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1. Introduction
This paper presents a method for solving the following
problen |

minimize <c,y>» + f£(x) over all (y,x)e RI"1 = RI\l

satisfying Ay + Bx £ b, (1.1)

where ceRM, A is an P+ M-matrix, B is an P » Ne-matrix, beRP,an:'.

RN — R1 is a (possibly nondifferentiable) convex fuaction.

H

VWle ouppose that the set of feasible points
S atqy,x)eR™Y : Ay + Bx = b}

is nonempty and bounded, and that at each (y,x) € S we can

compute f(x) and a certain subgradient gf(x)e 9f(x), i.es an

' arbitréry element of the subdifferential 8 f(x) of f at x on

which we cannot impose any further restrictions.

Problems of the form (1.1) are often encountered in practice,
especially as de@grminisfic equlvalents of two-stage stochestic
programming problems [K1],[Nw1];[w1]. In many applications
the numbef ) X} of."lineaQ" variables yi is much larger than the
number N of "nonlinear" variables x;» and the matrices A and B
are sparse (have relatively few nonzero entries). In such cases
problem (1.1) can bé solved by the existing algorithmé for
large-scale optimization (e.ge MINOS [51] ) if £ is differentiatle.
I? the nondifferentiable large-scale case, only a few algorithos
have been proposed [NW1], and they frequently assume fhe
knowledge of the full Bubdifferential_bf(xs at ecach X.

The metﬁod presented in this paper modifies one given in
[K3] to make use of the special structure of problem (1.1) . It

ioc a fcasible point method of deécnnt in the scnce of generatin:

successive pointo in S with nonincreasing objective valueu.
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To deal with nondifferentiabilit& of £, at each iteraiion a
piccewise lincar (polyhedral) epproximation fo f is constructed
from at most N+2 subgradients of f calculated previously at
certain trial pointse A cearch direction is found by solvirng

a quad;atic programming subproblem obtained by replacing f in
(1.13 by its.polybedral approximation augmented with a simplg
quadratic terme. Then a line search finds the. next approximation
to a solution and the next trial point. The two=point line

search is employed tb detect discontinuities in the gradient of f.

.VWe show that the method 1avglobally convergent under no
addifional assumptions. We may add that the method will find
a solution in a finite nqm?er of iterations if f is polyhearal
and certain technical conditions are satisfied (éeg (k2] ). From
lack of space, we shall pursue this subject elsewhere.

-The method is implémentable in the sense 9of requiring bounded
storage and a finité number of simple operations per iteration.
For problems witﬁ large sparse matrices A and B and relatively
few nonlinear variables x;, the method can use MINOS [is1] for
' solviné its quadratic programming subproblems. In fact, an
efficient implementation of fbe method would require modifying
KINOCS to exploit the fact that copéecutive sQbproblems rétain
the original constraints of (1.1), differ only in a few za2uxiliary
linear cqpstrainfs on x, have simple terms gquadratic in x'as
the only nonlinearities in theip objectives,vetc. It would be
interesting to perform the necessary numerical experimentétion,
‘but we ‘have not had the means to do so.

Other. descent methods for solving Q?oblem (1.1) can be
found in [DV1], (X4], [LSB1] ,[M1] ,[M2], [Px#1] and [SKH1]. Noane of

their search direction finding subproblems can-be solved
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efficiently by the available software when problem (1.1) is largz.
Therefore, we hope that our method could compete with the
existing algorithms.

The method is derived and stated in Section 2. Its global
converéence is established in Section 3, wheré we also discuss
the case of an unbounded feasible set S. Finally, we have a
conclusion sectione.

We shall use the following notation and terminology. R° and

RN denote the ll- and N-dimensional Euclidean spaces with the

usual inner_proddcts‘(3~> and the associated norms ||, respective-
ly. Ve use X5
.Superscripts are used to denote different vectors, e.g. x

to denote the i-th component of the vector x.

1 and 12.

