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PREFACE 

In this paper, the first product of the Dynamics of 

Macrosystems group within SDS, Jean-Pierre Aubin first explains 

what is meant by slow and heavy trajectories of controlled 

problems. He then goes on to derive differential equations for 

these trajectories when the viability domain is smooth. Heavy 

trajectories seem to be present in the evolution of social and 

economic macrosystems, and thus their study may provide a clue 

to the dynamics of such systems. 

ANDRZEJ WIERZBICKI 
Chai'rman 
System and Decision Sciences 



ABSTRACT 

We define slow and heavy viable trajectories of differential 

inclusions and controlled problems. Slow trajectories minimize 

at each time the norm of the velocity of the state (or the con- 

trol) and heavy trajectories the norm of the acceleration of the 

state (or the velocity of the control). Macrosystems arising in 

social and economic sciences or biological sciences seem to ex- 

hibit heavy trajectories. 

We make explicit the differential equations providing slow 

and heavy trajectories when the viability domain is smooth. 



SLOW AND HEAVY VIABLE TRAJECTORIES 
OF CONTROLLED PROBLEMS 

PART 1. SMOOTH VIABILITY DOMAINS 

Jean-Pierre Aubin 

1. SLOW AND HEAVY VIABLE TRAJECTORIES OF DIFFERENTIAL INCLUSIONS 

Let us consider a viability domain K - a  closed subset of a 

finite-dimensional state space X - and a set-valued map F from 
K to X satisfying 

(1.1) F is upper semicontinuous with compact convex values . 

The simplest viability problem is stated as follows. 

For any xo EK, find trajectories of the differential in- 

clusion 

which are viable in the sense that 

We define the f e e d b a c k  map R by 

(1.4) YxEK , ~ ( x )  := F(x) ~ T ~ ( x )  

where 
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i s  t h e  c o n t i n g e n t  cone  t o  K a t  x.  

The main v i a b i l i t y  theorem s t a t e s  t h a t  a  necessary  and s u f -  

f i c i e n t  c o n d i t i o n  f o r  t h e  v i a b i l i t y  problem t o  q e t  a  s o l u t i o n  

i s  t h a t  

and t h e n ,  t h a t  v i a b l e  t r a j e c t o r i e s  a r e  s o l u t i o n s  t o  t h e  "feed-  

back" d i f f e r e n t i a l  i n c l u s i o n  

(See Haddad [19811, Aubin and C e l l i n a  [ 1 9 8 4 ] ) .  

Le t  u s  denote  by m ( R ( x ) )  t h e  subse t  of  e lements  of R(x )  w i th  

minimal norm. ( I t  i s  nonempty when R(x)  # fl and i s  made of a  

unique s o l u t i o n  when T K ( x )  is  convex, which happens whenever K 

i s  convex o r  smooth.) 

D e f i n i t i o n  1 .1  

We s h a l l  say  t h a t  a  t r a j e c t o r y  of  t h e  d i f f e r e n t i a l  i n c l u s i o n  

(1 .7)  x ' ( t ) € m ( R ( x ( t ) ) )  , ~ ( 0 )  = x0 

i s  a  s low  l o r  l a z y )  v i a b l e  - t r a j e c t o r y .  

Such slow s o l u t i o n s  may n o t  e x i s t ,  even when R i s  convex- 

valued.  There a r e  i n s t a n c e s  of v i a b i l i t y  problems having a  unique 

t r a j e c t o r y ,  which i s  a  slow one: t h i s  i s  t h e  c a s e  when -F i s  

maximal monotone, because ,  i n  t h i s  c a s e ,  t h e r e  e x i s t s  a  unique 

s o l u t i o n  t o  t h e  d i f f e r e n t i a l  i n c l u s i o n  

which i s  a c t u a l l y  t h e  s o l u t i o n  t o  t h e  d i f f e r e n t i a l  equa t ion  



x' (t) = m(F(x (t) ) = m(R(x (t) ) )  

(see ~rezis [ 1 9 7 3 1  ) . 
This is also the case when K is convex and F(x) = G(x) -NK(x), 

NK(x) := T~(x)- denoting the normal cone to K at x. Indeed, 

Cornet [ I 9 8 1 1  proved that when G is continuous, there are slow tra- 

jectories, solutions to the differential equation 

ie shall come back later to the existence of a slow trajectory 

of the viability problem. 

We now propose to single out another kind of (viable) tra- 

jectories, which seem to be present in the evolution of macro- 

systems arising in social and economic sciences (which motivated 

viability theory in the first place.) They are trajectories 

which no longer minimize at each time the norm of the velocity, 

but the nor .r of the acceleration: we propose to call them heavy 

trajectories. 

