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The theory of multitype branching processes is applied to the kinet- 
ics of polynucleotide replication. The results obtained are compared with 
t h e  solutions of the deterministic differential equations from conven- 
tional chemical kinetics. 





POLYNUCNOTIDE EXOLUTION AND BRANCHING 
PROCESSES 

Lloyd &me trius, Peter Schuster and Karl Sgmund 

Allometric relations, which set  limits to  the  growth of organisms based on 

certain physical laws, a re  very common in nature. For example, the height of 

trees is restricted by the strength of wood and the capacity for water transport 

of the trunk, the size of insects is restricted by the rate of oxygen transport 

through capillary diffusion, and the body weight of vertebrates is limited by the 

carrying capacity of the  skeleton. We are concerned here with a closely related 

limitation a t  the  molecular level: an upper bound on the length of genornes 

imposed by the error  rate  (the frequency of inaccurate replication) of nucleo- 

tides. This limiting law was derived from a deterministic chemical kinetic 

model (Eigen, 1971; Eigen and Schuster, 1979) and is based on the relation 

between the  rate of production of accurate replicas of molecules and the mean 

total productivity. This paper describes a connection between the determinis- 

tic chemical equations and the theory of multitype branching processes. We 

study this connection, in particular the matrix of mean values of the branching 

process, in order to  look a t  certain properties of the Eigen kinetic equation and 

to  generalize the error  threshold criteria*. This generalization is based on a 

criterion for the extinction of branching processes. 

Eigen (1971) postulated a formal, phenomenological kinetic equation 

to  describe the evolution of a population of replicating units under the  ideal- 

ized experimental conditions of a dialysis reactor (see, e.g., Kiippers, 1979). We 

shall call these units types and represent them by 11, ..., 1,. We use zi to  denote 

*The expectation of a replication error must always remain below a sharply defined threshold (the 
srmr throshcld) if the information accurnulated in the evolutionary process is not to be lost. 



the relative concentration of type Ii: 

All concentrations zj are positive and hence the physically accessible domain 

of variables is restricted to a unit simplex 

The flow term p is given by 

The elements wij are constants which will be discussed in detail later in the 

paper. We shall simply note here that  they are constructed from rate constants 

and mutation frequencies in accordance with the replication mechanism. The 

deterministic equation (1) has been subjected to rigorous mathematical 

analysis (Thompson and McBride, 1974; Jones e t  al.. 1976; Swetina and Schuster, 

1982; McCaskill, 1984a; Eigen e t  al., 1984), and its solutions have been obtained 

in terms of the eigenvalues and eigenvectors of matrix W = twijj. 

The deterministic equation (1) has a number of serious drawbacks when 

applied to realistic experimental systems. In the case where the replicating 

units are polynucleotides, t h e  case we are basically interested in here, there 

are three sources of stochasticity which are of particular importance: 

Finite popdcrfion size. The number of potential types, i.e., the number of 

possible, different polynucleotide sequences, is extremely large (4' for a 

length containing v bases). Thus, the number of potential types is far 

greater than the total number of molecules available in any experimental 

set-up or in nature. Only a tiny fraction of these sequences can possibly be 

present a t  any time t .  Thus, the population size truncates the existing 

mutant distribution and introduces a stochastic element into the dynam- 

ics of replicating ensembles of polynucleotides. In the case of high replica- 

tion fidelity, this truncation affects the many types of molecules which are 

present in only small numbers in the stationary mutant distribution. In 

cases of low replication fidelity, i.e., in systems which replicate with accu- 

racies below the error threshold, the deterministic description given by 



equation (1) fails completely. Indeed, the deterministic solution predicts 

that  all types are present in equal amounts. This is impossible since we 

really cannot have less than one molecule of a given type. What we should 

expect, therefore, is a steadily changing population of polynucleotide 

sequences, with some dying out while others appear through mutations. 

No stationary distribution of mutants can ever exist in the real world 

(Swetina and Schuster, 1982). 

2. Kzmtic degeneracy.  Conventional deterministic equations are unable to 

handle cases of kinetic degeneracy, i.e., situations in which two or more 

types have identical kinetic rate constants. In this case the relative con- 

centrations of such molecules are determined by random drift (Schuster 

and Sigmund, 1984a,b). 

3. Complez dynamics. Sensitive dependence on the initial conditions can 

give rise to a third source of stochasticity in autocatalytic systems. 

Although this kind of stochastic dynamics (often described as chaotic 

behavior) arises in some complicated networks of replication processes, i t  

does not occur with equation (I), and hence will not be discussed any 

further here. 