All vectors are column vectors. However, for convenience a

M+N

column vector in R is sometimes denoted by (y,x) even though

y and x are column vectors in Rﬁ and RN, respectively. For any

x:cRN and ez 0,

aef(x) ={geR': £(X) 2 f(x) +<g,%-x> ¢ for all x eR'}

denotes the ¢ -subdifferential of £ at x« We denote by ?9?3f(x)
the set bof(x), i.e. the ordinary subdifferentiale. Note that
f is continuous and the mapping (x,e) h—baef(x) is ;ocallj
bounded, because f is real-valued and convex on RN (see, e.g.

(ovi]).

2« The lethod

1 . (y1,x1) € S, the algorithm

k k _k, .
= (y ,X") in o,

Given a starting point 2
described below generates sequences of points 2z
search directions d¥ = (a¥,aX) in R« R and stepsizes t¥ 1in
{0,1}, related by z**1 = z¥ 4+ tXa¥  for k=1, 2,... . The

sequence {zX} is intended to converge to a solution of problec
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(1e1)e The algorithm is a method of descent'in the sense thet
P(zk+1) < I“(z.k) if X1 4 zk, wvhere

F(z) = Cc3y> + f(J;) for all z=(x,y) € S

is the objective function of problem (1.1). Msp a sequerice of

trial points 7K o (ik,ik)-e S is generated by the formula

3R L K L gK for kat, 2,e.., Bl =2 .

The algorithm calculates subgradients g'j = éf(ij) € f(ij) o<
f at the trial points 2J = (ij,ij). With each’ such subgradient
we agsociate the following l'ineariz_atioh of £ at X9
£5(x) . £(x9) +<gd, x-x9> for a'llv xeR,
which can be expressed at iteration k2 J. as

f.(x) = f% + (gj, x-xk>

with f = f (x ) for all xeRN and j=1,eee,k. At the k=th
1teratlon, the algorithm uses the following polyhedral approxi-

mation to f
~k .. <k ' N
f(x)ama.xlfj(x) : jeJ"} for all x€R,

where .the set JkC{1,;..,k} has at most N+2 elements (IJkl's N+2).

By convexity, f(x) z'fj(x) for all xe RN, 80 ’f‘k is a lower
polyhecdral approximation to f:

£((x) 2 f (x) for all xeRN,

£exd) = £5¢x%) for al11 je JK,
and the function

A A - r
F(z) = <c,y> + £5(x) for all z=(y,x)e€ RN

is a lower polyhedral approximation to F. ‘

Since we want to findh 8 feasible direction of descent for F

at zk = (yk,xk), we shall find'dk = (d;,d;) to
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minimize $€(z¥+d) + % ldx|2 over all d=(d,,d)

satisfying z5+d e S, (2.1)

where the penalty term ldx|2/2 serves to keep M K dﬁ in
Ak

the repgion where %k is a close approximation to f, so that F ()

%k+1 k

ig cloce to F(-) at = 2 + dk. Clearly, dK may be founc

k ;k k M+N+1

from the solution (dy,d,,u") € to the following k-th

quadratic programming subproblem

minimize <c,dy) +.u + % Idx|2 over all (dy’dx’u) € Rlnti+1
satisfying f§ +¢g’,d,> s u for jedk, (2.2)
k k
A(y" + dy) + B(x” + d ) =D,
lioreover,
uk = ;‘k(xk + dﬁ) .
80 we may interpret
v = PEK 4 a¥y - R
= <o,dy> + uf - 2(xS) (2.3)

kK 31 the direction 4a~.

as an epproximate derivative of P at 2
It will be convenient to describe the P linear constraints
of problem (1.1) in terms of P affine functions h,: e B — =
such that
S ={ (y,x)e€ RN hi(y,x) €0 forie 11,
where I ={1,...,P}. Then subproblem (2.2) takes on the form
Ll

2 5 ;
minimize <c,dy> +u + %Idxl ~ over-all (ay,dx,u) € R

satisfying f? + (gj, dx$ s u for je Jk,, (2.8)
k .
hi + (vyhi’ dy) +(Vxhi,dx)s O foriel
with hg = hi(yk,xk) for i€ I, since

K K ) K _k .
hy (Y +dy,x +d, ) = by (y™,x7) +(vyhi’dy> +(vxhi’°x>

for all (dy,dy), because each hi is affine.



Having wmotivated the search direction finding subprobleus, w:
shall now otate tne method in detail, coumenting on its rules iz

what followse.

