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FOREWORD

The Metropolitan Development Project was initiated in
1983 as a collaborative study. 1In 1984 efforts have been
concentrated on creating a methodological basis for a more
focused research phase starting in 1985. One of the
priorities is to analyze the spatial dynamics of interacting
populations.

This papaer contains an application of Volterra's
ecological model to the issue of interurban population
moveuments. In the paper it is argued that the Volterra
paradigm is useful also for modelling of human populations.
The issue of fast urban growth and decline is analyzed
within this framework.

Kke E. Andersson
Leader
Regional Issues Project

November 1984






ABSTRACT

From an analytical viewpoint, Volterra's variational principles and thelr
associated 1integrands in single and multiple species interaction under
absolute growth conditions in the field of mathematical ecology are
reconsidered and simplified. They are then compared with the conservation
conditions found appropriate to hold in a >class of dynamic problems of
relative growth in urban analysis. The comparison assists in interpreting the
integrands of geographical (spatial) associations as a “stationary effort
fitness function” associated with a cumulative entropy measure of the relative
urban dynamic spatial distributions.

From a substantive viewpoint, the paper shows the theoretical conditions,
which would result in all spatial activity to be concentrated into a single
point, so—that inferences can be made regarding the conditions under which the
activity will disperse. It also demonstrates that assuming a particular
problem formulation, in this case a relative dynamic framework im an inactive
environment, will result in obtaining spatial competitive exculsion. This is

demonstrated in a parsimonious manner.
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Introduction

Mathematical ecology formalizations of wurban and regional spatial
assoclations have been steadily making inroads into geographical analysis
during the past five years, Dendrinos [2], Curry [1l], Dendrinos and Mullally
[3], Sonis [10], and others. This recent work supports the argument that well
established ecological interactions can provide new and rich insights into the
dynamic interdependencies of a broad class of geographical systems.

Central to this work 1is the role, derivation and intetpreta/tion of the
variational principles and corresponding “"fitness” functions which give rise
(or wunderlie) the particular dynamics governing the evolution of such
systems. Since the early developmental stages of the field of mathematical
ecology the quest for these governing functions was viewed as an essential
element. Although the interest in such a question has subsided since the
early work by Volterra on this topic, found in Scudo and Ziegler [8], 1its
import has not deminished.

Volterra was able to derive differential equations of absolute growth
population dynamics of ecological associations as solution of varikational
principles similar to those of classical mechanics. Moreover, Volterra gave
three different forms of these principles: the principle of "least action” for
one-specles population growth;' the principle of "stationary action” and
principle of "least vital action” for multispecies ecological dynamics. He
drew from Maupertuis' notion of "quantity of action” and its use by Descartes
(with the principle of momentum) and by Leibnitz (with the principle of
kinetic energy) on the integrals of dynamic equations. Volterra's main
result, however, emerged through the use of Hamilton's principle of stationary
action reducing the biological associations (the dynamic equations) to the

mechanics (kinetics) of a branch of problems in the calculus of variations.



Analytically, Volterra showed how the trajectories in the space of states of
ecological associations (which describe how the system evolves over time) can
be found as functions (extremals) which give the stationary value for a
certain integral; i.e., the extremals X are the solution of the variational

problenm:
EI (X,X,t) dt = Const (0.1)

when X 1is a state variable, T is a time horizon and dot stands for time
derivative. A special choice of the integrand I allowed him to derive the
equations of motion in ecological dynamics - for a single species, logistic
growth, ecology. In this case the integral (0.l1) obtains a minimum. Further,
he was able to derive more general formulations of governing intégrands
regarding the dynamics of a general class of conservative, multiple species
ecological associations under absolute growth. Moreover, under certain
conditions to be discussed later, Volterra derived the principle of "least
vital action.” All derivations are described in Part I of this paper.
Volterra defined conservative ecological associations pretty much like in
classical mechanics: the total interaction among species 1is balanced in a
manner that results in the value of the total interaction to equal zero.
Ecologists did not extend Volterra's work in the following decades. They were
disatisfied by the peculiar conditions assocliated with the existence and
stability properties of Volterra's conservative systems. This, coupled with
their almost exclusive interest in absolute growth dynamics, did not provide
mathematical ecologists the opportunity to search for other kinds of
conservative systems or relative growth dynamics where the existence
properties of the equilibrium are not as unreasonable or restrictive as the

original Volterra formulations.



Although absolute growth conservative dynamic systems may be of little
importance for dynamic spatial analysis in regional science, relative growth
conservative dynamic systems are, Dendrinos (with Mullally) [4]. At least,
they might be more important than absolute growth in urban/regional analysis,
than they are in the field of animal and plant ecology. For example, in the
area of aggregate urban dynamics, since total national growth may have very
little to do with any particular urban area or region in a national economy
(particularly when a very large number of metropolitan areas or regions are
involved in absence of primacy), it 1is elasticities of growth that matter.
Cities and regions, competing with one another for economic activity, attract
or repulse growth depending on relative advantages they enjoy in the national
space. Relative growth has been argued to be of importance in a variety of
other geographical contexts, including intra—urban dynamics and the processes
underlfing innovation diffusion. In these contexts, the role of the
enviromment as it may affect aggregate urban dynamics can be analytically
studied and the purpose of this paper is precisely to do so. More
specifically, issues are addressed regarding multi-urban interaction stability
and conditions under which the existence of potentials can be shown.

Under absolute growth and for <certain conservative ecological
associations Volterra was able to derive a governing integrand. This paper
shows that such an integrand can be derived for particular classes of spatial
(urban conservative) systems, different than the Volterra ones, associated
with relative growth. This is done in Part II of this paper. Relative growth
dynamics is shown to be the solution of a governing integrand which measures
the entropy of dynamic distribution and the interaction within the zero
aggregate growth relative spatial distribution. The stationarity of the

integral of such an integrand results in stationarity of a cumulative entropy




measure of relative spatial distributions. This is of particular interest to
geographical analysis since it provides 1insights into the fitness functions
present 1in spatially interacting urban systems. We 1link these fitness
functions to the notion of entropy, which we study (for the first time 1in
dynamic spatial analysis) not only over space, but also over time. It 1s
shown that over time entropy is maximized, but over space it is at a minimum
in the (asymptotically stable) steady state, which represents urban
competitive exclusion (1l.e., total agglomeration of population 1into one
locale) for dynamic spatial conservative systems. Interpretations and
implications are discussed at the end of Part II, where the subject of
uniqueness of such integrand 1s addressed. Further, suggestions on specific

hypotheses for empirical testing are presented together with conclusions.



Part I. Volterra's Integrands.

