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PREFACE 

This is the first of two papers dealing with mathematical methods 
that can be used to analyze hierarchical systems. 

In this paper, the authors look a t  the situation that  arises when cer- 
tain decision-making powers are delegated to various elements within a 
hierarchical structure. I t  is found that  these elements inevitably begin 
to operate in accordance with their own interests, which are not neces- 
sarily those of the system as a whole. Thus we have the problem of how 
to distribute the decision-making functions between the central body 
and the other parts of the system in such a way that the efficiency of the 
control system is maximized with respect to the global criterion. 

The authors take a game-theoretical approach to this problem. look- 
ing first at two-level hierarchical systems and using Germeyer's games 
as a model. They derive a number of methods for solving the problem 
thus formulated. and give some numerical results obtained using two of 
the resulting algorithms. 

ANDRZEJ WIERZBICKI 
Chairman 
System and Decision Sciences 





MATHEMATICAL METHODS FOR THE ANALYSIS OF 
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Stochastic Algorithms for Solving Minimax and 
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1. INTRODUCTZON 

Hierarchical control systems form one of the most interesting classes of 

large systems with regard to theoretical and practical applications. Hierarchi- 

cal control problems were first formulated in connection with the need to  dis- 

tribute the  right to process information and the responsibility lor making deci- 

sions among the  various elements of the control system. Problems arise due to 

the fact that,  when different elements of the system have these rights and 

responsibilities and can exercise them independently, these elements inevit- 

ably begin to operate according to their own interests. which generally differ 

from t h e  global objectives of the system. Thus i t  is necessary to distribute t h e  

decision-making Functions between the  central body and the separate parts of 

the system in such a way that the efficiency of the control system is maximized 

with respect to  the global criterion (we shall assume that this criterion coin- 

cides with tha t  of the central body). This problem may be divided into two parts 

[I-31: t he  problem of analysis, i.e.. the  choice of a reasonable control for a 

Axed hierarchical system, and the  problem of synthesis, i.e., the choice of t he  

best structure for t he  control system. 

Game theory seems to provide the best approach to such problems. How- 

ever, traditional game theory does not consider a number of questions which 

arise in this particular case, e.g., how to deal with problems caused by t h e  shar- 

ing of information between different elements in the hierarchy, priorities in 

decision making, and lack of knowledge of the objective.function by some ele- 

ments. We shall therefore begin by introducing a class of games in which 

moves are taken in a Axed order and the process of information transfer is 

quite similar to  tha t  found in some hierarchical systems. 



Hierarchical two-person games describe the simplest two-level hierarchical 

system. This is the most thoroughly investigated hierarchical s t ructure,  and is 

of considerable importance. Let the objective of player 1 (representing the  

upper level of the hierarchy) be to increase the value of the criterion ~ ( 2 , ~ )  

using decision variable z EX, and the objective of player 2 be to increase the  

value of the criterion G(z ,y)  using decision variable y E Y. The principle 

behind the second player's move is to maximize his gain, given tha t  the out- 

come depends on his action only. 

I t  is assumed tha t  player 1 has the first move and knows the principle on 

which the second player will act, a s  well as being acquainted with F, G. X, Y. 

There are various formulations of the games now known as Germeyer's 

games [I] which depend on the information available to player 1 about the deci- 

sion of player 2. 

Game GI. Player 1 will not have any information on the choice made by player 

2: his strategy is to  choose a certain z1 E X and report i t  to player 2. 

Then the best guaranteed result  of player 1 is 

v = sup inf F(zl ,yl)  , 
x i @  y i eB1(z1 )  

where 

B'(z') = ly' E Y'( ~ ( z l , y ' )  = rnax ~ ( z ' , z ) j  , X' = X ,  Y' = Y 
z c r  

b e  G2. Player 1 will know the choice y2  E Y made by player 2: his strategy 
N 

is to  choose the mapping X2 = Is2: Y -, Xj. 

The best guaranteed result  of player 1 is 

inf ~ ( z " ~ , ~ ~ )  V z  = $lU& u+p(i.) 

b e  Gg. Player 2 formulates his action as a function y ( z ) ,  i.e.. he chooses a 

mapping g3 E = tq3: X' -, Yj. Player 1 has the first move and since he will 

know g3 he  reports to player 2 the mapping z3 which is an element of the se t  

529 = 153: P3 -, x'j. 
The best guaranteed result  of player 1 in such games is 

-3 -3 inf F(z  ,y ) = ;s:g!3 f 3 @ 3 ( 5 3 )  



In games G2 and G3 the sets of rnultivalued mappings ~ ~ ( 2 ~ )  and 83(g3) 

are defined (like gl(zl)) as the sets of possible answers of the second player, 

given that  the strategy of the first player is fixed. 

