




SPATIAL ECONOMICS:
DENSITY, POTENTIAL, AND FLOW





Studies in
Regional Science

and Urban Economics

Series Editors

AKE E. ANDERSSON
WALTER ISARD

PETER NIJKAMP

Volume 14

NORTH-HOLLAND -AMSTERDAM· NEW YORK· OXFORD





Spatial Economics:
Density, Potential, and Flow

MARTIN BECKMANN
Brown Unil'ersity, U. S. A.
Gild

Techllische UniversitGt,
Miillchell, FR.G.

TONU PUU
University of Umeii, Sweden

N·H
(I\·~.'C

m
~

19H5

NORTH-HOLLAND -AMSTERDAM· NEW YORK· OXFORD



C(JINTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS, 19R5

All rights reserved. No part of this publication may be reproduced. stored in a retrieval system. or

transmitted. in any form or by any means, electronic. mechanical. photocopying, recording or otherwise,

without the prior permission of the copyright owner.

ISBN: II 444 R7771 I

Publisher:

ELSEVIER SCIENCE PUBLISHERS BY.
P.O. Box 199\
1000 BZ Amsterdam

The Netherlands

Sale distribworsj(Jr the U. S. A. alld Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY-INC.
52 Vanderbilt Avenue

New York, NY 10017

U.S.A.

PRINTED IN THE NETHERLANDS



INTRODUCTION TO THE SERIES

Regional Science and Urban Economics are two interrelated fields of research that have
developed very rapidly in the last three decades. The main theoretical foundation of
these fields comes from economics but in recent years the interdisciplinary character has
become more pronounced. The editors desire to have the interdisciplinary character of
regional sciences as well as the development of spatial aspects of theoretical economics
fully reflected in this book series. Material presented in this book series will fall in three
different groups:

- interdisciplinary textbooks at the advanced level,
- monographs reflecting theoretical or applied work in spatial analysis,
- proceedings reflecting advancement of the frontiers of regional science and urban

economics.

In order to ensure homogeneity in this interdisciplinary field, books published in this
series will:

- be theoretically oriented, i.e. analyse problems with a large degree of generality,
- employ formal methods from mathematics, econometrics, operations research and

related fields, and
- focus on immediate or potential uses for regional and urban forecasting, planning

and policy.

Ake E. Andersson
Walter lsard

Peter Nijkamp
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is ,1 nongovernmental research institution, hringing together scientists from around the
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was founded in October 1972 by the academies of science and equivalent organizations of
twelve countries. Its founders gave lIASA a unique position outside national, disciplinary,
and institutional boundaries so that it might take the broadest possible v·iew in pursuing
it s object ives:

To promote international cooperation in solving problems arising from social, economic,
technological, and environmental change

To create a network of institutions in the national member organization countries and
elsewhere for joint scientific research

To develop and formalize systems analysis and the sciences contributing to it, and promote
the use of analytical techniques needed to evaluate and address complex problems

To inform policy makers and decision makers of how to apply the Institute's methods to
such problems

The Institute now has national member organizations in the folJowing countries:

Austria
The Austrian Academy of Sciences

Bulgaria
The National Committee for Applied
Systems Analysis and Management

Canada
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The Max Planck Society for the
Advancement of Sciences

Hungary
The Hungarian Committee for Applied
Systems Analysis

Italy
The National Research Council
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The Japan Committee for IlASA
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Poland
The Polish Academy of Sciences

Sweden
The Swedish Council for Planning and
Coordination of Research

Union of Soviet Socialist Republics
The Academy of Sciences of the Union
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1 Introduction

1.1 THE VON THUNEN AND WEBER SCHOOLS OF LOCATION
THEORY

Throughout location theory and spatial economics there runs a dichotomy between
what might be called the von Thi.inen and the Weber approaches to modeling economic
space. The first considers economic activities that are extended in space and hence use
land explicitly. The second considers that activities are localized at points in space but
are spaceless in themselves (we will say more about this in Section 5.3). Both are justified
in their proper context. The approach to spatial economics developed in this book is
solidly in the von Thi.inen tradition: activities are space consuming. They are described
by their spatial densities. The spatial relationships are made as explicit and graphic as
possible. This is in contrast to recent developments in regional economics where the
spatial structure has been suppressed and replaced by mere matrices of abstract distance.

By contrast, classical location theory has treated space in the same way as would
ordinary intuition or Newtonian physics: as a continuum. Thus, in von Thi.inen's classic
opening paragraph:

"Consider a very large town in the center of a fertile plain which does not contain
any navigable rivers or canals. The soil of the plain is assumed to be of uniform
fertility which allows cultivation everywhere. At a great distance the plain ends in
uncultivated wilderness by which this state is absolutely cut off from the rest of
the world. This plain is assumed to contain no other cities but the central town and
in this all manufacturing products must be produced. The city depends entirely on
the surrounding country for its supply of agricultural products ... The question is
now, how under these circumstances agriculture will develop and how distance
from the city affects agricultural methods when these are chosen in the most
rational manner?" (von Thiinen 1921, pp. 11-12, our translation)

The "homogeneous plain" in von Thi.inen's model is the plane of Euclidean geometry.
This approach to space can also be found in the work of Launhardt (1869,1882,1885),
Palander (1935), and Losch (1954).

It was linear programming and its extensions, nonlinear and integer programming,
that made fashionable, nay required, a discrete realization of space as a set of points
whose interrelations are defined by distances or transportation cost matrices. Henceforth
no geometric realization of space was required, all operations being performed on systems
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of equations and inequalities into which space entered only through measures of distance.
The images of lines of movement, boundaries, areas, lines of equal price or "isotimes," or
of "transportation surfaces" (Palander 1935) evaporated, to be replaced by activity
variables and dual variables or efficiency prices.

While the results of these calculations usually permit a spatial interpretation and may
be transformed back into spatial images, this is rarely done. The integration of spatial
economics into the matrix of economic theory has been achieved by transforming away
the spatial variables.

1.2 THE METRIC OF ECONOMIC SPACE

1.2.1 The Least-Cost Principle

What distinguishes location theory and spatial economics generally from the remainder
of economic theory is the explicit recognition of distance in the form of transportation
cost. Transportation cost should be interpreted broadly as a cost required to move

• Persons
• Commodities
• Information

all of which are generally referred to here as objects.
The spatial structure of transportation cost gives rise to a metric (in fact, to alternative

metrics) based on the following principle. The economic distance dCA, B) from point A to
point B is defined as the least cost of moving an object from A to B. It defines a metric
since

dCA, B) > 0

d(A,A) = 0

if A *' R transportation cost between distinct points is
positive

transportation cost between identical points is
zero

dCA, C) ,;;;; dCA, B) + deB, C) the triangle inequality holds by definition of
"least cost"

If the transportation cost from A to B is not identically equal to the transportation cost
from B to A, then there are in fact two metrics, based respectively on transportation
cost "to" and transportation cost "from." In the case of personnel, the relevant trans­
portation cpst is usually the round-trip cost, defining yet another metric. Moreover,
transportation cost may depend on the state of the transportation system, which, in turn,
may vary systematically and periodically over time. This multiplicity of metrics is a
complicating feature that sometimes cannot be ignored in locational analysis.

Notice that the least-cost principle in transportation always defines a metric in econom­
ic space, regardless of whether its representation is in continuous or discrete terms.

In the following sections we give some illustrations of the least-cost principle.
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1.2.2 Metric of a Transportation Network

Consider first a discrete transportation network. It may be described abstractly by its
matrix of arcs (edges) ij whose lengths are aij

A = «aij))

with

U=j if a directed arc exists from i to j

if no directed arc exists from i to j

(1)

For the arc lengths we require neither symmetry

nor the triangle inequality

(2)

(3)

(4)

To obtain the distances d ik from any point of origin i to any point of destination k one
must find the shortest path. Such a path always exists if the network is strongly con­
nected. To obtain this path one may proceed iteratively as follows. Let d 1k denote the
distance obtained in the nth round. If no path from i to k has been found then

In the (n + 1)th round one calculates

d 1k+ 1 = min (aij + djk)
J

In a finite, strongly connected graph the d 1k , which decrease monotonically in n, con­
verge to limits d ik in finitely many steps. Thus the metric d ik is the unique solution of
the equation system

d ik = mjn(aij + djk )

d ii = 0

Keeping the origin fixed (say) one obtains a tree of shortest paths from that particular
origin, and for each vertex of the network a number, the distance of this vertex from the
chosen point of origin. Similarly, keeping a destination fixed one obtains a tree of short­
est paths to this destination. On this tree one can mark off, for each vertex, the remaining
distance to the fixed destination. These trees coincide in the symmetric case (2).

1.2.3 The Continuous Plane

To extend this to the two-dimensional continuous plane we consider first the case
that is analogous to the symmetric case in a network. Let the spatial coordinates be
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J: == (XI, X2) and let local transportation cost depend only on location but not on
direction

The distance between two points J: 0 == (x? , x~) and J: == (x I, xJ is then obtained by
finding a path that minimizes the transportation cost integral, a "shortest path"

"i k(xI(s),x2(s))ds
x

Keeping the origin fixed one now obtains two sets of curves:

• Trajectories of shortest paths, i.e. of least cost movement, and
• Curves connecting points of equal distance from the given point of origin.

In classical location theory (Palander 1935) these two sets of curves are known respec­
tivelyas

• Transport lines, and
• Isovectures.

Formally these may be obtained as follows:
Let A(~) denote the value of minimum transportation cost to J: from a given origin J:0

x

A~) == min 1k(xi (s), X2 (s))ds
,,(8) 0

x

(5)

or "economic distance" of J: from J:0
; and let J: == J:(s) be the shortest path. Now write

Then

(6)grad A
x

k·I~1

Here the vector i/lil has unit length. If I/> denotes a flow vector of arbitrary (but positive)
strength that traces out a shortest path, then (6) assumes the form

I/>grad A == k -
II/>I

(7)

This is the so-called gradient law. It plays a major part in the analysis of efficiency and
equilibrium in spatial markets (cL Chapter 2).

