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Figure 1. Pareto-optimality

One popular approach to selecting among the Pareto-optimal solutions is

to proceed by "worst-case analysis". For a given x, one calculates the

worst that could happen -- in terms of all the objectives - and then

choose a solution that minimizes the value of the worst-case loss;

scenario analysis also relies on a similar approach. This should single

out some point that is optimal in a pessimistic minimax sense. In the

case of the example (1.3), it yields x· =rJ which suggests a production

level sufficiently high to meet every foreseeable demand. This may turn

out to be a quite expensive solution in the long run!

2. ~CHASTICOPTIMIZATION: ANTICIPATIVE :MODELS

The formulation of problem (1.2) as a stochastic optimization prob

lem presuppose that in addition to the knowledge of O. one can rank the

future alternative environments r..> according to their comparative fre-
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quency of occurrence. In other words, it corresponds to the case when

weights -- an a priori probability measure, objective or subjective -- can

be assigned to all possible '" E n. and this is done in a way that is con

sistent with the calculus rules for probabilities. Every possible environ

ment '" becomes an element of a probability space. and the meaning to

assign to feasibility and optimality in (1.2) can be arrived at by reason

ings or statements of a probabilistic nature. Let us consider the here

and-now situation. when a solution must be chosen that does not depend

on future observations of the environment. In terms of problem (1.2) it

may be some x E X that satisfies the constraints

i=l• ... ,m.,gi(X,,,,) ~ 0,

with a certain level of reliability:

prob. ~",lgi(X,,,,) ~ O. i=l.··· .m.) ~ ex

(1.2)

(2.1)

where ex E (0.1). not excluding the possibility ex = 1, or in the average:

i=l ....m.. (2.2)

There are many other possible probabilistic definitions of feasibility

involving not only the mean but also the variance of the random variable

gi (x,-).

such as

(2.3)

for fJ some positive constant, or even higher moments or other nonlinear

functions of the gi(x,-) may be involved.. The same possibilities are avail-
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able in definiting optimality. Optimality could be expressed in terms of

the (feasible) x that minimizes

(2.4)

for a prescribed level aO' or the expected value of future cost

(2.5)

and so on.

Despite the wide variety of concrete formulations of stochastic

optimization problems, generated by problems of the type (1.2) all of

them may finally be reduced to the following rather general version

given below, and for conceptual and theoretical purposes it is useful to

study stochastic optimization problems in those general terms: Given a

probability space (O,A,P), that gives us a description of the possible

environments 0 with associated probability measure P,- a stochastic pro-

grammtng problem is:

find x E: X c Rn such that

Fj(x) = EUi(x,c.>H = J Ii (x.c.» P(dCJ) ~ 0, for i=l, ... ,m,

and z = Fo(x) = EUo(x,c.>H = J lo(x,c.» P(dc.» is minimized.

where X is a (usually closed) fixed subset of en, and the functions

(2.6)

i=l,··· ,m,

and

10: en X 0 -. R:= R U ~-ao, +aoJ,

are such that, at least for every x in X, the expectations that appear in

(2.6) are well-defined.
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For example, the constraints (2.1) that are called probabilistic or

chance constrcrints. will be of the above type if we set:

r
lex

- 1 if 9dx,r.» ~ 0 for l=1 •...•m.
fi(x.r.» = ex otherwise (2.7)

The variance, which appears in (2.3) and other moments. are also

mathematical expectations of some nonlinear functions of the 9i (x ,.).

How one actually passes from (1.2) to (2.6) depends very much on

the concrete situation at hand. For example, the criterion (2.4) and the

constraints (2.1) are obtained if one classifies the possible outcomes

as r.> varies on O. into "bad" and "good" (or acceptable and nonaccept-

able). To minimize (2.4) is equivalent to minimizing the probability of a

"bad" event. The choice of the level ex as it appears in (2.1). is a problem

in itself. unless such a constraint is introduced to satisfy contractually

specified reliability levels. The natural tendency is to choose the relia-

bility level ex as high as possible. but this may result in a rapid increase

in the overall cost. Figure 2 illustrates a typical situation where increas-

ing the reliability level beyond a certain level a may result in enormous

additional costs.

To analyze how high one should go in the setting of reliability levels. one

should. ideally. introduce the loss that would be incurred if the con-

straints were violated, to be balanced against the value of the objective

fu.nction. Suppose the objective function is of type (2.5). and in the sim-

pIe case when violating the constraint 9i (x ,r.» ~ O. it generates a cost
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Figure 2. Reliability versus cost.

proportional to the amount by which we violate the constraint. we are

led to the objective function:

(2.8)

for the stochastic optimization problem (2.6). For the production (inven-

tory) model with cost function given by (1.3). it would be natural to

minimize the expected loss function

which we can also write as
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FO(%) = E [max[a(%-c.», P(c.>-%)]j. (2.9)

A more general class of problems of this latter type comes with the

objective function:

(2.10)

where Y c R P • Such a problem can be viewed as a model for decision

making under uncertainty, where the % are the decision variables them

selves, the c.> variables correspond to the states of nature with given pro

bability measure P, and the y variables are there to take into account

the worst case.

3. ABOUT SOLUTION PROCEDURES

In the design of solution procedures for stochastic optimization

problems of type (2.6), one must come to grips with two major difficulties

that are usually brushed aside in the design of solution procedures for

the more conventional nonlinear optimization problems (1.1): in gen

eral, the exact evaluation of the functions Fi, i=l, ... ,m, (or of their

gradients, etc.) is out of question, and moreover, these functions are

quite often non ditIeren tiable. In principle, any nonlinear programming

technique developed for solving problems of type (1.1) could used for

solving stochastic optimization problems. Problems of type (2.6) are

after all just special case of (1.1), and this does also work well in practice

if it is possible to obtain explicit expressions for the functions

Fi. i=l, ... ,m, through the analytical evaluation of the corresponding

integrals
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it(%) = EUi(%,rJ)J = !fi(%.rJ) P(drJ).

