,0),  M 1  = 143, M 2  = 11,2,3j, N1 = t l j ,  N2 = 10,2,3,4,53, 

a n d c l l  -u l  - v l  = C = 1. 

We then decrease lulj from 1 O j  t o  1-lj, and increase 1v l j  from 1173 t o  1183. 

This decreases l u l l ]  t o  119j. From (6.3). we now have z40 = 4. 

We therefore have a pivoting process: arc  (4 ,0)  leaves the basis and  arc 

( 1 , l )  enters  t he  basis (see Figure 8 ) .  The new values of ( z , w , u , v )  and 

(% + v j  - c i j )  are  given in Tables 6 and 7 .  

The corresponding value of the dual objective function is 913% 

3. Step 3: Pivoting 

Following the  same procedure as  before, we choose ( k , l )  = (2,O). We now 

haveMl = 12,3j, M 2  = 11,4j, N1 = 12,3,4,5). N 2 =  tO,lj, a n d c 1 5 - u 1  - u s  = C = 1. 

We then decrease 1u2,u3{ from 10,-3) to - 1 - 4 ,  and increase 

1v2,  v 3 ,  v 4 ,  v5j from 113,16,12,9j t o  1 4 , 1 7 1 3 1 0 .  This decreases 

1w2,  w 3 , w 4 ,  w5j  to  1175,9+, 7 $ .  l l f j .  From (6.3), we now have z20 = -2. 

We therefore have a pivoting process: arc (2,0) leaves the basis and arc 

(1.5) enters  t he  basis (see Figure 9) .  The new values of ( z , w , u , v )  and 

(y + v, - cii) are given in Tables 8 and 9.  



Figure 7.  Step 1: Pivoting 

Table 4 

Table 5 



Figure 8. Step 2: Pivoting 

Table 6 

Table 7 



F I  9. Step 3: Pivoting 

Table 8 

Table 9 



The corresponding value of the dual objective function is 916+ 

4. Step 4: @lilting 

We set (k.1) = (3,5). We now have M I  = !3], M2 = 11,2,4], N1 = 12.41, N2 = 

!0,1,3,5], and c22 -u2  - v 2  = C = 2. 

We then decrease 1u3j from 1-41 to !-61, and increase !v2,v4] from f 14,131 

to 116,151. This decreases [w2 ,wq]  to  117+,73. From (6.3), we have z35 = + 
This shows that  the value of z35 has been increased too much. We have a 

splitting process: arc (3,5) leaves the  basis (see f igure 10). Relations (9.3), 

(6.1), (6.3) and (6.4) now yield a one-dimensional equation in B: 

We have /3 = 1.5. The new values of ( z , w , u , v )  and (% + vj - cjj) are given in 

Tables 10 and 11. 

The values of z given in Table 11 are non-negative, i.e., this is the optimal 

solution. The value of the  optimal (dual) objective Function value is 916%, i.e., 

the same result as in [12]. 

In this example we had to  solve only one one-dimensional monotone equa- 

tion. In [12], we solved two such equations. 

10. INTERRUFTING THE COMl'UTATION 

Suppose the computation is interrupted before completion. We then have a 

lower bound to the optimal value of the objective function but no primal feasi- 

ble solution of z. However, we have an approximation of w ,  i.e., an approxima- 

tion of the certainty equivalent [ 11,10]. Flxing ur and solving the deterministic 

TP leads to  a primal feasible solution and an upper bound to the optimal value 

of the  objective function. 

For example, suppose that the computation in Section 9 is interrupted 

after the first step. We have 909.75 as a lower bound to the optimal value of the 

objective function. Fixing w and solving the  TP, we obtain the  primal feasible 

solution given in Table 12. 

The value of t h e  objective Function is 910.25, which is an upper bound to 

the optimal value of the  objective function. 



Figure 10. Step 4: Splitting 

Table 1 0  

Table 11 
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Table 12 

11. REwuzn 

We have seen t h a t  the  concept of forests is a convenient methodological 

tool. However, this is not all: i t  is inherent in the s t ructure of the problem. A 

transportation problem will always have an optimal tree.  In turn, this spanning 

t ree  will always have u and u such tha t  ui + v j  = c i j ,  even if there are  some 

zero flows. In the  case of the STP, however, there  is generally no such spanning 

t ree  since this would require that --vj be a subgradient of pi a t  w j .  For exam- 

ple, we see  from Table 10 tha t  all the values of (ui + uj - c i j )  outside the 

optimal forest are strictly negative, which means t h a t  we cannot make an 

optimal spanning tree.  

Another interesting point is t h a t  lkura and Nemhauser also use the te rm 

"forest" in their  discussion of a polynomial-time dual simplex algorithm for the 

TP. This may not be accidental. 

If ul is k e d  then  the problem becomes a TP. In this case there is no  split- 

ting and  the  proposed method becomes the dual simplex method for the TP. In 

this sense, the method may be seen as  a stochastic extension of t he  dual sim- 

plex method for the TI'. This is different from the primal forest iteration 

method for the STP. 
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