The formal description of chemical reactions by stochastic processes has a 

long tradition (see, for example, the  review by McQuarrie, 1967). More recently, 

new analytical techniques for t h e  study of chemical master equations have 

become available and this fact has revived interest in stochastic approaches to 

biochemical reaction systems. Equation (1) is essentially multi-dimensional, 

and this makes any analysis of the corresponding master equation particularly 

difficult (Ebeling and Feistel, 1977). Some attempts to study the  master equa- 

tion of an ensemble of replicating polynucleotides under rather  radical simpli- 

fying assumptions have been made by Jones and Leung (1981), Heinrich and 

Sonntag (1981), and Schuster and Sigmund (l984a). Inagaki (1982) reported a 

study of replication with random mutations using a Langevin-type equation. So 

far the only error threshold relation derived from an underlying stochastic 

model was obtained in a very recent study by McCaskill (1984b), which however 

makes several drastic approximations. 

By contrast, the  approach described here adopts a less general but very 

powerful method: the theory of branching processes. This theory, which was 

originally developed to deal with the extinction of family names, has been 

applied to a great variety of physical and biological problems since the forties. 



The mathematical background can be found, for example, in Harris (1961), 

Athreya and Ney (1978) and Jagers (1975); t h e  main properties are summarized 

in Section 3. We shall apply this concept to polynucleotide replication and 

relate branching processes to the deterministic equation (1). In particular, we 

shall analyze the "freezing in" of fluctuations which makes the results of the 

deterministic model so reliable. Section 4 is  concerned with the probability of 

extinction, and the error threshold relation is derived in a stochastic context. 

The original experimental set-up (Eigen, 1971) can then be broadened consider- 

ably in the light of these results. I t  has  already been shown that  the results 

hold for most evolving systems (Eigen and Schuster, 1979). We are  now in a 

position to extend the theoretical predictions even further, to systems with a 

discontinuously changing environment. Sequential sampling or. more gen- 

erally, any sequence of alternating phases of growth and sampling is amenable 

to a similar analysis, t hus  validating the threshold relation for conditions close 

to those under which molecular evolution occurs in nature. The paper con- 

cludes with a discussion of "complexity", which we interpret in a different way 

to the concept of algorithmic complexity used, for example, by Ebeling and 

Jimenez-Montano (1980). The notion of complexity discussed here is an  

entropy-based invariant which describes the  frequency with which there are 

mutations back to the "wild type" (see later). The complexity parameter, like 

the extinction parameter on which our threshold criterion is based, is a func- 

tion of the mean value matrix of the branching process. 

2. POLYNUCLEOTIDE REPLICATION AS A MULTITYPE BRANCHING PROCESS 

If we try to describe polynucleotide replication in terms of elementary s tep 

kinetics we obtain an exceedingly complex reaction network (Biebricher e t  al., 

1983). However, in many cases we can dispense with most of the details as long 

as we retain certain important steps in a simplified reaction mechanism (see, 

for example, Gassner and Schuster, 1982). The basic features of selection and 

evolutionary optin~ization can be derived from a crude dynamical model which 

represents the whole polymerization process as one single reaction step. In 

this simplified model it is only necessary to  distinguish between faithful repli- 

cation and mutation. 



2.1 Discretetime branching processes 

2.1.1 IPransitwn probabilities 

Consider a population consisting of m types of polynucleotides, I1 , . . . , Im.  

Each polymer of type Ii can generate polymers of the  same type (Ii -r 2 4 )  by 

faithful replication or  polymers of different types (4  + Ii + 4) by false replica- 

tion, i.e., mutation. Molecule replications are assumed to be homogeneous in 

time and mutually independent. We shall first assume that  t h e  molecules exist 

in discrete generations. In every generation, each po\ymer of type 4 produces 

r polymers of type 11, r2  polymers of type I2 and so on up to rm polymers of 

type I,, with probability P,(T ,..., 7 , ) .  

Let Z , ( n )  denote the total number of polymers of type I.  in generation n ,  

where t h e  vector Z ( n )  = t Z l ( n ) ,  ..., Z m ( n ) ]  is a random variable. 

In order to  illustrate the transition law for the  stochastic process we shall 

take Z ( 0 )  = q, where q = ( 0 .  ..., 1 ,  ..., 0 )  is the unit vector in the  direction of type 

I,. This implies tha t  the population consists of a single polymer of type I ,  a t  

t ime n = 0 .  In this case the  probability generating function of Z ( 1 )  

where 

p b ) ( ~ ~ , . . . , Z ~ )  = Prob ( Z l ( n )  = ~ ~ . . . . * z ~  ( n )  = Zm * 

is of the simple form 

We may make the  following generalization: if Z ( n )  = ( Z  l . . . . , Z m )  represents the  

distribution of polymers in generation n ,  then Z ( n - +  1 )  is t he  sum of 

Z l +  . - .  + Zm independent random vectors of which a number Z 1  have gen- 

erating function f . l ,  Z 2  have generating function f 2, and so on. We may thus  

dispense with t h e  explicit formula which is rather  lengthy and not very infor- 

mative. 