Unfortunately. the exact evaluation of these integrals. either analyti

cally or numerically by relying on existing software for quadratures. is

only possible in exceptional cases. for every special types of probability

measures P and integrands fi(%'-)' For example. to calculate the values

of the constraint function (2.1) even for m =1. and

(3.1)

with random parameters h(-) and t j (-). it is necessary to find the proba

bility of the event

as a fun ction of % = (% I' ... '%n)' Finding an analytical expression for

this function is only possible in a few rare cases, the distribution of the

random variable

rJ f-+ h(rJ) - ~j=1 tj(rJ)%j

may depend dramatically on %; compare % =(0.... 0) and % =(1•...• 1).

Of course. the exact evaluation of the functions it is certainly not

possible if only partial information is available about P. or if information

will only become available while the problem is being solved, as is the

case in optimization systems in which the values of the outputs

Ui (% ,c.», i =0, ...•m J are obtained through actual measurements or

Monte Carlo simulations.

In order to bypass some of the numerical difficulties encountered

with multiples integrals in the stochastic optimization problem (2.6).
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one may be tempted to solve a substitute problem obtained from (1.2) by

replacing the parameters by their expected values, i.e. in (2.6) we

replace

where c;> = Ef CJJ. This is relatively often done in practice. sometimes the

optimal solution might only be slightly affected by such a crude approxi

mation. but unfortunately. this supposedly harmless simplification. may

suggest decisions that not only are far from being optimal. but may even

"validate" a course of action that is contrary to the best interests of the

decision maker. As a simple example of the errors that may derive from

such a substitution let us consider:

then

Not having access to precise evaluation of the function values. or

the gradients of the Fi. i=O• ...•m.. is the main obstacle to be over

come in the design of algorithmic procedures for stochastic optimization

problems. Another peculiarity of this type of problems is that the func

tions

x I~ Fi (x ), i =0, ...•m.,

are quite often nondifferentiable -- see for example (2.1). (2.3), (2.4),

(2.9) an (2.10) -- they may even be discontinuous as indicated by the sim

ple example in Figure 3.
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Figure 3. FO(x) =P~'" I",x ~ lj. p[", =+1] =p[", =-1] = *.
The stochastic version of even the simplest linear problem may lead to

nondifJerential problem as vividly demonstrated by Figure 3. It is now

easy to imagine how complicated similar functions defined by linear ine

qualities in R'" might become. As another example of this type, let us

consider a constraint of the type (1.2). i.e. a probabilistic constraint,

where the gi (-,,,,) are linear. and involve only one l-dimensional random

variable h(-). The set S of feasible solutions are those x that satisfy

where h(-) is equal to 0.2. or 4 ea.ch with probability 1/3. Then

s = [-1,0] U [1.2]

is disconnected.
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The situation is not always that hopeless. in fact for well-formulated

stochastic optimization problem. we may expect a lot of regularity. such

as convexity of the feasibility region. convexity and/or Lipschitz proper

ties of the objective function. and so on. This is well documented in the

literature.

In the next two sections. we introduce some of the most important

formulations of stochastic programming problems and show that for the

development of conceptual algorithms. problem (2.6) may serve as a

guide. in that the difficulties to be encountered in solving very specific

problems are of the same nature as those one would have when dealing

with the quite general model (2.6).

4. STOCHASTIC OPTIMIZATION: ADAPTIVE MODELS

In the stochastic optimization model (2.6). the decision x h'as to be

chosen by using an a priori probabilistic measure P without having the

opportunity of making additional observations. As discussed already ear

lier. this corresponds to the idea of an optimization model as a tool for

planning for possible future environments. that is why we used the term:

anticipative optimization. Consider now the situation when we are

allowed to make an observation before choosing x. this now corresponds

to the idea of optimization in a learning environment. let us call it adap

tws optimization.

Typically. observations will only give a partial description of the

environment (,J. Suppose B contains all the relevant information that

could become available after making an observation; we think of B as a

subset of A. The decision x must be determined on the basis of the
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information available in B, Le. it must be a function of c.> that is "B-

measurable". The statement of the corresponding optimization is simi-

lar to (2.6), except that now we allow a larger class of solutions -- the B-

measurable functions -- instead of just points in H'" (which in this setting

would just correspond to the constant functions on 0). The problem is to

find a B-measurable function

that sati sfies: x (c.» E: X for all c.>,

and

Z = E !'o(x(c.»,c.») is minimized. (4.1)

where E~.I BJ denotes the conditional expectation given B. Since x is to

be a B-measurable function, the search for the optimal x, can be

reduced to finding for each c.> E: 0 the solution of

find x E: X c Rn such that

EUi(x,.) IBJ{c.» ~ O. i=l, ... ,m

and zr.l =EUo(x ,.) IBJ (c.» is minimized.

(4.2)

Each problem of this type has exactly the same features as problem (2.6)

except that expectation has been replaced by conditional expectation;

note that problem (4.1) will be the same for all c.> that belong to the same

elementary event of B. In the case when c.> becomes completely known,

Le. when B =A, then the optimal c.> 1-4 x(c.» is obtained by solving for all



- 18 -

c.>. the optimization problem:

find x E: X c Rn such that

fi(x,c.» ~ O. i=l, ... ,m,

and z(,l = lo(x,c.» is minimized.

(4.3)

Le. we need to make a parametric analysis of the optimal solution as a

function of c.>.

If the optimal decision rule c.> ~ x .(c.» obtained by solving (4.1), is

implementable in a real-life setting it may be important to know the dis-

tribution function of the optimal value

This is kno'wn as the distribution problem for random mathematical pro-

grams which has received a lot of attention in the literature. in particu-

lady in the case when the functions Ii' i=O• ...•m. are linear and

B =A.

Unfortunately in general, the decision rule x .(.) obtained by solving

(4.. 2). and in particular (4.3), is much too complicate for practical use.

For example. in our production model with uncertain demand. the

resulting output may lead to highly irregular transportation require-

ments. etc. In inventory control. one has recourse to "simple". (5,8)-

policies in order to avoid the possible chaotic behavior of more "optimal"

procedures; an (5 ,8)-policy is one in which an order is placed as soon as

the stock falls below a buffer level s and the quantity ordered will restore

to a level 8 the stock available. In this case. we are restricted to a

specific family of decision rules, defined by two parameters 5 and 8

which have to be defined before any observation is made.
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More generally, we very often require the decision rules CJ 1-+ x (CJ) to

belong to prescribed family

of decision rules parametrized by a vector A, and it is this A that must be

chosen here-and-now before any observations are made. Assuming that

the members of this family are B-measurable. and substituting x (X,e) in

(4.1). we are led to the following optimization problem

find X E: A such that

X{A.CJ) E: X for all CJ E: 0

Hi{A) = E (fi{X{X,CJ),CJ) ) ~ 0, i=1.···.m

and HO{A) =E (to{X{A,CJ).CJ) ) is minimized.