Increasing the number of iterations we can formulate games GZn, GZn+l, 

n 2 2 .  

The sets of players' strategies in game G2n are 

and the best guaranteed result of player 1 is 

-2n -2n 
v2n = 2z:$, inf ~ ( z  ,y ) . 

J " ~ 8 2 " ( 2 ~ )  

In game G2n+1 we have 

-*+I.  y&+i p + l  = 12 - . P - l j ,  p C 1 = j Y  -2n+l. . p n - 1  , j%?n-l] 

- inf -2n+l - h + l )  
F'(. 9 Y "&+l - -a:?&+i pa+~E~~+~(;a+i)  

2 

where 

&(gk)  = igk  E ?I ~ ( ? & , y " ~ )  = max G ( Z ~ , Z ) ]  . 
ZEP 

The following relationships hold for n 1 2 [4]: 

Thus from the point of view of player 1 there is no point in having a stra- 

tegy more complicated than in games GI ,  G2, Gg. In other words, the &st three 

games can be regarded as basic and we shall confine ourselves to a considera- 

tion of these games only. 

Games GI ,  G2, G3 have a natural economic interpretation in the  framework 

of the "Center-Producer" system [5]. 

1. The setting of prices z1 for the output y of the producer. The natural 

approach here is game GI,  as in this case prices are chosen without any 

information about y . 



2. Decisions on fixed payments z2 (subsidies, premiums, assignments and so 

on). As accounts with the producer are settled on receiving the final pro- 

duct, he  may be informed beforehand of the chosen system of fixed pay- 

ment (i.e., how the amount paid depends on the results of his work). Here 

we have game G2 on the set of strategies p, 

3. Allocation of resources z3 (raw material, equipment, labor and so on). It is 

obvious that resources must be allocated before the production process 

begins, and formally the producer has the right to dictate his terms: 

g3 = y(z3). However, since the center has the first move he may report his 

strategy as the mapping z3: + X. This is a typical G3 formulation, 

although game G1 is also possible here. The guaranteed result of player 1 

in games GI, G2. Gg satisfies the relationship v < v g  C v2 ,  and thus the 

allocation of resources to the producer in a game G3 formulation is more 

profitable to the center than in GI. 

3. ANALYSIS OF TWO-LEYEL HIERARCHICAL SRXlWS 

Since Germeyer's games may be taken as models of two-level hierarchical 

systems, the analysis is reduced to the question of finding the solutions of the 

games formulated in Section 2. 

G a n e  GI. The problem of solving game G1 is reduced to that of solving a maxi- 

min problem with linked variables (see (2.1)). 

Assume that the criteria F and G are continuous on compact sets X,Y. 

Then the inner infimum in (2.1) can be replaced by a minimum. However, in 

the general case the function 

is discontinuous. Consider the simple example F = y - z2, 

G = ZIJ , X = Y = [-I. 11. Here f (z) has a discontinuity at point z = 0 and the 

first player has no optimal strategy. This means that &-optimal strategies z, 

should be found which satisfy the inequality f (z,) 2 v l  - e for given E > 0. With 

these assumptions f (z) is lower semicontinuous; in general i t  is multiex- 

tremal. 

In theory the problem ,may be solved using the penalty function method, 

which reduces it to an unconstrained optimization problem [1,6,7]. Consider 



the penalty function 

where d > 0. The reduction of problem (2.1) to a maximin problem with separ- 

able variables is based on the following theorem: 

Theorem 1 [6.7]. /f z, yields a solution of max min(F + cJ) at fized c , then f o r  

any sequence ck -, - the points zCk form an &-optimal sequence of strategies f o r  

the first player. 

A number of methods can be used to solve problems of the form 

rnax m i n { F ( ~ , ~ )  + cJ]. including stochastic programming methods [7.8] and 

non-smooth optimization methods [9-111. In addition to the 

nondifferentiability of the objective function there may be some difficulties 

connected with the multiple extrema of the problem, which make it necessary 

to develop appropriate optimization algorithms [12-141. 

