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ADJOINT DIFFERENTIAL INCLUSIONS 
IN NECESSARY CONDITIONS FOR THE MINIMAL 
TRAJECTORIES OF DIFFERENTIAL INCLUSIONS 

Halina Frankowska 

I'ntroduct ion 

Consider the following control system: 

[I; = f (.x,u (t) 1 

where f : Rn x Rm + R" and U : R" = Rm is a set-valued map. 
2n Let g : R + RU:( be a given function, and consider th.e 

problem of minimizing g (x (0) ,x (1 ) ) over the set K of solutions x 

to (.Q I 1 1 

Let z be a minimizer 

If U does not depend on x and if the data are smooth enough. 

the Pontriagin maximum principle [I51 tells us that for some 
n absolutely continuous function p : [0,1] + R the following holds: 

I < P C ~ )  tfCz(t1 lGCt3)> = max <p(.t) ,f{z (t) ,u) > 
uEU 



af * 
where u is the control associated with. z and [- Cz Ct)- ,u (t) 11 ax 
denotes the transpose of the Jacobian of f with respect to x at - 
(z (t) ,u(t)). The case of control problem with constraints bearing 

on initial and final states can be embedded in the above frame- 

work, when g is no longer smooth but just a function taking also 

infinite values. This is a first motivation to tackle the non- 

smooth case. 

A series of papers took the issue of adapting this result to 

the case 05 non-smooth functions by using one or another of the 
many generalized gradients (see Clarke 181 for instance). 

To study the necessary conditions in a more general case we 

have to consider the set-valued map F : Rn Rn defined by 

and an associated differential inclusion 

Under some measurability assumptions on f it can be shown that the 

solutions to (0.1) and (0.41 coincide. So, to get a characteriza- 

tion of z, we can just study (0.4). 

Such an approach to optimal control problem was first pro- 

posed by ~aiewski in [21] and has been the object of consideration 

by many authors. See for example, Aubin-Clarke 121, Blagodatskich 

[4l, Clarke [8] , Frankowska-Olech [I11 , Ioffe 1121 , Lasry-Berliocchi 
[131, Rockafellar [I61 . 

The question arises naturally how to formulate a maximum 

principle for an optimal trajectory of such a differential inclu- 

sion. 

For obtaining results similar to (-0.21, (0.3) in the set- 

valued case we need a notion generalizing the derivative and its 
+ 

transpose to a set-valued map F : E + El , where E,EI are Banach 
spaces. 



For that purpose we shall adopt the geometric point of view. 

When F is a smooth function, the graph of its derivative is the 

tangent space to the graph of the function. In the case of a 

non-smooth function or a set-valued map F, we need to define a 

tangent cone to the graph to be able to use the same strategy. 

Many candidates for the role of tangent cone to a set have been 

proposed; let me mention the contingent cone, introduced by 

Bouligand in the early thirties, or the tangent cone introduced 

by Clarke L5] in 1975. 

But whatever the choice of a "tangent coneH TK(x). to a sub- 

set K. at a point x € K is, we can use it to define the derivative 

of a set-valued map F at a point (x,y) of its graph. 

Let T 
graph CE) 

(x,y) be the chosen tangent cone and let us 

call its negative polar cone the normal cone to K at (x,y), and 

denote it by N 
graph (F) CxtyI : = T graph CF) 

(xty]-. Then the deri- 

vative DF(x,y) of F at (x,y) is the set valued map from E to El 

defined by 

and the co-derivative DF(xty)* of F at (x,y) is the setdvalued map * * 
from El to E defined by 

* 
r EDF(x.y). (q). iff (r,-q). E Tigraph (F1 (.x , y 

which can be regarded as the transpose of DF(x,y), Csee a survey 

in Chapter 7 of the book by Aubin-Ekeland [3]1. 

FTe define also a generalized.gradient of a real-valued func- 

tion f : Rn + R U { +=}  at x E Dom (f) which we denote by af (x) . 
The necessary conditions then take the following form: 

There exists an absolutely continuous function p : L0,1] + Rn 

satisfying the following conditions: 



The objective of this paper is twofold. The first one is to 

derive inclusions (0.2)' and C0.3)' using a suitable concept of 

tangent cone such that the associated notions of co-derivative and 

generalized gradient are reasonably small. The second one is 

related to "calmness assumption" introduced by Clarke (see [6] , 
[7] , [8]). We replace it by a "surjectivity assumption" which 

states that the "linearized problem" around the optimal solution 

is solvahle. This is a checkable assumption: we shall illustrate 

this point in Section 4 as we apply our approach to optimal control 

with constraints bearing both on the initial state and the final 

state. In this example "calmness" seems to be harder to verify. 