The first difficulty which arises is that a solution to a 

differential inclusion is only absolutely continuous, and there- 

fore, not necessarily twice differentiable. To use the second 

derivative in the distribution sense does not help because the 

concept of heavy trajectory requires the existence of the accel- 

eration at each time, or, at worst, at almost each time. 

However, another straightforward strategy consists in dif- 

ferentiating the feedback differential inclusion (1.6) to reveal 

a law governing the acceleration of a viable trajectory, of the 

form 

x" (t) E DR(x(t) ,xt (t) ) (x' (t) ) 

where DR(X,V) is the contingent derivative of the set-valued mapR 

at a point (x,v) of its graph. It is the set-valued map from X 

to X defined by 



(see Aubin [I9811 and Aubin and Ekeland [1984]). 

So, if m (DR (x,v) (v) ) denotes the subset of elements with 

minimal norm of the derivative DR(x,v) of R at (x,v) E Graph (R) 

in the direction v, we can propose the following formal definition. 

Definition 1.2 

We shall say that a trajectory of the differential inclusion 

i) x" (t) Em(DR(x(t) ,ul (t) ) ( ~ ( x  (t) ) ) 

(1.9) 

L (~(0) ,XI (0) = (xO,vO), given in Graph (R) 

is a heavy  viable trajectory. A 

The problem of the existence of heavy  viable trajectories 

is by no means trivial, for many reasons. In the first place, 

we have in general very little information about the feedback map R. 

Even when K is convex (and thus, R is convex valued), the graph 

of x+TK(x) is not necessarily closed, even locally compact. 

Furthermore, the computation of the contingent derivative of R 

may be difficult, not to mention that the minimal requirements 

of either convexity or smoothness are missing. In the second 

place, a recent paper by Cornet and Haddad [I9831 shows that 

the viability problem for second-order differential inclusions 

is quite different - and more difficult - than the first-order 
case. 

Despite these dark omens, we will solve this problem in the 

case when K is a smooth manifold and when the set-valued map F 

is parametrizable. 

But before that we state this problem in a slightly more 

general framework, suitable for the definition of s low  and h e a v y  

viable trajectories of c o n t r o l  p rob l ems .  



2. SLOW AND HEAVY VIABLE TRAJECTORIES OF A CONTROLLED SYSTEM 

Let us consider a viability domain K -  a closed subset of a 

finite dimensional state space X-I a finite dimensional control 

space U, an upper semicontinuous map F from K to U, with compact 

convex values, and a continuous function f from graph (F) to X, 

affine with respect to the controls. 

We define the viability problem for controlled systems as 

follows. For any x0€K, find trajectories of 

which are viable in the sense that 

By taking U = X, f(x,u) = u, we obtain the particular case of a 

viability problem for a differential inclusion. (Observe also 

that (2.1) is a differential inclusion x' (t) E G (x (t) ) where 

G(x) = f(x,F(x))). 

We define the feedback map R by 

Definition 2.1 

We shall say that a trajectory of the controlled system 

i) x'(t) = f(x(t),u(t)) where u(t)Em(R(x(t))) 

(2.4) 

ii) x(0) = x 0 

is a s low  (or lazy) v i a b l e  t r a j e c t o r y .  

We shall say that a trajectory of the system of differential 

inclusions 



i) x ' ( t )  = f ( x ( t ) , u ( t ) )  where u ( t ) € ~ ( x ( t ) )  

I iii) ( ~ ( 0 )  lu (O)  1 = ( x o r u 0  ) , g iven  i n  Graph ( R )  

is  heavy v i a b l e  t r a j e c t o r y .  

So, i n  t h e  framework o f  c o n t r o l  problems,  s low t r a j e c t o r i e s  

a r e  a s s o c i a t e d  w i t h  c o n t r o l s  w i t h  minimal norm and heavy t r a j e c -  

t o r i e s  a r e  a s s o c i a t e d  w i t h  c o n t r o l s  evo lv ing  w i t h  minimal v e l o c i t y .  

The i n v e r s e  o f  t h e  feedback map R a s s o c i a t e s  w i t h  any con- 

t r o l  u t h e  s u b s e t  R-' ( u )  of t h e  s t a t e s  of t h e  system c o n t r o l l a b l e  

by u. W e  i n t r o d u c e  t h e  s t a t e  c e l l s  C ( u ) ,  which a r e  t h e  s u b s e t s  