In this Part the work of Volterra on absolute growth is summarized and,
in certain 1instances, simplified and extended to acquire geographical and
economic meaning. In Section A the derivation of the logistic growth path
from a variational principle is supplied for the single species case. Section
B deals with multiple species interactions and the definition of Volterra's
conservative systems (under absolute growth), and their demographic energy
notions. In Section C the wvariational principle generating Volterra's
conservative “stationary action” dynamic multiple species interaction is
derived. Finally, in Section D the principle of "least vital action™ by
Volterra in multiple species interaction is presented. The reasons to include
a summary of Volterra's work in Part I is not only to bridg this significant
work in a capsule to the attention of regional scientists and urban/regional
geographers who have not been exposed to it until now, but also to shed
additional 1light on Volterra's work by elaborating on and/or simplifying

certain derivations.

A. The principle of "least action” for one species logistic growth.

This section presents the first attempt to link entropy with dynamics of
spatial systems, defining thus cumulative spatial entropy. Volterra in his
classical work on "the calculus of variations and the logistic curve” found in
Scudo and Ziegler [8] (p. 11-17) was the first to derive the Verhulst-Pearl

equation of logistic (absolute) growth
x = x(a - bx) (1L.1)

from the minimization of an integral E = le(x,x,t) dt , where:

x(e) = f£x(t) dt, or %’t—‘-i-x. (1.2)

-5 -



Volterra interprets X as the total (cumulative) quantity of life. The Euler

condition for optimization of E is:

1 d ( 9
- ——J)=o0 (1.3)
o
The integrand I, chosen by Volterra, is:
dX ,  dxX dx dx
1 m, 5 ln-a? + mz(a b EE) In (a-b E?) + kX (1.4)

where o, my, k are appropriate constants. In I the element of cumulative

entropy is introduced. Then the components of the Euler condition are:

o
&=k (1.5)
A e -n b (n(a-b9% 1) (1.6)
x|l dt ) dt g
and:

2 2 2
d (a1 1 dX b dX
Tt' (—.)'ml—d_—x .-d?'l'mz -bg_}z ?. (1.7)

ax dt S T

If the three constants satisfy the conditions(l):

m, = bmz; k = am,, mw, #0, (1.8)
then:
1 b dZX
n,(a- [ +—=]— )=0 (1.9)
1 dx a-b25 dt2
dt dt

which 1s identical to the original Verhulst-Pearl equation.

(Drhere is a printing error on page 16 of Scudo and Ziegler [8] regarding k =
amy.
1



Volterra computed the second variation of the integral E with respect to X and
found {t positive, indicating E attains a minimum. In his original paper
Volterra 1interprets this as “"reducing the movement of population to a
principle of minimum,” Scudo and Ziegler [8] p. 15. In compliance with the

spirit of later work by Volterra one must assume that he meant "minimum effort

for -adaptation,” although Volterra does not explicitly state this. Note that

this expression E does not possess a Hamiltonian, thus it is not a potential.

B. Conservation of demographic energy in multiple species interaction.

Volterra's general formulation of the (non—logistic) growth multiple

. specles interaction absolute growth is:

x,) x, = ax, , 1,3 = 1,2,...I (2.1)

1
=(a, +3 gajij 17 %%

x
1 i

where a; is the "coefficient of self-growth” is an "equivalence factor”

1
’ bi
and 01 is a “demographic coefficient™ (Volterra's terms (8], p. 239).

Coefficients a,, depict particular species assoclations depending on their

1j

sign. Also, Volterra calls a, the "gross™ growth rate, b; an "average weight”

1
and e the "net” growth rate.
The key notion of Volterra's elaboration is the “value of the whole
associlation™ V, or the "actual demographic energy”:
- . 2.
v Ebixi (2.2)

The differential of V is equal ta:

dv-zbi a, x, dt+;§_<]z aj1 X, xj dt (2.3)

on the basis of which it is passible to introduce the "demographic potential

energy” of an ecological association:



t
P=- g a b, X , X = fo x (t) dt . (2.4)

If the value of the second term in the r.h.s. of condition (2.3) is always

zero, l.e.:

2 2 a,,x, x, =20 (2.5)
{ j 17173

then the individual {interactions will not affect the total ecolggical

association. Requirement (2.5), according to Volterra, is the definition of a
"conservative ecological association.”

The system of differential equations (2.1) implies that:
Ibx, =Ja b x +J]J)a, x x (2.6)
1 171 1 i 171 {] 717

and, therefore, the definition (2.5) of a conservative ecological association

a la Volterra is equivalent to the following condition:
E bi (xi - a, xi) =0 2.7)
Integration of (2.6) gives us:
E b, (x, - a,X,) = Const (2.8)
or, due to (2.2), 2.4):
V+ P = Const. (209)

This is Volterra's "principle of conservation of demographic’ energy™ which is
the sum of actual demographic energy V and the potential demographic energy P
([8], p. 242).

In order for the association to be conservative, Volterra proves ([8]
p. 165, employing unnecessarily complicated proofs), that the following two

antisymmetry conditions must be met:




a,, =0 . (2.10)

a = =-a it

13 31°

A simpler proof goes as follows: the expression (2.5) can be writtea as:

X, = Z aiixi2 + §'§ (aij + aji) x,x, =0 (2.11)

11 a, x
{3 4173 g 17

1>]
whiéh identifies a polynomial of second degree in the independent variables

X1:Xp,ece, X7 The condition requires that all coefficlents be zero. This
implies directly (2.10). Thus, conditions (2.10) are equivalent to the
definition (2.5) of a conservative ecological association and to (2.7); they
are necessary conditions for an equilibrium to exist, but not sufficient. At
best, the equilibrium is neutrally stable, something which occurs when all
eligenvalues have zero real parts; otherwise the equilibrium is unstable. This
18 a direct result from the fact that the sum of the real parts of the
elgenvalues equals the sum of the diagonai elements of matrix [aij], which is
zero (since ajy = 0, for all 1 = 1,2,..., I)f

The non—zero equilibrium states of Volterra's conservative ecological

assoclation immediately give us the first integral of the system of

differential equations (2.1). (It will be recalled that a first integral of a
system of .differential equations 1s a function which has a constant value
along each solution of tﬂe system of differential equations.) Following, is
the derivation of the first integral, which has an interesting form from an
economic theory standpoint.