The intermediate tangent cone plays an important role in this 

paper. This is due namely to the fact that we can "compute" the 

intermediate tangent cone to the set of solutions to the differen- 

tial inclusion C0.4) as the cone of solutions w to the "linearized" 

differential inclusion 

where dF (z (t) ,; (t) 1 denotes th.e intermediate derivative of F at 

Cz (t) , ; Ct) ) (see Frankowska I 1  Ql 1. This is the reason why we 

cannot avoid using it for solving our type of problem. It enjoys 

also other interesting properties: in particular, the associated 

generalized gradient af(x) is smaller than Clarke's generalized 

gradient and has the following property: If f is Frgchet differ- 

entiable at x, then af Cx) reduces to f' (x) (whereas we require 

that f is regularly differentiable for the Clarke generalized 

gradient to reduce to f ' (x) ) . 
The choice of a tangent cone is analogous to the choice of an 

adequate concept of derivative: it depends upon the problem at 

hand. Let us mention only that the contingent derivative Ccf. 

Aubin-Ekeland [3]lis a generalization of the ~3teaux derivative, 

the intermediate derivative--a generalization of the Frgchet deri- 

vative and the Clarke derivative--a generalization of a continuous 

Frgchet derivative. 

In general, the intermediate tangent cone is not convex. In 

many applications the convexity is required. Our results can be 



formulated with different convex. suhcones of the intermediate tangent 

cone (one among possible candidates is the Clarke-tangent cone, 

which is always convex and contained in the intermediate tangent 

cone). To fix the ideas we shall choose one particular subcone, the 

asymptotic tanqent cone, which contains the Clarke cone and coincid- 

ing with the intermediate cone when the latter is convex. 

The reader used to Clarke's notion of tangency may replace 

the notions of asymptotic derivative, co-derivative and gradient 

in Theorem 2 . 3  by those obtained through. Clarke's definition, to 

get the same kind of results. 

In Section 4 we give an example of a problem with initial 

and end point constraints and study the surjectivity assumption 

in this case. In this example "calmness" seems to be harder to 

verify. 

Our results can be applied also to the study of the "generalized 

Bolza problem", exactly in the same way as it was done by Clarke 

in L 6 ] .  Under some "reasonable" assumptions the generalized Bolza 

problem can be written in differential inclusion form (cf. [ 6 ] ) .  

Then the necessary conditions from Theorem 2 . 3  can be expressed 

in terms of the generalized Euler-Lagrange equation for the 

Lagrangian. 

We devote the first section to a presentation of the asymptotic 

tangent cone. Section 2  deals with the necessary conditions satis- 

fied by an optimal solution to a differential inclusion problem. 

We state the main result and begin the proof, which reduces this 

problem to an abstract optimization problem. This general prob- 

lem is then studied in the third section. In the fourth section 

we give an example of the applioation of the main theorem. In the 

fifth section, we apply the method to a non-convex infinite-horizon 

problem, and extend to this case results of Aubin-Clarke [2] . 
The author wishes to thank Ivar ~keland for the many sugges- 

tions and advice which.made the presentation of this paper much 

clearer. 



1. Asymptotic Tangent Cone and Asymptotic Differential of a 
Set-Valued Map 

(t 
Let E he a Banach. space. We denote by B the open unit hall * 

in E and by < , > the canonical bilinear form on E x E . 
Consider a subset K C E and a point x E K . There exist in 

the literature different notions of "tangent cones" to K at x. 

We recall in particular the definitions of the contingent cone 

(see Aubin-Ekeland [3] , Chapter 71 . 
the tanaerit cone in the sense of Clarke 

(see Clarke [.8] , Auhin-Ekeland [3] , Chapter 7) 
and the intermediate tangent cone 

(.see Ursescu [I 91 1 . 

The relations (3 .I ) , (3 .2 ) , (3 .3) can be written in terms of 

the Kuratowski lim sup and lim inf in the following way: 

CY.3)1 1 TK (x) = lim sup K(K-~) 
h + O +  

(3.2) ' 1 CK (.x ) = lim inf h (K-x ' 
X' + X 
h + 0, 

(3.31 ' 3 xK(x) = lim inf hCK-xl 
h + O +  



All the above sets are closed cones satisfying CK(x] C IK(xl C 

TK(x). Moreover, C (xl is convex. For further properties of K - 
CK(x] , TK(x] see L3], L.51, [.8], L17J. The cone IKCx] is less 

known. It can be also characterized by using the distance func- 

tion. 

(-1 . 4 1  Proposition: Let dK(.y) denote the distance of 

y E E to K . Then 

.+(x +. hv1 
I~(x] = {v E E : lirn h = 0) 

h +  0 + 

Consider a function f : E + R U {+a) and let epi(f) denote 

the epigraph. of f. As an important example we shall study the 

set I (x,f (x) ). . We recall first: 
epi Cf I 

(-1 . 5 )  Definition: For Q : R x E + R U ( + m )  set 

lim sup inf Q(h,ul] : = 
h + 0, u' + u 

SUP inf SUP inf a QCh,ul) 
E > 0 6 > 0 h E lo,&[ u' E u + e B  

(see Rockaf ellar [ 3 71 ) . 
Let us introduce the following 

(1.6) Definition: For f : E + R U ( +a) , x E Dom Cf 1 

i+f(x) (u) : = lim sup inf f Cxd-hug ] - f' Cx] 
h. + 0, u1 + u h. 