(4.4)

This again is a problem of type (2.6), except that now the minimization is

with respect to A. Therefore, by introducing the family of decision rules

fx{X,e), A E: AJ we have reduced the problem of adaptive optimization to a

problem of anticipatory optimization, no observations are made before

fixing the values of the parameters A.

It should be noticed that the family fx{A,e). A E: AJ may be given

implicitly. To illustrate this let us consider a problem studied by Tintner.

We start with the linear programming problem (4.5), a version of (1.2):

find x E: R; such that

~j=l C1.;.j{CJ)Xj ~ bi{CJ), i=1.···.m

and z = ~;=1 Cj{CJ) Xj is minimized,

(4.5)

where the ~j(e).bi{e) and Cj{e) are positive random variables. Consider

the family of decision rules: let ~j be the portion of the i-th resource to
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be assigned to activity j, thus

~j=l ~j = 1, ~j ~ 0 fo i=l,··· ,m; j=l, ... ,n, (4.6)

and for j=l, ... n,

Le.

This decision rule is only as good as the ~j that determine it. The

optimal A's are found by minimizing

(4.7)

subject to (4.6), again a problem of type (2.6).

5. ANTICIPATION AND ADAPTATION: RECOURSE MODELS

The (two-stage) recourse problem can be viewed as an attempt to

incorporate both fundamental mechanisms of anticipation and adapta-

tion within a single mathematical model. In other words, this model

reflects a trade-ot! between long-term anticipatory strategies and the

associated short-term adaptive adjustments. For example, there might

be a trade-off between a road investment's program and the running

costs for the transportation fleet, investments in facilities location and

the profit from its day-ta-day operation. The linear version of the
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recourse problem is formulated as follows:

find x E: m such that

Fj(x) = bi - A.tx 5: 0 , i=l,'" ,m ,

and Fo(x) = c x + E~Q(x,r.>H is minimized

where

(5.1)

some or all of the coefficients of matrices and vectors q (-), W(-), h (a) and

T(-) may be random variables. In this problem, the long-term decision is

made before any observation of r.> "" [q (r.», W(r.», h(r.», T(r.»). Mter the

true environment is observed, the discrepancies that may exist between

h(r.» and T(r.»x (for fixed x and observed h(r.» and T(r.>)) are corrected by

choosing a. recourse action y, so that

W(r.»y = h(r.» - T(r.»x, y ~ 0 ,

that minimizes the loss

q (r.»y .

(5.3)

Therefore. an optimal decision x should minimize the total cost of carry-

ing out the overall plan: direct costs as well as the costs generated by

the need of taking correct (adaptive) action.

A more general model is formulated as follows. A long-term decision

x must be made before the observation of r.> is available. For given x E: X

and observed r.>, the recourse (feedback) action y(x ,r.» is chosen so as to

solve the problem

find y E: Y c]{'l: such that

f2i(x,y,r.»5:0. i=l,··· ,m',

and z2 =ho(x,y,r.» is minimized,

(5.4)
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assuming that for each x E X and r.> EO the set of feasible solutions of

this problem is nonempty (in technical terms, this is known as relatively

complete recourse). Then to find the optimal x, one would solve a prob-

lem of the type:

find x E X c Rn , such that

Fo(x) = E ~ho(x,y(x,r.»,r.»J is minimized.

(5.5)

If the state of the environment r.> remains unknown or partially unknown

after observation, then

r.> f-+ y(x ,r.»

is defined as the solution of an adaptive model of the type discussed in

Section 4. Give B the field of possible observations, the problem to be

solved for finding y(x,c.» becomes: for each r.> EO

find y EYe Rn' such that

E ~hi(x,y,.) IBHr.» ~ 0, i=l, ... ,m'

and z2Co1 = E ~ho(x,y,.) IB! (r.» is minimized

(5.6)

If r.> 1-+ y (x ,r.» yields the optimal solution of this collection of problems,

then to find an optimal x we again have to solve a problem of type (5.5).

Let us notice that if

ho(x,y,r.» = ex + q(r.»y

and for i=l, ... ,m',

_ rl1-a if Ti(r.»x + Wi(r.»y - ~(c.» ~ 0,
f2i (x ,y ,r.» - a otherwise

then (5.5), with the second stage problem as defined by (5.6),

corresponds to the statement of the recourse problem in terms of condi-

lional probabilistic (chance) constraints.
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There are many variants of the basic recourse models (5.1) and

(5.5). There may be in addition to the deterministic constraints on x

some expectation constraints such as (2.3). or the recourse decision rule

may be subject to various restrictions such as discussed in Section 4,

etc. In any case as is clear from the formulation. these problems are of

the general type (2.6), albeit with a rather complicated function lo(x .CJ).

6. DYNAMlC ASPECTS: MULTISTAGE RECOURSE PROBLEMS

It should be emphasized that the "stages" of a two-stage recourse

problem do not necessarily refer to time units. They correspond to steps

in the decision process, x may be a here-and-now decision whereas the y

correspond to all future actions to be taken in different time period in

response to the environment created by the chosen x and the observed CJ

in that specific time period. In another instance. the x.y solutions may

represent sequences of control actions over a given time horizon,

x = (x(O), x(l) , x(T».

y = (y(O). y(l), , y(T»,

the y-decisions being used to correct for the basic trend set by the x-

control variables. As a special case we have

x = (x(O), x(l) • .. " x(s»,

y = (y(s+l), .. " y(T»,

that corresponds to a mid-course maneuver at time s when some obser-

vations have become available to the controller. We speak of two-stage

dynamic models. In what follows, we discuss in more detail the possible

statements of such problems.
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In the case of dynamical systems, in addition to the x ,y solutions of

problems (5.5)-(5.4), there may also be an additional group of variables

z = [z(O), z(1), . ", Z(T»)

that record the state oj the system at times 0,1, ... ,T. Usually, the vari

abIes x ,y ,z ,e.> are connected through a (differential) system of equations

of the type:

6 z(t) = h[t,Z(t), x(t), y(t),e.», t=O, ... ,T-1, (6.1)

where

6z(t) = z(t+1)-z(t), z(O)=zo'

or they are related by an implicit function of the type:

h [t,Z(t+1), z(t), x(t), y(t), e.» =0, t=O,"', T-l. (6.2)

The latter one of these is the typical form one finds in operations

research models, economics and system analysis, the first one (6.1) is

the conventional one in the theory of optimal control and its applica

tions in engineering. inventory control, etc. In the formulation (6.1) an

additional computational problem arises from the fact that it is neces

sary to solve a large system of linear or nonlinear equations, in order to

obtain a description of the evolution of the system.