The nomzero equilibrium state (xI, x;, . x;) of Volterra's
conservative ecological association must evidently satisfy the "fundamental

system™ (Volterra's term):

x, =0, {,§=1,2,...,1. (2.12)



The non-zero equilibrium state of this conservative association (1f it

exists), due to conditions (2.5), or (2.7), requires that:

*
E b x, =0 (2.13)

Conditions (2.1), (2.7), (2.10), (2.12), (2.13) combined imply that:

x %
g by xy X, /x; = E x, (a;b + } a5y =
*
- E aibixi + g g a:]i J - Z x (Z aij 1
- § anij - g bjxj = E bixi .
Thus,
L] * L]
E (bx - bx X /x)=0, (2.14)
and, therefore,
) (b,x, - bix: In x ) = Const;’ (2.15)

i

this implies further that at all time periods:
*
x, bi )
expV/ I (xi ) = Conmst , (2.16)
i

where V is the value of the whole association (2.2). Thus, the function

expV /D (x, 1)1 (2.17)

i
is the first integral for the system (2.1). Condition (2.16) can be also

written as:

*
b,x
171 - _&xp \'/
I xy Const (2.18)

- 10 -



This expression for the first integral carries some economic interpretation
from either a utility or production function standpoint. It corresponds to a
Cobb-Douglas type utility/production function, where X can be viewed as a
vector of input factors in production, 5? their equilibrium values, and b as
the vector of their prices. ,Quantity expV from condition (2.2) is then the
total value added. The returns to scale are equal to V since (2.2) holds.
The statiomary principle, to be elaborated in Section C below, thus may be
critical in connecting ecology (and the natural sciences) to economics.

One of the peculiar features of Volterra's conservative associations is
the fact that for the equilibrium to exist the association must contain an
even number of different species ([8], p. 174). This fundamental difference
between the ecological associations containing even and odd number of species
is difficult to accept from an ecological viewpoint; because of this,
Volterra's conservative ecological associations were critically considered by
biologists. In Part II the conservative associations with zero growth will be
analyzed; for these relative growth ecological associations the disturbing
effect of even and odd number of species disappears. Before, however,
entering this topic, we close Volterra's analysis by summarizing the findings

regarding Volterra's variational principle.

C. The principle of statiomary action for the multiple species conservative
assoclations by Volterra.

Analogical to the single species case, Volterra considered a multiple
species conservative association embedded within the integral (which we shall
call the "cumulative action"):

=T (x,, X, t)de (3.1)
o i i

where the integrand G (which we shall call the “"current action") 1is given by:

- 11 -



XX, + ] abX (3.2)

. . !
G =) bX, In X +3 ) a; %X, LoabX

{ 12 75

where Xi = f; xi(c) dt . Again, the element of cumulative entropy 1s
present. Ihe expression Z biii 1n ii is Volterra's “"total infinitesimal vital
action™; thus, the Curr:ht action (3.2) 1is divided into three parts, each
connected correspondingly with: vital action (the entropy measure of the
association), interaction, and demographic energy (the total quantity of life)
at a single time period. This ecological interpretation of action can obtain
a deeper meaning for an association under relative spatial growth conditions
(see Part II).

In Appendix A, in a more expository manner than Volterra, we prove that
the integrand G from (3.2) under integral E of (3.1) produce (2.1) as its

Euler condition. The first order (Euler) condition defines the principle of

gtationary action, since:

i
axi

Having so apt an expression (3.1,2) for the cumulative action, Volterra
constructed the corresponding Hamiltonian H and the canonical system of
differential equations equivalent to (2.1). He used the canonical (co-state)

variables Xi and py, where:

e
Py =0 (3.4)

X
i
and introduced the Hamiltonian H in the form, with G given by (3.2):

H= [pixi-c . (3.5)
i

The system (3.3) now has the following canonical form:

dx ap
R L S S T O JOURR (3.6)
dt " ep, W X,

-12 -



Expression (3.4) implies that:

6 : 1
Pp=—— =b(InX +1)+5] ay Xy o 3.7)
3x 3
1
from which we obtain:
X mexp [ (p, - b, -1 ] a,x)] (3.8)
1 b, 1 12§ "1y

and, using (3.5),

. . 1
H 1Z(b11nx1+bi)xi+51[Zaijxjxi
3
. L] 1 L] .

- Ib X 1aX -3 J J a XX -V)abX =

1 12 ¢ ¢ " {11

= IbX -]abX , (3.9)

i i
or

H=1V+Pp. (3.10)

Thus, the AHamiltonian B coincides with total demographic energy, and,
therefore, the principle of the conservation of demographic energy is met
since H = V + P = Const. H is the first integral of the system (3.3). In

the canonical variables Xy, py, the Hamiltonian obtains the form, from (3.8):

1 1
H=V+P=]b expg (P~ by~3 Zaijxj) - labx . (3.11)
1 1 3 1
D. The principle of “least vital action"” for the multiple species
congervative assoclations by Volterra.
In this section, a special case of multi-species interaction is presented

(the case where the demographic work is zero.) We will draw from this special

case for our inter-urban spatial dynamics in section C of Part II. Volterra's

- 13 -



definition of the total vital action for a conservative multispecies

asgsociation is the integral:
T I L] L]
A= fo (121bixi 1n XIJ dt . (4.1)

The first and second variations of the vital action A will be (in a manner

equivalent to the one shown in Appendix A):

T X |
A== [ (Ib —h)de (4.2)
1 " x
1
and
&2 T by + 2
A= [ (12'— h,") de (4.3)
X

where hi are the variations of Xi such that hi(O) b hi(T) = 0, Let X,,
Xy,+e«, X; be the quantities of life for each kind of species. Therefore the

Xi's from (2.1) satisfy the system of equations:

ae . 1 . ']
X1 - Xi(ai +-EI } ajixj) - qixi, (4.4)
where:
1 .
a = a, +— a (4.5)
i 1 bi } i1

are Volterra's “demographic coefficients” or “effective coefficients of
increase™ ([8], p. 239). The substitution of (4.4) into (4.2) gives the
following expression for the first variation 8A of the vital action A:

a=-f {iz (a,b, + J{ sy ) by} de = - I8 (iz b, a/h, ) de (4.6)

while h1 are the variations of quantities of life X; such that hi(O) = hi(T) -

0. The expression

Jb, ahy (4.7)
{

- 14 -



is, by Volterra, the "work of growth”, or the "virtual demographic work™ for
the variations hl' hz’-"»hr'
Let us assume that for some infinitesimal variations of the quantities of

life the virtual demographic work 1s equal to zero:

i{ (asb, + jz a,X.) h = 12 byah, =0 (4.8)
then the first variation of the total vital action will be zero & = 0 .
Simultaneously, due to positivity of the “average weights™ of species
by > 0 and the positivity of populations, the second variation (4.3) of the
total vital action is strongly positive (52A > 0.). The increment of the

total vital action M, due to the expression (3.5), will be
2
M"&+5A+ooo>0. (4.9)

Thus, any infinitesimal variation hi' hyy «eo, hI of the quantities of 1life

xl, Xz, oo, XI with zero virtual demographic work (4.8) will determine an

increase of the total vital action (4.1). Thus, Volterra proposed an integral
4he

A to govern the evolution of pws multiple species interaction over a time

horizon which attains a minimum. This statement summarizes Volterra's main

variational principle problems of 1least vital action for conservative

ecological association with ecological dynamics as in (4.4).

- 15 -



Part IL. Conservation Conditions in Urban Dynamical Systems.