The meaning of (6) and (7) is that shortest paths and isovectures are orthogonal to
each other. This is always true when transportation cost does not depend on direction,
in other words when it is "isotropic" (for the anisotropic case cf. Section 2.4). It does
not matter that transportation cost k~) depends on location.
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It follows that one set of curves determines the other: the isovectures may be obtained
from the shortest paths that originate in:&o by marking off equal distances or integrating
along these paths. Conversely, the transport lines may be constructed as orthogonal
trajectories to the given isovectures. As a by-product, the local rate of transportation cost
k(x) is obtained as the absolute value of the gradient

kU) = Igrad A(,!)\

1.2.4 Euclidean Metric

The simplest metric is clearly that where k(x) is uniform. It may then be set equal to
unity

kU)=

This is none other than the familiar Euclidean metric that underlies the "naive" or
common intuitive notion of two- and three-dimensional space. In this case the shortest
paths are straight lines and the isovectures are circles. The transportation cost may be
integrated in closed form

~ ~

A(~) = J cis = f (dxi + dx~)112
x 0 ~o

1.2.5 Refraction

The next case is well-known in theoretical optics. It was discussed in an economic
context by Palander (1935), von Stackelberg (1938), and LOsch (1940).

Let there be a discontinuous change across a line from one level of transportation
cost k o to another level k I. An example is the crossing of a national boundary. Then the
transport lines exhibit refraction, as shown in Figure 1.1.

Another special case is that where the actual transportation cost is a monotone trans­
form of the integral in (5)

x

A(X) = m[min Jk(,!(s»cis]
x(s)
- XO

= min m[JXk(,!(S»dS]
x(s)
- ~o

The isovectu res are the same, bu t their labeling changes. It follows that the trajectories
are also the same. The following is an example of this.

1.2.6 Alternative Modes of Travel

In personal transportation, time is often the overriding factor. Consider the minimum
time required to cover various Euclidean distances, by foot, by bus, or by airplane.
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Figure 1.1. Refraction of flow lines.

Each mode is optimal in a certain range of distances (see Figure 1.2). The same principle
applies to the transportation costs of goods when fixed costs of loading are involved.
From the figure one can see that economic distance is a monotone, increasing, concave
function of Euclidean distance when alternative modes of transportation are available.
Recall that the isovectures and trajectories are the same under either Euclidean or eco­
nomic distance; only the numbers denoting the distances change.

1.2.7 Realization of an Isotropic Metric in Two-Dimensional Space

The type of metric described in Section 1.2.4 is realized at its simplest on essentially
two-dimensional surfaces, for example an ocean with shipping or a snow-covered plain
on which dog-team transportation is used. It is also the appropriate metric for planning
a future transportation route.

Consider now the more common case of transportation within a network that is
already in place. Most have been planned along regular lines (triangular, rectangular,
hexagonal networks), which makes transportation in networks anisotropic. But in prac­
tice the presence of many small deviations distorts this ideal plan. The result is once more
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Economic
distance

Euclidean distance

Figure 1.2. Economic versus Euclidean distance.

an almost isotropic metric, at least over large distances (cf. Puu 1979b). This serves to
justify, at least to a first approximation, our treatment of transportation cost metrics in
two-dimensional space as isotropic. They are not assumed to be uniform, however, since
local conditions may vary both in regard to the supply of transportation (density and
capacity of the network) and demand (traffic load).

We therefore postpone for the moment discussion of those cases in which local
transportation cost is dependent on direction. The relationship between the directions of
transport lines and isovectures in such cases is more complicated and is governed by
so-called transversality conditions. Some typical cases, including

• Manhattan metric,
• Hexagonal isovectures,
• Minkowski metric, and
• Riemann metric

are discussed later in Section 2.4.2.

1.3 THE BACKGROUND TO THIS STUDY

The two-dimensional, continuous spatial framework of classical location theory in the
von Thtinen tradition implied that the underlying commodity shipments should constitute
a field of flows. However, this was not brought out explicitly. The flow field notion
came into economics from a different side: namely, through the study of the continuous
analog to the linear programming problem of minimizing the cost of carrying out a given
transportation program. This was first done by Kantorovich (1942) in his classic paper
"On the Translocation of Masses."

Martin Beckmann, unaware at that time of the Kantorovich paper, but having studied
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Koopmans' classical article on the "Optimum Utilization of the Transportation System"
(Koopmans 1949), wrote a Cowles Commission discussion paper soon after arriving at the
University of Chicago in October 1950, entitled "A Formal Approach to Localization
Theory." He then studied its implications for the analysis of spatial market equilibrium in
subsequent discussion papers. After substantial revisions, Beckmann's "A Continuous
Model of Transportation" was published in Econometrica in 1952. An expository version
emphasizing the spatial market interpretation appeared in the Weltwirtschaftliches Archiv
in 1953.

During the Econometric Society Meeting in Uppsala in 1954, Beckmann had the
opportunity to discuss this approach with Tord Palander, still the leading location theorist
at that time, even though Palander's own interests had shifted somewhat by then. It was
through this contact that Tonu Puu became aware of the continuous flow approach to
spatial economics and was stimulated to develop it further. In turn, Puu's lively interest
rekindled Beckmann's concern with the continuous flow model. Thereafter Puu developed
the structural stability approach in continuous flow analysis.

Besides the work reported in this monograph, there has been considerable interest in
the continuous modeling of space by theoretical geographers. In this connection, the
names of Waldo Tobler and Leslie Curry are perhaps of special significance. A short
bibliography can be found at the end of the book.

1.4 THE PLAN OF THIS BOOK

The continuous flow approach is presented first for the problem of spatial equilibrium
in a single-commodity market. This paradigm is fully developed in Chapter 2. It brings
into sharp focus the differences between economic and physical flow fields. Although
economic relationships must manifest themselves in physical terms, the driving forces
turn out to be quite different. Profit maximization is unlike pressure, gravity, or other
simply-structured physical forces. It is only when we turn to spatial interactions of
other types that the analogy to physical laws becomes closer, as demonstrated in Section
3.4 (Dynamics) of Chapter 3. In Chapter 3 we move to applications of the continuous
commodity flow model. The first section examines spatial pricing under competitive
and monopolistic conditions, and we then turn to land use. Both of these applications
involve partial equilibrium models in which the commodity or group of commodities
under consideration is only a subset of all commodities. Land use in general equilibrium
is studied next and a new interpretation is given to the classical von Thiinen model.

Chapter 4 outlines a long-term model of spatial economic equilibrium. The model
is of general equilibrium character as the decisions of firms and households are
analyzed. There are two interdependent markets: the labor market and the market
for one produced commodity. This commodity is assumed to be perfectly malleable: it
satisfies all consumption needs, including housing, it can be used to provide transpor­
tation services, and it can even be invested as capital.

The decisions of the firms and households concern not only the quantities of labor
and the commodity currently demanded and supplied. They also involve such long-term



INTRODUCTION 9

issues as optimum capital stock and optimum population size. Trade emerges in the
model despite the fact that there is only one produced commodity. This is possible
because land and the located enterprises may be the property of households other than
those living at the specified location. There thus arises an interregional transfer of divi­
dends (profits = land rent), which upsets Walras' law locally.

The main contribution of this chapter is the use of topological dynamics to character­
ize the qualitative features of flows and spatial organization under the assumption of
structural stability. It is shown that the stable configurations of spatial economic orga­
nization are quadratic, and that, in particular, the hexagonal configurations of Christaller
and LOsch become structurally unstable once the homogeneous space (where all com­
munication is along straight lines) is abandoned.

Chapter 5 then deals with models in planning format. However, the social welfare
function only occurs in one optimality condition in each model, whereas the rest (opti­
mality conditions for production and trade) are of Paretian character. The latter have
obvious interpretations in terms of individual optimization by producers and transporta­
tion enterprises. It is even demonstrated that any social optimum can be obtained with
consumer autonomy, provided an appropriate interregional income-transfer policy is
designed. This is shown by a set of aggregate identities among the various monetary
expenditures.

The main outcome of this chapter is a theorem on specialization and trade. This is
nothing more than the spatial subdivision in the von Thunen rings, adjusted to our more
general setting. We thus recall the von Thunen theory for trade and specialization, which
does not depend on comparative advantages or trapped resources. On the contrary, we
assume all land to be of homogeneous quality and all the other inputs to be perfectly
mobile. (To begin with, we even disregard the initial relocation costs for capital and
labor, assuming that we are dealing with very long-term phenomena. Later, we introduce
the relocation costs explicitly.)

The planning format is also used for a comparison of the von Thunen and Weber
location principles (Section 5.3). It is seen that von Thunen's principle ("What to produce
at each location?") ensures optimal use of resources, whereas Weber's principle ("Where
to locate each production process?") results in a strictly weaker condition that does not
ensure optimal use of resources.

Chapter 6 reconsiders some classical location problems in the light of the continuous
flow approach. These include not only labor, resource, and market orientation but
once again a restatement of the classical Weber problem. Some recent developments are
sketched out, such as exhaustible resources, indivisibilities and increasing returns, and
commuting and urban structure.

In Chapter 7 we leave those trade models that deal with a finite set of flow fields, and
discuss interaction models. With continuously dispersed populations and an interaction
principle according to which each location must communicate with all other locations, we
deal with a (nondenumerable) infinity of vector fields, from which we somehow have to
derive a measure of traffic. Along with traffic we consider congestion in transportation,
crowding in housing, optimal urban land use, and the optimal distribution of population
between center and periphery.
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Chapter 8 examines business-cycle and growth models built on the multiplier and
accelerator principles, augmented by an interregional trade multiplier, and adjusted to
continuous two-dimensional space. It is seen that this procedure gives rise to "wave" or
"heat-diffusion" type equations. The main results are that even the simplest models,
with only local action in space and time, generate irregular cycles and variable periodicity.
In spaceless models this only happens with complex distributed lag systems, or when
nonlinearities are present.

Chapter 9 recapitulates the main conclusions reached and the book closes with an
appendix and a short bibliography.



2 The Continuous Transportation Model

2.1 ECONOMIC THEORY

2.1.1 Introduction

Figures 2.1-2.6 show examples of commodity markets extending over large areas.
Prices vary between locations, but in an orderly way. Commodity shipments are not
shown but may be inferred: presumably shipments occur from low-price areas to high­
price areas. But can an exact relationship be established between commodity movement
and the price distribution? To be precise, suppose the quantities produced and the
quantities consumed of a commodity are given for every location. Can the equilibrium
prices, the exports and imports, and the size and direction of the shipments be deter­
mined as solutions to equilibrium conditions in a competitive but spatially extended
market?