The objective and constraints functions of stochastic dynamic prob

lems are generally expressed in terms of mathematical expectations of

functions that "We take to be:

gi [z(O), x(O). y(O), ... ,z(T), x(T), y(T>). i=O,l, ... ,m. (6.3)

If no observations are allowed, then equations (6.1), or (6.2), and (6.3) do
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not depend on y. and we have the following one-stage problem

find x = [x (0). x(l)•...• X(T») such that (6.4)

x (t) e:X(t) c Rn • t =0•...• T.

6. z(t) = h [t.z(t). x(t), CJ)' t=O• ... ,T-l,

E [9i(Z(O). x(O) • .. '. z(T). x(T). CJ)~ O. i=l.···.m

and v =E ~go (z(O). x(O) • ...• z(T), x(T).CJ)J is minimized

or with the dynamics given by (6.2). Since in (6.1) or (6.2). the variables

z (t) are functions of (x .CJ). the functions gi are also implicit functions of

(x.CJ). Le. we can rewrite problem (6.4) in terms of functions

the stochastic dynamic problem (6.4) is then reduced to a stochastic

optimization problem of type (2.6). The implicit form of the objective

and the constraints of this problem requires a special calculus for

evaluating these functions and their derivatives. but it does not alter the

general solution strategies for stochastic programming problems.

The two-stage recourse model allows for a recourse decision y that

is based on (the first stage decision x and) the result of observations.

The following simple example should be useful in the development of a

dynamical version of that model. Suppose we are interested in the

design of an optimal trajectory to be followed. in the future. by a number

of systems that have a variety of (dynamical) characteristics. For

instance. we are interested in building a road between two fixed points

(see Figure 4) at minimum total cost taking into account. however. cer-

tain safety requirements. To compute the total cost we take into

account not just the construction costs. but also the cost of running the
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vehicles on this road.

z(O)

o t = 1

Road

, zIT)
I
I
I
I
I
I
I
I
I
I

T

Figure 4.. Road design problem.

For a fixed feasible trajectory

z = [z .(0). z(l) ..... Z(T»).

and a (dynamical) system whose characteristics are identified by a

parameter CJ E: O. the dynamics are given by the equations. for

t=o..... T-l. and~ z(t) = z(t+l) -z(t).

~z(t) = h[t.z(t).y(t).CJ).

and

z (0) = z o. z (T) = z T .

The variables

y = [yeo). y(l)..... yeT»)

(6.5)
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are the control variables at times t=O.1. ..... T. The choice of the z

trajectory is subject to certain restrictions. that include safety con

siderations. such as

Le. the first two derivatives cannot exceed certain prescribed levels.

For a specific system CJ E: 0, and a fixed trajectory z. the optimal

control actions {recourse}

y{z.CJ} = [Y{O,z'CJ}. y{l,z,CJ).· ". y{T.z.CJ)]

is determined by minimizing the loss function

go [z{O). y{O)• ...• z (T-l), y{T-l), z{T).CJ]

subject to the system's equations (6.5) and possibly some constraints on

y. If P is the a. priori distribution of the systems parameters. the prob

lem is to find a trajectory (road design) z that minimizes in the average

the loss function. Le.

FO{z) = E 19o[z (O), y{O.z .CJ)• ...• z (T-l). y (T-1.z .CJ). z (T).CJ]!{6. 7)

SUbject to some constraints of the type (6.6).

In this problem the observation takes place in one step only. We

have amalgamated all future observations that will actually occur at

different time periods in a single collection of possible environments

(events). There are problems where CJ has the structure

CJ = [CJ{O). CJ{l) • ...• CJ{T)]

and the observations take place in T steps. As an important example of

such a class, let us consider the following problem: the long term
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decision x = [x (0). x(l), ... ,x(T)] and the corrective recourse actions

y = (y(O), y(l), ...• X(T)] must satisfy the linear system of equations:

AOO x(O) + B o y(O)

AIO x(O) + All x(l) + B I y(l)

~ h(O)

~ h(l)

ATO x(O) + ATI x(l) + ... + ATT x(T) + BT y(T) ~ h(T).

x(O) ~ O•... , x(T) ~ 0; y(O) ~ O•...• y(T) ~ 0

where the matrices Atk' Bt and the vectors h(t) are random. Le. depend

on e.>. The sequence x = [x(O) • ...• x(T») must be chosen before any

information about the values of the random coefficients can be collected.

At time t =0•... ,T, the actual values of the matrices, and vectors,

Atk' k=O.··· ,t; Bt , h(t), d(t)

are revealed, and we adapt to the existing situation by choosing a correc-

tive action y (Lx .e.» such that

y (Lx ,e.» E: argmin [d(t)y IBty ~ h (t) - ~,=O Atk x (k). Y ~ 0].

The problem is to find x = [x(O), ...• X(T») that minimizes

Fo(x) = ~l=o [c(t)x(t) + E~d(t)y(t,x,e.>B]

subject to x(O) ~ O•.... x(T) ~ O.

(6.9)

In the functional (6.9). or (6.7), the dependence of y(t.x,e.» on x is

nonlinear. thus these functions do not possess the separability proper-

ties necessary to allow direct use of the conventional recursive equa-

tions of dynamic programming. For problem (6.4), these equations can

be derived, provided the functions gi I i =0, ... ,m, have certain specific

properties. There are, however, two major obstacles to the use of such
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recursive equations in the stochastic case: the tremendous increase of

the dimensionality, and again, the more serious problem created by the

need of computing mathematical expectations.