In this Part we deal with relative growth dynamics, a problem Volterra
never addressed. Equivalences are drawn between the absolute and relative
growth which 1{s defined under different conditions, in Section A. The
necessary and sufficient conditions for the existence of an equilibrium in
relative growth are demonstrated in Section B with their advantages over
Volterra's conservative systems exposed. Finally, the variational principles
and their entropic nature are provided in Section C, together with their

interpretation for spatial systems.

A. Properties of spatial dynamic interaction.

Volterra's absolute growth multiple species ecology necessitates

converting each species population to the conserved quantity V. This is done
through the use of the bi's (what Volterra called "weight equivalents”). As
we mentioned in Part I this set of parameters can be interpreted as factor
prices 1in economic production theory where different input factors are
involved which are heterogeneous, for example, labor and capital. However,
wvhen dealing with human population distributed over space, or any other
homogeneous geographical variable (income, capital, etc.) under relative
growth conditions, the conserved quantity (whatever thay may be) does not need
conversion factors. Whereas, Volterra avoided the consideration of particular
conservative conditions (for example, [8], p. 170 on zero self-growth) partly
because he dealt with the heterogeneity of biological species, there is no
need for such restrictions to be imposed on urban spatial dynamics.

In what follows, we set up the urban relative spatial dynamics under
various growth conditions. We demonstrate that spatial relative dynamics

correspond to particular absolute growth ecological conservation dynamics of

- 16 -



Volterra. Then, we proceed to show thelr stablility properties and discuss the
competitive exclusion condition, a result applicable to all relative spatial
dynamics. This discussion has direct implications upon the appropriateness of
the differential equations assumed to hold for spatial dynamics; also upon the

acceptance of a general "exclusionary principle,” implying total agglomeration
into a single site, in location theory. Finally, we propose a corresponding
integrand (equivalent to Volterra's least vital action principle), and we show
it to attain a maximum as it governs our interurban evolution. We show it to
be a maximum cumulative entropy measure of the relative spatial interaction.

Assume a homogeneous geographical variable (population) distributed over
different locations i (1 = 1,2,...,I) at any time period, t, so that the total
population V is independent of time:

V= ]y, = Const>0. (5.1)

i
Along Volterra's lines, V can be interpreted as the total “value of the
distribution.”™ Condition (5.1) is more appropriate for urban systems, as it
is a less restrictive conservation condition than Volterra's definition of
V. One can extend the current analysis by examining the case where V is a
function of time. The special case of spatial relative dynamigs where V = 1
will be referred to as normalized dynamics.

Volterra's absolute growth conservative ecology dynamics shown in (2.1)
are now transformed into the relative growth urban (spatial) conservative
dynamics by a system of ordinary differential equations:

. 1

y, = (ai + SI } ajiyj) Yy» i=1,2,...,I : (5.2)

subject to (5.1). The validity of such an association for inter—urban dynamic

spatial {interaction rests on theoretical grounds, Dendrinos (with Mullally)
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[5], as well as on empirical verification. On the theoretical front it
identifies in 1its community matrix of coefficlents a set of all possible
geographies (predatory, competitive, cooperative, isolative, amensal,
commensal) among various urban settings. Recent extensive empirical evidence
seems to support the proposition that aggregate urban dynamics can be
efficiently described by models drawing from mathematical ecology and
population dynamics. Although these empirical findings are mostly reported
for single city-nation interactions, Dendrinos (with Mullally) [5], testing of
multi-urban interactions currently underway provides support for such modeling
effort. These findings are reported in forthcoming papers, for example
Dendrinos [4].

Two qualitative features of the model in (5.2) are well known: first, if
the system has an equilibrium solution, it is unstable, or (at best) neutrally
stable; second, for it to have a solution, certain conditions must hold
connecting the model's coefficients in the community interaction matrix. We
address next the qualitative properties of this model and their theoretical
implications.

The analytical aspects of the model are shown in Appendix B, where, it is
proven that the model's parameters must satisfy a special antisymmetry
condition, under zero—-self growth for it to have a solution. Empirical
testing of validity of such inter-urban association allows, among other
things, the examination of any correlation between spatial relative impedance
(or relative accessibility) and the magnitude and/or sign of the interaction
coefficients. On a theoretical level it enables us to detect (in case of a
solution) the wunderlying integrands governing wurban spatial relative
dynamics. This antisymmetric property 1is very informative; it shows that,

under specification (5.2), and when solution exists, spatial conservative
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dynamics are purely competitive. It also implies that there 1s no friction

due to agglomeration 1in relative dynamics, to damp the dynamic equilibrium,

thus producing exclusionary allocations.

B. Equilibrium states of relative spatial dynamics and discussion.

_Although Volterra did not examine zero self-growth conservative
associations, from the point of view of urban spatial dynamics these
associations are insightful to model relative distribution dynamics. Under a
relative framework internal growth and net migration are intertwined so that
their combined effect is modeled. An important example of a zero self-growth
normalized ecological association was first studied in the theory of temporal
diffusion of competitive innovations, Sonis [10].

In the case of relative growth depicted by (5.2) the stability properties
of the equilibrium differ significantly from Volterra's conservative
ecological associations (2.1l), (2.5): there 1is no neg@ for an even number of
species to 1interact for a stable equilibrium to exist. In agreement with
Volterra, however, if a solution exists the equilibrium is stable only under
competitive exclusion. This implies that only the concentration of the whole
(homogeneous) geographical substance (e.g. population, capital, income, etc.)
in one of the regions can be stable asymptotically. Asymptotical stability of
the equilibrium state (yI, y;, coey y;) means that, for any small
perturbation, the perturbed state (yl, Fpseees yI) exhibits the dynamic
property:

1lim y, = y*, i=1,2,...,I.

t o+ ow i i
Proof of this statement for spatial competitive exclusion 1s supplied in

Appendix B.
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Under relative growth conditions depicted by expression (5.2), at best
neutrally stable solutions are obtained and in all 1likelihood only exclusive
allocation of the homogeneous geographic variable onto one locale will
result. Inter-urban interactions, viewed within the framework of a specific
enviromment (the nation or a region) used to normalize the urban size, imply
asymptotically stable total agglomeration of the geographic variable onto one
site. This is the result of pure competition and absence of friction found in
the antisymmetric properties of the interaction matrix. In modeling spatial
dynamics in a relative framework, thus, fundamental instability is built into
the system.

One by looking at the empirical evidence produced so far, Dendrinos (with
Mullally) [5], finds stable patterns of spatial growth when cities are viewed
in 1isolation and in reference to the nation as the enviromment over which
their relative size is computed. This juxtaposition has certain implications:
the relative community interaction matrix of (5;2) may be applicable for
certain selective enviromments (i.e., regions), the U.S. as a whole not being
one of them for its urban areas. In theory, there is no apparent reason why
one cannot find an enviromment with respect to which cities could exhibit
dynamics of the type found in (5.2). Further, the stability properties of
particular spatial systems may vary as one changes the broader enviromment
within which these systems are viewed. This may lead the spatial analyst in
certain instances to formulating inter-urban interdependencies in a different
manner than (5.2). For instance, one may wish to introduce stronger forms of
inter-urban interconnectance by including cubic terms in the state variables,
Sonis [10].