2.1.2 ?'he mean v a l u e  rnatriz 

For reasons which are physically obvious*, we assume that  first moments 

exist for all i and j. Thus, mi, is the mean number of polymers of type 4 
derived from a polymer of type I, within one generation. In terms of generating 

functions we have 

We are clearly dealing with non-negative first moments T, 2 0. Unless other- 

wise stated, we shall assume that the matrix M = tmijj is positively regular. 

i.e., there exists an  n > 0 such that P has strictly positive elements. This 

implies that Y is irreducible: each type Ii can be derived from every other type 

4 by a series of mutations. (Mutation models which consider only point muta- 

tions. such as that analyzed by Swetina and Schuster (1982), are generally 

based on non-zero probabilities'of mutation over a sufficiently large number of 

generations. In more sophisticated models which include deletions and inser- 

tions i t  might be advantageous to have disjoint sets of types.) 

According to the Perron-Frobenius theorem (see, e.g., Karlin, 1974), the 

matrix M has a unique eigenvalue X > 0 which is dominant in the sense that 

Ipl < X for every other eigenvalue p of M. The eigenvalue A is non-degenerate 

(or simple): there exist right and left eigenvectors, denoted by u and v, respec- 

tively, where u, > 0 and vi > 0 for all i = 1. ..., rn, such that  

Mu=Au and vM=Av . ( 7 )  

Both eigenvectors are normalized in a special but very useful manner: 

The matrix T  = itij = viujj is idempotent. T~ = T ,  and in addition we have 

TM = M T = h T  and l i m A * P  = T  . 
n +- 

*In red systems we always ded with finite populations in finite time and in this case the expecta- 
tions do not diverge. 



No other eigenvalue p of M is associated with a n  eigenvector whose components 

a re  all strictly positive. 

2.1.3 Probabilities of ez t inc t ion  

A population is said to  become extinct if ~ ( n )  = 0 for some n > 0 .  Let qi 

denote the  probability of this event given the  initial condition Z ( 0 )  = ei :  

pi = Prob i3n such tha t  ~ ( n )  = 0 1 Z ( 0 )  = ei j . (10 )  

The vector q = ( q  l , . . . , q m )  is given by t h e  smallest non-negative solution of the  

equation 

where f ( s )  = t f I(s),..., f m ( s ) j  and the  f i ( s )  are  given by ( 4 ) .  

Conditions for extinction can be formulated in te rms of the  dominant 

eigenvalue h of Y: 

(i) if h 4 1 then qi = 1 for all i and extinction is certain, 

(ii) if A > 1 then qi < 1 for all i and there is a positive probability of survival to 

infinite time. 

2.1.4 Asymptotic  frequencies 

The frequency of type Ii in generation n is a random variable defined by 

provided tha t  the denominator is non-vanishing, i.e., that  the  system does not  

become extinct. 

If A > 1, there exists a random vector W = ( W 1 ,  ..., W,) and a scalar random 

variable zu such tha t  with probability 1 



where u is the right eigenvector of M from (7). I t  follows tha t  

lim & ( n )  = ua 

n -- u1 + . . .  +u.,,& 

holds almost everywhere provided that  the population does not become extinct. 

Equation (14) asserts that  t he  random variable & ( n )  representing the fre- 

quency of type 4 converges almost surely to a constant (provided tha t  w # 0). 

This asymptotic behavior of the random vector X(n) is in sharp contrast to  tha t  

of the population distribution Z(n )  and the  total population size 

~ ( n )  = xi  &(n) .  Because of the  autocatalytic nature of the  replication pro- 

cess, Z ( n )  may experience large fluctuations in the initial phases which persist 

and  even accumulate in subsequent generations (see, e.g., Schuster, 1983). In 

the  later stages of the stochastic process the system either becomes extinct or  

grows very large (with probability 1). In the lat ter  case the  law of large 

numbers implies tha t  fluctuations in relative concentrations will be small. 

The behavior of the  random variable w can be described completely by 

results obtained by Kesten and  Stigum (1966). We have either 

(i) w = 0 with probability 1 (15) 

(which is always the case if X c: 1). o r  

(ii) E ~ W I Z ( O ) = ~ ~ = V ~  , (16) 

where ui is the i - th  component of the  left eigenvector v of M (see equation 7). 

A necessary and sufficient condition for (16) to  hold is 

E ( q ( 1 )  log ~ , ( 1 ) 1  Z(0) = eij  < = for 1 s i. j s m . (17) 

This condition of finite population size clearly holds for all real populations. If 

t he  population initially consists of a single polymer of type 4 ,  the distribution 

of w displays a jump of magnitude qi a t  zero and has continuous density on the 

s e t  of positive numbers. 