For example, consider the dynamic system described by the system

of equations (6.1). Let us ignore all constraints except % (t) E: X(t), for

t =0,1, ... ,T. Suppose also that

where ",(t) only depends on the past, Le. is independent of

",(t +1), ... ,"'( T). Since the minimization of

FO(%) = E~go(z(O), %(0), . " ,z(T), %(T).",H

with respect to % can then be written as:

min min ... min E~goJ
:(0) :(1) :(T)

and if go is separable, i.e. can be expressed as

go: = rJ:"rl gOt [~z(t), %(t), ",(t») + gOT [z(t), ",(T»)

then

min: Fo(%) =min E[goo[~ z(O), %(0),,,,(0»)) + min E!901[~ z(l), %(1), "'(1»))
:(0) :(1)

+ '" + min ElgOT_1[~z(T-l),%(T-l),"'(T-l»))+
:(T-1) ,

+ E IgOT [z(t), ",(T»))

Recall that here, notwithstanding its sequential structure, the vector '"

is to be revealed in one global observation. Rewriting this in backward

recursive form yields the Bellman equations:

(6.10)
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for t =0, ... , T-1, and

(6.11)

where Vt is lhe value function (optimal loss-lo-go) from time t on, given

slale Zt altime t, lhal in lurn depends on x(O), x(1) . .... x(t-1).

To be able lo ulilize lhis recursion, reducing ultimalely lhe problem

lo:

find x e: X(O) eRn such lhal va is minimized, where

va = E[goo[h(O,ZQ.X,CJ(O».x,CJ(O») + v 1[zQ + h(O,ZQ'X,CJ(O»)),

we musl be able lo compule lhe malhematical expeclalions

as a funclion of lhe inlermediale solutions x(O), ... , x(t -1), lhal deler-

mine ~ Z (t), and lhis is only possible in special cases. The main goal in

lhe developmenl of solution procedures for slochastic programming

problems is lhe developmenl of appropriale compulational lools lhal

precisely overcome such difficulties.

A much more difficull siluation may occur in lhe (full) mullislage

version of lhe recourse model where observation of some of lhe environ-

menl lakes place al each slage of lhe decision process, al which time

(laking inlo accounl lhe new information collecled) a new recourse

action is laken. The whole process looks like a sequence of allernating:

decision-observation- ... -observation-decision.
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Let x be the decision at stage k == 0, which may itself be split into a

sequence x (0), ...• x (N), each x (k) corresponding to that component of

x that enters into play at stage k. similar to the dynamical version of

the two-stage model introduced earlier. Consider now a sequence

y = [y(O). y(l). 00' • Y(N»)

of recourse decisions (adaptive actions, corrections), y (k) being associ-

ated specifically to stage k 0 Let

Bit;: == information set at stage k ,

consisting of past measurements and observations. thus Bit; C BIt;Ho

The multistage recourse problem is

find x e: X c Rn such that

foi(x) ~ O. i==l.· ...m o .

EU Ii (x. y(l),r.» IBll ~ 0, i=l • .. 0 .m l'

(6.12)

E UNi (x. Y (1)•... , y(N),r.» IBN~ ~ 0, i==l.·· . •mN'

y(k)e:Y(k), k==l.···.N.

and Fo(x) is minimized

where

FO(x) == FfJo {min E BI
{. .. min E BN

- l U (x,y{l), 00 • • y(N),r.>H.11
]1(1) ]I (N-I)

If the decision x affects only the initial stage k = 0, we can obtain recur-

sive equations similar to (6.10) - (6.11) except that expectation E must

be replaced by the conditional expectations EB,. which in no way

simplifies the numerical problem of finding a solution. In the more gen

eral case when x = [x (0). x(l) • ... ,X(N)]. one can still write down recur

sion formulas but of such (numerical) complexity that all hope of solving
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this class of problems by means of these formulas must quickly be aban-

doned.

7. SOLVING THE DETERMINISTIC EQUNALENT PROBLEM

All of the preceding discussion has suggested that the problem:

find :c E: en such that

Pi{:c) =J fi{:C'c.» p{d.c.» ~ 0, i=1,'" ,m,

and z = Fo{:C) = J fo{:C'c.» p{d.c.» is minimized,

(7.1)

exhibits all the peculiarities of stochastic programs, and that for explor-

ing computational schemes, at least at the conceptual level, it can be

used as the canonical problem.

Sometimes it is possible to find explicit analytical expressions for an

acceptable approximation of the Pi. The randomness in problem (7.1)

disappears and we can rely on conventional deterministic optimization

methods for solving (7.1). Of course, such cases are highly cherished,

and can be dealt with by relying on standard nonlinear programming

techniques.

One extreme case is when C3 =Efc.>J is a certainty equivalent for the

stochastic optimization problem, i. e. the solution to (7.1) can be found

by solving:

find :c E: X c Rn such that

fi{x,C3) ~ 0, i=l, ... ,m,

and z = fo{:C,C3) is minimized,

(7.2)

this would be the case if the f i are linear functions of c.>. In general, as

already mentioned in Section 3, the solution of (7.2) may have little in
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common with the initial problem (7.1). But if the Ii are convex func-

tions. then according to Jensen's inequality

i=L··· ,m,

This means that the set of feasible solutions in (7.2) is larger than in

(7.1) and hence the solution of (7.2) could provide a lower bound for the

solution of the original problem.

Another case is a stochastic optimization problem with simple pro-

babilistic constraints. Suppose the constraints of (7.1) are of the type

1.=1.··· .m.

with deterministic coefficients tii and random right-hand sides ~ (-).

Then these constraints are equivalent to the linear system

1.=1.··· .m.
where

If all the parameters tij and hi in (7.3) are jointly normally distributed

(and ~ ~ .5), then the constraints

Xo =1

~j=o 4j xi + {3 [L;.i=o ~r=o 'Tijle xi Xkr ~ 0

can be substituted for (7.3), where

tiO(-) = -hi (-)

~j: = E~tij(r.>H. j =0. L ... •n.

