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PREFACE 

I n  t h i s  pape r ,  t h e  au thor  s t u d i e s  t h e  p r o p e r t i e s  of 
p o s i t i v e l y  homogeneous f u n c t i o n s ,  which r e p r e s e n t  a  sub- 
c l a s s  of t h e  set of q u a s i d i f f e r e n t i a b l e  f u n c t i o n s .  I t  i s  
shown t h a t  t h e s e  f u n c t i o n s  can be used t o  d e r i v e  some new 
r e s u l t s  i n  t h e  t heo ry  of coopera t ive  games. 

This  paper  i s  a  c o n t r i b u t i o n  t o  r e s e a r c h  on nondif-  
f e r e n t i a b l e  op t imiza t ion  c u r r e n t l y  underway w i t h i n  t h e  
System and Decis ion Sc iences  program. 

ANDRZE J WIERZBICKI 
Chairman 
System and Decis ion Sc iences  
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One interesting class of quasidifferentiable functions 

is that formed by the family of positively homogeneous 

functions. In this paper, the author studies the pro- 

perties of these functions and uses them to derive some 

new results in the theory of cooperative games. 
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1. Introduction 

We shall begin by recalling the definition of quasidifferen- 

tiability (for more information on the properties of quasidif- 

ferentiable functions see [51). Let a finite-valued functio.n 

f: S - El be defined on an open set S C E . n 

Definition 1 [5]. A function f is said to be quasidifferentiable 

at a point x E S if it is differentiable at x in every direction 

g E En and there exist convex compact sets af - (x) C E and n 
- 
af(x) c E such that n 

afo= max (v,g)+ min (w,g) Y g E E  a g vfaf (XI w~af(x) n (1 



The p a i r  of s e t s  Df (x)  = [ af - (x)  ,z f  (x)  ] i s  c a l l e d  a  quasi- 

differential of t h e  funct ion  f  a t  t h e  po in t  x  and t h e  s e t s  

a f ( x )  - and %f (x )  a r e  c a l l e d  a  subdifferential and a  superdif- 

ferential, r e s p e c t i v e l y ,  of f  a t  x  . 
In  what fol lows we s h a l l  consider  a  p o s i t i v e l y  homogeneous 

funct ion  f  , i . e . ,  

f  (Ax) = Xf (x )  W X Z O .  - ( 2 )  

Let K be a  convex cone i n  E with a  compact base and a  n 

non-empty i n t e r i o r .  We s h a l l  suppose t h a t  T i s  t h e  base of 

t h i s  cone, where dim T < n  ; l e t ! r i T  denote t h e  r e l a t i v e  i n t e r i o r  

of the .  s e t  T , and % t h e  a f f i n e  h u l l  of T . 

Def in i t ion  2. A function f:T - E l  is said to be quasidifferen- 

tiable at a point x  E r i T  if it is differentiable at this point 

in every direction g  E $ = I$, - x  and convex compact sets 

a f ( x )  , z T f ( x )  C $ exist such that 
-T 

The following propos i t ion  i s  an immediate c o r o l l a r y  of 

t h e s e  d e f i n i t i o n s .  

Proposi t ion 1. Let a function f:K - El  be quasidifferentiable 

at a point x  E i n t  K . Then the function f l  
T (x tp )  

, where 

T(x,p)  = { z  E K I  (z-x,p) = 01 , p  E En , is quasidifferentiable 

at x  , and its quasidifferential is defined by the pair [ A , B ] ,  

where 



and Pr C represents the orthogonal projection of a set C on the 
P 

hyperplane 

Quasidifferentiability of a positively homogeneous extension 

Let us suppose that the function F:K -- El is the positively 

homogeneous extension to the cone K of a function f defined on 

the set T(x,x) , x E int K . Let f be quasidifferentiable at x . 

Theorem 1. The function is quasidifferentiable at x and moreover 

Proof. Since f is quasidifferentiable, the equality 

af(x) - - 
ah 

max (v,h) + min (w,h) , 
v ~ a  - f (XI wfTf (x) 

holds for every direction 

and 
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Le t  us  cons ide r  an a r b i t r a r y  d i r e c t i o n  g  E En and suppose 

t h a t  

g  # Xx f o r e v e r y  X E E ,  . 