2.2 Continuous- time branching processes 

2.2.1 Ransition probabilities 

The assumption of discrete generations generally applies to  populations 

with external (and sometimes also internal) clocks which prevent the mixing of 

generations. Such conditions are often found in nature, e.g., in populations 

whose breeding periods are fixed by seasonal requirements. In chemical sys- 

tems there a re  usually no such regulators. Indeed, if we s ta r t  polynucleotide 

replication in an initially synchronized population the synchronization is lost 

within a few rounds of replication. Continuous-time multitype branching Mar- 

kov processes offer a n  accurate  description of polynucleotide replication, but  

one which is technically quite complicated. The basic results are  similar t o  

those obtained in the discrete case, however, and are summarized briefly below. 

In the  continuous-time model we suppose that ,  independently of t h e  other 

polymers, a polynucleotide of type Ii persists for some random period of t ime 

(which has  a n  exponential distribution and mean &T') and then  generates  

copies by replication and  mutation according t o  a distribution whose generat- 

ing function is f i ( s ) .  This i s  t he  case if it is assumed tha t  in a t ime interval of 

length At, up to  probability o(At), the polynucleotide must  experience one of 

the following: 

(i) no change 

(ii) i t  "dies o f f ,  or  

(iii) i t  survives and produces a copy of type 5 ( j  = 1, ..., m). 

The time-homogeneous probabilities of events (ii) and (iii) are  proportional to 

At. up t o  some o (At ). As before, we let  &(t  ) denote the  total number of polynu- 

cleotides of type 4 a t  t ime t ,  and the random vector ~ ( t )  = (Zl( t )  ,.... Z,(t)) 

denote the  distribution of types. 

2.2.2 7he meanvalue  mat r iz  

For physical reasons we assume once again tha t  all the first moments 

are  finite, for all t 20. The mean value matrix ~ ( t )  satisfies the semigroup 

property 



and the  continuity property 

where Id i s  the  identity matrix. Conditions (18) and (19) imply that  there 

exists a matr ix A such tha t  

for all t 2 0. A is called the  infinitesimal generator. The elements of A are 

given by % -  = k c i j ,  where cij = bij - rJU (bij is t he  Kronecker delta) and 3 

k a i n  we assume tha t  each type can give rise to  all of the others. I t  follows 

that  mij(t ) > 0 for t > 0, and hence that  A is essentially positive, i.e., q, > 0 for 

all i # j. The Perron-Frobenius theory then implies tha t  there  exists a unique 

real eigenvalue A of A which is dominant in the  sense tha t  i t  is larger than the 

real parts of all other  eigenvalues. The eigenvalue A is simple (non-degenerate) 

and has positive right a n d  left eigenvectors u and v, which we again normalize 

such tha t  x vi = x uivi = 1. The dominant eigenvalue of M(t) is eM,  with u and 

v a s  associated eigenvectors. Taking tij = viuj we again have 

lim e-M jM(t)j = T . 
t -.- 

2.2.3 Asymptotic behavior 

As in the discrete case, the  extinction conditions are given in te rms of A. 

If, as  before, q = (q l,...,q,) denotes the extinction probabilities, then q is the  

unique solution of 

where 

and 

~ ~ ( 8 )  = & ( f i ( s )  - s i )  . 



We have 

(i) if A s 0 then qi = 1 for all i ;  

(ii) if A > 0 then qi < 1 for all i. 

Furthermore, we once again obtain 

provided tha t  the process does not lead to extinction. 

3. EXPECTATIONS AND EIGEN'S SELECTION EQUATION 

3.1 Eigen's selection equation 

In Eigen (1971) and Eigen and Schuster (1979) the  evolution of polynucleo- 

tides in a dialysis reactor was modeled by a differential equation of t h e  form 

or, in vector notation (with W = (wij), x = (z  l.....Z,) and 1 = (1  ....,1 )). 

on the unit  simplex 

Here the  z, are the  concentrations of polynucleotides of type li ( i  = 1, ..., m ) .  

The coefficients wii satisfy wjj = A,. Qjj - Dj and  wii = +Qij (i # j), where 

A, > 0 is the  total ra te  constant for polynucleotide synthesis on template 4 ,  Dj 

is the  decay rate  and QQ, the  "quality factor", gives the probability tha t  a copy 

of a rnolecule of type 3 will be of type I, (for j # i this is a mutation rate). We 

shall first assume tha t  W is positively regular. The t e rm 

is interpreted as an  externally controlled "dilution flow" which keeps t h e  total 

concentration Cz, constant (without loss of generality, equal to 1). The 



parameter (p may be viewed as  t h e  "average productivity" of the molecular 

population. I t  is  easy to check t h a t  S, is invariant under (26): if x(0) E S, 

then x ( t )  E Sm for all t 2 0. 

Equation (26), then,  was introduced as  a phenomenological equation 

describing the  kinetics of self-reproducing molecules in a dialysis reactor 

under the constraint of constant total population. The aim of this section is to  

relate this equation to multitype branching processes. 

3.2 Preliminary remarks 

We begin with a few simple remarks. 