The use of numerical methods to search for v l  and the E-optimal strategy 

of the first player is complicated by the fact that problem (2.1) is not neces- 

sarily stated correctly with respect to the functional, in that any small varia- 

tions in the second player's strategy G(z,y) (due to errors in computations, for 

example) can cause variations in the first player's guaranteed result. 

In the same way, for F = y , G = f (2) , X = Y = [0.1] the  optimal result of 

the first player in game G1 is zero. If the second player's criterion is 

G c =  G + ~(y-1). where e may take any small positive value, then the 

guaranteed result will be equal to 1, since 

for any z E X 

To obtain a numerically stable procedure for computing the best 

guaranteed results, it is necessary to regularize problem (2.1) using the 

method described in [15]. 

Came G2. We shall make use of the following values, sets and functions: 

L2 = max G(zP(y),y) = max min G(z ,y)  
Y EY y e Y  2 E X  



Here zP(y) is a penalizing strategy and za(y) is the absolutely optimal strategy 

of the first player. 

Theorem 2 [I]. Let v 2  = max(K2, Mz). men the strategy 

if y = y,. K2> M2 
i fy  E E ~ ,  Kz<Mz 

zP(y) otherwise 

is the &-optimal strategy of the first player in game G2. 

The case K2 > M, is particularly interesting: it corresponds to the situa- 

tion in which the objectives of both (the levels of the hierarchical sys- 

tem) are in some sense similar. 

The theorem formulated above shows that the problem of constructing the 

optimal strategy in game G2 is reduced to that of solving a nonlinear program- 

ming problem and a maximin problem with separable variables. 

h e  Gg. Let us define 

D3 = {(z,y)  I G(z,y) > L3 = min max G(z,y)l . 
t c X  ~ E Y  

K3 = sup ~ ( z , y )  S ~(z , ,y , )  + E .  B = {z E XI rnax G(z,y) = L2j 
( . , Y ) E D s  Y E Y  

B ( z )  = {y E YI G(z,y) = rnax G(z,z)j  
t € Y  

M3 = su min ~ ( z , y )  S min ~ ( z f ,  y )  + E 
~ E B Y E B ( ~ )  V E B ( Z J  

Theorem3 [1,4]. Let v 3  = max(K3,M3). men  the strategy 

is the &-optimal strategy of the first player in game G3. 



Here y", is the  strategy of the second player, which consists in choosing 

point y ,  E Y, and z: E B plays the role of a penalizing strategy. Thus the prob- 

lem of finding the optimal strategy in game G3 is reduced to that  of solving a 

mathematical programming problem and a maximin problem with linked vari- 

ables (value Mg and strategy z: E 8). 

4. A COhtBINF,D PENALTY AND Sl'OCHASLIC GRADIENT METHOD (CPSGM) 

In the previous sect-ion we showed that  a necessary step in the analysis of 

games '1,2,3 is the solution of the following minimax problem: Find 

z E XO and uo, where 

xo = lz E A I min F ( z , y )  = u0j 
YEY 

uo = max min ~ ( z ,  y  ) 
rEA Y E Y  

Let us consider certain stochastic algorithms for solving problem (4 .1) .  We 

may assume without loss of generality that  

and  also that  functions F ( z , y ) ,  q i ( z ) .  i = 1 ,  ..., m .  are continuous together with 

their derivatives with respect to  z on set  X ' x Y , X ' = O J X ) .  In addition, we 

assume that  Y is a compact set from E l ,  A # $, E~ > 0. 

I t  is clear that  

where j ~ , + ~ ( z )  = R - 11211. Now introduce 

where 



Here M represents the mathematical expectation, i is a random number 

whose values are taken from set 11 ...., m j with probabilities pl ,  ...,p, ; y is a ran- 

dom number distributed on Y according to measure p in such a way that any 

non-empty intersection of y with any open set has positive measure. 

I t  is shown in [I] that  problem (4.1) can be reduced to a sequence of prob- 

lems in which it is required to maximize function (4.2) with cn = (cy , c z )  T m 

(this is the penalty function method). 

The stochastic gradient method [a] can be used to search for the max- 

imum of function Lq a t  fixed c .  If the algorithm allows for penalty parameters 

c , c 2  to increase. then we obtain the following iterative procedure: 

where 

vector z0 E X  and value E .  0 < E < E ~ ,  are both chosen arbitrarily; (yn.in) are 

the values of the random numbers (y , i )  during the  n - th  independent test; 

r1 = ( z l , u l )  is the initial approximation; and t % j ,  tb,j, { c n j  are control 

sequences. 