Consider 

I t  i s  clear t h a t  

2 
where llxll = (x,x) . L e t  

Then h  E Hx and w e  have t h e  fo l lowing  r e p r e s e n t a t i o n :  

where 

(Note t h a t  h#O because g#Xx.) I t  i s  c l e a r  t h a t  X--+O i f f  v--+O 

and t h u s  we have 



= l i m  i f (x+vh) - f (x)  + f (x+,,h) 

A 4 0  X 11 x  11 2 

i f (x+ph)  - f ( x )  . 2 Ilxll + (g ,x)  - = l i m  
1.140 !J Il x  ll 

+ f  (x )  0 
n x n  

Hence f o r  every  gfXx t h e  d e r i v a t i v e  a F  e x i s t s  and 

where h  i s  de f ined  by ( 6 ) .  

From ( 3 )  w e  then  g e t  

a h )  - llxl12 + (g ,x)  
2 max (v ,h )  + ' g i n  (w,h) + 

ag II x II vfaf ( X I  wfaf ( X I  I 

Since  t h e  func t ion  a F  i s  p o s i t i v e l y  homogeneous i n  g  , 

it i s  enough t o  assume t h a t  g  s a t i s f i e s  t h e  cond i t ion  

11xl12 + (g ,x)  > 0  . 
Then, t ak ing  ( 6 )  i n t o  account ,  w e  have 

aF(x )  , -  - max v , g - x  
a g  vfaf ( X I  i 11 x 11 2 



Since af - (x)  , zf (x )  C H~ , 

a l ( x )  - - 
ag 

max (v ,g)  + g i n  (wig) + -=+ (g ,x)  = 
vfaf ( X I  w ~ a f  ( X I  II x II 

- - max (v ,g)  + g i n  (w,g) 
f x  

v f t f  (x) ++ x ~a f  ( X I  

II X II 

Now we have t o  check t h a t  t h i s  formula holds f o r  g  E Hx and 

g+x f o r  some X f O  . 
I f  g  Hx , then (g ,x)  = 0  and 

max ( v t g )  = max (v ,g)  - 
f x  + a f ( X ~ + - + ~  - vfaf ( X I  

Il x  ll 

Let us suppose t h a t  g=Xx f o r  some X # O  . Then 

But from ( 4 )  we have 

max (v,Xx) + min (w,Xx) = 
f x  

vfaf  - ( X )  ++ w f ~ f  (x )  
II X II 

thus  proving t h e  theorem. 



3. Game-theoretical applications of quasidifferentiable 

functions 

Now let us consider the game-theoretical applications of 

quasidifferentiable functions. The study of so-called fuzzy 

or generalized games is currently attracting a great deal of 

interest. We will not go into the reasons for this here (but 

see J.-P. Aubin [ 1-3 ] on this topic) : we shall simply recall 

the main definitions. 

Let I=l:n be a set of n players. We can then identify an 

arbitrary set S C I , called a c o a l i t i o n ,  with a charac- 

S teristic vector e , where e=U= (1,. . . ,1) E E and eS is the n 

projection of vector e on the subspace 

nS = {x E E ~ ~ x ~ = o  for i 9 S} . 

Thus the set of all coalitions is {O, 1 ln . 
The set of generalized (fuzzy) coalitions is, by definition, 

the convex hull co{O, 1 ln=[ O,l] n = ~ n  . Hence a generalized co- 

alition r E In associates with each player i E I a participation 

rate r E [0,1] , which is a number between 0 and 1 . i 

Definition 3 [3]. An n-person  g e n e r a l i z e d  c o o p e r a t i v e  game 

( w i t h  s i d e  payments )  i s  d e f i n e d  by a  p o s i t i v e l y  homogeneous 

1 f u n c t i o n  v: [ 0,l l n  -. El which  a s s i g n s  a  p a y o f f  v(r) E R t o  each  

g e n e r a l i z e d  c o a l i t i o n  r E [ O,lln . The f u n c t i o n  v i s  c a l l e d  t h e  

c h a r a c t e r i s t i c  f u n c t i o n  o f  t h e  game. 

+ Since v is positively homogeneous we can extend v to En by 

setting 



+ 
for r E En , r#O . 