Al[;orithf.l 2ele

.Step O (Initialization)}. Select a starting point z1 = (y1,x1) € 3,

a final accuracy tolerance €_2 O and ea line search paraueter

1

e (0,1). Set J1 ={1}, E1=(§1,i1) =z, g1=3f(§1) and

f} = £(X'). Set the counters k=1, 1=0 and k(0) = 1.

k L)

Step 1 (Dirsction finding). Find the solution (dy, di, u) to
subproblem (2.4), and Lagrange multipliers A K 3 eJky and

J,
_pf , 1€I, of (2.4) such that the set

J* =ijeJk : 1?;‘ o}
catisfies |3k|5.N+1 e Set dk = (dg, dﬁ) and compute vk by £2.3).

Step 2 (Stopping criterion). If vk:z - &, terminate; otherwise,

continuee.

-~

Step 3 (Line search). Set.?.k+1 = (§k+1,ik+1) = zk + dk. If

F(z5*y < P2*) + ovk, (2.5)
set ti = 1 (serious step), eet k(l+1) = k+1 and increase 1 by 1;
otherwise, i.e. if (2.5) does not hold, set t% = 0 (null sten).
set 21 o (v, 2 K 4 ike
Step 4 (Lirearization updatinz). Set Jk+1 = Jkt) t k+1} , Set
k+1 ~K+

= Sf(x 1) ’

fﬁ:: - f(ik+1) +ﬂ<gk+1’ xkf1 - §x+1>’_ (2.5)

1 3 A
ff].‘*‘ = 5 +<gd, x5 - x> for jedk. (2.7)

Increase k by 1 and go to Step 1.

A few remarks on the algorithm are in order.
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For problcuis of interest to as, subproblews (2.4) will

Crrme w o/

have relatively few nonlinear varicvles (N<«l) and large,but spozoz,
constraint matrices. Such subproblems can be solved by LINCS [i.u1]

in a finite nucber of iterations; moreover, uXINOS will automati-

1

cally produce at most N+1 nonzero Lagrange multipliers Ag

for the first constraints of (2.4), since these constraints
involve only NK+1 variables.
In Step 2 we always have

F(z) 2 F(zX) + v SIVEIV2 | x-x®| for all z=(y,X)€ S,
(2.2)

and hence
F(zk)s min { F(z) : ze S} -vE 4
+ IVEI/2 pax{1x-xXl: 2 = (y,x) € S, F(z)s Pz},
This will be proved in the next section. The above estimztes

justify the stopping criterion of +ae method.

k ~it4]

Step 3 is always entered with v- < O. The trial point z

+1

is accepted as the next iterete z* only if this decreescs

significantly the objective value. Otherwise the algorithn

k+1 zk (a null step), but the new subgradient

k+1

stays at 2
information collected_at z will aid in finding a better nexz
seerch direction, since k+1e'Jk+1. Of course, {zk}c:S, teceuse

EJ(+1 = Zk"l- dk

€ S for all k.
\le may add that if there are no linear variables in
problem (1.1) (M=6), then Ajgorithm 2.1 becomes similar

to the method of [K3].

3+ Cnnvergence

In this scction we show that the algorithm generates a wini-
mizing sequence {zklc S, i.e. F(zk) ! min{ P(z) : z € S}; woreover,

there exists z = (5,?) in the set of soiutions of problem (1.1)




Z = Arg nin { F(z) : z € S}

such that xk —> Xx and yk

—K—",y- for some infinite set Ke{1,2,.0.}.
e assume, of course, that the final accuracy tolerance £ is 3ect
to zero. Our analysis will dwelve on the results in [X2],(X3].