Tijle: = cov [tij (-), tik (-») , ;=0.··· ,n; k=O,··· ,n,

and {3 is a coefficient that identifies the a-fractile of the normalized
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normal distribution.

Another important class are those problems classified as stochastic

programs with simple recourse, or more generally recourse problems

where the random coefficients have a discrete distribution with a rela-

tively small number of density points (support points). For the linear

model (5.1) introduced in Section 5, where

where for k=l, ... ,N, the point (qk.Wk,hk,rk) is assigned probability Pk'

one can find the solution of (5.1) by solving:

find % E ~, [yk E R~·. k =1•...•1\1
Ax

r l% + Wlyl

-r% + W2y 2

such that (7.4)

rN%

e% + P I q Iy I + P 2q 2y 2

and z is minimized

= z,

This problem has a (dual) block-angular structure. It should be noticed

that the number N could be astronomically large, if only the vector h is

random and each component of the vector

has two independent outcomes. then N =2m '. A direct attempt at solving

(7.4) by conventional linear programming techniques will only yield at

each iteration very small progress in the terms of the % variables. There-

fore, a special large scale optimization technique is needed for solving
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even this relatively simple stochastic programming problem.

B. APPROXlllATION SCHEMES

If a problem is too difficult to solve one may have to learn to live

with approximate solutions. The question however. is to be able to recog

nize an approximate solution if one is around. and also to be able to

assess how far away from an optimal solution one still might be. For this

one needs a convergence theory complemented by (easily computable)

error bounds, improvement schemes. etc. This is an area of very active

research in stochastic optimization. both at the theoretical and the

software-implementation level. Here we only want to highlight some of

the questions that need to be raised and the main strategies available in

the design of approximation schemes.

For purposes of discussion it will be useful to consider a simplified

version of (7.1):

find z e: X c Rn that minimizes

Fo(z) = J /o(z .CJ) P(dCJ).

(8.1)

we suppose that the other constraints have been incorporated in the

definition of the set X. We deal with a problem involving one expectation

functional. Whatever applies to this case also applies to the more gen

eral situation (7.1), making the appropriate adjustments to take into

account the fact that the functions

i=1.··· .m.

determine constraints.



- 36-

Given a problem of type (8.1) that does not fall in one of the nice

categories mentioned in Section 7, one solution strategy may be to

replace it by an approximation..... There are two possibilities to simplify

the integration that appears in the objective function. replace 10 by an

integrand lov or replace P by an approximation Pv ' and of course. one

could approximate both quantities at once.

The possibility of finding an acceptable approximate of 10 that

renders the calculation of

J lo" (x.CJ) P(dCJ) =: Fo"(x).

sufficiently simple so that it can be carried out analytically or numeri

cally at low-cost. is very much problem dependent. Typically one should

search for a separable function of the type

lo"(z.CJ) = ~!=1 rpj(x.CJj)'

recall that 0 c Rq. so that

where the Pi are the marginal measures associated to the j -th com

ponent of CJ. The multiple integral is then approximated by the sum of

I-dimensional integrals for which a well-developed calculus is available,

(as well as excellent quadrature subroutines). Let us observe that we do

not necessarily have to find approximates that lead to 1-dimensional

integrals. it would be acceptable to end up with 2-dimensional integrals,

even in some cases -- when P is of certain specific types - with 3

dimensional integrals. In any case. this would mean that the structure

• Another approach will be discussed in Section 9.
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of 10 is such that the interactions between the various components of r.>

play only a very limited role in determining the cost associated to a pair

(x ,w). Otherwise an approximation of this type could very well throw us

very far oft' base. We shall not pursue this question any further since

they are best handled on a problem by problem basis. If UO
Y ' v=l • ... ~

is a sequence of such functions converging, in some sense, to 1, we

would want to know if the solutions of

v=l, ...

converge to the optimal solution of (B.l)· and if so. at what rate. These

questions would be handled very much in the same way as when approxi

mating the probability measure as well be discussed next.

Finding valid approximates for 10 is only possible in a limited

number of cases while approximating P is always possible in the follow

ing sense.· Suppose P y is a probability measure (that approximates P),

then

(B.2)

Thus if 10 has Lipschitz properties. for example, then by choosing P y

sufficiently close to P we can guarantee a maximal error bound when

replacing (B.l) by:

find x EXC Rn that minimizes Fd"(x) = J 10(x,w) Py(dc.;). (B.3)

Since it is the multidimensional integration with respect to P that was

the source of the main difficulties, the natural choice -- although in a few

concrete cases there are other possibilities -- for Py is a discrete distri

bution that assigns to a finite number of points
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the probabilities

Problem (B.3) then becomes:

find x e: X eRn that minimizes FO'(x) = l:zL=l pz fo(x .c}) (B.4)

At first glance it may now appear that the optimization problem can be

solved by any standard nonlinear programming. the sum l:f=l involving

only a "finite" number of terms, the only question being how "approxi-

mate" is the solution of (B.4). However, if inequality (B.2) is used to

design this approximation. to obtain a relatively sharp bound from (B.2),

the number L of discrete points required may be so large that problem

(B.4) is in no way any easier than our original problem (B.1). To fix the

ideas, if 0 c RIO. and P is a continuous distribution, a good approxima-

tion - as guaranteed by (B.2) - may require having 1010 ~ L ~ lOll! This is

jumping from the stove into the frying pan.

This clearly indicates the need for more sophisticated approxima-

tion schemes. As background, we have the following convergence

results. Suppose !Py • v=l • ... ~ is a sequence of probability measures

that converge in distribution to P. and suppose that for all x e: X. the

function fo(x,CJ) is uniformly integrable with respect to all P y • and sup-

pose there exists a bounded set D such that

for almost all II. then

infX Fo = lim (infX FO')
y .....
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and

if Xli E: argminx FO'. x = lim XliI:
k ..DD

then

X E: argminX Fo.

The convergence result indicates that we are given a wide latitude in the

choice of the approximating measures, the only real concern is to

guarantee the convergence in distribution of the P II to P, the uniform

integrability condition being from a practical viewpoint a pure technical-

ity.