1. Let 

be a linear differential equation with (essentially) positively regular W. If 

y (0) E RF, then 

is well defined and in Sm for all t r 0. x ( t )  is also a solution of (26). 

2. I t  is also possible to  obtain (26) from (30) by setting 

and 

(see Jones e t  al., 1976; Thompson and McBride, 1974). 

3. The nonlinear equation (26) is therefore easy to solve. Any equilibrium of 

(26) must  satisfy 

and therefore be a right eigenvector of W. There is only one such eigenvector 

in Sm, which is denoted by u: the corresponding eigenvalue 9 is the dominant 

eigenvalue of W. From the correspondence between (30) and (26) i t  follows tha t  

all orbits of (26) in the  s tate  space Sm converge to u 



4. We shall use a canonical method to link the difference equation 

with the differential equation 

Such an extension to continuous time cannot always be justified, of course. But 

if the generation length is 1 (say) then (35), or I - v = F(v) - v, implies that 

If the generations are not distinct, but blend into each other, then the increase 

v ( l /  n )  - v(0) in time 1/ n is approximately ( l / n ) ( ~ ( v ( ~ ) )  - v(o)), or 

which, in the limit, implies (36). 

3.3 Multitype branching and the selection equation 

The relationship between branching processes and the selection equation 

is summarized in Figure 1. If we start with a discrete multitype branching pro- 

cess Z(n), then the values of the expectation Y(n) satisfy Y(n)  = MnY(0), where 

M is the mean value matrix described in Section 2.1.2. Thus Y(n)  may be 

obtained by iteration from the difference equation* y' = My. This equation can 

be transformed into the selection equation in two ways: 

(i) by first passing to continuous time, i.e., to the differential equation y = Vy 
(with V = M - Id),  and then normalizing, as in (26),  which leads to 

; = vx - x(1-  vx) (37) 

(ii) by first normalizing the difference equation, thereby obtaining 

on 5;, , and then passing to continuous time, which yields 

%s difference equation is similar t o  the discrete-time model given by Demetrius (1983e). 





1 r = (Mx - x ( l  . Mx)) - . 
1 Mx 

Multiplying the  right-hand side of (39) by the factor 1 - Mx (which does not 

depend on i and is always strictly positive on S,) corresponds to a change in 

velocity. The orbits of (39) are the  same as those of 

Since V = M - I d ,  equations (39) and (40) are identical on S,. Both are of the 

same form as  Eigen's selection equation. 

The previous discussion took a discrete process as the starting point. If, 

however, we begin with a continuous Markovian multitype branching process 

Z(t),  (t 2 0), we can either reduce i t  (by discretization) to the discrete branch- 

ing process Z(n) ,  or else obtain Y(t) = M(t)Y(0) for the  expectation values 

Y(t) = EfZ( t ) j  (where M(t) is again the  mean value matrix: M(1) = M). Y(t) is 

then the solution of the linear differential equation 

where 

A = lim 
M(t) - Id 

t -0 t 

is the infinitesimal generator of the  semigroup ~ ( t  ). and ~ ( t  ) = eAt . Normali- 

zation yields 

on S,. This equation generally has different dynamics to (40), but the asymp- 

totic behavior is the same. Indeed, A and m = eA have the same eigenvectors. 

Thus u is the  global attractor for both (40) and (42). 

3.4 The reliability of the deterministic equation 

We have seen that  there are three  simple ways of getting from branching 

processes to an essentially unique version of Eigen's selection equation. There 

remains the question of whether such a reduction from a stochastic to a deter- 

ministic system is of any practical use. The first impression rnay be tha t  i t  

brings no  obvious advantages. Indeed, going from the random variables to their 



expectations can be quite misleading, because the  variances grow so rapidly. 

This can be verified most easily for the single-type branching process. If m and 

u2 are the mean and variance, respectively, of the  number  of descendants of a 

single individual in  t h e  first generation, then the  corresponding mean and vari- 

ance in the n - th  generation grow in the supercritical case ( m  > 1) according to 

m n  and u 2 m n ( m n  -1) 
m ( m  -1) 

so that  the ratio of the  dispersion (i.e., the root of t he  variance) to  the  mean 

converges to a positive constant. Thus the "window" of probable values of the 

random variable is ra ther  large. (For a critical process, the situation is even 

worse: the  mean remains constant and the variance increases to  infinity.) The 

situation is similar in  the multitype case. Here the  variance and correlation 

formulae are ra ther  complicated (see Harris, 1961, for the discrete and Athreya 

and Ney, 1972, for the continuous case) but the resul t  is, once again, that  the 

second moments grow so fast tha t  the averages tell us virtually nothing. Nor- 

malization changes this, however. The transition from expectations to relative 

frequencies cancels t he  fluctuations. More precisely, if the process does not go 

to  extinction, then the  relative frequencies of t h e  random variables 

converge almost surely to the values ui (i = l.....m). These a re  also the limits 

of the relative frequencies of the expectations 

In this sense, the deterministic selection equation yields a description of the  

stochastic evolution process which is more reliable than that  given by the  

dynamics of the  non-normalized means. The qualitative aspects of the selec- 

tion equation represent the  "variance free" par t  of the  deterministic approach. 