Proposition: Let f,x be as in (1.62 ; then 

= epi Ci +f (X 1 1 

Proof: Let K = epi(f) and Cu,vl E epi (iSf Cxl I . 
a 

Then for all E > O and all small h. > 0 th.ere exist u E u + E B h 



such t h a t  f(.x + huh) - f ( x l  < - h i + f l x )  ( u )  + hr  h(-v + €1'. X t  

imp l i e s  t h a t  f o r  a l l  smal l  h  z 0 (x,f  [XI) -  + h(uh,y + €1- E K. Thus 

by (1.4) (u ,v)  E I K ( x , f  Cx) ) . Conversely,  i f  (u,v). E IK(x , f  ( x ) )  

then  by (1.3) f o r  a l l  r  > Q t h e r e  e x i s t  6- > 0 s u c h  t h a t  f o r  any 
a 

h E ] O f & [  we have (u ,v)  E ( x ) ) ]  + r  E  .  his means 

( x , f ( x ) )  + h ( u , v )  E K + E  

i n f  fcx+hu ' l  - f ( x )  v + E .  T h e r e f o r e ,  
u f  E E C U , E ~  h  

i+ f  Cx) Cul 5 v and (.u,v) E ep i ( - i+ fCx l l  

T he f u n c t i o n  i + f  (x) C * )  i s  lower semicontinuous and p o s i t i v e l y  

homogeneous. 

I n  t h e  s tudy  of  some non-smooth problems w e  a r e  o f t e n  l e d  t o  

d e a l  w i t h  convex t angen t  cones  and convex func t ions .  W e  s h a l l  now 

d e f i n e  one of them, which i s  t h e  one we s h a l l  be u s ing  subsequent ly:  

(1.82 D e f i n i t i o n :  The asymptot ic  t a n g e n t  cone t o  a  s u b s e t  

K a t  x  E K i s  g iven  by 

Its nega t ive  p o l a r ,  g iven by 

i s  c a l l e d  t h e  asymptot ic  normal cone t o  K a t  x. 

(1.9) 
a  Remark: I K ( x )  i s  c losed  convex cone. One can e a s i l y  

v e r i f y  t h e  fo l lowing  r e l a t i o n  

The cones IK(x )  and 1;(xl have been a l s o  used i n  [ 1 4 ] .  



As it is done in L3] we can define now the derivative to a 

set-valued map F from E to a Banach space E 1 ' 

(.I. la) Definition: The asymptotic derivative of F at 

(x,y) E graph (F) is a set-valued map DaF (x,y) : E = El 
defined by 

a v E DaFLx,y) (ul iff iutvl E IgraphcF) CX,Y) 

(1.11) - Definition: The asymptotic co-derivative of F at * * * 
(x,y) E graph(F) is a set-valued map DaF(x,yl : E1 = E 
defined by 

* a 
rED,F(x,yl (.q) iff (r,-ql ENgraphcFl CX,Y) 

* 
for all q E El . Equivalently: 

<r,u> -<q,v>(_ 0 for all v E  D~F(x,~)(.u) 

Let f : E -+ R U { + = I ,  x E DomCf) . Define F(y1 = f(yl + R +  

for all y E E , i.e. graph(F) = epi (.fl . 

(1.12). Definition: The subset 

is called the asymptotic gradient of f at x. 

We recall that f is regularly Gateaux differentiable at * 
x E DomCfl if it has the Gateaux derivative f' (x) E E and for all 

u E E 

lim f C x + h t l  - f Cxl u' + = c f ' b l , u >  

Observe that if f is as above than by (1.71, a,f(x) is single- 

valued and 



Remark: The asymptotic gradient is well-defined for Frgchet- 

differentiable functions. Recall that Clarke's generalized-gradient 

may not be defined for such functions: they have to be regularly 

differentiable. 

(3.331 Definition: For all u E E set 

i:f(x) [ul : = inf {r : r E DaF(x,f(x)l(u)) 

We obtain from (3.8), (13.31) 

(-3. 34) Proposition: ia+f (x) (u) = sup [i+f (x) (u + v) - i+f (x) (v)] 
v 

* 
a,fcx) = { q E E : < qru> 5 ia+f (.xl (u) for all u E E} 

The following proposition is similar to one from [I81 con- 

cerning the subgradients of convex functions. 

(1 .15) Proposition: If f,g : E + R U { + = I ,  f < - g and x E E is 

such that f (x) = g(x) < +=.. Then 

Let W,H,T be Banach spaces and W C H , L E L(W,E) , y E L(F7,T) 

be continuous linear operators and let f : W + R  U { + = I ;  g : 

T + R U { + m }  be given functions, F : H 2 E be a set-valued map. 
We denote by K the set of all solutions to the inclusion L x E F(x). 