One way to attack this problem is to divide the spatial market into discrete units,
for each of which supply and demand are specified, and to consider the flows between
adjacent units. This discretization ignores, however, the spatial arrangement, unless one
imposes a net of cells defined by a coordinate system (see Section 2.5.4 below). Flows
are then broken down into an East-West (or horizontal) and a North-South (or vertical)
component, and two coordinates are assigned to each variable.

But having gone this far, it is both natural and convenient to choose a representation
in terms of continuous spatial coordinates, for example x 1 and X2. In this way the spatial
arrangement of the problem is preserved while the advantages of continuous analysis
can be utilized at the same time.

2.1.2 The Divergence Law

To begin with, assume then that a commodity's supply and demand are given for each
location regardless of price. This does not mean that they are independent of price but
rather that the current prices are already substituted in the supply and demand function.
Supply and demand are given here in terms of areal densities, i.e. physical quantities of
the commodity per unit area.

Among those commodities that are produced and consumed over widely dispersed
areas are the following: agricultural products, notably vegetable foodstuffs, and cattle,
game, and fish, as well as materials requiring further processing such as wool, cotton, and
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Figure 2.1. Producer prices for potatoes in the United States, in cents per bushel on December I,
average for 1906~15. (From H. Working, Factors Determining the Price of Potatoes in St Paul and
Minneapolis, Minneapolis, 1922.)

Figure 2.2. Retail prices of potatoes in the United States and Canada, in cents per 10 pounds, 1936.
+ denotes surplus regions. (Sources: Dominion Bureau of Statistics, Canada; Bureau of Labor Statistics,
Canada; Bureau of Labor Statistics, United States.)
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Figure 2.3. Spatial pattern of producer prices for wheat in the United States, in cents per bushel,
1910-24. (From F.A. Fetter, The Masquerade of Monopoly, p. 295; after L.B. Zapo1eon, Geography
of Wheat Prices, US Department of Agriculture Bulletin No. 594, Washington, DC, 1918.)

Figure 2.4. Monthly wage, without board, of agricultural workers in the United States, in dollars,
1933. (Source: Ch. Roos, NRA Economic Planning, Bloomington, IN, 1937, p. 161.)

other fibrous materials. Another important raw material of this type is wood. Slightly
more localized, but still occurring over extensive areas, are various mineral resources,
including clay for brickmaking and limestone for the production of cement, mineral raw
materials and ores for metal production, and of course the major energy raw materials,
coal and oil.

Another resource that is available extensively and used everywhere is human labor.
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Figure 2.5. Price for resoling and heeling a pair of shoes in the United States, in dollars, 1936.

Figure 2.6. Price for laundering a man's shirt in the United States and Canada, in cents, 1936.

In the short term the interlocal flow of labor takes the form of commuting, whereas in
the long run it appears as migration.

Finally we must consider money. The excess demand for cash varies between loca­
tions. To balance supply and demand requires the transportation of cash, sometimes in
significant quantities.
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For a spatial market within a closed region to be capable of attaining equilibrium, a
necessary and sufficient condition is that aggregate supply and demand must balance. It
is sufficient here to consider excess demand q, the difference between demand and
supply, rather than dealing with demand and supply separately. Excess demand density
is treated here as a given function of location

The condition for an equilibrium of the spatial market to exist in a closed region A is that

JJq(X"X2) dx, dx2 = a (1)

A

Except for the trivial case of no interlocal trade, when supply and demand are balanced
locally everywhere so that

q(X"X2) == a
condition (I) implies that if there are places of surplus with negative excess demand then
there must also be places of deficit with positive excess demand. The movement of the
commodity in interlocal trade will be, in general, in directions from points of excess
supply to points of excess demand. This does not preclude, however, the possibility
that the commodity may pass through some points of excess supply or excess demand
during trans-shipment.

The commodity movement in interlocal trade will be described by a continuous flow
field. At each point (with the exceptions noted below) there is a well defined direction in
which the commodity is moved through trade and a volume corresponding to each
commodity flow. These together define the local flow vector ¢(x" X2). In areas without
trade - where there is neither production nor consumption of the good or where supply
and demand are locally balanced and there is no throughflow ~ the flow field vanishes. At
points that are either isolated (centers of supply areas or of market areas) or that extend
along lines (e.g. boundaries between supply and market areas) more than one direction
of the flow field exists. These singularities occupy an area of measure zero and can be
disregarded in all integrals measuring economic costs and/or benefits.

The relationship between the flow fields and the local excess supply corresponds to
that between a fluid flow and its sources and sinks and has thus been thoroughly explored
in hydrodynamics and thermodynamics. This relationship has the well-known form

-q(X"X2) = div¢(x"x2)

= a¢, + a¢2
ax, aX2

where

is the flow vector. The derivation of (2) is shown in the Appendix.

(2)
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The assumption that no flow should cross the boundary of an area A has similarly
been shown in hydrodynamics to have the form

rpn = 0 in aA (3)

where n denotes the direction normal to the boundary and pointing in an outward
direction; rpn is the vector component in that direction and aA denotes the boundary
of A. This condition is stronger than the statement that aggregate net exports be zero. It
states that there should be no exports or imports across the boundary anywhere.

2.1.3 The Gradient Law

The commodity balance equation (2) is a necessary condition for any spatial system in
which the stock of commodity is preserved. It contains no economic meaning but repre­
sents a physical constraint. The operation of either economic forces in a competitive
market economy or of an efficient planning mechanism must be stated by means of a
different principle.

In a spatially extended commodity market under perfect competition resources are
efficiently allocated. When supply and demand are given, this means that total trans­
portation cost is minimized. This can be the result of either planning or of competitive
marke t forces, as we shall see in Section 2.1 .4.

As in the earlier Section 1.2.3, we let k(~) denote the cost of transporting a unit of
the commodity over unit distance at location x. Let A(~) denote the price of the com­
modity as a function of location. Now the gain from trading a unit of the commodity
between two "adjacent locations" separated by a distance cis in direction rp is

Here Dq, denotes the directional derivative in the direction rp. In equilibrium the gain
from trade cannot be greater than the required cost kds of transportation

Dq,Ads ~ kds (4)

and this must be true for all possible directions of flow rp. Now the direction of steepest
increase of A is the gradient direction, and the value of the directional derivative is then
equal to the absolu te value of the gradient. The equilibrium condition (4) may therefore
be sharpened to

Igrad AI ~ k (5)

In order that trade should take place, traders must not suffer losses. This means that the
gain from trade exactly equals transportation cost wherever rp oF O. Thus

Igrad AI = k where rp oF 0 (Sa)

The direction of trade that achieves a gain equal to transportation cost is then the gradi­
ent direction. Thus
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¢ Ilgrad A (6)

Combining (5a) and (6) one obtains

¢
k - = grad A

I¢I
wherever ¢ =1= 0 (7)

Equations (5) and (7) represent the conditions for price equilibrium in a spatially exten­
ded market. Similarly, equation (2) may be said to represent the equilibrium of quantity.
Equations (2), (5), and (7) together constitute a complete set of equilibrium conditions in
the interior of the region A. On the boundary aA only the quantity condition (3) is
required.

2.1.4 Perfect Planning

The object of planning is considered here to be the following: a given excess demand
q(~) must be satisfied for the minimum transportation cost. How this transportation cost
is actually measured depends on the situation at hand. Sometimes it is measured in
commodity units (as in the original von ThUnen model) but it is more usually measured
in money terms. In a general equilibrium context, transportation cost should be con­
sidered an output produced from suitable inputs such as land, labor, and capital (cf.
Section 4.1.3 below).

With the previous notation the problem may be stated mathematically as follows

(8)

subject to

div¢ + q

¢n = 0

o inA

in aA

(2)

(3)

This is a calculus of variations problem in terms of a vector function ¢. The objective
function of this problem can easily be shown to be convex and the constraints to be

linear (see Section 2.2.3). It may also be shown that condition (1) guarantees the exis­
tence of a feasible solution (see Section 2.2.1). Moreover the minimand can be shown to
be bounded for a bounded region A in two-space. The existence of a piecewise-smooth
flow field minimizing (8) follows then from general principles of the calculus of variations
(Courant and Hilbert 1953).

The form of the solution may be obtained by using Lagrangean multipliers. The
Lagrange function of the problem (considered as a maximum problem) is

(9)

The Euler-Lagrange condition for a maximum is derived below (in Section 2.2.5) as
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¢
k -- = grad A

I¢I

Thus we obtain once more the gradient law.

2.1.5 Discussion of Flow Lines

(7)

The fundamental relationship (7), together with constraints (2) and (3), determines
uniquely the directions of a flow field ¢ that is a solution to our problem (cL Section
2.2.6). The principal statement of (7) is that the flow lines of the field ¢ cannot form
closed paths. Rather, flow ¢(x 1, X2) is proportional to a gradient field. The potential
function A= A(X 1, X2) of this gradient field represents, of course, the price of the com­
modity as a function of location.

Condition (7) needs to be supplemented for the case when ¢ vanishes. By analogy
with the situation in convex nonlinear programming, one can show that

Igrad AI <; k wherever ¢ = 0 (5)

Like any potential function, A is determined only up to an additive constant. 1f the flow
field is connected, Le. does not consist of two or more disconnected parts, then it follows
that when the price has been fixed at one location, it is uniquely determined at all other
locations. This also means that certain types of singularities, such as spirals (Figure 2.7)
and centers (Figure 2.8), are ruled out.

The only types of point singularities possible in a gradient field are sources, sinks,
i.e. nodes or foci (Figures 2.9, 2.10, 2.13), and saddle points (Figure 2.11). The sources
are located at minima and the sinks at maxima of the potential function. At saddles the
potential function itself has a minimax or saddle point.

A flow field without singularities is laminar (Figure 2.12).
Suppose that, just inside the boundary aA of the region, all flows are directed to the

outside (i.e. the boundary). As one traverses a curve parallel to but inside the boundary
the direction of the flow field changes by 211. Now the Poincare Index theorem (Henle
1979, p. 60) implies that the number of sources and sinks must exceed the number of
saddles by one. Therefore there has to be at least one source or sink inside the region.

A similar count applies when all flow vectors near the boundary point toward the
inside: there must be at least one source or sink inside.

2.1.6 Shortest Paths and Isovectures

For each location there exists a flow field of special interest. This field is generated
by placing a source at this location - that is, a small circle producing a large excess
supply immediately around the location - and by letting every other point have an
excess demand density of unity Le. q = 1. The flow lines of this field represent the
shortest paths to all points from the given location. The potential lines are the curves
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Figure 2.7. Stable spiral.