3.5 "Freezing in of fluctuations 

We should stress here  that  the initial fluctuations in a supercritical 

branching process are  "Frozen in". In order to clarify what we mean by this, l e t  

us compare two symmetric random walks on a finite s e t  to, 1, ..., N{ of integers, 



where one of t he  random walks has absorbing boundaries and the  other 

reflecting boundaries. In both cases the mean remains constant,  and  the  vari- 

ance converges to some positive value. In the absorbing case, however. the ini- 

tial fluctuations play a decisive role. Sooner or la ter ,  the  walk reaches a boun- 

dary and from then on remains "frozen in". In the  reflecting case, on the  other 

hand, the initial fluctuation will be "forgotten" after a sufficiently long time has 

elapsed With this example in mind, we say tha t  the initial fluctuations in a sto- 

chastic process & a r e  frozen in if for every E > 0 and for all n r N we have 

Prob Ivar l h  ' 
E i h  1 

provided tha t  N is sufficiently large. In this sense the "deterministic" model 

(i.e., the sequence E l & { )  is fairly reliable if we wait sufficiently long before 

starting observations, because by this time the fluctuations will have subsided 

It  is easy to  check that  t he  above s tatement  also holds for supercritical 

branching processes. It is only necessary to  note tha t  for given (large) k > 0. 
with probability 1 - E ,  either XN = 0 or XN > k if N is sufficiently large. If 

XN = 0, then Var l &  j = 0 for all n r N; if XN > k ,  then from (43) we have 

which is smaller than & provided tha t  k is s ~ ~ c i e n t l y  large. 

4. THE ERROR THRESHOLD 

The parameter A ,  the  dominant eigenvalue of the  mean value matrix M, 

plays a crucial role in the  branching process in  tha t  extinction is certain iff 

A < 1. This relation provides both an  interpretation and a generalization of 

Eigen's e r ror  threshold relation, as we shall presently see. 

4.1 Single- type branching 

Let us &st consider a single type of macromolecule. In each generation, a 

polynucleotide yields a copies before it "dies" by hydrolysis. Here a is an 

integer-valued random variable with probability distribution 



and expectation 

We shall assume that  the polymer is a chain consistin'g of v nucleotides and 

that  there is a fixed probability p of a single nucleotide being copied correctly*. 

The assumption of some constant, single-component accuracy of replication p 

which i s  independent of the molecule type and its position in the  sequence is, of 

course, an oversimplification. However, this assumption may be justified on 

physical grounds - for details see Eigen and Schuster (1979)  and Schuster 

(1981).  

In this case the  probability that  a given copy is exact is pV,  and the proba- 

bility tha t  X, the number of correct  copies in one generation, is equal to some 

integer k ,  is 

where m is the total number of copies and m > k .  The mean number of correct 

copies is therefore 

m 5 kPlX = k ]  = q m ( ~ ) k p V k  ( 1  - P v ) m 4  = 
k =O k-0 mrk 

From the relation A < 1 extinction is certain iff 

and hence there  is a strictly positive probability of indefinite survival iff 

log 0 log I us 
-log p 1 - p  ' 

*In order to avoid confusion with the notation used e!sewhere in this paper, we have chosen the 
letter "pp" to represent single-digit accuracy of replication. In our previous publications we have 
generally used q for this quantity (Eigen and Schuster, 1078). 



where the approximation holds when 1 -p  (the probability of an inaccurate 

copy) is small. For fixed 5 > 1, this means that  the maximum length of a 

polynucleotide is inversely proportional t o  the  probability of a replication error 

in one of its components. If this length is exceeded, long-run survival is impos- 

sible. 

The probability or extinction q is the  smallest positive solution of 

where @ ( s )  is t h e  probability generating function for t he  random number X of 

correct copies, i.e., 

Under the previous assumptions, 

r ( s )  = 5 z s , ( ~ ) p u k  (1 -p~)m-ksk  
k=O m r k  

4.2 Single- type branching - a variant case 

In order to  link this theory with current  experimental work on polynucleo- 

tide replication, i t  is useful to introduce a slight modification. It should be 

recalled that  the  lifetime of a polynucleotide is not a well-defined constant but 

rather  a random variable which, to a first approximation, has an  exponential 

distribution. On the other hand, the  replication time is fairly well defined, a t  

least under appropriate boundary conditions. It is therefore convenient to view 

this time, rather  than  the actual lifetime, as the length of a generation. 