Theorem4 [16]. Let functions pi(z) , i = 1, ..., m+1 satisfy the condition 

where 

~ + l  ( z )  = ti I pi(z) ( 01 

f o ~  any point z E X, and the control sequences satisfy the following conditions 



T h e n  f o r  any initid a p p r o z i m a t i n n  (T l,z l) ,  s e q u e n c e s  jrn j , lzn 1 o f  s o l u t i o n s  of  

a l g o r i t h m  (4.3) e x k t  s u c h  that, with p r o b a b i l i t y  o n e :  

( 1) A s u b s e q u e n c e  o f  t h e  n a t u r a l  s e r i e s  of  n u m b e r s  {? 1 e x i s t s  s u c h  t h a t  

( 2 )  A f o l l o w s  f r o m  lim ,ch = 0 that t h e  l i m i t  p o i n t s  of  s e q u e n c e  Irns] 
s +- 

b e l o n g  t o  t h e  s e t  o f  s t a t i n n a r y p o i n t s  [ l o ]  of  p r o b l e m  (4.1). 

Remarks 

1. Condition (4.4) is satisfied if y ( z )  . i = 1, ... m, are concave and Slater's con- 

dition is satisfied. 

2. The following are  examples of sequences which satisfy conditions (4.5): 

3. The parameter ,cn is introduced into (4.3) to  follow the value of ah/ ar and 

to  provide a means of finding the  elements of the sequence trn'] which 

converges to t he  se t  of stationary points. (If F ,  pi are  concave with 

respect to z. then sequence trnj will converge to the set of solutions of 

problem (4.1) and there  is no need to follow parameter ,cn.) 

4. Theorems s imilar .  to  Theorem 4 but with different restrictions on 

sequences (4.5) and rather  more rigorous restrictions on functions F ,  pi 

have been proved in [?,I?, 181. 

5. A STOcHASl3C "ERRORS' METHOD FOR FINDING A MAXIMIN 

Let us consider problem (4 .1 ,  assuming that  functions 

F. p i ( z ) ,  i = 1, ..., rn, are  concave with respect to z on convex compact set 

X c Ek for any y E Y (where Y E El is a compact set)  and that both functions 

F, pi(z)  and their partial derivatives with respect to z are  continuous on 

X x  Y , A  $ 4 .  

This problem can be reduced to t h e  following mathematical programming 

problem [I]: Find T = ( z  ,u) which solves 



max U 
2 ,u 

subject to 

m 
@ , ( r ) = - j l  m i n ( 0 .  ~ ( 2 . y )  - u ) l q p ( d y )  - C 1 min ( 0 .  p i ( z ) ) q > o  , 

Y  i = l  

where q r 1 , U is a line segment which includes 

[ rnin F ( z , y )  ; max F ( z , y ) ]  , 
(Z ,Y ) a x Y  ( z , u ) ~ X x Y  

and measure p  satisfies the conditions given on p. 8 in Section 4. 

Problem (5.1) is equivalent to the following problem: From the points 

r = (2.u) for which 

max tPq(r) = 0 , 
2 EX 

find the point with the largest value of u .  

Function Gq(r) can be treated as an "error" which characterizes the dis- 

tance of the point r from the feasible set of problem (5.1). This approach to 

solving problem (4.1) was suggested for the first time in [19] .  

Note that, as in (4.2),  we have Gq(r) = M p q ( r , y . i ) ,  where 

( p p ( r . y , i )  = - 1  min (0, F ( z . y )  -u)lq - ( l / p i ) I  min (0. p i ( z ) ) l q  , 

and random numbers y, i are as defined in Section 4.  

We can now formulate the following iterative algorithm: 

Tn+l = + %tn)  

on'' = ln [p" + bn ( p q ( r n  , yn , in)  - p n ) ]  

where n~ is the projection operator on R = X x V and vector tn is deflned by 

the formula 



Here 

I:(rn , y n  , in) is a conditional &,-subgradient of function (p, (-. y n  , in)  at  point 

rn  from set R ,  8, > 0 ; y n ,  in are the values of random numbers y and i dur- 

ing the n-th independent test; and ( T ' , ~ ' )  is the initial approximation. 