However, such a result does not provide us with error bounds. but

since we can choose the P II in such a wide variety of ways, we could for

example have P II such that

and P 11+1 such that

infX FO' ~ infX Fo

. fl;" f 1;'11+1in X .co ~ in X '0

(8.5)

(8.6)

providing us with upper and lower bounds for the infimum and conse-

quently error bounds for the approximate solutions:

Xli E: argminx Fo,and X Il+1 E: argminx FO+1•

This, combined with a sequential procedure for redesigning the approxi-

mations P II so as to improve the error bounds, is very attractive from a

computational viewpoint since we may be able to get away with discrete

measures that involve only a relatively small number of points (and this

seems to be confirmed by computational experience).
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The only question now is how to find these measures that guarantee

(a.5) and (B.6). There are basically two approaches: the first one that

exploits the properties of the function e.> ~ fo(x ,e.» so as to obtain ine

qualities when taking expectations. and the second one that chooses P v

in a class of probability measures that have characteristics similar to P

but so that P v dominates or is dominated by P and consequently yields

the desired inequality (a.5) or (a.6). A typical example of this latter case

is to choose P v so that it majorizes or is majorized by P. another one is

to choose P v so that for at least for some x E: X:

(a.7)

where P is a class of probability measures on n that contains P. for

example

Then

FO' (x) ~ Fo(x) ~ infX Fo

yields an upper bound. If instead of Pv in the argmax we take P v in the

argmin we obtain a lower bound

If e.> 1-+ fo(x ,e.» is convex (concave) or at least locally convex (locally

concave) in the area of interest we may be able to use Jensen's inequal

ity to construct probability measures that yield lower (upper) approxi

mates for Fo and probability measures concentrated on extreme points

to obtain upper (lower) approximates of Fo. We have already seen such

an example in Section 7 in connection with problem (7.2) where P is
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replaced by P v that concentrate all the probability mass on c;) =E~c.>~.

Once an approximate measure P v has been found. we also need a

scheme to refine it so that we can improve. if necessary. the error

bounds. One cannot hope to have a universal scheme since so much will

depend on the problem at hand as well as the discretizations that have

been used to build the upper and lower bounding problems. There is,

however, one general rule that seems to work well, in fact surprisingly

well, in practice: choose the region of refinement of the discretization in

such a way as to capture as much of the nonlinearity of lo{x,.) as possi

ble.

It is. of course, not necessary to wait until the optimal solution of an

approximate problem has been reached to refine the discretization of the

probability measure. Conceivably, and ideally. the iterations of the solu

tions procedure should be intermixed with the sequential procedure for

refining the approximations. Common sense dictates that as we

approach the optimal solution we should seek better and better esti

mates of the function values and its gradients. How many iterations

should one perform before a refinement of the approximation is intro

duced, or which tell-tale sign should trigger a further refinement. are

questions that have only been scantily investigated, but are ripe for

study at least for certain specific classes of stochastic optimization prob

lems.

As to the rate of convergence this is a totally open question, in gen

eral and in particular. except on an experimental basis where the results

have been much better than what could be expected from the theory.
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One open challenge is to develop the theory that validates the conver-

gence behavior observed in practice.

9. STOCHASTIC PROCEDURES

Let us again consider the general formulation (2.6) for stochastic

programs:

find % E X c Rn such that

Fi(%) = J li(%,GJ) p(d.GJ) ~ O. i=l • ... ,m,

and Fo(%) = J lo(%,GJ) p(d.GJ) is minimized.

(9.1)

We already know from the discussion in Sections 3 and 7 that the exact

evaluation of the integrals is only possible in exceptional cases. for spe-

cial types of probability measures P and integrands Ii' The rule in prac-

tice is that it is only possible to calculate random observations li(%,GJ) of

Fi (%). Therefore in the design of universal solution procedures we

should rely on no more than the random observations Ii (% ,GJ). Under

these premises, finding the solution of (9.1) is a difficult problem at the

border between mathematical statistics and optimization theory. For

instance, even the calculation of the values Fi(%). i=O•... ,m. for a fixed %

requires statistical estimation procedures: on the basis of the observa-

tions

one has to estimate the mean value

The answer to the simplest question, whether or not a given % E X is

feasible. requires verifying the statistical hypothesis that



- 43-

EUi(x,CJH ~ 0, for i=l.··· ,m.

Since we can only rely on random observations, it seems quite natural to

think of stochastic solution procedures that do not make use of the exact

values of the 1'i(x). i=O.··· ,m. Of course, we cannot guarantee in

such a situation a monotonic decrease (or increase) of the objective

value as we move from one iterate to the next. thus these methods must,

by the nature of things, be non-monotonic.

Deterministic processes are special cases of stochastic processes,

thus stochastic optimization gives us an opportunity to build more flexi

ble and effective solution methods for problems that cannot be solved

within the standard framework of deterministic optimization techni

quest. Stochastic quasi-gradient methods is a class of procedures of that

type. Let us only sketch out their major features. We consider two

examples in order to get a better grasp of the main ideas involved.

Example 1: Optimization by simulation. Let us imagine that the

problem is so complicated that a computer based simulation model has

been designed in order to indicate how the future might unfold in time

for each choice of a decision x. Suppose that the stochastic elements

have been incorporated in the simulation so that for a single choice x

repeated simulation runs results in different outputs. We always can

identify a simulation run as the observation of an event (environment) CJ

from a sample space n. To simplify matters, let us assume that only a

single quantity
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summarizes the output of the simulation run CJ for given x. The problem

is to

find x e: R n that minimizes Fo{x) = Etfo{x .CJH. (9.2)

Let us also assume that Fo is differentiable. Since we do not know with

any level of accuracy the values or the gradients of Fo at x. we cannot

apply the standard gradient method. that generates iterates through the

recursion:

s "n
X - Ps l.Jj=1

FO{x s +6.s e i ) -FO{x S
)

6..s
(9.3)

where Ps is the step-size. 6.s determines the mesh for the finite

difference approximation to the gradient. and e j is the unit vector on

the j -th axis. A well-known procedure to deal with the minimization of

functions in this setting is the so-called stochastic a.pproxima.tion method

that can be viewed as a recursive Monte-Carlo optimization method. The

iterates are determined as follows:

(9.4)

where CJS 0, CJS I, ...• CJsn are observations. not necessarily mutually

independent one possibility is CJso = CJS 1 = = CJsn. The sequence

tx S
• s =O.l.... ~ generated by the recursion (9.4) converges with probabil-

ity 1 to the optimal solution provided, roughly speaking. that the scalars

tps ' 6.s ; s =1, ... J are chosen so as to satisfy

CPs = 6.s = 1/ s are such sequences). the function Fo has bounded second



- 45-

derivatives and for all x E: Rn •

(9.5)

This last condition is quite restrictive. it excludes polynomial functions

lo(-'CJ) of order greater than 3. Therefore. the methods that we shall con-

sider next will avoid making such a requirement. at least on all of Rn .