Vle start by analyzing the following dual to the k-th subprovle=

(2.4)
minimize %I Z 'AB‘J + pl vx hllz + z x-) d-‘g -zFih‘i{’
2 4 je J¥ 1€l je Ik iel
subject to A, 2 O for jeJk, > A =1, (3.1)
J . k 9
jed
pizo for ie I,
+ 2 he =
© :'.EI»,1 Vy {=
where
43.“= £ex¥) - f;.‘ for jeJ¥. (3.2)

lemna 3.1. (i) The Lagrange multipliers ( Ak,pk) of (2+4) solve

(3+1) and yield the unique part (dﬁ,uk) of the solution (d;{,di,uz)
of (2.4) by
k .
a = -p, (3.3)
~ 1 k - '
uf = fg +<pg, 43>, (3.4)
where
K k Z K )
p, = P + »n; V. h, 3¢5
x. f jer’i x i’ ( )
ofs B+ T Ak, 1 (3.6)
je J% |

(ii) The optimal value wk of (3;1) satiefies

k 1 k2 ,~k
W= 3 Ipxl +d, (3.7)
and onc hau .
k _ _ k|2 ~k
v - {Ipxl + d }, (3.5)



where
¥ =38 vay, (3.9
;1; = £(x) - %g , (3.10)
d}ki = '1§I “li( by . (3.11)

Proof. (i) Observe that the feasible set of subproblem (2.1)

is nonempty and bounded, since so is S by assumption, and that
its objective is conve; in d and strohgly coavex in dx' Hence tze
first assertion can be deduced from convex duality theory as

in [wel, [k2], [K3].

(ii) (3.7) <follows immediately from the preceding formulze ani
the fact that AX is feasible for (3.1). Next, since puF is

feasible in (3.1) ,
k
. h. =
c+i§11.1l V,hy =0,
while the Kuhn-Tucker conditions for (2.4) yield

k[ ok k ky 7.
= pflnf +<9 by, &> +< ¥, by, 6> ]= 0,

i€ I
S0
ke _ k s K k )
<c,dy> = < iEI}li V_hy, d >+ iglpini . (3.12)
Therefore, by (2+3) and (3¢3) - (3.6),
vE = (c,d§> + uf - f(xk) =
_ k kK .k kK k Yk Kk, _
_<i§I ALV b o+ pg, d>+ iZ;Ipihi +f) - I(x) =

k k kK ~j
=<px’- px> -ih -dg

and (3.8) follows, completing the proof-

‘We may now verify rclation (2.8) .

lerrma 3.2 If Algorithm 2.1 did not stop before the k-ta ite-

ration, then



F(z) 2 F(zk) +<p§, ::-xk>- Zk for all z=(y,x)e S.
' (3.12)

koreover, o« and rclation (2.8)

£
D <

20, «af 20,a¥20, vFs o0
holds. |

Proof. 4s in [K2) and [K3], (3.6) , (3.10) and the fact that
K

'Aj, jeJd , form a convex combination yield

I(x)2 f(x ) +(p¥, l-7k> d}; for all XGRN. (3.1¢)

Let (y,x) be any point in S. Thea ‘
k k k

02 hi(y »X) = hy +<‘Vyhi,y'-y > +< Vxhi,x-x >

for each i eI, and, since pk is feasible in (3.1), we obtain

ozZp -<c,y-y>+<2 »kvh

I 1 i ,x-x >o (3.15)
ie ie

Adding this inequality to (3.14) and rearranging with the help
of (3¢5), (3.9) and (3.11), we get

<o,y> + £(x) 2 <o, 3% 4 £G5) 4 <pE, x> - 35, (3016

which proves (3. 13). Setting (y,x) = (y » X ) in (3.14)=(3.16) we
obtain &; 2.0, d}t: 20 and otkz O. Then (3.8) yields vks o,

~K

|pk|<|vk|1/2 and o s

-vk, 80 (3.13) and the Cauchy-Schwcrz
inequality imply (2.8), as desired.

Ve may now justify the stopping criterion.

Looma 3.3. If Algorithm 2.1 terminates at the k~th iteration, the
solves problem (1.17).

Proof.

k

Since the algorithm stops only if O = vk
vE = 0, 2X is optimal by (2.8) .

-,-_ es= C’ i.e.



From now on wc suppose that the algorithm genecrated en

infinite secquence {25},
iWe shall need the following consequence of relation (2.8)

and the continuity of F,

Lemma 3.4. Suppose'that there exist an infinite sci Ke{1,2,000}

and a point z € S such that zk _li, z and vk .l&, O. Then z € Z.