Figure 2.8. A center.

Figure 2.9. A node.
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Figure 2.10. An improper node.

Figure 2.11. A saddle point.

of equal distance or isovectures. It is natural to choose A(:!O) = 0 at the location:!o so
that A(:!) measures the distance from :!o to:!. The isovectures are closed curves unless
interrupted by the boundary of the region. The location is called a center of the region if
one of its isovectures coincides with the boundary.

For a discussion of the anisotropic case see Section 2.4.2 below.
A special case is that where

kC:!) == k (10)
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Figure 2.12. Laminar flow: no singularities.

Then all flow lines are straight lines and all isovectures are circles. From the theory of
functions it is well known that there always exists a conformal mapping preserving
angles but changing local scale, which transforms a plane in such away that k(~) == k = 1
(say), and that this conformal mapping is achieved by an analytical function. Conversely,
the flow fields and potential lines of a region with inhomogeneous k~) can always be
thought of as being obtained from straight lines and circles through the appropriate
conformal mapping (cL Section 2.5.1).

2.1.7 Unifonn Transportation Cost

Suppose

k(X\,X2)=k (10)

is constant, Le. independent of location. Then the flow lines are straight lines, as men­
tioned before. This follows from the fact that a flow line connecting a given source with
a given sink must follow a shortest path or geodesic (see Section 2.1.6). The integral of
transportation cost is then a constant times the ton-mileage, i.e., the integral of total flow

When transportation cost is uniform we can standardize our distance units as transporta­
tion cost units so that k == 1.

The equilibrium conditions are now simplified as follows. We write

¢ = vljl (10)

where IjI is the unit vector giving the direction of ¢ and v is the flow volume. Then (2)
becomes

div (v¢) + q = 0
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Figure 2.13. A flow field in a Loschian market system. (Each point singularity is a focus.)

Now by a well-known fonnula of vector analysis

div (vlJl) = vdiv 1JI + lJIograd v

Then the equilibrium conditions read

grad A = 1JI 11JI1 = 1

and

(11)
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vdiv ~ + ~ .grad v + q = 0 (12)

When the price X is given, ~ is determined by (II) and v is determined by (12). A field of
flow directions ~ can thus be associated with different flow volumes v depending on the
spatial distribution of excess demand q. Of course along a given flow line of ~, supply
and demand must be balanced (see Section 2.3.5 below).

2.1.8 An Alternative Expression for Transportation Cost

We have seen that a necessary condition for

to be minimized, subject to

div <fl = - q

is the Euler equation

k<fl/l<fli = grad X

(8)

(2)

(7)

Let us now see what we get by taking the line integral of (7) along a flow line. If an arc
length element is written ds, then we obtain from equation (7), by multiplication by the
unit flow direction vector <fl/l <fl I and by ds

fk ds = f dX (13)

Because the right-hand side is an exact differential, we can interpret X= Jk ds as equal to
transportation cost if we set its value to zero at the point where the trajectory leaves or
enters the region studied. If we set X equal to production cost or to the import price at
the boundary, then it represents the local cost obtained by increasing these prices by
transportation cost. With this interpretation of X in mind, let us study the expression

(14)

Owing to Gauss's integral theorem, (I 4) equals the integral

(15)

taken along the boundary of the region. As Xis the "world market price" at the boundary
and (<fl)n is the outward component of the flow normal to the boundary, equation (15)
equals exports minus imports in value terms.

On the other hand, div (X<fl) = (grad X)<fl + X div <fl, from an elementary identity in
vector analysis. Since div <fl = - q because of (2), we obtain
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Finally, we have to interpret (grad A)¢. Because of (7) it obviously equals k I¢ I. Therefore

(16)

The first term on the left-hand side equals (8) and hence the total transportation cost. To
interpret the second term we provisionally suppose that exports and imports balance, i.e.
that X = M, and interpret Aas a pure transportation cost, so that it has zero value where a
trajectory enters the region or issues from a singularity inside it. Then A is the cost of
transportation from this point of origin, and q is the excess demand at the point of
destination. We can hence interpret A as a cost of transportation in the usual sense for a
displacement across a finite distance and q as the quantity of goods shipped across the
same distance. The integral II Aq dx 1 dx 2 hence really equals transportation cost. The
equality

(16a)

thus confirms that (8), obtained by consideration of infinitesimal displacements, is
indeed a reasonable expression for transportation costs. If X '* M, then the only dif­
ference is that the two cost expressions may deviate by a constant amount, equal to the
trade balance. This is reasonable since A cannot then be taken as zero where flows (not
only transverse trajectories) enter or leave the region.

Equations like (16) and (16a) will be utilized in two additional ways in what follows.
First, they can be used to establish duality. Second, they can be used to write down
aggregate relations between local consumption and production values, transportation
costs, exports and imports, etc.

For singularities we need an additional argument. If a singular point is included in the
region, we cannot apply Gauss's theorem. What we do then is to surround the singular
points by additional boundary curves and add integrals along them to t~ left-hand side
of (15). It is convenient to take A= constant on such curves. By letting A approach the
value it takes at the singularity we can then reduce the areas excluded from the region
for which the derivations hold to a set of measure zero.

There is no change in the formulas at all for either of the two cases where the addi­
tional boundary integrals vanish in the limiting process, namely when either A is zero at
the singularity or when there is no net outflow from it. Fortunately, these are the cases
we are actually dealing with. Moreover, when we consider types of singularities where
there is both net outflow and a nonzero A, we only need to add new constant terms to X
and M. Even if the formulas change, nothing in the conclusions is affected.

One further comment should be made here. The reasoning described may appear to
apply only to transportation costs computed for optimal flow fields. If this were true,
the results would be of rather limited interest. We used the optimality condition (7), but
in fact we did not require the condition itself. Instead, we used the condition
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k = (grad A)<1>/1 <I> 1 (7a)

obtained from (7) after multiplication by <1>/1<1>1. Now, (7a) is a much weaker condition
than (7), in that it only states that the scalar product of the vectors grad A and <PI 1<I> I
equals k. In addition, (7) asserts that the two vectors are codirectional.

More important than this is the fact that (7a) makes sense for any flow fields, optimal
or not, for which we let <1>/1 <I> 1 represent the direction vector and A the path integral of k
along the lines of the flow field. By the chain rule for derivatives, (grad A) <1>/1<1>1 = dA/ds.
If (13) holds along any line of the flow field, as is supposed by the definition of A, kds =

dA must be true, This, however, is nothing but (7a) multiplied by the arc length element.
Equation (I6a) is discussed further in Sections 2.2.8 and 2.2.9.

2.1.9 Relaxation of Constraints

From general economic theory it is well known that a sufficient condition for market
equilibrium is that excess supply should be nonnegative (provided there is free disposal).
If it is positive, the associated price must be zero. In this section we develop the spatial
equivalent of this weaker equilibrium condition.

We begin by reinterpreting q, which we will now use to denote local demand minus
local availability. The requirement that aggregate supply and demand should balance is
now relaxed in the following way: local demand must still be satisfied everywhere, but
instead of supply, local availability is given and represents an upper bound on local
supply. In view of the sign of q (positive for excess demand, negative for excess avail­
ability), the relaxed constraint has the form

div <I> + q < 0 (2a)

The feasibility condition for a closed region must also be relaxed. By the Gauss integral
theorem (Courant and John 1974, pp. 59-61)

o = f <l>n ds = f f div<l> dx 1 dx 2

aA A

< - f fq(Xl,X2)dxldx2
A

The relaxed feasibility condition is therefore

using (2a)

(17)

f fq(Xl,X2)dx 1dx2< 0 (I a)

A

Aggregate excess demand must be nonpositive. Notice that this is in agreement with the
well-known equilibrium condition for competitive markets that excess supply of each
commodity must be nonnegative (cL, e.g. Arrow and Hahn 1970).

We turn now to the second part of the equilibrium condition.

A~) = 0 wherever q(!) < 0
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Consider the problem of

subject to (2a)

A first consequence of the inequality sign in the constraint is that Lagrangean multi­
pliers, i.e. prices, are now necessarily nonnegative. Moreover, when the < sign applies
in (1 a) then there must exist points (x 1, X2) at which the < sign applies in (2a). The
constraint (2a) is ineffective there: the minimum would not be changed by dropping
the constraint there, and hence the Lagrangean multiplier Amust vanish there

Therefore the level of Ais no longer arbitrary. In fact:

Lemma: Suppose that the flow fIeld ¢ vanishes nowhere in A, and that

f fq dx 1 dx 2 < 0
A

Then the function A= A(X1, X2) is uniquely determined in A.

Proof: It is shown below (in Section 2.2.6) that for a flow field ¢ that does not vanish
anywhere in A, any two potentials Aand Jl must differ by a constant c

A(Xl,X2) = Jl(Xl,X2) + c

Moreover the flow directions ¢/I¢ I are uniquely determmed. Consider now

K =f fkl¢1 + A(div¢ + q)dx 1 dx 2

=fJkl¢1 + Jl(div¢ + q)dx 1dx 2

Subtraction yields

or, using ( 18)

cffdiV¢dx 1 dx 2 +cffqdx 1 dx 2 = 0

Then the first term vanishes, because of (17), leaving

(18)

and this, together with the < sign in (1 a), implies c = O. Therefore the potential function
is unique. Q.E.D.
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In this connection we also note the following:

Lemma: Let

div cf> + q <: 0

then

o o

(2a)

(1)

divcf>

Proof:

-q everywhere in A

= fcf>n ds +ffq dx 1 dx2 = 0

using (2a)

by (I) and by the Gauss integral theorem. Therefore the nonpositive integrand div cf> + q
vanishes everywhere except on a set of measure zero. Q.E.D.

The same argument applies to (I) and

div cf> + q ;;;. 0 (2b)

Thus if aggregate excess demand is zero, the divergence equation may be replaced every­
where by the same inequality.

2.1.10 Sensitivity

When constraint (2) is not binding but is relaxed as in (2a), the effect of changes in
the local excess demand functions q - and of transportation cost k - on the minimum
of aggregate transportation cost can be discussed. Denote the value of the minimand
(8) by K

subject to (2a) and (3). In terms of the Lagrange function we have an unrestricted expres­
sion for K



(19)
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Now, taking partial derivatives

aK
= 1¢(XI,X2)ldx l dx2

ak(XI,X2)

aK
= A(XI,X2)dx l dx2

aq(x I, X2)

From (19) we see that a unit increase in local transportation cost at location J: (and
nowhere else) raises minimum total transportation cost by the flow density I¢ I times the
(infinitesimal) area dx l dx2. Similarly we conclude that a unit increase of demand in
location J: but nowhere else raises minimum total transportation cost by A(XI,X2), while
a unit increase of availability lowers total transportation cost by - A(XI, X2) times the
(infinitesimal) area dx l dx 2 .