We shall take the vector space En as the space of outcomes 

(or multi-utilities) . Vector x= (x , . . . ,xn) E E~ 1 represents the 

utilities of the players; the utility of the generalized co- 
n 

alition r is given by (r,x)= 2 r x . If S C I , then this 
i=l i i 

S utility is equal to (e ,XI= 2 x 
iES i ' 

It is well-known (see, for example, [I , 2 1 )  that the direc- 

tional derivative may be used to define the solutions of a game. 

In an extension of this idea, J.-P. Aubin has proposed that the 

Clarke subdifferential could be used to define a set of solu- 

tions to locally Lipschitzian games, i.e., games with a locally 

Lipschitzian characteristic function. 

Definition 4 [ 3 1 .  We say that the Clarke subdifferentiat 

aC1v(U) of v a t  U is the set of sotutions S(v) to a locatty 

Lipschitzian game with characteristic function v . 
The following properties of the set S(v) are worthy of note: 

(a) S(v) is non-empty, compact and convex 
n 

(b) S(v) is Pareto-optimal, i.e., if x E S (v) , then Z xi=v(U) 
i=l 

(c) S(Av) = AS (v) for A E E~ 

(dl S (u+v) C S (u) + S (v) 

(e) If v is superadditive, then S(v) coincides with the core 

(f) If v is continuously differentiable at U , then S (v) =Vv (U) , 

i.e., S(v) contains only one element which coincides with 

the generalized Shapley value of the game v . 



Defin i t ion  5. A generalized game is said to be quasidifferen- 

tiable if its characteristic function is quasidifferentiable. 

Remark 1 .  Since q u a s i d i f f e r e n t i a b i l i t y  i s  e s s e n t i a l  only on 

t h e  diagonal  of cube 1" then from Theorem 1 and the  p o s i t i v e  

homogeneity of funct ion  v  it i s  s u f f i c i e n t  t o  assume t h a t  v  

i s  q u a s i d i f f e r e n t i a b l e  only a t  U . 
Let v b e q u a s i d i f f e r e n t i a b l e  and its q u a s i d i f f e r e n t i a l  be 

[ cv (U)  , a v ( ~ ) ]  . From Proposi t ion 1 we deduce t h a t  t h e  func- 

1 t i o n  v  = v I ~ ( ~ , ~ )  i s  q u a s i d i f f e r e n t i a b l e  a t  U with a  quasi-  

d i f f e r e n t i a l  def ined  by t h e  p a i r  [ P r u  av - ( U )  , P r u  av ( U )  1 . I t  

i s  c l e a r  t h a t  t h e  p o s i t i v e l y  homogeneous extens ion  of t h e  

+ funct ion  v1 on En co inc ides  with v  ; t h e  q u a s i d i f f e r e n t i a l  of 

t h i s  funct ion  a t  U , which may be found using Theorem 1 ,  i s  

I t  is a l s o  c l e a r  t h a t  t h i s  p a i r  i s  i n  some sense "Pareto- 

opt imal" ,  s i n c e  f o r  x  € P r a  Cv(U) + U and y  E P r u 8 v ( U )  
H-u 11 

we have 

(because P r u  ?v ( l I )  , P r u  8v( t I )  C H E )  . 
Let D'V(U) be a  q u a s i d i f f e r e n t i a l  of v  a t  U which i s  Pareto- 

optimal i n  t h e  sense descr ibed above. We then have t h e  following 

d e f i n i t i o n :  

Def in i t ion  6. The quasidifferential D'V ( U )  of the characteristic 

function v  at the point U i s  called a quasisolution of the game. 



There are at least two reasons for using the term "quasi- 

solution". Firstly, it is known that quasidifferentials are 

not unique and are defined up to the equivalence relation. We 

should also note that a locally Lipschitzian function is not 

necessarily quasidifferentiable and vice versa. Moreover, it 

is obvious that a function which is both locally Lipschitzian 

and quasidifferentiable may have both a directional derivative 

and an upper Clarke derivative, which are essentially different 

quantities. 

Quasisolutions also possess certain properties which go 

some way towards justifying their name. 

1. If a characteristic function v is continuously differentiable 

at U , then D*V (u) = [ Vv(U) , 01 , where Vv (U) is the 

gradient of v at U and a quasisolution can be identified 

with the generalized value of the game. 