Parameter (pn in algorithm (5.3) follows the value of the error 

@ , ( T ~ )  , lim ( (pn - pq(rn) I = 0 P-a.s. At the n-th step, if the value of the error 
n +- 

is near zero ((pn 2 +) the value of u increases in accordance with (5.3), but if 

pn < -d, then the value of u changes in accordance with the stochastic quasi- 

gradient of the error Function. 

Theorem 5 [20]. Assume tha t  a cons tan t  k > 0 e z i s t s  s u c h  that  11 (11  < k , n = 1,  ... 
for a n y  y ~ ! ? = f ( ~ l , i ' ,  ..., y n , i  " . . . ) j ,  that s equences  j g , ] , l b n j  and 

t 4 , j ,  t L n j ,  ren{ e h t  m c h  tha t  

and tha t  one of the fol lowing condi t ions  is sat isf ied:  

%n f o r  a n y  initid approz ima t ion  (rl,  pl), the sequence  rn defined b y  

a lgor i thm (5.3) converges  t o  the  s e t  of solut ions of p ~ o b l e m  (4.1) w i t h  probabil-  

ity one .  

Remark The following are examples of sequences which satisfy the conditions 

of the theorem: 



6. E-SUBGRADIENT DESCENT ALGOlUTHM MIR APPROXIMATION OF THE PARETO 

SET 

Consider the following parametric programming problem: Find 

z (a) E xO(a), where 

Xo(a) = tz E XI I ( z , a )  = max (z' ,a)j  
Z'EX 

(6.1) 

for all a E A .  

Function ~ ( z , a )  is assumed to be continuous on convex compact set  

X E El, for any a E A,  where A E E' is a bounded set. We say that point z* is a 

solution of problem (6.1) a t  a = a+ with accuracy (&A) if p2(z*. ~ ~ ( a * ) )  < A, 

where p is a metric and 

Assume that values do , A. , a. > 0 are given. Let us construct an algorithm 

for finding (do. Ao). the approximate solutions of problem (6.1) at all d-nets 

Ad = f d  l , . . . .dNj  on A such that d S d o  and 

Here IIrzlI = m v  (4)  . a E ES. 
t 

We shall assume that I ( z , a )  is concave with respect to z on X for any 

a E A  , d i a m X s D a n d  

where L = const > 0. Let the solution of problem (6.1) be known with accuracy 

(bo,  A,,) at values of parameter a = al from d-net A d .  

We shall determine the solution of problem (6.1) at the nodes of net Ad 

using the formula 

where nx is the projection operator on X; (F is the conditional e-subgradient of 

concave Function f ( -  , a n )  at point zn on set X ,  E > 0; and a is a step-size mul- 

tiplier. 



Theorem 6 [20]. Lf p a r a m e t e r s  a .  d ,  E of  a l g o r i i h m  (6.2)-(6.3) s a t i s f y  the  fol -  

l o w i n g  c o n d i t i o n s :  

w h e r e  K is a c o n s t a n t ,  s o  that 11 (211 < K , n = 1 ..... N in (6.3), and 

2 1 p (I , Xs, (a1)) <- Ao. t h e n  all  s u b s e q u e n t  in . n = 2. ... . w i l l  s a t i s f y  c o n d i t i o n  

p2fzn 9 X6.(an )) < &. 

Thus. using algorithm (6.2)-(6.3) we can obtain the solution of problem 

(8.1) with precision ( d o ,  4) on d-net Ad, 0 < d 4 d o .  For any fixed 6 0 ,  A. i t  is 

always possible to find values of a , a and E which are sufficiently small that ine- 

qualities (6.4) are satisfied. 

We shall now show how algorithm (6.2)-(6.3) may be applied to vector 

optimization problems. 

Let vector criterion 

be defined and positive on X c Ek, and 

Let n(w)  be the set  of efficient vectors from W (Pareto-optimal vectors), where 

We shall use the following notation: 

where 



m 
P ( X )  = min \wi(z)  + 7 C wi(z) 

I s i s m  i =l 

It is shown in [21] tha t  for V e  > 0 37,d0, the  set  

where w(X) is an arbitrary point from w7(h) and krn is an arbitrary d-net on 

Am , 0 < d 5 do, is an &-net on II(w). Thus to And an &-net on II(w) it is 

sumcient to solve the  following parametric programming problem: Find 

for a l l X ~ q .  0 < d 5 do. 