A simultaneous increase of demand in one location (XI, X2) and increase of availability
in another location (X'I, x;) may increase or decrease aggregate transportation cost,
depending on the sign of the difference

A(XI,X2) -A(X'I,X;) ~ 0

The fact that a "program" increase (simultaneous increase of supply and demand, but in
different locations) may lower total transportation cost has been considered a paradox by
some writers (e.g. Charnes), but it is in fact quite natural in the light of the different
values of commodity availability in different locations.

2.1.11 A Minimax Theorem

What follows is a generalization of the Kuhn-Tucker theorem to the special convex
minimum problem with linear constraint that is represented by the continuous transpor­
tation model.

Consider the function K(¢, A) defined by

Let

¢ = ¢ and A ~

represent flows and Lagrangean multipliers associated with an optimal solution of the
continuous transportation model where the constraint has the form (2a). Then K(¢, A)
has a saddle point in (¢, ~)

K(¢, A) ,;;;; K(¢,~) " K(¢,~) (20)

over the space of nonnegative scalar functions A(X);;" 0 and of piecewise-smooth vector
fields ¢(J:) satisfying boundary condition (3).

This may be proved by taking a sequence of discrete nonlinear programs to the limit
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and applying the Kuhn-Tucker theorem to these. The theorem represents the limit of
the Kuhn-Tucker statements. Notice that the constraint qualification is not required
since the constraints are linear.

2.1.12 Comparative Statics

Consider two problems with different transportation costs but identical source-sink
distributions

subject to

div </; + q ,;;;; 0 div 1/1 + q ,;;;; 0 (2a)

and denote the minimizing solutions by </; and </; + 11</;, respectively. Then minimization
implies

and

(21)

I Ik l</;ldx 1 dx 2 ,;;;;I I kl</;+11</;ldx 1 dx 2

Adding (21) and (22)

I I11k I</; + 11</;1 dx 1 dx 2 ,;;;; I I11k 1</;1 dx 1 dx 2

or

(22)

(23)

An isolated local change in transportation cost can only lead to a change with opposite
sign in the local volume of flow.

To study the effects of changing q we compare the dual problems (cf. Section 2.2.9)

and max IIp. (q + 11q)dx 1 dx 2
Igrad III " k

Write the solutions as Aand A+ 11A, respectively, and then by virtue of maximality



30 SPATIAL ECONOMICS

and

(24)

f f(A + ~A)(q + ~q)dxl dx2 ;;;.f fA(q + ~q)dxl dx 2

Adding (24) and (25)

f f(A + ~A)· ~q dx 1 dx 2 ;;;.f f A~q dx 1 dx 2

or

(25)

(26)

A local change in excess demand can only lead to change of the local efficiency price in
the same direction.

When both q and k are allowed to change simultaneously, the application of the same
type of argument to the combined problem

shows that

(27)

which of course is a weaker statement than (23) and (26) taken separately.

2. 2 MATHEMATICAL ASPECTS

In this section we present various aspects of the continuous transportation model that
are of a more mathematical rather than economic nature. They may be skipped at a first
reading. The region A to be considered is assumed to be simply connected and bordered
by a Jordan curve aA.

2.2.1 Feasibility

As with every mathematical programming problem, the question of feasibility arises
here. For the continuous transportation model with homogeneous boundary conditions
I/>n = 0 in aA, feasibility is a simple matter, which can be disposed of as follows.
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Lemma: Let q be continuous and let ffqdx 1dx2 = O. Then there exists a flow field <p such
that

div <p + q = 0

<Pn = 0

all(xl,x2)EA

all (Xl,X2) E 3A

(28)

(29)

This lemma can actually be refined as follows.

Theorem: Let q be continuous and let Ifq dx 1 dx 2 = O. Then there exists a flow field
proportional to a gradient field (i.e. a flow field whose trajectories are gradient lines) such
that

div <p + q = 0

<Pn = 0

all(xl,x2)EA

all (Xl,X2) E 3A

(28)

(29)

Proof: To construct a gradient field l/I consider

Its solu tion is

l/I = grad 1J.

Substituting in (28)

-q = div l/I = div (grad 1J.) inA

(grad 1J.)n = 0 in 3A

The resulting equation, the Poisson equation, may be solved. Hence there exist feasible
solutions that are gradient fields. Q.E.D.

Another (more intuitive) way of constructing a feasible solution is as follows: place a
laminar flow field with parallel directions, say, through A, enter the flow for all sources
and sinks into this laminar field and circulate any resulting excess flow (positive or
negative) around the boundary. This satisfies both the source-sink equation and the
boundary condition.

2.2.2 Bounds

One lower bound for total transportation cost is clearly zero

To obtain a better bound consider
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ffXq dx, dx 2 = - ffXdiv ¢ dx 1 dx 2

-ffdiv (X¢) dx, dx 2

+ff ¢ grad Xdx, dx 2

for all ¢ satisfying the boundary condition and any Xsuch that

IgradXI ~ k

We have therefore the following:

Lemma: For any ¢ satisfying

o = div ¢ + q

¢n = 0

inA

on aA

(28)

(29)

and any Xwith Igrad XI~ k one has

An upper bound on total transportation cost may be obtained as follows. Let

k* = max k(,!)
~EA

then

(30)

Now for uniform transportation cost k* the flow lines are straight lines (cf. Section 2.1.4).
An upper bound on total flow If I¢ Idx is obtained by assuming that all flow originates in
one point and moves to another point at maximum distance R. Let R be this largest
distance, the diameter of region A. Then

where Q is aggregate demand
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Q = ffmax [q(~), 0] dx

= ! f f Iq(x)ldx

in view of If q dx = O. Thus, finally

f fklct>ldx':;;;; k*oRo!f flqldxldx2

2.2.3 Convexity

(31)

The continuous transportation model is a convex programming problem. This may be
seen from the following:

Lemma: min Ifklct>ldx 1 dx2 subject to (28) and (29) has a convex objective function and
linear constraints. Further

m~ f fN7 dx 1 dx 2

subject to IgradAI':;;;; k has a linear objective function and constraints defining a convex
set.

Proof: We will show that the function k I ct> 1 is convex in ct>. Let 0 < a < I, and suppose

a Ict> I + (1 - a) 11/1 I .:;;;; 1act> + (1 - a) 1/1 I

Squaring,

or,

i.e.,

(alct>1 + (1 -a)11/I1)2 .:;;;; lact> + (1-a)1/I 12

a21ct>12+ 2a(1-a)Ict>111/I1 + (1-a)2 11/112 ':;;;;a21ct>1 2 + 2a(1-a)cf>o1/l + (l-a)211/112

2a(l -a)Ict>111/I1':;;;; 2a(l -a)ct>1/I

By the Cauchy-Schwarz inequality, this is false except when ct>111/I. Thus 1ct>1 is a convex
function of ct> and is strictly convex with respect to directions ct>/ Ict> I. Q.E.D.

2.2.4 Euler-Lagrange Equations

Constraint (1) of the earlier maximization problem 2.1.4 may be incorporated in the
maximand by the method of Lagrange multipliers

(32)
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In components

- K = max ff- k [(¢~ + ¢D] 112 - X [a¢l + a¢2 + q] dx l dx 2
<p,,<P, aXl aX2

The Euler-Lagrange equations of this two-dimensional calculus of variations problem are

or, reverting to vector notation

¢
k- = grad X

I¢I

i = 1,2

-(33)

The left-hand side of this equation is defined only for nonvanishing ¢. The efficiency
condition for the case of vanishing ¢ must be derived in a different way.

2.2.5 Alternative Derivation of Efficiency Conditions

For every feasible flow field, i.e. every flow field satisfying the source-sink relationship
(28) and every differentiable X, we have

ffkl¢ldx l dx 2 = ff kl¢1 + X(div¢ + q)dx l dx 2

=ff [kj¢l+div(X¢)-¢ogradX+qX]dx l dx 2

since div (X¢) = ¢ 0 grad X+ Xdiv ¢. By the Gauss integral theorem

in view of the boundary condition (29). Rewriting

kltl>l = k t<t
I¢I

one has

(34)

This can be a maximum with respect to nonvanishing ¢ if and only if the parenthetical
term vanishes

tI>
k~ grad X
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A vanishing </> is optimal where and only where the inner product is positive. This is true
wherever

Igrad AI < k

since then

</>"</>
k~ - grad A" </> = k I</> I- grad A•</>

); kl</>I-Igrad AI I</>I

= (k - Igrad AI) 1</>1

> 0 for 1</>1 '* 0

Therefore, (28) can be a minimum only if

k</>- = grad A
1</>1

k ); Igrad AI

2.2.6 Uniqueness

for </> '* 0

for </> = 0

(33)

(34)

Suppose

k-.!t grad AinA </>n = oon aA
1</>1

k~ = grad Jl in A "'n oon aA
1"'1

are two solutions. Consider

TI = a</> + (1 - a) '"

Then

O<a<1

TIn = a</>n + (1-a)"'n = 0 on aA

and

div TI = a div </> + (1 - a) div '"

= -aq-(1-a)q =-q

so .that TI satisfies the constraints. The value of the objective function is then

IIklTlldx 1 dx 2 =II kla</> + (l-a)"'ldx1 dx2

< aII kl</>ldx]dx 2 +(1-a) II k I"" dx] dx 2
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by convexity, unless ¢III/I. This inequality contradicts the assumption that

was a minimum. Therefore ¢III/I.
Assume now that ¢ =1= 0 everywhere in A (except for a set of measure zero). It follows

that

¢
grad A == k­

I¢I

The only solution of

grad (A - /1) == 0

is

A == /1 + constant

grad /1

everywhere in A

Summarizing, we have shown the fol1owing:

Uniqueness Theorem

The solution ¢/I¢I is uniquely determined. If ¢ does not vanish anywhere (except at
singularities on a set of measure zero), then A is unique up to an additive constant. On
any set of nonzero measure with ¢ == 0, A is arbitrary but must satisfy

Igrad AI :!( k (34)

An alternative proof of uniqueness is as follows. Let k ¢/ I¢ I == grad A and k 1/1 /11/11 ==
grad /1 be two solutions. Since both satisfy the boundary condition (2) it follows
that

== ff div((A - /1) (¢ -I/I))dx] dx 2 by the Gauss integral theorem

== ff (A - /1)div(¢ -1/1) + (¢ -1/1) [grad(A - /1)] dx] dx 2

The first term vanishes since

div(¢ - 1/1) == div¢ - div 1/1

Thus

-q+q o
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= ff¢. grad A+ l/J 0 grad fJ. - ¢ 0 grad fJ. - l/J . grad A dx 1 dx 2

Now the two terms of the integrand are nonnegative since, e.g.

and ¢ol/J ~ I¢I
Il/J I

They are zero if and only if

¢ l/J
I¢I Il/JI

It follows that

¢ _ l/J
- --
I¢I Il/JI

everywhere in A so that the flow lines must coincide. Moreover, the potential functions
must be identical except for an additive constant. (The constant may be different for
disconnected parts of the flow field.)