Let us assume, then, tha t  in unit time, the molecule either survives (with 

probability w )  and  produces a copy (which is accurate  with probabilitypY), or is 

hydrolysed (with probability 1 -w). The survival probability w is constant if 



there is no "aging" under  the  experimental conditions. A given molecule thus 

yields 0, 1 or 2 molecules of t he  same type after one unit of t ime with probabili- 

ties 1-w,  w (1  -pY) and wpV, respectively. The mean is w ( 1  +pV). We therefore 

have a non-zero probability of survival to infinite t ime iff equation (47) is 

satisfied, where the  constant 5 now denotes w /  1 - w .  The probability of extinc- 

tion is easily computed from (48): 

q = min [ 1, A] 
UP 

So far we have considered only one type of molecule. However, the same 

results also hold in a multitype situation if the possibility of "back mutations" 

is excluded, i.e., if  mutations from I' (j # 1) to Il can be neglected. 

In the general case, i.e., allowing all types of mutation to occur, i t  can be 

difficult to estimate t h e  dominant eigenvalue A. We refer the  reader to Thomp- 

son and McBride (1974) and  Eigen and Schuster (1979) for some useful inequali- 

ties. 

The 2' x 2" matr ix M introduced by Swetina and Schuster (1982) provides 

an  interesting example. In a somewhat simplified version of t he  replication 

problem only two classes of components (or digits), say 0 and 1, are  considered. 

The polymer is thus  a sequence of v such digits and, in general, we are dealing 

with 2v different sequences. We shall assume that  $ has  replication rate A,, 
and tha t  the  mutation ra te  from I' t o  Ii depends only on the Hamming distance 

k between the  two sequences - this is the minimum number of single-digit 

mutations needed to transform I j  into 4 .  The elements of the matrix M can 

then be expressed by 

If A, = A  (j = 2.3.....2v). if A l  >>A and if (1  - p ) 2  can be neglected, then 

second-order perturbation theory (see Eigen and Schuster, 1979; Thompson and 

McBride, 1974) yields 



Again, the  condition for positive survival probability reduces to (47). 

4.4 Complementary replication 

The basic mechanism of polynucleotide replication does not lead directly 

to  copies of t he  templates. From the pairing rules  (G ++ C and A t* U or 

A o T) for t he  individual nucleotides, it is clear that  complementary copies ac t  

a s  intermediates. This mechanism is common in the  replication of viral RNA 

and  has been studied in great  detail using kinetic methods (Biebricher e t  al., 

1983). The two complementary polynucleotide sequences a re  usually called 

plus strands and minus strands (I+ and I-, respectively). We can now apply our  

previous theory with some slight modifications. Let 1; .  ..., 12 and  I F . .  . . ,I; be 

the  different types of plus and  minus strands in t he  reactor. The matr ix of 

mean values M i s  then a 2m x 2m matrix of the  form 

I t  i s  easy to  check t h a t  the non-vanishing eigenvalues of M are just the square 

roots of t h e  non-vanishing eigenvalues of UV (or W). Thus, the  dominant 

eigenvalue of M is the  square root of the  dominant eigenvalue of UV. In partic- 

ular, if replication is error-free, i.e., if 

a r e  diagonal matrices,  the  dominant eigenvalue of M is 

max [ d m :  i = I. .... m j , 

From equation (I) ,  t he  deterministic rate  equations for the concentrations 

zi+ and zi' of I: and Ii- are  given by 



where (p = z (&+zi- + A,-z:) . 

This set of equations was first analyzed by Eigen (1971). I t  can easily be 

checked that  

and hence that  

In the limiting case z i  = z; - (&+/ and setting Zi = z: + z i  we have 

= 5 i , / ~ - z a ( z z j , / ~ )  , za 

which is just the Eigen selection equation for direct, error-free copying, and 

leads to the extinction of all pairs 4+, 4- for which d m  is not maximal. 

4.5 The deterministic error threshold 

Equation (47) is very similar to the error  threshold relation 

derived for the deterministic model by Eigen (1971), Eigen and Schuster (1979) 

and Swetina and Schuster (1982). In this case, the molecular species Il is 

assumed to  be the master sequence (which means by definition tha t  m l l  > mii 

for all i # 1) and the parameter ol  is its superiority, which is defined by 

Here is the mean excess productivity (number produced minus number 

hydrolysed) of molecules other than the master  sequence, i.e., 



It is instructive to compare the derivation of (47) with that of (54). Ine- 

quality (54) is a consequence of 

where Qll, the rate of accurate replication of molecules of type 11, is again pV. 

Equation (57) is derived from 

a n d w l l  = A l e l l  -Dl. 

This last inequality states that  the value function, i-e., the rate of produc- 

tion of accumte copies of the master sequence 11, is higher than the average 

production rate of aLL copies (accurate and inaccurate) of all other molecules. 