If functions wi(z)  , i = 1, ..., m are concave and continuous on convex com- 

pact set X, then an approximate solution of problem (6.5) can be found.using 

algorithm (6.3). 

7. NUMERICAL, RESULTS 

The proposed algorithms were implemented and then tested on some sim- 

ple problems in order to  investigate their practical efficiency. 

7.1. CPSGM 

Algorithm (4.3) (with certain modifications) has been used to solve (4.1) 

with functions 

F l ( z ,y )  = cos (0.25(z1 + z2 + z3) + y l  - 0.5) + 

+ cos (0.25(z1 + 2z2 + z3) + y2  - 0.5) + cos (0.5(z1 + z2) + Y J  - 0.5) 

deflned on the product of unit  cubes. The following control sequences were 

used: [ ~ , , ] = T L - ~ ' ~ ,  f a n c n j = n - 1 1 / 2 0 , q  = I ,  E = O  for F1, and q = 2 ,  

- 71+'85 , b, = -0.72 
'=n - - ,0.2 , Cn - for F2. 
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The results are presented in Table 1. 

Table 1. The results obtained with the CPSGM algorithm. 

It can be observed that  a good approximation to solution z and the first 

approximation to u are obtained reasonably quickly. However, further 

refinement of the solution takes place very slowly. 

When the gradient of the efficiency function is computed using the  

difference scheme, the rate of convergence of the algorithm is the same as 

when the precise gradient is used. 

7.2. Errors Method 

The errors method (with parameters en = 0, a, = n4.', b,, = n-0.7g 

4 = 0.01n4.') was used to  find the maximin of functions 

Func- 
tion 

F, 

F2 

i +I 
~ ( z , Y )  = C cos (z, + yi - 0.5) ; i = 1.2 

) = I  

Initial 
approximation 

zO=(O.OOO, 
O.OOO,~.OO) 
uO= 1 .OOO 

z0=(0.6,0.6, 
0.6.0.6) 
u0=2 

Number of 
iterations 

400 

800 

2400 

3200 

500 

1500 

9000 

17000 

defined on unit cubes. 

The results of the computations are presented in Table 2. 

Precise 
solution 

z *=(0.000, 
O.000,O.OOO) 
ue=2.634 

z *=(0.5000, 
0.5000, 
0.5000, 
O.$OOO) 
u =1 

Approximate solution 
With precise 

gradient 

z=(0.009,0.017, 
0 .009) ;~  =2.634 
z=(0.012,0.018, 
0.0 12);u =2.626 
z=(0.000,0.000, 
0.000);~ =2.6 19 
z=(0.000,0.000, 
0.000);~ =2:634 

With approx. 
gradient 

z=(0.000,0.000 
0 .018) ;~  =2.606 
z=(0.000.0.000, 
0.097);~ = 1.549 
z=(0.000,0.000, 
0.016);~ =2.6 13 
z=(O.000.0.000, 
0.000);~ =2.624 

z =(0.4704.0.4668, 
u = 1.069 
z=(0.5118,0.4974,0.5014.0.5003); 
~ = 1 . 0 5 9  
z =(0.5005,0.4988,0.5006,0.4975); 
u=1.041 
z =(0.5002,0.50 12,0.4989,0.5030); 
u = 1.036 
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Table 2. The results obtained using the errors method. 

Func- 
tion 

F 1 

F2 

No. of 
itera- 
ti ons 

200 

600 

5400 

10600 

200 

600 

42000 

84000 

Initial 
approx- 
imation 

zO=(O.OOO. 
0.000); 
uO=O.OOO 

zO=(O.OOO, 
0.000,1.000); 
u0 = 0.000 

Precise 
solution 

z *=(o.ooo. 
0.000); 
u *= 1.756 

z *=(o.ooo. 
0.000,0.000); 
u *=2.634 

Approximate 
solution 

z =(0.0277,0.0289); 
u = 1.809 
z =(0.000,0.0028); 
u = 1.900 
z =(0.0133,0.0089); 
u = 1.860 
z =(0.0037,0.0066); 
u=1.815 

z =(0.0458,0.0000,0.0133); 
u =2.721 

~=(0.0196,0.0066.0.0172); 
u =2.831 
z =(0.0046.0.0076,0.0119); 
u =2.791 
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