That the quantities of flow I¢ I need not be unique follows from the discussion of
singular flow in the next section.

2.2.7 Digression on Singular Flows

With suitable precau tions, the validity of the divergence and gradient laws can be
extended to singular flow fields. The simplest case is that of a single source of finite
output. In principle, this could be handled by constructing a circular boundary of small
radius around the single source and treating its output as a cross-boundary flow. But
formally all equations remain valid. The feasibility condition is once more

or

area
outside
source

where qo is the output of the single source.
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A second case of interest concerns a single finite source and a single sink of equal
strength. With linear transportation cost the flow field consists of a single flow line along
a geodesic joining source and sink. For uniform transportation cost this flow line is
straight. In any case the flow line carries a finite amount of flow through an infinitesimal
cross section.

Also of interest is the case of a finite set of sources and sinks, each of finite yield,
such that total net output is zero. This is essentially the linear programming transpor­
tation model to be discussed later in Section 2.5.5. It is also an example for which the
flow field is unique while the flow quantities on particular flow lines need not be unique.
This arises when "neutral circuits" occur (see Figure 2.14), Le. when two distinct flow
paths of equal length exist.

Since opposite sides of the parallelogram are of equal length, one has

which is solved by any 0 ~ 1/>, ~ 1.
Finally, one may consider flows originating and/or terminating on lines with a finite

line density (cL Section 2.5.2). Singular flows may also occur along the boundary aA of
the admissible region A. The boundary condition restricts the flow entering or leaving,
however.

+1

-1

Figure 2.14. Neutral circuits.

2.2.8 Alternative Expression for Minimal Total Transportation Cost

At this point a concise restatement of Section 2.1.8 is in order.

K = mjnffkll/>Idx, dx2 = ff kil/>l + A(div I/> + q)dx, dx2 for div I/>-q
A A
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=ff¢ grad X+ X(div¢ + q)dx 1 dx 2

A

=f f [div(X¢) + Xq] dx 1dx 2

A

=f (X¢)n ds + f f Aq dx 1 dx 2

aA A

K=ffxq dx 1 dx 2

A

since the boundary integral vanishes by the boundary condition (29).

2.2.9 Duality

Theorem:

mJn f fkl¢ldx 1 dx 2 = m~x f fAq dx 1 dx 2

A A

¢: div ¢ + q = 0 'I grad XI ::;;; k

¢n = 0 on aA

Proof: For all ¢ satisfying (28)

f fkl ¢ldx 1 dx 2 = f fkl ¢I+X(div¢+q)dx 1 dx 2

=ffkl ¢I+Aq+div(X¢)-¢ogradXdx 1 dx 2

=f f¢. (k ~I - grad X) + Xq dx 1 dx 2 + f (X¢)n ds

~f f Aq dx 1 dx 2 since X¢n = 0 on aA

and since

¢ 0 (k -.!t - grad X) ~ 0
I¢I

for all X satisfying (37). Thus

min f f I¢ Idx 1 dx 2 ~ max f fAq dx 1 dx 2
¢: (28) A: (37)

(35)

(36)

(37)
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Now the equals sign is attained as shown in Section 2.2.8. Therefore, on the assumption
that the primal problem

min ffk 1<1>ldx 1 dx 2
1>: (28)

o
has a solution, the theorem follows. Q.E.D.

We now show:

Lemma: The efficiency conditions of the dual are the constraints of the primal.

Proof: Consider

subject to

(grad 71y ,,-;;; k 2

This has the concave Lagrangean

The Euler-Lagrange equation is

q + div(j..t grad X) = 0

Letting

J1 grad X = <1>

this is the constraint of the primal. The free boundary condition of (39) is

-(~grad <1>L = 0

or, in view of (40)

<1>n = 0

which is the boundary condition of the primal. Q.E.D.

Suppose that A is partitioned and excess demand is such that

(38)

(39)

(40)

J:EA o

J:EA 1
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The duality principle states that

ffA(x" x2)dx 1 dx2 - ffA(Xl, x2)dx 1 dx2
Ao AI

is maximized subject to (37).
Subject to the gradient condition (37), the price spread between consumption and

production areas is thus maximized. This maximum decreases when the cost k decreases.

2.3 EXTENSIONS: BOUNDARY CONDITIONS

2.3.1 Free Boundary Condition

In the continuous transportation model the boundary condition ¢In = 0 serves to
isolate the region A economically from the rest of the world. What happens when no
such boundary condition is imposed? Flows across the boundary are even then not
entirely unrestricted. For, by the Gauss integral theorem

f ¢Jn dx = ff div ¢J dx 1 dx2
ilA

by the divergence law. If we impose the previous condition that aggregate excess demand
be balanced

then

f ¢In ds = 0 (41 )
ilA

This "free boundary condition" states that aggregate flow between the region and the
outside world must be balanced. Notice that this balance condition is in physical and not
value terms. We shall show that optimization implies that this balance equation must hold
in value terms as well.

As before, we write

- K = f f -k I¢J I - A[div ¢J + q] dx 1 dx2

= f f -kl¢Jl-diV(A¢J)+¢J'gradA-qAdx 1 dx2
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For any flow field ¢/I ¢ I satisfying the gradient law

¢
k I¢I = grad A

this becomes

(42)

The gradient law (42) prescribes only the direction of flow, not its volume. We may
still vary the net outflow ¢n on the boundary provided we satisfy the free boundary
condition (41). K can be a maximum only if Ais constant throughout aA. Therefore

A = constant

(43)

(44)

so that the flow condition (41) implies the value condition (43). Since the level of A is
arbitrary, we may in particular choose

A = 0 on aA

Under a free boundary condition the value of the minimum is, of course, lower than
under any boundary condition that imposes an effective constraint.

We have considered the situation where the product may be obtained freely from
anywhere outside the region provided we release the same amount of this commodity
at other points of the boundary. This is economically meaningful and consistent with
an optimum only when the economic value A of the commodity is the same everywhere
along the boundary.

The boundary condition (41) is not implied but does impose an extra constraint
when the divergence law is relaxed

div¢ + q ,;;;;; 0

Consider the case where

The combination of (45) and (46) implies that net imports are now nonpositive

(45)

(46)

by (45)
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The problem considered should then be one of minimizing the sum of import costs and
transportation costs (cf. Section 2.3.3).

2.3.2 Inhomogeneous Boundary Conditions

Consider

subject to

div I/> + q = a
I/>n = g(x), X2)

inA

on aA
(47)

(48)

(50)

The conditions are consistent if and only if

IIq dx) dx 2 + I g ds = a (49)
A aA

For any flow field satisfying (47) and (48) and any piecewise smooth scalar function
X(X),X2)

IIk 1I/> I dx) dx 2 =I I k 1I/> I + X[div I/> + q] dx) dx 2

= I I k -.!L I/> + X div I/> + Aq dx) dx 2
11/>1

= II k -.!L I/> + div(XI/» - I/> grad X+ qX dx) dx 2
11/>1

=I (XI/»n ds +II I/> (k -.!L - grad X) + qX dx) dx 2
aA AII/>I

= I ~dx +fI I/> (k -.!L - grad X) + qXdx) dx 2

aA AII/>I

~ f Xgds +fI qXdx) dx 2

aA A

for all X satisfying Igrad XI ~ k, and "=" for grad X= kl/>/I I/> I. This proves

~~nffk II/>I dx) dx2 = m~x f ~ds +I IqX dx) dx 2

aA

div I/> = q in A 1grad X1~ k

I/>n = gin aA
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The duality theorem is thus modified. However, nothing is changed in the uniqueness
proof.

2.3.3 Free Trade at Given Boundary Prices

As the next possibility we consider boundary conditions in terms of price rather than
quantity. This leads to a change in the objective function, because the gains from com­
modity trade at the boundary may now offset to some extent the cost of transportation

subject to

div ¢ + q = 0

(51)

(47)

No restriction is now required with regard to ff q dx 1 dx 2 . On the other hand, some
restriction must be imposed on p in order to make (51) bounded. Economically speaking
the price gain along any path must never exceed the amount of transportation cost
incurred. Otherwise infinite profits would be attainable. We may state this formally as
follows.

Let p~) be any extension of pes) from the boundary aA to the interior of A. Then,
p(;~.) is admissible if everywhere

Igradpl ~ k~)

The Lagrangean of the free trade problem is

which is transformed in the usual manner to

We conclude that the necessary conditions for a maximum are

(52)

¢
k i¢I = grad A inA (42)

A = p in aA (53)

The prices Amust be a continuous extension to the interior of prices p on the boundary.
Boundary conditions have important mathematical implications as well. In Section

4.5.2 it will be shown how Huygens' principle may be applied to solve the differential
equation (44). This requires, however, that it is known in which direction A increases.
In fact, this is often known. For instance, when (as frequently happens) production of a
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commodity is confined to a smaller region than is consumption, it may be inferred that
commodity prices fall as one moves in the direction of and towards the interior of the
production region.

Suppose, in particular, that

q ~ 0

everywhere in A. This is the case of "production for export." The price must fall as
one moves from the boundary to the interior, and Huygens' principle is readily applied.
The same is true with the direction of price increase reversed when

q ;;;. 0

everywhere in A. The region is then one of excess demand everywhere. The problem is
then one of optimally supplying imports to meet local excess demands in the region.
Finally, let

q == 0 inA (54)

We then have no local excess demand. All trade consists of transactions with the outside,
for (54) implies

This problem is stated here for a competitive external economy imposing its pricesp(s) at
the region's boundary. In the next section we consider the case where the region's trade is
large enough to affect prices in the outside world.