The information of an active environment can be accomplished with the

help of a stochastic matrix S = lfsijll which describes the process of
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redistribution of population among the various regions due to this
intervention. This redistribution process acts in addition to the ecological
dynamics present in the interaction matrix. The active environment smooths
out the extreme action of the competitive exclusion principle and leads to a
more balanced final asymptotically stable distribution of population among
regtons. Clearly, further extensive empi;ical search 1is needed to ascertain

the validity of any of the above theoretical conjectures.

C. Variational principles for urban/regional relative growth dynamics.

_In this section the main finding of the paper is presented, namely the
derivation of an integral which governs the.evolution of spatial relative
dynamics as assumed in (5.2) when they possess a solution. It is closely
related to spatial cumulative entropy from which it draws 1its
interpretation. This theoretical implication supports the evidence of an
entropy principle in spatial dynamics. Consider a normalized spatial dynamic

system given by:

5'1 = (}bijyj)yi, i=1,2,...,I (6.1)
zyi =1 (6.2)

with the antisymmetric matrix B = (bij): b1j - - bji; bii = 0., Denoting as:

t * g » .

one has the dynamical system:
Yi- Y1 } bij Yj . (6.4)
Z Y1 = 1. (6.5)

In this zero aggregate and self-growth conservative spatial dynamics the value
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of the whole association V is equal to one and the potentfal inter—urban
demographic energy P is zero, (see (2.2) and (2.4). Therefore, one can use an
appropriate modification of the Volterra integrand (3.2) for the construction
of a variational problem (equivalent to his integral of cummulative action),
which generates the system (6.4, 5) as its Euler condition. ﬁe propose the
following integrand:
o= =2 g Yiln Yi + g } bij YiYJ (6.6)

and the associated cumulative action

E = f’ o (1, ¥,) de (6.7)

we interpret as the urban fitness function. The variational principle of
stationary cumulative action means that the first wvariation of the

integral E' vanishes, giving rise to the system of Euler differential -

equations
2 .4 - .
¥1 i ) , i 1,2,...,1 . (6.8)

¥y

Direct calculation gives
A - b Y, , 6.9
¥y } it (6.9)
28 . - v
- 2(ln Y, + 1)+}biJYj . (6.10)
¥y

Therefore the integrand we propose through, (6.8) implies that through (6.9,
10) and the time derivative of (6.10) the original condition (6.4) 1is

obtained, since:

L] Y.. L]
1
szjiyi 2 — +}biJYJ (6.11)
¥y

whereas, the antisymmetry of the interaction matrix B = (bij) implies (6.5).
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The stationary value of the cumulative action E' turns out to be the

cumulative entropy for normalized spatial dynamic systems:

e [ f,(sri,{zi,c) ae = [ -2 tz{fi In s}i + 123}1 (}binj)] dt =

E['Z 12’1 la y1+12"1 5 (}bij yy)del de =
.. E[-Z 1Zylny1+12y1 ﬁ).'i/yi dt] dtc =

= E[-z lzyilny1+izy1 lnyi] dt =

ﬁ (- 1Zy1 Iny, )dt (6.12)

Thus,

[ {,,¥,t ) de = E (- I In y, )dt (6.13)

and, therefore the “stationary cumulative action” for a normalized spatial

distribution dynamics is the cumulative entropy of the population distribution

during the time horizon T. This is our main finding.

Contrasting Volterra's integrand G, (3.2), in his conservative ecological
dynamics, with our integrand 4 in relative urban dynamics, one sees that the
three terms 1in the ecological conservative systems (constituting total
infinitesimal vital action) collapse in spatial dynamics into a single term;’
vital action, interaction and demographic energy merge into a single entity,
namely cumulative spatial entropy.

It is important to point out that the first term of integrand ¢ which is
Volterra's "infinitesimal vital action”, represents the Shannon entropy of
population distribution (Shannon [9], p. 396). Volterra naturally did not
gilve such an interpretation of the "infinitesimal vital action,” (or what we

defined as “"current vital action” earlier), as Shannon's work appeared in 1948
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in the context of communication theory. The second term of integrand ¢ in
(6.6) represents the interaction between different parts of the homogeneous
geographical substance (population). The analogue of the Volterra "least
vital action” principle obtains for the telétive growth dynamics the form of
dynamic maximum cumulative entropy principle.

" In general one cannot determine whether (6.12) has a minimum or a
maximum. However, for a special case to be addressed below one can show that
the stationary value of (6.12) attains a maximum. Let us consider first the
integral (i.e., the cumulative entropy) for the general case (6.12) which can
also be written as

B == T (Y, 1ny,) at (6.14)
oy 1 i

The first and second variations of the cumulative entropy E' are

c o X
6E' = fo (J — hi) dt (6.15)
:
Y1.
2 T o0y?
§°E' = - fo (I =) ae (6.16)
i Y,

where hl’ h2, ceny hI are the variations of the cumulative populations,
Yi = fz ¥y dt , such that hi(O) - hi(T) = 0 (see Appendix A). Since the
cumulative populations Yi satisfy the system (6.4, 5), the first variation is

SE' = f: % (§ by J) h,dt (6.17)

It is possible to interpret the expressions
B, = )} b, .Y (6.18)
]

as "coefficlents of population increase due to the interaction,” or relative
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migration (i.e., relative tranmnsfer of population) coefficfents. In a similar
manner the expression Z Bihi can be interpreted as the virtual work of urban
growth due to the interjﬁrban interaction.

Next we draw from the speclal case of multispecies interaction by
Volterra, when the virtual work of urban growth is zero to show that (6.12)
obtains a maximum. If for some cholce of the variations hl’ h2’ o, hI of
the cumulative populations Yl’ YZ’ .eo, Y_ condition (6.3) 1is equal to zero,

I
% Bh, = % [§ by

entropy is equal to zero SE' = 0 , and, simultaneously, due to the positivity

Yj] hi = 0 , then the first variation (6.17) of cumulative

of the populations =Y >0, the second variation (6.16) of the cumulative
4

i
entropy 1is strongly negative, GZE' <0 .

Therefore, for the same variations hi which imply the vanishing of the

virtual work of urban growth due to inter-urban interaction the increment of

the cumulative entropy
AE' = SE' + GZE' + ... (6.20)

1s strongly negative, which implies a decrease in the cumulative entropy,
q.o.d.

In conclusion, a dynamic maximum entropy problem i§ uncovered to generate
the relative dynamic urban model of spatial adaptation of a homogeneous
geographical substance (population). This fitness function i1s equivalent to a
least effort principle found in Volterra's ecology.