2. If v is concave (i.e., superadditive), then DTv(U) = [o,$v(u)], 

where xv (u) is the superdifferential of the concave func- 

tion v and the quasisolution DTv(U) can be identified with 

the core of the game. 

3. Quasisolutions are linear on v . 

Remark 2. In general, if one element of a quasidifferential 

is zero, then it is natural to regard the corresponding quasi- 

solution as a solution of the game. 

Finally, using the properties of quasidifferentials we can 

find quasisolutions of the maximum and minimum games of a finite 

number of quasidifferentiable games, and thus we may speak about 

the calculus of quasisolutions. 



Let us now consider the directional derivative 

This value shows the marginal gain of coalition U when a 

new coalition g joins the existing coalition U . (We do not 

assume that g E E: , and hence this vector can have negative 

components. Such components may be interpreted as the "damage" 

caused to the corresponding players or alternatively as an in- 

dication that they should leave the whdle set of players). 

Since representation (1) holds for a quasidifferentiable 

game, it is interesting to consider the vectors x (g) and y(g) 

at which the corresponding maximum and minimum are attained. 

Since dv(U) and ZV(U) are convex compact sets, the sets 

~ r g  max C (x,g) [x E av(U) 1 

and 

consist of only one element for almost every g E S n- 1 

Let G (v) denote the set of such g , and z (g) =x (g) +y (g) . 
Note that if the function v is both locally Lipschitzian and 

quasidifferentiable and also satisfies some additional property 

(which is too cumbersome to describe here--see Demyanov [ 4 ] ) ,  

then the points z(g), g E G(v) , describe all extreme points of 

the Clarke subdifferential of v at U (the set of solutions pro- 

posed by J.-P. Aubin). 



4. Solution of quasidifferentiable games 

We shall now define the solution of a quasidifferentiable 

game, which we shall call an st-solution. We require the fol- 

lowing additional definition: 

Definition 7 [ 6 1 .  Let  K be a  compact convex  s e t  i n  En . The 

S t e i n e r  p o i n t  o f  t h e  s e t  K i s  t h e  p o i n t  

1 s (K) = - a~(K,a)dX , 
an s 

n-1 where X i s  t h e  Lebesque measure on t h e  u n i t  sphere  S i n  En , 

an is t h e  volume o f  t h e  u n i t  b a l l  i n  En , a i s  a  v a r i a b l e  

n- 1 v e c t o r  on S and p(K,-) i s  t h e  suppor t  f u n c t i o n  o f  K . 
Note that we always have s(K) E K and s (-K)=-s (K) . Let 

v be a quasidifferentiable characteristic function with quasi- 

differential 

Definition 8. The s t - s o l u t i o n  o f  a  q u a s i d i f f e r e n t i a b l e  game 

w i t h  c h a r a c t e r i s t i c  f u n c t i o n  v i s  t h e  v e c t o r  st(v) d e f i n e d  by 

t h e  e q u a l i t y  

We first have to prove that this definition does not depend 

upon the pair defining a particular quasidifferential v (such 

a quasidifferential may not even be "Pareto-optimal"). This 



follows immediately from the linearity on K (with respect to 

vector addition of sets) of the function s defined by (9), and 

from the following obvious property of quasidifferentials: if 

[A,B] is a quasidifferential of v at x , then the pair [ A ~ . B ~ ]  

is also a quasidifferential of v at x if and only if 

A - B 1  = A 1  - B .  

Using the equality (11) and the linearity of s we get 

The vector st(v) can be interpreted as the vector of average 

marginal utilities received by the players. 

We shall now describe some properties of st-solutions. 

Proposition 2. I f  a  g e n e r a l i z e d  game i s  q u a s i d i f f e r e n t i a b l e ,  

t h e n :  

1. The mapping st:v + st(v) i s  l i n e a r  i n  v . 
2 .  The s t - s o l u t i o n  i s  Pareto-opt imal ,  i .  e . ,  

3. I f  v i s  c o n t i n u o u s l y  d i f f e r e n t i a b l e ,  t h e n  st (v) =Vv(U) and 

t h e  s t - s o l u t i o n  c o i n c i d e s  w i t h t h e g e n e r a l i z e d S h a p Z e ~ v a Z u e  o f  v. 