2.3.4 The Export-Import Problem

In the continuous model of transportation the divergence law represented a non­
homogeneous differential equation and the boundary condition was homogeneous.
This meant that all trade was confined to the interior while no trade took place across
the boundary. The opposite situation occurs when the market is entirely concentrated
on the boundary and no transactions occur in the interior.

Suppose that given quantities g(s) have been contracted for net export across the
boundary

ct>n(s) = g(s) on aA (55)

For this program to be carried out with zero excess demand in the interior then, in
order that no accumulation or rundown of commodity stocks occurs, one must have
that

f g(s) cis = 0 (56)
aA

as a consequence of the Gauss integral theorem applied to a vanishing divergence.
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We now consider the cheapest way of carrying out this import-export program,
which means that the associated transportation cost must be minimized

subject to (55) and to the flow constraint applicable in the in terior

div ¢ = 0

The Lagrangean is now

K = - f f [kl¢1 + A div¢] dx 1 dx 2 + f ffJ[¢n -g] cis
A 3A

To maximize this concave Lagrangean observe that

- A div ¢ = - div(A¢) + ¢. grad A

Substituting and applying the Gauss integral theorem to div(A¢)

- K = - f A¢n cis +f f ¢. grad A- k I¢ Idx I dx 2 + f fJ [¢n - g] cis

Rewriting

¢
kl¢1 = ¢.­

I¢I

substituting, and rearranging terms

-K = - f fJg cis + f(A-fJ)¢ncls+f f¢·[gradA-k,:I]dx 1 dx 2

This represents a maximum in ¢ only if

A(S) = fJ(s) on aA
¢

k - = grad A in A
I¢I

(57)

(58)

(59)

(42)

Condition (42) is the familiar gradient law, which must also apply when trade occurs
only at the boundary. Condition (59) states that prices fJ on the boundary must be
a continuous extension of prices A in the interior. This rules out any windfall profits
that could be obtained by transferring commodity from the interior to the boundary.

So far, quantities g have been given at the boundary or prices fJ imposed. Consider
now the more general situation where excess demand functions are given at the boundary

(60)

which relates prices A for cross-boundary trade at location S to net exports ¢n at s. The
region will now be considered as a monopolist seeking to maximize gains from inter­
national trade
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subject to (58). Maximization with respect to rf> in the interior yields the gradient law
(42). Maximization with respect to rf>n yields the Amoroso-Robinson formula for mo­
nopoly pricing

d1T
1T+'" -=0

'f'n drf>n

This becomes, in effect, a "mixed boundary condition" for the problem (57) subject to
(58). Here we prescribe neither price nor flow itself but rather a profit-maximizing
combination of both as given by (61). The function 1T will in general depend on s, i.e. on
local conditions. When the profit function 1T = 1T(rf» is replaced by a utility function, e.g.
a consumers' surplus

tPn

u(rf>n) = I p(g)dg (62)
o

then the monopolist is replaced by perfect competition. The object of the market is not
maximizing profits to the region but maximizing welfare on the boundary of the region.
This remains meaningful when the commodity is also consumed inside (it.; rpgion and a
consumers' surplus function is attached to this.

2.3.5 Macro Relationships for Gradient Flow

In this section we take up the argument of Section 2.1.8 and extend it to the situation
described by the broader boundary conditions of Section 2.3.2.

We assume that transportation is described by a gradient flow

k -.!L = grad A
Irf>/

Define

wherever rf> *" 0 in A (42)

K =I Iklrf>ldx 1 dx 2

A

Substitute (42)

K =I Irf>. grad Adx 1 dx 2
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by the Gauss integral theorem

K = I Ag ds - IIA div ¢ dx 1 dx 2

by the boundary condition (48). Using (47), finally

Now write

(63)

g = e-m e ~ O,m ~ 0

where e = exports and m = imports. Similarly, let

q = d-z d ~ O,z ~ 0

where d = demand and z = supply. Then the terms in equation (63) may be rewritten as
follows

K = IeAds - ImAds +I IdA dx 1 dx 2 - IIz A dx 1 dx 2

M M A A
= E-M+C-Z

where the aggregates E, M, C, and Z represent the following measures for the commodity
in question:

Z = value of aggregate output,
C = value of aggregate consumption,
E = value of aggregate exports,
M = value of aggregate imports,
K = aggregate cost of transporting the commodity.

Thus

Z+K=C+E-M (64)

Notice that this is a macroeconomic accounting equation for a single commodity.
If demand C were further broken down into private consumption, investment, and

government consumption, we would have obtained the usual equation of macroeconomic
income accounting, stated however for a single commodity. Notice that the value of
output here is broken down into the value due to production Z and the value due to
transportation K. This is because transportation constitutes an exogenous activity (cL
Chapter 4 for an endogenous treatment of transportation.)
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2.4 EXTENSIONS: METRICS

2.4.1 Manhattan Metric

When transportation is restricted to the North-South and East-West directions, but
the network may be considered infinitely dense, then the appropriate measure of trans­
portation cost is given by

where ¢i denotes the vector components of ¢. The efficiency conditions are now

(65)

aA
k· sign¢· = -

I I aXi
i = 1,2 (66)

and may thus be stated separately in the two components.
The possible directions of the gradient are then restricted to

arc tan (~ faA) = ± k 2
, ± 0, ±oo (67)axi ax! k!

(where we allow for the possibility that one flow component vanishes). In particular, if
transportation costs are constant k(x) == k, then

arc tan (~!aA) = ± 1, ±O, ±oo
aX2 ax!

so that the possible directions of the gradient are ±O, ±45°, and ±90° and are described by
the star shown in Figure 2.15. It follows that the isopotentiallines consist of straight-line
segments. While the gradient law still applies, the interpretation in flow terms means that
at any point the flow moves in either of the allowed directions, in such a way as to form
an angle of, at most, 45 0 with the gradient. This means the flow lines are obtained by
projecting the gradient on the admissible lines of motion.

2.4.2 Anisotropic Linear Homogeneous Metric

Consider now transportation models in which the transportation cost function is
linear homogeneous with respect to flow

Of course, k must be a metric, i.e.

k ~ 0 and k = 0 only for ¢

k(¢ + 1/1) ~ k(¢) + k(l/I)

o

(68)

(69)

(70)

The Euler-Lagrange equation of the problem
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Figure 2.15. Possible gradient directions.

subject to

div ¢ + q

¢n = 0

is now

o inA

on aA

(72)

(73)

ak
= grad X

a¢

The Euler theorem for homogeneous functions states that

Therefore
ak

k(¢)+X[div¢+q] = ¢·-+Xdiv¢+qX
a¢

= ¢. grad X+ Xdiv ¢ + qX

= div (X¢) + qX

so that

using (74)

(74)

(75)

or

(76)
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by the Gauss integral theorem with the boundary condition as before. Moreover, for any
vector 1/1 satisfying

div 1/1 + q = 0

1/1 n = 0 on aA
one has

inA (72)

(73)

k(1/1) = k(1/1) + X[div 1/1 + q]

ak
1/1 • - + Xdiv 1/1 + qX

a1/1

1/1. (~t -grad X) + div (X1/1) + qX

Integrating

I I k(1/1)dx 1 dx 2 = I I 1/1. (:~ - grad X) + qX + div(X1/1)dx 1 dx 2

= f I 1/1. (:~ -grad X) +qXdx 1 dx 2 +I (X1/1)n ds

by the Gauss integral theorem. The boundary integral vanishes by the boundary condi­
tion. Thus

Now define

1/1
Xl/J = ~ grad X

to be the directional derivative of Xin the direction of 1/1.

Lemma: For all 1/1 satisfying (72) and (73) and all Xsuch that

one has

provided k(1/J) is linear homogeneous.

(77)

(78)

(79)

(80)
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Proof: From (77)

Substitute

iJt •grad A = IiJt IAI/!

from (78) in the integral to obtain

f fk(iJt)d.x l d.x 2 = f fk(iJt) -liJtIAI/! + qA d.x l d.x 2

~ ff qA d.x l d.x 2

using (79). Q.E.D. Therefore

Theorem:

(81)

div <p + q

<Pn = 0

o inA

on aA

This is the duality theorem for a general linear homogeneous metric.
In the same way the uniqueness proof may be extended. Thus the mathematics of the

simple continuous transportation model extends in a natural way to all continuous
transportation models with linear homogeneous metrics. These include

k(iJt)

k(iJt)

K positive definite: Riemann metric (82)

(83)

Manhattan metric (84)

These metrics may be illustrated by isovectures, the curves of equal distance from a
given point. By virtue of linear homogeneity all isovectures are enlarged versions of the
unit isovecture. Figure 2.16 gives some examples.

In fact, by means of Holder's inequality it may be seen that the Minkowski isovectures
for W2 < WI are located inside the isovecture for WI (except for four points of contact),
and that all unit isovectures are convex and fall between the tilted square of diagonal
length 2 and the upright square of side length 2 (see Figure 2.17).
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Manhattan: tilted squares

Riemann: ellipse

Hexagonal

Minkowski: upright squares, W = 00

Figure 2.16. Isovectures corresponding to various metrics.

We may also mention here the special metric for water movement

(85)

(

0 if

= Ipl"11/>1

I/>

11/>1

if

Thus no cost is incurred in the direction -p of natural water flow, while maximum cost
is incurred in the opposite direction.
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Figure 2.17. Isovectures for Minkowski metrics.

2.4.3 Transportation Cost as a Power Function of Flow

A special feature of the problem solution in the standard case is that the gradient of
the flow field bears no relationship to the strength of the flow. This is, however, no
longer true when transportation cost is nonlinear with respect to flow density I</> I

Consider, in particular, the "Cobb-Douglas" case where k is a power function of I</> I

(86)

b > 1 (87)

Unit cost is an increasing function of flow if and only if b > 1. The case of decreasing
unit cost is considered in Section 2.4.9. Total transportation cost is a convex function of
flow if b ;;;. 1. The gradient law assumes the form

bkl</>l b - 1 .3!.- = grad A
1</>1

or

bkl</>l b
-

2 </> = grad A

Taking the norm in (88) one has

bk I</> Ib - 1 = Igrad AI

(88)

It follows from this that the volume of flow increases with the gradient of price provided
b > 1. This increasing flow entails an increasing marginal cost until the balance between
Igrad AI and 1</>1 is established. It follows furthermore that there is a positive flow
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wherever local prices differ, for a positive value of Igrad AI implies a nonvanishing flow
levellet>l. The flow field vanishes only where prices are uniform.