Example 2: Optimization by random search. Let us consider the

minimization of a convex function Fo with bounded second derivatives

and n a relatively large number of variables. Then the calculation of the

exact gradient V Fo at x requires calling up a large number of times the

subroutines for computing all the partial derivatives and this might be

quite expensive. The finite difference approximation of the gradient in

(9.3) require (n +1) function-evaluations per iteration and this also might

be time-consuming if function-evaluations are difficult. Let us consider

that following random search method: at each iteration s =0,1. ..• choose

a direction h S at random. see Figure 5.

If Fo is differentiable. this direction h S or its opposite -hs leads into the

region

of lower values for Fo• unless X S is already the point at which Fo is

minimized. This simple idea is at the basis of the following random

search procedure:

(9.6)

which requires only two function-evaluations per iteration. Numerical
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Figure 5. Random search directions ±h5
•

experimentation shows that the number of function-evaluations needed

to reach a good approximation of the optimal solution is substantially

lower if we use (9.6) in place of (9.3). The vectors h O, h 1, ... , h 1, ...

often are taken to be independent samples of vectors h(e) whose com

ponents are independent random variables uniformly distributed on

[-1, +1]'

Convergence conditions for the random search method (9.6) are the

same, up to some details, as those for the stochastic approximation

method (9.4). They both have the following feature: the direction of

movement from each :z;S ,5 =0.1. . .. are statistic estimates of the gra

dient V Fo(:Z;S). If we rewrite the expressions (9.4) and (9.6) as :

:z;s+1: =:z;s -Ps r. 5=0,1, ...

where r is the direction of movement. then in both cases

(9.7)

(9.B)
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A general scheme of type (9.7) that would satisfy (9.B) combines the

ideas of both methods. There may. of course, be many other procedures

that fit into this general scheme. For example consider the following

iterative method:

which requires only two observations per iteration. in contrast to (9.4)

that requires (n +1) observations. The vector

r = ~ 10(xs+!J.shs.(.)Sl) -/o(xs,(.)$O) h S
2 !J.s

also satisfies the condition (9.B).

The convergence of all these particular procedures (9.4), (9.6), (9.9) fol-

low from the convergence of the general scheme (9.7) - (9.B). The vector

r satisfying (9.B) is called a stochastic quasi-gradient of Fo at x
S

' and the

scheme (9.7) - (9.B) is an example of a stochastic quasi-gradient pro-

cedure.

Unfortunately this procedure cannot be applied, as such, to finding

the solution of the stochastic optimization problem (9.1) since we are

dealing with a constrained optimization problem. and the functions

ii. i=O, ... ,m, are in general nondifierentiable. So, let us consider a
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simple generalization of this procedure for solving the constrained

optimization problem with nondifferentiable objective:

find x e: X c R n that minimzes Fo{x) (9.l0)

where X is closed convex set and Fo is a real-valued (continuous) convex

function. The new algorithm generates a sequence xo.x 1•... •x s • . .. of

points in X by the recursion:

X S +1 := prjx [X S - Ps r]

where prjx means projection on X. and r satisfies

with

(9.11)

(9.l2)

a Fo{x S
): = the set of subgradients of 10 at X

S
,

and eS is a vector. that may depend on (xO, ... •X S ). that goes to 0 (in a

certain sense) as s goes to "". The sequence ixs,s=O,l, ... J converges

with probability 1 to an optimal solution. when the following conditions

are satisfied with probability 1:

Ps ~ 0, L:s Ps = "", L:s E!ps II £s II + P;J < "" .

and

E! II r 11 2 1xO, ... •x s J is bounded whenevedxo•... •x s J is bounded.

Convergence of this method. as well as its implementation. and different

generalizations are considered in the literature.

To conclude let us suggest how the method could be implemented to

solve the linear recourse problem (5.1). From the duality theory for

linear programming, and the definition (5.2) of Q, one can show that
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Thus an estimate r of the gradient of Fo at X S is given by

where c.>S is obtained by random sampling from n (using the measure P),

and

The iterates could then be obtained by

where

x = tx E R'.;. IAx s b ~.

It is not difficult to show that under very weak regularity conditions

(involving the dependence of W(c.» on c.»,

1o. CONCLUSION

In guise of conclusion, let us just raise the following possibility. The

stochastic quasi-gradient method can operate by obtaining its stochastic

quasi-gradient from 1 sample of the subgradients of fo(-,c.» at x S
, it could

equally well use' -- if this was viewed as advantageous -- obtain its sto-

chastic quasi-gradient r by taking a finite sample of the subgradients of

fo(-'c.» at X S
I say L of them. We would then set

(10.1)
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and c.>I, ... ,c.>L are random samples (using the measure P). The question

of the efficiency of the method taking just 1 sample versus L ~ 1 should,

and has been raised, cf. the implementation of the methods described in

Chapter 16. But this is not the question we have in mind. Returning to

Section B, where we discussed approximation schemes, we nearly always

ended up with an approximate problem that involves a discretization of

the probability measures assigning probabilities P l' ... , PL to points

c.>1, ••• ,c.>L, and if a gradient-type procedure was used to solve the

approximating problem, the gradient, or a subgradient of Fo at x 5 would

be obtained as

(10.2)

The similarity between expressions (10.1) and (10.2) suggest possibly a

new class of algorithms for solving stochastic optimization problems, one

that relies on an approximate probability measure (to be refined as the

algorithm progresses) to obtain its iterates, allowing for the possibility of

a quasi-gradient at each step without losing some of the inherent adap

tive possibilities of the quasi-gradient algorithm.
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