A final remark on the postulated integrand for spatial assoclations: the
proposed integrand must not nunecessarily be unique. Either a class of
equivalent integrands can possibly exist, the one proposed here being merely

their canonical form; or quite different ones might also produce the same

- 25 -



result. For a case in point see Gelfand and Fomin [6], p. 36. This, of
course, would 1imply that there are multiple objective functions which can
produce an adaptation path. These are potentially interesting questions for

future theoretical speculation and empirical research.

D. The Hamiltonian of urban conservative relative dynamics.
We now turn to the search for a possible governing Hamiltonian of the

normalized spatial dynamics. Introducing the co-state variables:

pi-ﬂ, {=1,2,...,1, (7.1)

aYi
and the new Hamiltonian:

H= ¢ - %piYi (7.2)

one can obtain:
‘}-exp[—l(p-Zb Y,) - 1) (7.3)
i 2 i j i 73

and the canonical system of differential equations:

oy om . Py om

dt o,’ dr 9,

(7.4)

Stating the Hamiltonian H as a function of the co-state variables, due to

(7.1, 2) we obtain:

H-—ZizYi 1nyi+gaiJY1‘zj— ZYi(—z ln¥ -2+ ZbiJYJ) -
b i j
; 1
'ZEYi'ZizeXP["Z'(pi-gbinj)—lj. (7.5)

Due to the condition ) Yi = 1 the value of the Hamiltonian is H = 2 on the

i
extremals Yi, and, therefore, it 1s a first integral of the normalized spatial

dynamics.
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It 1Is 1interesting to note that one can easily obtain from (2.17) the

first integral for the normalized spatial dynamical system as a Cobb-Douglas
* *
(production) function Il yiyi , where yi , 1 =1,2,...,I, 1is some equilibrium

state of the system-i This expression 1s also similar to the objective
function of a geometric programming problem.

. As it was mentioned earlier, Volterra found the sufficient counditions for
the presentation of the solution of system (2.1) in quadratures. In the case
of the normalized spatial dynamics, the analogical condition allows us to
obtain the explicit formulas of solutions in elementary functions. This
allows us to draw some links between spatial dynamics and the logit model. It

is donme in Appendix C. Here, one may note the following:$ condition (7.3)

can also be written as

Y =exp ((~5p, +1)+= Lb Y )/ Lexp ((-5p +1)+3 Lb, Y]).
Z P RS I A 7 B 2§ kg

i
(7.6)
Expression (7.6) corresponds to the logit model of random utility choice with

utility functiouns

1 1
Ui-(-5p1+1)+312bijyj. (7.7)

These U contain separable effects; one is a negative association with Py and

the other is a positive association with bij and Yj'

One may wish to interpret p; as the relative marginal cost of fitness for

urban setting 1's population (the equivalent to shadow prices in micro-

economics). At equilibrium Ui 2l = % H , so that the Hamilitonian can be

SWe thank Giorglio Leonardi from IIASA for pointing to us this rewriting of
(7.9), since the denominator equals one by definition.
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viewed as a relative utility function. Utility thus Iincreases as the marginal
cost of fitness declines, and 1increases as the relative inter-urban
interaction (Z binj) increases. In view of this, the interpretation of the
relative fitthess function ¢ is insightful: it is the sum of all urban
areas' current relative fitness level. E' is the cumulative total fitness of
the'community of urban areas over a time horizon T. Fitness 1is such that
inter-urban interaction maximizes the cumulative entropy of the association.
(cumulative action.) The term X PyYy represents the value of effort to adapt
in all settings, so that from (%.2) the current fitness level is the net sum
of the utility level enjoyed and the total cost of adaptation (the effort to
adapt).

One may ponder planning (decentralized control) and aggregate social
welfare aspects of the proposed Hamiltonian. It must be kept in mind that
this 1s a relative growth model and the implied controls are much more
comprehensive (over space, functions and agents) than those 1in welfare
economics. Thus, although the scheme may be similar to welfare maximization
problems, the ecological base of the model proposed makes any practical (i.e.,
specific) use of it restrictive. Ecological models, and this is a main
message of this line of work, present a different perspective on policy
making, a subject more fully addressed in [5]. They provide the final

outcomes from a complex and broader interplay of actions among a very large

number of producers, consumers and govermments.



Conclusions.

Volterra's original absolute growth conservation conditions and varia-
tional principles were reconsidered for one and multiple specles ecology.
They were contrasted with more specific conservation conditions for relative
growth and spatial distribution in urban systems and appropriate equivalences
and " substantive interpretations were drawn. Volterra's stationary action
multiple species integrand G = g b X In X, + 5 2 Z Z aij J + Z a;b,X, ,
condition (3.2), was found to have a corresponding one in relative spatial urban
dynamics under pure competition of the form: ¢ =2 (- E ;i 1n %1 +-% g § bij éin],
condition (6.6). Furthermore, we  proved that the corresponding integral
produces in our case E' = f: - I yy1n yiJ dt, i.e., a stationary cumulative
entropy measure, condition (6.13)iof spatial dynamics.

The stationary maximum cumulative entropy integral shown to govern and
produce as 1its solution the urban relative spatial dynamics was viewed as one
(among possibly many) adaptation (fitness) function in spatial dynamics
equivalent to a least effort principle 1in Volterra's absolute growth
conservative ecological assoclations. The detailed comparison of Volterra's
fifty year old studies 1involving three different classes of ecological
problems with recent developments in ecological urban dynamics was shown to
lend new insights toward a deeper understanding of spatial dynamic
processes. In particular, basic conditions resulting in dynamic instability
(competitive exclusion implying concentration of population in a single area),
or neutral stability in relative urban evolution were provided and contrasted
with the stable motion of urban relative dynamics viewed in isolation within

the nation's enviromment. It set the framework for modeling multi-urban

interactions.
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This theoretical framework provides for empirical testing, a task which
on single relative growth dynamics was partly carrled out in [5]; multi-urban
interactions in a relative growth framework are dealt with in forthcoming
papers, example [4], where it is shown that each particular form of an inter-

urban interaction matrix generates particular unstable hierarchical dynamics.
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APPENDIX A

In order to fully capture the richness of Volterra's formulation, we go
back to certain basic principles in the calculus of variations problems, for
example Gelfand and Fomin [6]. The variation h(t) of function X(t) 1s the

difference between a new function )E(t) and X(t) such that:
&X = h(t) = X(t) - X(t) . (A.1)

We replace in the integral E all functions Xi(t) by the "varied” functions
Xi(t) + hi(t) where hi(O) = hi('r) =0, 1=1,2,...I, and construct the
increment AE(hi) = E(Xi + hi’ Xi + hi) - E(Xi, hi) . In the case of (3.1,2)
the increment 1is:

T .
E(h) = [ [G (X +h,, X, +h) = G(X, X)] dt (A.2)

and 1t is possible to find, applying Taylor's formula, that:

Az(hi)=fr[2(£h +£hiJ+

o X i .
i i 3Xi
2 2 . 2 ..
1 3G 3G 2 G
+Eizjz (m; hyhy + — hjh, + hthJ+ cee] dt . (A.3)
X, 3K, 3, X,

We now form the first and second variations of the integral E:

AE=6E+62E+... (A.4)

The first variation is:
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T 3G Y .
& (o b = fo D) gy py ¥ S by e
aXi
T - (3G d &%
RO -l DAL (A-5)
1 1 ax
i
and the second variation:
p T azc azc ’ azc e
E(Xi, hi) = fo ( %jz {_'—axiaxj hihj + = hihj + = hihj} ] dt
:5){1axj axiaxj

(A.6)

ol
A necessary condition for the integral E to have an extremum (maximum em

minimum) is that its first variation & vanish for all admissible variations

hy (i.e., hy(0) = hy(T) = 0):
& = 0 (A.7)

which is equivalent to the fact that the functions X;(t) satisfy the Euler

equations
&G d 6
T ) 1=L2,.0 (4.8)
1 X
i

The above conditions (A.8) are necessary but not sufficient for the existence
of an extremum; they define the principle of stationary action. .In other
words, the actual trajectory of Volterra's conservative ecological association

does not minimize  the cumulative action E but only causes its first variation
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to vanish. Direct calculation provides immediately the equivalence between

the system in (3.7) and the system(z)

Z a, X
JijJ

X =bixi/xi+

J{ 251 X, . (A.9)

N =

1
a;b, +3

The antisymmetry of the interaction matrix A = (aij) and appropriate
substitutions prove that the Euler equations (A.8) are Volterra's dynamic
equations (2.1).

A final analytical note on system (2.1): the Volterra differential
equations is a noo-linear one; therefore, it 1is usually impossible to reduce
the integration of non-linear systems to quadratures. Given the special fomm
(3.1), however, Volterra was able ([8] p. 256) to give conditions for the
integration of (2.1) in quadratures of the form:

S IR | S
aiajbibj ajakbjbk akaibkbi

But even this simple, and very restrictive, analytical form for the

a
=0 for each i, j, k . (A.10)

integrability in quadratures did not allow him to construct the explicit
solution for the system (2.1) in elementary functions. It is shown, in Part
II, that the case of relative growth allows for explicit solutions to be
obtained in elementary functiomns. Further, they give the model of generalized
logistic growth (Sonis ([10], p. 117). Moreover, it 1is be shown that
conditions (A.10) are only sufficienat (but not necéssary) for the

integrability in quadratures, Appendix C.

(Z)Note an error regarding the integrand on p. 240 of [8]: the parenthesis in
equation C', last terum.
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APPENDIX B

The system (5.2) with condition of =zero aggregate growth (5.1) 1is

equivalent to the system

yyo= vy jz byyyy» 1= 1,2,...,I (B.1)

12 y; = V = Const > 0 (B.2)
where

by -a—é+i% (B.3)

It is p§ssib1e to interpret the above system as a special case of relative
spatial growth dynamics with zero self growth ay = 0, 1=1,2,...,I, (Taverage
welight” of species equal to unity: by =1, 1 = 1,2,...,I, and interaction
coefficlents bij = - aij in an analogical to Volterra's system ). Thus, the
relative spatial growth model includes both zero aggregate (regional) growth
(V = Const) and zero individual city growth (ay.= 0). We will call such
dynamics "zero growth dynamics.”

The introduction of new variables
z, = yi/V (B.4)

and new interaction coefficients

a iV
Py At (B.5)

result in a zero growth normalized dynamics:
1= % § bijzj (B.6)

Z z, = 1. (B.7)
i
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It 1s {mportant to note that a zero growth (normalized or not) relative
spatial dynamics can be linked directly to Volterra's conservative ecological

associations: the condition of zero aggregate growth (5.1) is equivalent to

YIb,yy,. =0, (B.8)
{3 1Yy

i.e., to Volterra's conservation condition. This follows immediately from the
equality:

S Ib v, =Ly, (Ib,y)=1y, =3 . (B.9)
PP T PNy T T

We now further analyze the zero growth relative spatial dynamics:

v, =¥y g by vy, 1= 1,2,...,1
V=ly, (V>0 .
i

We prove that in the aboYe system the matrix B = (bij) is antisymmetric, a
fact with significant interpretational implications outlined in the main
text. By introducing the condition:
I-1
yp= V- 121 v, (B.10)

variables yq, Y95+++,¥1-1 become independent. Due to (B.8) one can derive the

following:
-1 I-1
0= 3§ Jb.yy. = ¥ } (b, +b, =-b_=-b
Fortu YOy L L P T T T
-1 )
= by T by T2 vy vyt 121 by ¥y
I-1 2
+ v 121 (byp + by, = 2by) v, + Vb (B.11)

identifying a polynomial of second degree 1in the independent variables

Y1:¥2ssee5¥1-1" Condition (B.1ll) holds as an identity, thus requiring that
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all its coefficients must be zero. This, in turn, implies that:

V2 bII = o ; bii = O » i = 1,2,--0, I-l (8-12)

V(b,, +b

11 1" ZbII) =0, 1=1,2,..., I-1 (B.13)

(bij + bji) - (biI + in) - (bJI + bIJ) - 2bII =0, i=1,2,...,I-1.

(B.14)

Since V > 0, then:

bij = - bji’ bii = 0, i= 1,2,::.,1 (B-IS)

which are the antisymmetry conditions for matrix B = (bij)‘ Inspite the
similarities between the above and Volterra's models, nonetheless, there 1is a
big difference in the equilibrium properties: all peculiar conditions
associated with the existence of an equilibrium found in absolute ecological
dynamics are absent in the case of relative spatial growth. This is proven
below.

The equilibrium states yI, i=1,2,...,I, of the dynamical system 1in

(B.1l) with the antisymmetric interaction matrix B = (b, . ) are the solutions

i3
of the following system of equations:
x I *
yi z biij = 0 > i= 1,2,-0-,1 » (B016)
J=1

I u

[ yg=V (V>0 . (B.17)
J=1

A complete description of all possible types of equilibrium states, are

analyzed next.
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It is easy to see (by substitution) that the simplest solutions of the

system are I different solutions of the type:

* 0 * * * 0
Yl")'2=---’)'r_1=' .yr=V, yﬁ_l'.--=yl= ,r=1,2,...,I. (3-18)

These equilibrium states represent the competitive exclusion of species or the
total concentration of whole geographical substance within the r—th region
(r = 1,2,...,I). Further, let us consider the equilibrium states with oaly
r (2 €r €1I) non-zero coordinates. For each r there exist not more than

(;) such equilibrium states. Without loss of generality, one can assume

that:

* * * 0 * * B.19
Yy» Yg» ece ¥, > 0, Yepp = o0 ™ yr = 0. (B.19)