(.I .I61 Lemma: Assume that z E K provides a finite minimum to 

the problem: 

minimize { f (x) + g (yx) : x E W, Lx E F (x) I 

If y has a continuous right inverse and f is locally Lipschitzean 

at z then for all w E IK(z) we have 



Proof:  I f  w E IK(.z)  then  f o r  a l l  h 7 0 t h e r e  e x i s t s  wh E W 

such t h a t  z+hwh E K-, l i m  wh = w 
h*+ 

Since z minimizes £+go'$ on K we have 

But i + [ f  + goy1 (zl (wl < limsup sup [f  (.z+hwl]- 
-- h a +  W' +w 

- f ~ z ) ] / h  + l i m s u p ,  i n f  [ g ( ~ z - t h ~ w ' ~ - g ( - Y z ~ ] / h  
h+O+ . w'* 

and s i n c e  y  has a  continuous r i g h t  i n v e r s e  we a l s o  have 

limsup i n f  [ . g (~z+h~w' ) -gCYz) ] /h  
h+O+ w,' +w 

= limsup i n f  [g(yz+ht ) -gCyz) l /h .=  i+g(yz)(yw) 
h 4 +  t ryw 

I t  impl ies  t h a t  

(1 .17)  1 imsup h  + i+g(.yz) ( Y W )  2 0 f  (z+hwt ) -f ( z )  

w "w 
h+o+ 

By L i p s c h i t i e a n i t y  of f  w e  a l s o  have 

CY.18) i + f ( z )  (w) = limsup 
f (z+hwl) - f  (z)  

w '  -w h. 

Adding (1 .17) and (1 . 1 8 )  w e  f i n a l l y  g e t  

Since w i s  a r b i t r a r y ,  t h e  proof fol lows.  



2. The Differential Inclusion Problem 

Let F : Rn = Rn be a set-valued map of closed graph. Con- 

sider the differential inclusion 

(2.1) & E F (x) 

An absolutely. continuous Ca. c. function x ; [.a, 31 + Rn is a 

solution of (2.1) iff 

Let K denote the set of all solutions of C2.3) ; (p : + IR 

be a ~i~schitzean function ; g : IRn x XIn +lR U {+-I. Then for 

some c > 0 

lP(r) 1 5 c(l+lrll for all r Emn 

and the functional defined by f (x) = PLx (t) ) dt is finite and 
1 0 

Lipschitzean on L . Consider the following problem 

(2.2) minimize {g(x(O),x(l)) + ~:~(x(.t))dt : x E K I  

(2.3) Theorem: Assume the minimum in (2.2) is finite, and z E K 

is a minimizer. Assume that F is Lipschitzean in some neighbor- 
hood of z([0,1] ) ,  for the Hausdorff metric. If the following 

"surjectivity" assumption holds: for some p > 1 and all u , e ~ ~ ~  

there exists a solution w E W' rP ( [O,1] ,XIn) of 

Then there exists a function q E W 1 1  ltp*(O,l),~n) (.where - + - = 1) 
P P* 

such that 



We shall prove the above th.eorem in several steps. 

Proof: First we introduce the following notations. 

y E LCW,T) is a ''trace operator", y[xl = CxCO),xCI)) . 
L E L(W,E) is the operator of differentiation, Lx = x 

L* be its transpose. 

F : E = E  bedefinedby F(xl = { y E E  : yCt) EFCx(t)la.e.} 

If q E w1 lP* ( (O,1) ,Rn) then integration by parts gives 

In the new notations, z solves the following problem 

(2.5) minimize {f (x)-tg(yx) : x E W, LX E F(x) I .  

(2.6) Lemma: For all w E W satisfying 

we have w E IK(x) and 

Proof: We proved in Frankowska [I 01 that if w E W' " (0,l) satisfies 
2.7 then w E I (z) . This and Lemma 1 .16 complete the proof. 

K 

(2.8) Remark: Lemma 2.6 can be viewed as a necessary condi- 

tion for z to be a minimum. In order to obtain an 

"adjoint" necessary condition we shall use a separation 

theorem.' At this point we need to use convexity proper- 

ties. For that purpose, we use a convex sub-cone of IK(x). 

We can choose Clarke's tangent cone, but it may be 



important to use a larger cone, the asymptotic tangent 

cone and its related concepts. For this reason, we 

shall replace 

.a a 
(zCt1 ,;Ct11 l+f(.z1 and i+g(.yz) respectively. 

(2.91 Lemma: The cone 

is closed, convex and (1 x L)-'c C IKCz) 

Proof: If (xntyn )E C and lim xn = x , lim yn = y in E then 
n + n + -  

(xnryn) (t) + (x,y) (t) a.e.. Since I~ 
. 

graph (P (.z Ct) ,z Ct) ) is closed 
and convex cone C has the same properties. The second claim 

follows from Lemma 2.6. Let C- be the negatiJe polar cone to C. 

(2.10) Lemma: If an a.c. function q E wllP* [(O, I )  ,I(") satis- 

fies 

then q also satisfies the requirement of Theorem 2.3. 