( p o s s i b l y  empty) of R-I  ( u )  d e f i n e d  by 

W e  can  r e g a r d  a  s t a t e  c e l l  C(u )  a s  a  s u b s e t  of  " i n t e r n a l "  s t a t e s  

t o  ( u ) .  S t a r t i n g  w i t h  a  s t a t e  x  i n  C ( u o )  i n  t h e  d i r e c t i o n  0 
~ ( X ~ , U ~ ) ~  a  heavy t r a j e c t o r y  "keeps"  t h e  c o n s t a n t  c o n t r o l  uo  a s  

long  a s  t h e  s t a t e  x ( t )  remains  i n  t h e  s t a t e  c e l l  C ( u o ) ,  because  

i n  t h i s  c a s e  t h e  system of d i f f e r e n t i a l  i n c l u s i o n s  (25)  can be 

w r i t t e n  

i) x '  ( t )  = f (x  ( t )  , u 0 )  where uo E R ( x ( t )  ) 

(2 .6 )  

The c o n t r o l  w i l l  s ta r t  t o  evo lve  when t h e  s t a t e  o f  t h e  system 

l e a v e s  t h e  s t a t e  c e l l  C ( u o )  , accord ing  t o  ( 2 . 5 ) .  

I n  t h e  c a s e  o f  u s u a l  d i f f e r e n t i a l  i n c l u s i o n s  ( 1 . 1 )  (where 

U = X and f ( x , u )  = u ) ,  t h e  c e l l s  a r e  d e f i n e d  C ( v )  := ~ x ~ v E D R - '  

( v , x )  ( 0 )  I .  I n  such a  c e l l  C ( vo )  , a  heavy v i a b l e  t r a j e c t o r y  can 

be w r i t t e n  xo  + t v o  a s  long  a s  xo + t v o  E C  ( v o )  . 
The re fo r e ,  s t a t e  c e l l s  d i s p l a y  a r e a s  o f  t h e  v i a b i l i t y  domain 

where " q u a n t i t a t i v e  growth" h o l d s  t r u e .  



3. DIFFERENTIAL EQUATIONS YIELDING SLOW AND HEAVY VIABLE 

TRAJECTORIES 

In this section, we shall assume that the viability domain 

is smooth: 

where 

(3.2) 
g is a c2- function from X to a finite-dimensional 
space Y and gv(x) E L(X,Y) is surjective for all x E K  

We assume also that the control problem satisfies 

i i) VxEK , F(x) = U 

(3.3) 

ii) f(x,u) = A(x)u+b(x) 

where 

i) x E K + A (x) E L (U, X) is continuous and bounded 

ii) x E K + b(x) EX is continuous. 

We observe that in this case 

( 3 . 5 )  TK (x) := Ker g' (x) 

and the feedback map R is defined by 

We shall assume that 

(3.7) vx E K, g v  (x)A(x) E L (U,Y) is surjective 

and we set 



For  any X E K ,  P ( x )  E L ( Y , U )  i s  t h e  or thogonaZ r i g h t - i n v e r s e  of t h e  

s u r j e c t i v e  map g '  ( x ) A ( x )  . 

Remark 

When t h e  dynamics o f  t h e  c o n t r o l l e d  sys tem a r e  n o t  imposed 

by t h e  model,  b u t  may be chosen a t  w i l l ,  t h e  problem a r i s e s  

whether  w e  can d e t e r m i n e  them i n  terms of t h e  v i a b i l i t y  c o n s t r a i n t s  

and w e  can  f i n d  "minimal c o n s t r u c t i o n s " .  

S i n c e  assumpt ion  ( 3 . 7 )  r e q u i r e s  t h a t  t h e  maps g '  ( x ) A ( x )  E L ( U , Y )  

must be s u r j e c t i v e ,  t h e  dimension of t h e  c o n t r o l  s p a c e  U must be  

a t  l e a s t  e q u a l  t o  t h e  dimension o f  t h e  r e s o u r c e  s p a c e  Y .  W e  may 

t h e n  choose 

S i n c e  w e  have assumed t h a t  t h e  maps g l ( x )  a r e  s u r j e c t i v e ,  w e  

can t a k e  f o r  map A ( x )  a  r i g h t  i n v e r s e  of  g '  (x) , and,  i n  p a r t i c u l a r ,  

t h e  o r t h o g o n a l  r i g h t  i n v e r s e  of g l ( x )  d e f i n e d  by 

Then, i n  t h i s  c a s e ,  R ( x )  = -9 '  ( x )  b  ( x )  and t h e  feedback i n c l u s i o n  

r e d u c e s  t o  t h e  d i f f e r e n t i a l  e q u a t i o n  

Observe t h a t  ( 1 - A ( x ) g l  ( x )  i s  t h e  p r o j e c t o r  o n t o  T, ( x )  = K e r  g '  ( x )  
+ + whose k e r n e l  is  t h e  image of  A(x)  . When A(x)  = g '  ( x )  , 1-9' (x) g '  ( x )  

i s  t h e  o r t h o g o n a l  p r o j e c t o r  o n t o  TK ( x )  . 
m 

Theorem 3 . 1  

W e  p o s i t  a s sumpt ions  ( 3 . 2 ) ,  ( 3 . 4 )  and ( 3 . 7 ) .  