For this type of equilibrium the system (B.16) will be:

1 b y* =0, 1=1,2,...,r, (B.20)
jop 1973

r

) y, =V . (B.21)
s=1

The matrix B, of the linear system (B.20) 1is an antisymmetric r x r matrix.
If its determinant is non-zero, then the system has only a zero solution which
contradicts condition (B.21). This is the difference between Volterra's and
our spatial relative growth conservative dynamics. This possibility holds
only for even r, due to the antisymmetry of the matrix B.. But for even r it
is possible that the determinant det B, will degenerate to zero, the necessary
condition for existence of equilibrium. In the case of odd r, the determinant

of the system (B.20), due to antisymmetry or B is equal to zero

r’

automatically. In any case, if the determinant of the system equals zero:
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det Br =0 , (B.22)
then the system (B.20,21) has a solution

y; S - »y 3 =1,2,..4,r (B.23)

where Arj are the algebraic complements (or co-factors), for the elements ary
in the r—th row of the matrix Br' This statement follows from the well-known

property of co-factors (Korn and Korn [7], 1.5-2):

T det Br’ i=1r
j-Zl P15y {o , 1 #¢ (3:20)
which in our case (B.22) is
c ,
j21 bijApy =0 1= 12,000 (B.25)

*
The conservation condition (B.21) obviously holds for Yy from (B.23).

*
Further, for the same yj

r * r v Arj v r
j21 bijyj - le bij - - E jgl bijArj =0 . (B.26)
A A
K=l rk k=1 rk

Now it will be shown that only the competitive exclusion equilibrium
(B.18) can be stable asymptotically. The original system of differential
equations (B.l) can be rewritten, after the substitution:

y.=V- ) yj , (B.27)
j#r
is made, in the form:

ii- ¥y [jzr (bij - b)) Y, +Vb l=f,1#*r. (B.28)
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It {s well-known (Korn and Korn [7], 9.5-4), that the equilibrium states for

such a system are stable asymptotically 1f, and only if, all eigenvalues of

of
the matrix L = ( 3;3 * ] = (lij) have negative real parts. In our case
Iy
(k#r)
of
af1
A jaztr (byy = b)) ¥y + Vb +yy (byy =by)=

I
= 1 by b, (B.30)

j=1

and, therefore, for the equilibrium states (B.18) the matrix L has the form of

a diagonal (I-1) x (I-1) matrix with its diagonal elements Vbir (1 #1r):

vb o L BN ] O
lr
L = ? VPzr ees O . (3-31)
0 o Vb .

The eigenvalues of the matrix L are its diagonal elements, and, therefore, the
condition for asymptotical stability of the competitive exclusion equilibrium

are that Vb, <0, 1 #r, or-:
ir

bir < o, i= 1,2,..., r-l, ﬂl,ooo, I. (3032)

This means that the competitive exclusion equilibrium (B.18) is asymptotically
stable if, and only 1if, all non-diagonal elements of the r—th column of the

antisymmetric interaction matrix B = (bij) are strongly negative.

- 40 -



It follows immediately from the antisymmetry of the interaction matrix B
that from I different competitive exclusion equilibrium states (B.18) only one
can be asymptotically stable since the negativity of the r-th column of the
matrix B implies the positivity of the r—th row, i.e., the matrix B can not
include two different negative columns.

Further, for the equilibrium states of the type (B.19) with r non-zero

coordinates (B.23) matrix L has components from (B.29, 30):

0 i1 5r
1 * A
13 = (byy = By ¥y VAL . - b9 L (B.33)
r ij ir '
kzl Ark

The sum of the real parts of the eigenvalues for the matrix L 1s the

trace Z 1JJ of the matrix L. Due to (B.25), this trace is equal to zero:
j#r
v r
TrL = l,, = —— b A, ,6,=0. : B.34
BT o Pestes (8-34)
] A
rk

k=1

This means that the sum of the real parts of the eigenvalues is equal to zero,
which 1s possible if either the real part of each eigenvalue is equal to zero,
or there exist eigenvalues with strongly positive real parts. In both cases
the equilibrium states of the type (B.23) are asymptotically unstable. In the
latter case the equilibrium is unstable, while the former case of pure

imaginary eigenvalues implies periodic motion.
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APPENDIX C

The sufficient conditions for the integration of the normalized spatial

dynamical system in elementary functions are:

bij + bjk + bki = 0 for each 1,3,k . (C.1)

These conditions together with the antisymmetry of the interaction matrix B =
(bij) allow the coastruction of the system's explicit solution in the

following way (Sonis [10], p. 116):

—ln—=-——=-—=J (b, =-b, )y, =J]b .y =b, ; (C.2)
dt Ve Y4 Yy i 1] ik’ 7] i ik’ § ik
then
Yy
Inz==b,t+C, (C.3)
k
where C1 is a constant. Therefore,
v y,(0) .
y—-Ceprikt [C-expcla-y—(E)—]. (C.4)
k k
Thus,
y,(0)
yi - yk y—k(—o—)- exp bikt . (C-S)
One can obtain, due to the above condition:
Tk 0 b (C.6)
l= = — ex t, .
Lyy =5y 175 (O exp by
b ]
or
Y = ¥, (0) / jZyj(o) exp byt . (C.7)

Therefore, from (C.5), for each fixed k

- 42 -



y; = ¥,(0) exp bt/ ijJ.(O) exp bjkt , 1=1,2,...,I. (C.8)

The above expression describes the generalized logistic growth and represents
a temporal extension of the well-known 1logit random utility choice model
(Sonis [1l1l]). This extension lies at present 1in the inner core of the
unification of ideas of urban dynamics, innovation diffusion and individual's
choice behavior.

Condition (C.1) is only a sufficient but not necessary condition for the
integration in quadratures. For proving this one can consider the following

normalized spatial dynamic systems

¥ = ¥y (5% ¥3) (€.9.1)
y, = ¥y (=3 = ¥3) (C.9.2)
¥ = 35 (=5, +3,) (C.9.3)
Yyt ¥, tyy=1 (C.9.4)

with the antisymmetric interaction matrix

0 1 1 .
B=|-1 0 -1 (C.10)
-1 1 0

For this matrix condition (C.l) is not true because

b., + b

12 + b

=1l1=-1=1==1320, (C.11)

23 31

but the substitutions:
Yot ¥3=1l=-y,, =¥, ~"¥3=y,"1 (C.12)

convert the system (C.9.1-4) into the system
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yp =y, -y

Yo = = Y, (l-yz)

yv3=1-y,-v,

with an obvious solution

y1’1/1+ce-t’

y2-1/1+Cet

y3 = (€G-

1

2 14

1) /(1 + Cle_t) (1 + Czet) .
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(C.13.2)

(C.13.3)

(C.14.1)

(C.14.2)

(C.14.3)