This need not always be true. Let us consider an almost trivial but, 

nevertheless. illustrative example. Setting A l  = 3, A2 = A3 = 4, Ql l  = 1, 

Qzz = Qa3 = Q23 = Q3Z = 1/ 2, and all other Qij values and the degradation rate 

constants Di equal t o  0, we obtain 

- 
This leads to w l l  = 3 and E,l = 4. If the zero terms are replaced by (more real- 

istic) small, non-vanishing terms, (58) is still violated. However, relation (58) 

clearly holds in physically meaningful situations when the mutation terms are 

small. In particular, in the limiting case where all the mutation rates vanish 

(and all the Qs are 1). relation (58) is an obvious consequence of w l l  > wii for 

i # 1, i.e.. of the assumption that Il is the master species. I t  should, however, 

be noted that E-l (and ul) are generally functions of z (see Swetina and Schus- 

ter,  1982). 

I t  is natural to evaluate w l l  and E-l a t  the equilibrium state u However, 

in the case with no mutations we have y = 0 for i = 2, ..., m, so that  E,l is not 

properly defined. In this case we consider lim which exists and is equal to 
t -+- 

the second largest diagonal term. Thus relation (58) also holds under these 

conditions. 

The deterministic error threshold is based on the assumption that, under 

selection, the rate of production of accurate copies of a molecular species 



becomes equal to the mean total productivity of all other species. The master  

species will always replicate with a fidelity above the error threshold provided 

that  the mutation terms of a l l  other species a re  sufficiently small. The stochas- 

tic error  threshold is  based on the probability of extinction. Thus, the require- 

men t  to  operate above the stochastic threshold is  always a stronger condition 

than the corresponding requirement in the deterministic case. 

5. COMPLEXTY 

In this section we shall introduce another parameter called the cornplez- 

ity, which, like the dominant eigenvalue, is a function of the matrix of mean 

values M. 

5.1 The parameter H 

We assume once again that  the process is positively regular and write 

The matrix P = (pij) is Markovian. Let IF = (n i )  denote the  stationary distribu- 

tion of the Markov chain. The cornplezity of the  branching process is then 

defined by 

There is a simple relation between H and the  dominant eigenvalue A, which 

is given by 

where 

+ = - C  nipij log 
i j  

The entropy-like parameter H defined by (60) represents the frequency of 

mutations back to the  "wild type". The positive regularity of the process 

ensures that H is strictly positive. 



5.2 An illustrative example 

As in the  case of the  dominant eigenvalue A, i t  is generally difficult to  com- 

pute H exactly if we allow all types of mutations to occur. However, an explicit 

expression can be obtained from the Swetina-Schuster matrix (47) with 

Al = A > 1 and 4 = 1 for j = 2,...,2v. H measures the degree to  which correct 

and erroneous digits a re  incorporated in the  polynucleotide, and assumes its 

maximum value when p = 1/ 2. In this case 

The corresponding stochastic matrix P has  all rows equal: they are  given by the 

vector 

Using (63), (64) and (60), we have 

We note that  A decreases with sequence length v, while H increases with v. 

5.3 Genealogies 

We define a genealogy as  a sequence (Ik),, k, E 11 ...., r n j  such that  I is a 
kn 

direct copy (accurate or inaccurate) of for n = 1,2, ... . Demetrius (1983b) 

has used the Shannon-McMillan theorem on entropy (see, e.g., Billingsley, 

1965) to show that  the set  of all genealogies generated by a given individual 

after a sufficiently long time n falls into two classes: a class S1 in which each 

genealogy occurs with a high probability, and a class S2 in which each geneal- 

ogy occurs with an arbitrarily low frequency. The elements of S1 are called typ- 

ical genealogies. 



Let No(n) denote the number of genealogies generated up to time n ,  and 

~ ~ ( n )  the number of typical genealogies. I t  is known (cf. Demetrius, 1983a,b) 

that  

Tuljapurkar (1982) used the notion of Kullback distance to show, in the context 

of the Leslie model of age distributions, that H yields a measure of the rate a t  

which a population converges to its stable distribution. Thus the complexity H 

yields biologically useful information which is not contained in A. 

6. CONCLUSIONS 

The theory of multitype branching processes has been shown to provide an 

appropriate basis for the description of replication in biophysics. The main 

results derived from the deterministic differential equations of conventional 

chemical kinetics are valid, on the average, for the corresponding stochastic 

processes. This is basically a consequence of the important principle by which 

the initial fluctuations are "frozen in". After a transition period the supercriti- 

cal multitype branching process either leads to extinction or the total popula- 

tion size becomes very large. In the former case there are  no fluctuations, 

while in the lat ter  the law of large numbers becomes applicable. 

Both stochastic and deterministic treatments of replication with errors 

yield error threshold relations which state that  the maximum lengths of faith- 

fully replicated sequences a re  roughly inversely proportional to the single com- 

ponent e r ror  rate.  The stochastic threshold turns out to be a stronger condi- 

tion than the deterministic relation. 
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