4 .  I f  v i s  concave ( s u p e r a d d i t i v e ) ,  t h e n  st(v) i s  t h e  S t e i n e r  

p o i n t  o f  t h e  core  o f  t h e  game. 



The proof of t h i s  propositianEollowsimmediately from Pro- 

p o s i t i o n  1 ,  Theorem 1 ,  and the d e f i n i t i o n  of q u a s i s o l u t i o n s .  

Nowlet  u s p r o v e  twomore i m p o r t a n t p r o p e r t i e s  of an s t - s o l u t i o n :  

it s a t i s f i e s  t h e  "dummy" axiom (Theorem 2 )  and i s  symmetric (Theorem 3) . 
L e t a  q u a s i d i f f e r e n t i a b l e g a m e  have c h a r a c t e r i s t i c  f u n c t i o n  v  

+ 
such t h a t  v  ( x )  =v ( x " ~ )  f o r  every  x  E En . Then f o r  eve ry  g  E En w e  have 

v(uI\i+AgI\il - V ( U  I\i 
= l i m  

X+O X 

I t  i s  c l e a r  t h a t  t h e  f u n c t i o n  ;=v l  is  q u a s i d i f f e r e n t i a b l e  
R  

a t  lI1\i and i t s - q u a s i d i f f e r e n t i a l  a t  t h i s  p o i n t  is  de f ined  by t h e  

p a i r  [ P r - @ ( E )  , P r  Zv(l I ) ]  , where P r  A is the p r o j e c t i o n  of A on 

R i  . Hence, from ( 1  2)  , t h i s  p a i r  is  t h e  q u a s i d i f f e r e n t i a l  of 

a t  I[. ~ h u s  if x E p r ( a v ( U ) )  and y  E ~ r ( z v ( u ) )  t hen  xi'O 1 - 
Y i  =0 . From t h i s  w e  have ( s t ( v ) )  i=O and t h e  fo l lowing  theorem 

holds .  

Theorem 2 .  If a quasidifferentiable game with characteristic 

n function v is such that v ( x ) = ~ ( x I \ ~ )  for every x E [ o ,  11 , 
then (st  (v)) i=O . 

I n  o t h e r  words, t h e  func t ion  s t ( - )  s a t i s f i e s  t h e  so -ca l l ed  

dummy axiom, which s t a t e s  t h a t  a  (dummy) p l a y e r  who g i v e s  no th ing  

t o  any c o a l i t i o n  w i l l  a l s o  r e c e i v e  no th ing .  

"Nothing w i l l  come of no th ing"  

Shakespeare,  King Lear 



Suppose now that v is quasidifferentiable and r is a per- 

mutation of the set of players I=l:n . We shall define the 

game r*v as follows: r*v(x)=v(x r...rX -1 1 
r -I (1 1, .rr (n) 

~ e t  (n-'xli = x - 1 and (rx) = x 
.rr (i) 

ri ' 

Theorem 3. The st-soZution is symmetric, i. e., st (r*v)=r st(v) 

- 
Proof. If [ - av(lI) , av(U)] is a quasidifferential of v at lI , 
then 

I v (U+X (r-lq) 1 avcu = lim -v(u))= a(r-ll) 
?,--to X 

Hence 

ar*v(u) - - - 1 -1 max (z,r g) + min (y,r g) = 
ag zECv ( lI yEZv ( lI 

- - - 1 
max (nzrr(r g)) + min (ny,r(r-lg)) = 

ZECV (U) Yav(lI) 

- - max (z,g) + min (y,g) . 
ZET(~V(U)) - + ~(TV(Z)) 

Thus [r(av(lI) - ),r (zv(lI)) 1 is a quasidifferential of r*v at lI . 
Since the Steiner point is invariant under orthogonal trans- 

formations of En then 
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s('IT~v(u)) - = 'ITS(~V(U)I , s('ITZV(U)) = 'ITS(ZV(U)) 

and hence 

s~('IT*v) = 'IT s~(v) 1 

which is the proposition of the theorem. 

It is clear that the above formula holds for every or- 

thogonal transformation of En which leaves the vector U un- 

changed. 
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