Proof: Let 6 E %f (z) be such that - -  - C . Assume for 

a moment that 

on a set U C [O, I ]  of positive measure. Let 



One can easily verify that the map t + graph CF 1 ( z c~) .;l(t)) is 

measurable. Therefore also the map t + Q (t) is measurable. Thus 

there exists a measurable selection a (t) E ~(.t) on U .  Let 

I "  otherwise 

1 
Then o E C and < ( - { - ~ t q ) t ~ >  = ~o<(-{-~t-g) (t),o(tldt > 0 which 

contradicts the definition of C. 

Thus the proof of Theorem 2.3 will be complete if we prove 

that the assumption of Lemma 2.10 is verified. 

This will be shown in the next section where an abstract problem 

is treated. 

3. The Abstract Problem 

Consider reflexive Bdnach. spaces W,H,E,T, where W C H and con- 

tinuous linear operators 

We are supposing here that the injection i : W + H is continuous 

and that the 

"trace propertyN y has a continuous right inverse and 

the kernel Wo of y is dense in H 

holds true. 

We denote by io the restriction of i to Wo. Let Lo be the 

restriction of L to Wo and Lz denotes its transpose. Define 

* * * 
Thus Lo maps Eo to H . 



For t h e  problem cons idered  i n  Sec t ion  2 w e  have H = E , * * * 
Eo = W l p * c ~ t l ) n )  and Loq = -4 on E 

0 * 
Equipped wi th  t h e  graph norm Eo i s  a Banach space.  I f  the 

" t r a c e  p rope r ty"  ho lds  t hen  w e  have t h e  fo l lowing  a b s t r a c t  Green 

formula ( [ l ] )  which corresponds t o  i n t e g r a t i o n  by p a r t  from 

Sec t ion  2: 
* * * 

There is  a unique o p e r a t o r  €3 E L(.Eo,T ) such  t h a t  f o r  a l l  * 
u E W ,  p E E o  

L e t  F : H 2 E be  a set -valued map and 

be given.  Consider t h e  problem 

minimize {f (x) + g(yx) : x E W , Lx E F & )  1 

which c o n t a i n s  problem (2.5). a s  a p a r t i c u l a r  ca se .  L e t  C be a 

c lo sed  convex cone, C- be i t s  nega t ive  p o l a r .  

Consider c lo sed  convex process  

de f ined  by 

p E G C q )  iff (q tp)  E C  

W e  denote  by K the set of a l l  s o l u t i o n s  t o  t h e  i n c l u s i o n  

L x E F ( x ) .  



(3.1)  Theorem: A s s u m e  t h a t  z  E  K p rov ide s  a  f i n i t e  minimum 

t o  the problem (3.31, and t h a t  f  i s  l o c a l l y  L i p s c h i t z e a n  

a t  z. F u r t h e r  assume t h a t  

and the fo l l owing  s u r j e c t i v i t y  assumpt ion ho ld s  t r u e :  

f o r  a l l  u,eEHxE, t h e r e  e x i s t s  a  s o l u t i o n  w  E  W t o  the 

problem 

C i 1  Lw E  G C w l u l  + e 

( i i )  yw E  Dorn i:g(yz) 

* 
Then t h e r e  e x i s t s  q  E  Eo s u c h  t h a t  

Proof :  Note t h a t  t h e  assumpt ions  o f  Theorem 3.3 imply the assump- 

t i o n s  o f  Lemma 1.16. T h e r e f o r e ,  z  i s  a l s o  a  s o l u t i o n  t o  problem 

(3 .2 )  
a  a  

i + f  (.z) (.w) + i + g  (yzl (ywl - > 0 f o r  a l l  (w,Lw) E  C 

S e t  

and 

* 
TI : = { ~ E H  : < p , w > <  - n(w) f o r  a l l  W E H I  = aa f ( z )  

* 
Y : = { q  E  T : < q , t >  < - $ ( t )  f o r  a l l  t E  T I  = aag(yz)  

The f u n c t i o n s  n,$ a r e  lower  semicon t inuous ,  convex and p o s i t i v e l y  

homogeneous. The sets X,Y a r e  c l o s e d  and convex. 



(3.4) Lemma: Let .rr : H. + R  u {+==I, $ : T * R U {+}  be lower 
semicontinuous, convex, positively hamogeneous functions 

and C C H x. E be a closed convex cone, and the sets T,Y 

be defined as in (3.3) . Assume that the following set 

* 
is closed in W . Then the following statements are 

equivalent: 

(3) .rr (w) + $ (.yw) 2 O for all w E W of Lw E G (w) 

* 
( 2 )  There is q E Eo such that: 

* 
Proof: Assume (1) holds. We claim that there is q E E satis- 

fying 

Indeed, assume that it does not hold. By reflexivity of W and 

the separation theorem there is w E W such that for all a E ll , 
(r,-q) E C- , a' E Y 

where p < 0 is fixed. Hence 

for all a E ll , a' E Y , (r,-q) E ' c - .  Since C- is a cone it implies 

(w,Lw) E C or Lw E G(.w). By (3) T(W) +$(yw) > 0. On the other - 
hand setting r = 0 , q = 0 in (3.6) we get: 