a )  For  any X ~ E K ,  s low v i a b l e  t r a j e c t o r i e s  do e x i s t ;  t h e y  a r e  

t h e  s o l u t i o n s  t o  t h e  d i f f e r e n t i a l  e q u a t i o n  
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b )  For any x o E K  and u 0 ~ - ( g ' ( x O ) A ( x O ) )  ~ ' ( x ~ ) ~ ( x ~ ) I  heavy 

v i a b l e  t r a j e c t o r i e s  do e x i s t ;  t h e y  a r e  t h e  s o l u t i o n s  t o  t h e  

system of d i f f e r e n t i a l  e q u a t i o n s  

i) x '  ( t )  = ~ ( x ( t )  ) u ( t )  + b ( x ( t )  

ii) u '  ( t )  = -P ( x  ( t )  ) 

(3.10) [g '  ( x ( t ) )  ( A '  ( x ( t )  ) u ( t ) + b 1  ( x ( t ) )  ( A ( x ( t )  ) u ( t ) + b ( x ( t ) ) )  

+ g N ( x ( t ) )  (A(x)  ( t ) ) u ( t ) + b ( x ( t ) )  , ~ ( x ( t ) u ( t ) + b ( x ( t ) ) ) ]  

Proof 

Proof of  p a r t  a). 

s i n c e  R(x)  = { u ( g ' ( x ) A ( x ) u  = - g ' ( x ) b ( x ) ) ,  t h e n  m ( R ( x ) )  i s  

t h e  unique s o l u t i o n  t h a t  minimizes t h e  norm llull of u  under a  l i n e a r  

e q u a l i t y  c o n s t r a i n t .  S ince  P ( x )  deno t e s  t h e  o r thogona l  r i g h t  i n v e r s e  

of g'  ( x ) A ( x )  , t h e n  m(R(x)  ) = -P ( x )  g '  ( x )  b  ( x )  and t h e  slow v a r i a b l e  
t r a j e c t o r i e s  a r e  t h e  s o l u t i o n s  t o  x '  ( t )  = A(x ( t )  )m(R(x ( t)  ) + 

b ( x ( t )  ) , which can be w r i t t e n  i n  t h e  form ( 3 . 9 ) .  

2 .  W e  need t o  compute t h e  c o n t i n g e n t  d e r i v a t i v e  o f  t h e  feedback 

map R. 

Lemma 3 . 1  

W e  p o s i t  assumpt ions  (3 .2 )  and ( 3 . 7 ) .  Then 

VvEKer g 1 ( x ) ,  DR(x ,u ) (v )  = 

(3.11) 

-A(x) - l q 1  ( x ) - '  (g" ( x )  ( A ( x ) u + b ( x )  ,v)+cj1 ( x )  (A' ( x ) u + b t  ( x )  ) * v )  . 



Proof 

In this simple case, the graph of F can be written in the 

form 

(3.12) Graph(R1 = (x,u) I h(x,u) = 0) 

where we set 

This function h is C '  and we check easily that 

h' (x,u) (v,w) = (g' (x) v,g" (x) (A(x)u+b (x) ,v) 

+ 9' (x) (A' (x)u+bl (XI *V + g' (x)A(x) w) . 

Since both g' (x) and g' (x)A(x) are surjective by assumption (3.7) , 
then h' (x,u) is surjective. Therefore, the contingent cone to 

Graph (R) at (x,u) - actually, its tangent space - is the set of 
pairs (v,w) such that h' (x,u) (v,w) = 0, or, equivalently, the set 

of pairs (v,w) such that w E DR(x,u) (v) . 
rn 

3. Now, we can compute explicitly m(DR(x,u)) (v), which is the 

element minimizing the norm llwll under the linear equality constraint 

9' (x)A (XI w = -9' (x) (A' (x) u+bl (x) *v - g" (x) (A (x) u+b (x) ,v) . 

Since g' (x) A (x) is surjective, we deduce that 

m(DR(x,u) ) (v) = -P (x) [g' (x) (A' (x)u+bl (x) *v) +gl' (x) (A(x) u+b (x) ,v) ] 

which is a continuous map. Therefore, heavy trajectories are 

given by the system of differential equations (3.10). 

Example. Slow and heavy viable trajectories on the sphere 

In this case, g (x) := ( Gxlx ) - 1 where G is a symmetric positive 
definite operator from X to X*. Therefore, 



and equat ion ( 3 . 9  becomes 

( G x ( t )  , b ( x ( t )  ) 
x '  ( t)  = b ( x ( t ) )  - A ( x ( t )  ) A ( x ( t ) )  * G ( x ( t )  1 

I I A ( x  te) 1 *Gx( t )  1 1  2 ' 

I n  t h e  same way, we ob ta in  
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