Note that the rules of the algorithm imply
2K = K1) if k(1) s k < k(1+1) , (3.17)

where we let k(l+1) = +eo if the number 1 of serious steps

stays bounded, i.es if zk = zk(l) for some fixed 1 and all

k2 k(l)e Our first convergence result deals with the case of

infinitely many serious steps.
Lenna 3.5. Suppose that there exist an infinite set Lc{1,2,¢e4}

and a point z € S such that zk(l)le A Z « Then 2z £, Z

and v £+ 0 for K ={k(1+1)-1: 1€ L}.

Broof: This follows from (2.5) as in [K3].

Our next result deals with the case of a finite number of

serious svepse.

k

Lemma 3.6. Suppose that 2= = zk(l) for some fixed 1 and all
k

k2k(1)s Then wE 4 O and v¥ — O.

Proof. Suppose zk = zk(l) =2 = (§y,X) for all kz k(1). We shall

k k+1

show that w vanishes by démonstrating that w is less than e

fraction of wX after each null stepe
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(i) Choose k2 k(1), so that ti=0, KV o K gng 3R KR,
By the line search rules , F(§k+1}-F(zk+1)> mvk; hence
<c,dk> - k+1 + <gk+1, dk> = <c,'k> - [f(x ) f(xK+1
y “k+1 X °y
-< gk_'”, ;f‘” ~k+])] + <g.k+1 dk>

- F(zk+1) + (zk+1) > mv®

from (3.2) and (2+6) Expressing <c,d§> in the above inequelit:

via (3.12) and letting

Ak+1 k+1 ' k 0
=g + z por V h. (30 le ,

© - jer *+ X i’

Akl _ ke k _ k#l X, Kk - L, ..

ol =dk+1 +d\n —dk+1 Z »ihi’ (3‘141

iel
we obtain
- 5 <Ek+1, di) > mvP for all k 2 k(1) . (3.205

(ii) For each v«[([0,1] and any fixed k > k(l), define the muli:i-
pliers
AEvd =y b a(v) = (-v)AST! for je 3T,

k=1 for iel,

(v ) = Ry
and check that they are feasible in (3.1), since {a%

foru a convex combination from Lemma 3.1, while g 2 351 O (g

ioreover,

. ke Al
Z ‘AJ(V) gJ + 2 pi(V) Vx h- = (1-y) px 1+V8 .
je€ Jk - iel

Z K aa(\’)d? i Z }11(9) h:lf = (1-9) ;k-‘l'l");ko
ied iel

~ This follows from (3.6), (3.5), (3.18), (3.2) , (3.19) , (3.9)-

~(3.11), (2.7) and the fact that xk = xh 1. Tlext, define the

function
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Ky = 21wy o+ vEKIZ ¢ (- 2FT S,
ve[0,1]. (3.21)

Since v.fk is the optimal value of (3.1), the preceding relations

yield
k . k ~
w. s min { ¢ (~v) : v e[0,1]k (3.22)
In particular, by (3.7),
w2 Q¥o) = 1 1pETTIZ 42X 2 R (3.23)

(iii) It follows from (3.23) that |pk|°/2 ¥k o yR¥Q) £op
¥ and «) are uniformly

is the sum of nonnegative :tg nd d.i. Then

~each k2 k(1) « Hence |p§§| ’ &k, &
bounded, since :ck
(3.14) and the local boundedness of € =subdifferentials imply

boundedness of {pli(-} y SO also

x _ k_ k
.z By vxhi = Py = Py
iel | |
must be uniformly boundeds Since g“{ € bf(ik) with x" k=1 \;;'1
x - p:}z-‘l for k» k(1), {gk} is bounded from the local

boundedness of &f. Summing up, we deduce the existence of a
constant C satisfying

max { Ip5~11 L1E51, 2% = ¢ for all x z k(D). (322)
(iv) It is shown in the proof of Theorem 3.5 in [K2] that (3.3),
(3:7), (3+8) , (3.20)=(3.22) and the fact tnat m e (O, ‘l) yiela

0 ¢ vt <« Wwre(1-m)2(w )2/802 for each k2 k(1)
we conclude that \.v + O. Then v —» 0 from (3 Ty, (3+3) &

the fact that <% > 0 for all k. This completés the proof.
Combining Lemmas 2¢3, 3.5 and 3.6 with (3.17), we deduce

Theorem 3.7. Every accumulation point of an infinite seguence

{-zk} gencrated by Algorithm 2.1 solves problem (1e1).
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Corsliary 3.8. If Algorithm 2.1 copstructs an infinite secuenc:

{zk}. then a subsequence of {zki converges to a solution of pro-
blen (1.1), and {zk} minimizes F on S, i.c. {zk} €S anc

F(zk)lmin {FP(z) : zeS}.