~ ( w )  +$(yw) = sup <a,w:,+ sup-cal,yw:,< p <  0 - 
a E l [  a' E Y 



* 
The obtained contradiction proves (3.5). Let q E E , a E ll , * 
a' E Y  , r E G (q) be such that 

Thus for all W E  Wo we have <'a,w? +cr,w? - ~ q , L ~ w ?  = 0. It implies 

* * * 
Since i : H + W is the canonical injection and Wo is dense in 

0 * O *  * 
H it implies Loq E H and thus that q E Eo . By applying now 
(3.7) to any w E W using Green formula and (3.8) we obtain 

* 
Since y (w) = T it implies a' +;B. q = 0 or (2). 

To prove the converse assume (2) holds. Then there is a E TI , * * * 
a' E Y  , (r,-q) E C- such that q E E and Loq = a h  , - B  q = a' . 

0 
By Green formula 

and 

Assume w E W is such that Lw E G(wj . Then ~(w). + J,(.~~) :> - <a,w> + * * 
+<a' ,yw> = <a+y al,w> = < L  q-r,w> = - < (rI-q), (.w,Lwl> - > 0 . 
Which proves (1 ) . 

(3 9) Lemma: Under all assumptions of Lemma 3.4 assume that 

for all (u,v,e) E H x H x E there is w E W solving the 

problem 

* 
then A is closed in W . 



* * * * 
Proof: Let an = i a + y a; + i rn - L qn n a' E Y, , where an E II , 

* 
(rn,-q,) E C-, n = 1 , 2 , . .  . . Assume lim an = a. in W . First we 

n. -+ 

shall prove that { (an,rn,-4,)) is hounded. Since H and E are 

reflexive, it is enough to show that for all Cu,v,e). E H x H x E 

(3.10) sup (5anrv> + <rn,u3 + <  q n l e ~ )  < 
n > I  - 

(any weakly bounded set is bounded) . Fix (.u,v,e) E H x H x E and 

let w E W be such that 

(it exists by assumptions). Then for some y E GCw+u) : 

+ < (rn,-q,) , (u+w,y) > - < an,w> ( T (v+w) + I# (yw) - < an,w> 

Moreover, {<  a,, w >} is bounded which implies (3.1 0) . Consequently, 

{ 11 an 11 1 , { 1 rnll 1 , { llqnll 1 are bounded. By reflexivity we may 

assume that { an 1 , { rnl , q are weakly convergent to some a,r,q 

respectively. Because lI,C- are closed and convex by Mazur Lemma 

[lo] , a E Il , (r,-q) E C-. Let o be the riqht inverse of y. Then - - * * * * * * * ' = o y al; = o (an-i a -i rn+L q,). Since o is continuous by a n n 
the previous part we obtain that al; is weakly convergent to * * * * 
a' = o (a-i a-i r+L q) and a' E Y. Thus: 

which proves the theorem. 



(3.11) Proof of Theorem 3'.1: We apply Lemmas 3.4 and 3.9 to * 
problem (3.21. Then we obtain the existence of q E E o 

satisfying 

(3.12) Proof of Theorem 2.3: Assumptions of Theorem 2.3, 

Lemma 2.9, and Theorem 3.1 imply that the assumption 

of Lemma 2.10 is verified. This concludes the proof 

of Theorem 2.3. 

4. An Example 

Let U be a compact topological space, and let a continuous 
function f : IRn x U +IRn be given. Consider a nonlinear control 

system: 

;; = f (x,u (t) 1 
(4.1) 

u (t) E U is measurable 

We denote by K the set of all solutions of (4.1). Let two subsets 

C, of IRn and a Lipschitzean function $0 : IRn +IR be given. We 

shall study the following problem: 

(4.2) 
1 minimize {jorp(x(t))dt : x E K , x(.O) E Co , ~ ( 1 )  E C,} 

- 
Assume a trajectory-control pair (z,u) solves (4.2). We associate 

with (4.1) a linear control system 

Let R (1 )I denote the reachable set of (4.31 at time 1 . One 

can verify that it is a convex cone. 



(4.4) Theorem; Assume there exists an open neiqhhorhood V 
af is continuous on V x U and of z (LO, 11 1 such that 

for almost all t E [O,1] , the set-valued map 
Q : graphF + U defined by 

is lower semicontinuous at Cz (t) ,; Ct) 1 . If the follow- 

ing surjectivity assumption holds true: 

then for all p > 1 there exists q E W' CO, I ) such that 

a 
max {<q(t).y> : Y If(z(t)tul (.; (.t) 1 1 = 0 

Proof: Set F(x) = {f(x,u) : u E u). By a Filippov theorem, the 

set of solutions K coincides with the set of all solutions of the 

differential inclusion. 

Moreover, the graph of F is closed and F is Lipschitzean on 

V. Define g : lEI2" + m U i + ' +  by 

0 if x E C o ,  y E C 1  

+ -  otherwise 

Thus z solves the problem 

1 
minimize {gOr(01,x(1) + jop[x(t)).dt ; i(t1 E ~(x(tl)} 



W e  s h a l l  app ly  Theorem 2 . 3 .  For t h i s  we need t o  compute 

o a F ( z ( t )  , f  ( t ) )  and v e r i f y  t h e  s u r j e c t i v i t y  assumption. 

S t ep  1 :  W e  c l a im  t h a t  f o r  a lmost  a l l  t E L Q , 3 ]  

Indeed, i f  Ctr,s) E I 
. 

graph  F 
(z C t )  , z  (t] ) t hen  f o r  a l l  h ? 0 t h e r e  

e x i s t  wh, s h s u c h  t h a t  l i n  Cwh, shl = (w,s)-  and 
h + O  + 

Cz (t) + hwh , f C t )  + hshl E g r a p h  F 

L e t  uh E U be such t h a t  l i r n  uh = ; (9 and 2 (t)  + hsh = f  Cz (t) + 
h + O  + 

+ hwh, u h ) .  (It e x i s t s  f o r  a lmost  a l l  t by the lower semicont inu i ty  
a f assumption.)  Then s i n c e  - i s  cont inuous and U i s  compact we have ax 

f (2  (t) + h w h t  uh) - i ~ t )  f l z  lt) , ~ ~ ) - f  (t) 
s = l i m  h  = l i r n  

h  + O  + h + O  + h  

a f  + -(z ( t )  , u ( t )  ) w .  It  imp l i e s  t h a t  ax 

a. f f  ( 2  (t) ,u,) -l ( t )  
s - +Z ( t )  ,G (t)  ) W  = l i m  h  

E 
h + O +  

If ( z  ( t )  , U )  
( i  (t) . Hence 

Because ( w , s )  i s  an a r b i t r a r y  p o i n t  i n  I graph  F ( z ~ t ) , ; ( t ) ) ,  w e  
proved t h a t  Igraph Cz (t) , (t) 1 i s  conta ined  i n  t h e  r ight-hand 

s i d e  of t h e  above i n c l u s i o n .  To prove t h e  e q u a l i t y  of  C4.6), 

p ick  up any p o i n t  k i n  I 
f(.z t t )  ,-U) 

C i  (t) ) and l e t  uh E U be  such  
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that lim u = u(t)
h-+O+ h.

lim f (z-Ct) ,~) - ~.{tr

h -+ 0 + h
= r

(It exists for almost all t E [a, 1] ~) Then for all w E JRn we have

lim
h -+ a +

f(z~(t) + .hw,.~J -z.Ct)

h =

lim
h -+ 0 +

f (z (t) ,uh ) - i Ct) af _
h + ax(z(t) ,u(t)}"W

~ r af -+ ax (z (t) ,u (t))w , which achieves the proof of (4.6).

Step 2: It follows from Step 1 'that

D F (z (t) , z(t)) (w)a
jjf - a •

= dx (z (t) ,u (t))w + If (z (t) ,U) (z (t))

Fix any p > 1.

The surjectivity assumption of Theorem 2.3 has the following

form: for all u,eELP (0,1) there exists a solution wE W1,P([0,1] ~JRn)

of

.
E ;if - + u (t) )

a •
w(t) .ax(z(t),u(t)) (w(t) :0;- If(z (t) ,U) (z (t)) -teet)

w (0) E a w (1) E I~ (z (1 ) )Ie (u(O)) i
0 1

Let X(t) be the matrix (fundamental solution) satisfying

X(t) = ~ (z (t) ,u (t))X (t) a.e.

X (0) = Id

Then the surjectivity condition has the following form: for all

vELP {0,11' there exists wEW1 , p ([ 0,1] iJRn ) satisfying



and 

The reachable set R' (11 of inclusion (-4.7) at t h e  1 is equal to 

Condition (4.8) implies that 

or equivalently that 

Since v is an arbitrary function in L~ (Otl ) we proved that the 

surjectivity assumption is equivalent to 

which ends the proof of Theorem 4.4. 

(4.9) Remark: Observe that when there are no constraints on 
n the final state (i.e. C, = R ) , then assumption (4.5) 

J n is automatically satisfied (because 1; (z (1 ) ) = R ) . 
1 This happens whenever z(1) belongs to the interior of 

C1. In this case Theorem 4.4 reduces to a non-smooth 

version of the Pontriagin principle. 

We also observe that in Theorem 4.4 we may assume less regu- 
. -af larity on f: instead of assuming that is continuous on V x U 



it is enough.to suppose that for some L ? 0 f is L-Lipschitzean 

in the first variable on a neighhorhood'of zCLQ,I]l and for almost 

all tE[O,I] 

Then the same conclusions hold true. 