1}
i

Proof. Since {zk} stays in the c¢losed and bounded sct S, it &

i

a feasible accumulation point, wnich is optimal by Theorem 3.7.
Therefore the desired conclusion follows from the monotonicity

of {F(zk)} and the continuity of F.

The above result may be strengthened as follov:é.

Corsllary 3.9. There exist z = (¥,X) € ¥ and an infinite set

k

Kef{1,2,ees} such that xk—-v x and y -ﬁ-);}'.

The proof of the above corollary will follow icnediately
frsm our subsequent resultse.

Up till now we have assumed that S is bounded, although
this was only neceesary for the proof of Coroliary 3.3
Suppose now that £ is unbounded. Then, of course, we can no
loanger guarantee that the k-th subproblem (2.1) has & solutiz:n.
Lioviever, by convex quadratic.ﬁrogramming theory (cee,c.g.(201]},

k

. . . ~31
we know that either d° exizts or there ic.a sequence {¢}

sucii that 2:k + d € S for all i and

<c‘,a§> + max{fsf: +<gj, :ijlc> T je JE} + % I‘g.}izl2 — -»
as i —>es . This yields <c,30> —-=  with bounded {d}}
(otherwise the quadratic term would doninate), so F(xk + :ii) - -
as i =—» 00 , implying that F is unbounded from beAlow on 8. Suca
a situation could be detccted by the quadratic progremmirng routice,

e<g. LINCS.



Let us, therefore, suppnse thzl the algorithw generates e
(pocsibly unbounded) infinite sequcunce 125} even if S is unbouncod.
we still have the following result.

Lenina 30106 (1) Suppose F(zk) 2 F(Z) for some zeS and all xe
k

Then thnere exists (3,X) € S such that x* — 2.

(ii) One has F(zX) ¢ inf { F(z) : z € S}.

Proof. (i) If & = (§,%)€S and F(Z)sF(zX), then (3.13) yielic
<P5v %-x°>3 2. Hence one may use (2.5), (3.3) and (3.8) as in
the proofs of Lemma 3.6 and Theorem 3.7 in [X2] to deduce tact
k .

{x"} converges.

(ii) Suppose, for contradiction purposes, that F(z‘): F(zZ) +¢
for goue fixed z = (¥,X) € S, € » 0O and all k. By tne first

ky

is bounded. Lioreover, one may reason as ia the

proof of Lemma 39 in [K2] to show that a subscquence of {vEY

assertion ,{x

tends {o zero. Hence, by (2.8), we have F(zk) < P(Z) + ¢ for

some large k, a contradiction. Therefore, {zki minimizes F on 3.

We conclude from Lemma 3.10 that Corollary 3.9 holds if S
is bounded. Also one can use the procf of'Lemma 3410 to show tanat
if problem (1.1) has a colution (ce.ge. the set {z€S : F(z)s.F(z1)}
is  bounded) and the final eccurecy tolcrance € _ is positive,
tnen the algorithm will terminate in a finite number of iteratior

after finding an approximate solution to problem (1.1).

4. Corclucions

ve have presented an implementable end globally ccocanvergeat
method of descent for solving large-scale linearly constrained
convex nonsmooth minimization problems with relatively few

nonlincar variables, such as those arising in stochastic program-



ming [NW1)e The method seemc to be wiique among the existing
al;orithms in thal its dircction finding subproblems can be.
Solved by the existing software for large-scale smoota optimi-
zation [Lis1]. Therefore, we hope that the method should prove
uceful in calculations.

We may add that thc method can be extcndcd to the case
when both the nonlinear part of the objective and its subgradicnic
can be evaluated only approximately. Also more efficient line
searches (see [k2]) can be employed. These extensions, as well
as finite termination in the piecewise linear case, will be

discussed elsewhere.
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