5. Infinite Horizon Problem 

Let U be a compact subset in lRm, A be a n x n matrix, B he 

a n x m matrix, xo E lRn , 6 > 0 and a locally Lipschitzean func- 

tion p : lRn x l R n ~  be given. Consider the following problem: 

(5.1) minimize 

over the trajectory-control pairs (x,u) satisfying 

[u(t) E U is measurable 

This problem was studied in Aubin-Clarke [2] when U is convex, 

and by many other authors. 

The abstract theorems of Section 3 can be applied as well to 

this new problem, but we would prefer to have more precise results. 

So we shall study this problem through the same framework but 

applying the main ideas step by step. 

We posit the following growth assumption on 9: 

I there are numbers c,p 2 1 such that for every (x,u) and 

5 E aap(xfu) : 

151 - < c (1 3. )(x,u)I P-1 ) 



I t  e a s i l y  imp l i e s  t h a t  

-btdt j  , x E LP then  t h e  i n t e g r a l  i n  ~ h u s  i f  u  E L: = LP(o,-;R , e  n  
(5.1) i s  f i n i t e .  

L e t ?  be t h e  maximum of r e a l  p a r t s  of  t h e  e igenva lue  of A. 

(5.4) Theorem: Under t h e  above assumptions,  assume (z ,u)  

s o l v e s  t h e  cons idered  problem and 6 7  . Then t h e r e  

e x i s t s  an a .c .  f u n c t i o n  q : [ O f - )  + R" and measurable 

f u n c t i o n s  5 1 , c 2  such t h a t  

- 6 t  (iii) max { < q ( t ) , ~ w >  - e < E 2 ( t ) , w >  : w E ~ ; ( c ( t ) ) }  = 0 

1 1  where p* > 1 is  de f ined  by - + - = 1 provided p  > 1 . 
P P* 
€it &t I f  p  = 1 w e  have i n s t e a d :  e Iq(t) 1 , e ({(t) 1 

a r e  bounded. 

(V 1 l i m  e  (P*- 1 ) 6 t  1 q ( t ) l P *  = o i f  p  7 1  ; i f p =  1 
t. -t '0 

&t t hen  w e  have i n s t e a d :  e 1 q  (t) 1 t ends  t o  a  f i n i t e  

l ' imi t  a s  t goes t o  + - . 
Proof:  I t  i s  n o t  r e s t r i c t i v e  t o  assume t h a t  xo = 0 . For any 

u  E L: t h e  s o l u t i o n  x  t o  (5.2) i s  given by 

x t t )  =[ s ~ " - ~ ' ~ u ~ r )  d r  

1 
, 

l t p  = {w E H (0,-;Rn,e-&dt] : w E L~ , ; E LP} and belongs t o  W g  n n 



(see [2, Lemma 3. 11 ) . For all u E L: set 

Then ; minimizes f over all u 6 L: satisfying u(t) E U. 

The following result is analogous to Lemma 1.16. 

00 - 
(5.5) Lemma: If u E C = {u E L: : u(tl E IU(u(t))} then 

Proof: We introduce the following notations 

LU (t) : = ~ ~ A ( ~ - ~ ) B u , , T )   IT for u E L: 

The growth condition implies easily that for u E L: the function 
1 

t -$(t,Lu(t),u(t)) belongs to L (.O,~:R-: e-6tdt). Thus the 

integral (5.6) is finite. Hence it,issenough to show that for all 

bounded u E C 

Fix any such u and let hk > 0 be a sequence converging to zero. 

We can find a sequence of measurable uniformly bounded functions 

uk such that ;(t) + hkuk(t) E U and lim uk(t) = ;(t) for all 
k 

t - > 0. Let xk (t) = Luk (t) . By the growth condition 

- P- 1 < M(1 + I(z(t),u(t))l )hk - for some M 5 0 



lim sup [f(ii+hkGk~ - f ~ G 1 1  g o . 
k + m  'k 

Because of (5.71 we can use Fatou Lemma. Hence 

m 

0  - < e-& lim sup L ~ c z c ~ I + ~ ~ x ~ c ~ J , ~ c ~ ~ + \ u ~ c ~ ) )  
0 k. + hk 

- 
Then the measurability of 2,q (z (. ) ,; (. ) ) and (L; ( . ) ,u (. ) ) and the 
boundadness of % q(z (t) ,; (t) ) yield c 1  , c2 E LO, and for all u E V 
we have 

Let r > 0 be so small that Xp+r'< 6 and let 11 c,11 be the norm 
1 1 

I n - of El in Lp* (0 ,a; R ,e Stdt) where n P + F *  = I -  
By the Hdlder 

inequality and since 1 eA*= [ < - e AT we obtain 

and 

Therefore 

A*T lim r e  ~,(~)e~'~dr = O  
t+co 0 



Let u E C he such BuCrIdr exists. Then integrating by 

part we have 

Let q(t) = Ce -A* (t-r)e-6r 5 ,  (r)dr . Then q satisfies (i) . More- 

over by (5.8) 

43 

-AT whenever ( e Bu (r)dr exists. It implies (iii) . The relations 
'0 

(iv) , (v) follow as in [2] . So the proof is complete. 
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