2.4.4 General Convex Transportation Cost: Congestion

The case where unit transportation cost increases with the volume of flow i et> I is
usually associated with congestion. As the traffic volume let> I rises, the unit cost of trans­
portation k(let> I) increases and does so at an increasing rate

k'(Iet>I) > 0

k" (let> I) > 0

Total cost of transportation is then an increasing and convex function of flow

~ [k(Iet>I)'Iet>I] = k + k"Iet>1 > 0
cllet>1

d
dlet>1 2 [k(Iet>I)'Iet>I] = 2k'+k" • let> I>0

Efficient transportation requires that the gradient law be satisfied

[k + k' let> I] .~ = grad A
let> I

This is the Euler-Lagrange condition of the calculus of variations problem

(89)

subject to (72). Now the term k'let>1 is not experienced by travelers unless it is imposed
on them as a "congestion toll charge." Otherwise the traveler merely bears the cost
k(let> I). Here k is average cost and k + k' let> I is marginal cost. Notice that, for increasing k,
marginal cost is larger than average cost.

A distortion of flow away from the optimum occurs when the difference between
marginal cost and average cost is not levied as an extra charge on users of the transpor­
tation system. The only exception to this is when marginal cost and average cost are
strictly proportional. This is true if and only if transportation cost is a power function of
flow

k(Iet>I) = k'Iet>l b

for then

Me bklet>l b
-

1

= b
Ae klet>l b

-
1

is constant, with Me denoting marginal cost and Ae average cost. As long as demand
is fixed, the optimal routing of traffic is thus not distorted under a power-function
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relationship between cost and flow. With price (cost) dependent demand, there will,
however, be too much traffic generated since b > 1.

The most important aspect of increasing unit cost is the following.

Lemma: Suppose k(O) = 0 and k' (I</JI) > O. Then </J = 0 if and only if grad p = O.

It follows from this that all singularities are at stationary points of the potential
function A. In particular, a reversal of direction of flow occurs only at points (or along
lines) where flow vanishes. Therefore

Corollary: ¢ is continuous and Ais continuously differentiable in A.

By contrast, when k(O) > 0 any change of direction of ¢ is associ~ted with a discon­
tinuity in ¢. In particular, the boundaries of market or supply areas constitute line
singularities of the flow field. The potential function Ais not differentiable on the singu­
lar lines.

2.4.5 Quadratic Transportation Cost: Poisson's Equation

The quadratic case

k = constant

plays a special part in the physics of heat transport and diffusion. It can be argued that it
is also also relevant to the economics of migration (Hotelling 1929, Beckmann 1957,
Tobler 1975); the volume of migration is proportional to the incentive to migrate, i.e.
the wage gradient. For these reasons a closer study of this particular specification is in
order.

Consider first the case where the cost still depends on location

The efficiency condition (88) assumes the form

2k(J:) ¢ = grad A

Substituting this into the divergence law, the flow variable ¢ is eliminated and a second­
order partial differential equation in Ais obtained

div [_1_ grad A] + q = 0
k(i)

The boundary condition takes the form

in A (90)

•

(grad A)n = 0 in aA (91)

These equations are in terms of gradient A. It is clear that A is determined only up to
an additive constant.
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The most interesting case is that when k = constant = 1/2 (say), i.e. it is independent
of location. Equation (90) then becomes Poisson's equation

~A + q = 0

(grad A)n = 0

inA

on aA

(92)

(91)

or in component form

a2 A a2 A
-2 + -2 + q(X!,X2)
ax! aX2

o inA (92a)

(9Ia)on aAoaA
an

Since k Ict> Ib, with b > I, is a strictly convex function of ct>, the solution of (91), (92) is
always unique.

In the theory of electrostatics the term is stated as

q = 2rre

where e represents the density of electric charge and A is the electric potential of the
field. The boundary condition

aA
(grad A)n = - = 0

an
(91)

specifies that no electric flux (or, by analogy, commodity flow) crosses the boundary aA.

2.4.6 Vanishing Divergence: Potential Theory

This case is introduced here for its mathematic rather than its economic interest.
Assume, as in the export-import problem of Section 2.3.4, that

div ct> == 0

ct>n = g

inA

on aA

(93)

(94)

This means that all demand/supply is external to the region. The boundary conditions are
feasible if and only if

f gds = 0

in view of the Gauss integral theorem applied to (93), (94).
Assume once more k == 1/2. The equilibrium conditions then assume the form

~A = 0 inA (92)

(grad A)n = g

or
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(9Ia)on aAaA- = gan
This is the so-called Neumann problem (Duff and Naylor 1966, p. 139). Alternatively
we may specify prices on the boundary

A(S) = p(s) on aA (91 b)

With the boundary conditions (91 b), equation (92) represents the standard problem of
potential theory.

Equation (92) is known as Laplace's equation. As Duff and Naylor (1966, pp. 133,
134) put it:

"Laplace's equation is the most famous and most universal of all partial differential
equations. No other single equation has so many deep and diverse mathematical
relationships and physical applications. A few leading cases are:
I Theory of functions f(z) of a complex variable z = x + iy, and the associated

conformal mapping theory.
2 Theory of gravitational or Newtonian potentials.
3 Electrostatic potentials.
4 Potentials of steady current flows (magneto-statics).
5 Stationary heat flow problems.
6 Potentials of incompressible inviscid fluid flow.
7 Probability density in random-walk problems.
8 Hannonic and biharmonic potentials in two-dimensional elasticity.
9 Water-wave potentials for unsteady motion."

The most important property for economic purposes is that equation (92) implies:

Theorem: Ag-) assumes its maximum value and its minimum value on the boundary.

This means the absence of supply or market areas with interior centers: these centers
must lie on the boundary.

2.4.7 Boundary Points: Single Source and Sink

A problem of the export-import type also arises when a finite number of point
singularities is introduced. The classic case is that of a single source and a single sink at
given locations, each representing a boundary point. Specifically, let a single source of
strength -q be placed at

(Xl,X2) = (-1,0)

and a single sink of strength q at

(Xl,X2) = (1,0)
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The solution of the Neumann problem is then

or

((XI + If + X~)1I2
In = In X

((XI -1)2 +xn ll2

(XI + 1)2 +X~ = X2
(XI -1)2 + x2xi

l ~]2 2_(~)2 _
XI + 2 + X2 - 2 1I-X I-X

This represents a family of circles (see Figure 2.18).

2.4.8 Duality for Quadratic Transportation Cost

Consider

which is solved by

1
C/> = - grad X

k

Substituting the solution in the integral

v = f f!C/>ogradX+XdivC/>+qXdx l dx 2

=f f -!C/>°gradX+div(XC/»+qXdx l dx 2

where the line integral vanishes by the boundary condition. Finally

V = f fqX- 2~ IgradXI
2

dx l dx 2

(95)

(96)

(97)

Consider now the problem of maximizing the concave function (97) with respect to X.
This (unconstrained) calculus of variations problem is solved by

q = -diV(~ grad X) (98)
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Figure 2.18. Flow lines and potential lines in the dipole: one source and one sink.

Utilizing (95), one sees that the constraint

div ¢ + q = a
is satisfied. The free boundaI)' condition is

(72)

We have thus shown:

on aA (91)

Lemma: The dual of the transportation cost minimization problem with quadratic
transportation cost function is the unconstrained problem

maxffq;.,. - _1_(grad ;.,.)2 dx l dx 2
i\ 2k

(99)

Consider the special case of an export-import problem or a transportation problem
with discrete sources and sinks. Then (99) takes the form
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subject to the boundary conditions

grad An = g on aA (101)

Problem (100), (101) is known as Dirichlet's principle and plays a major role in potential
theory (Courant and Hilbert 1953).

2.4.9 Remarks on Concave Transportation Costs

We note in passing that continuous flow is not consistent with strict concavity of
transportation costs with respect to volume of flow. In that case a channeling of flow
would take place so that separate flow paths of high density would emerge. This is in
fact what happens to a water flow in nature when it is channeled into a discrete network
of watercourses. Notice, however, that a fine structure of water channels may still be
approximated by a macroscopic description in terms of a flow field whose local direction
is that of the water channels and whose density is that of the water run-through per unit
area.

2.5 FURTHER EXTENSIONS

2.5.1 Mappings of the Solution Space

In some cases it may make it easier to visualize the flow lines that represent integral
curves to a Euler equation, or even simplify the solution process, if we map the actual
(flat) region studied homeomorphically onto another (flat or curved) surface. On this
latter surface, every point of the actual region has a unique image point, and every
point on the surface represents a unique point of the region. In the same manner, flow
lines in the original region are mapped one-to-one onto curves on the new surface.

We now require from this surface that, for any image of a trajectory, the arc length
on the surface must equal the transportation cost along the original trajectory in the
region. As optimal routes reduce to a minimum the transportation cost for any pair of
endpoints, we conclude that their images on the surface are geodesics, i.e. curves of
minimum length or the "straightest" curves that exist on a (possibly) curved surface.

Wardrop (1969) has explored the possibilities of using complex analytic functions
for flat representation so that the optimal routes are mapped onto straight-line segments,
whereas Angel and Hyman (1976), following a conjecture by Warntz (1967), have inves­
tigated the possibility of mappings onto curved surfaces of revolution, cones, cylinders,
and spheres. We will treat this problem in terms of Gaussian differential geometry as this
simplifies the general discussion.

As before, we denote the actual region by R and let S denote the (possibly) curved
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image. It is, of course, two-dimensional and can be embedded in ordinary three-dimen­
sional Euclidean space. Denote a point in this space ~ = (~l, e, ~3). We obtain the most
natural parameterization of S by using three coordinate functions e (XI,X2), e(XI,X2),
and ~\X I, X2), using the original Cartesian coordinates x I and X2 for points in R as
parameters. These functions immediately allow us to compute the image of any point
XI,X2 and of any curve Xl (S),X2(S) in R.

Let us now denote by ~l and ~2 the vectors (ae laXI, ae laXI. ae laXI) and (ae laX2'
ae lax2 , a~3/aX2)' By keeping one of the parameters XI.X2 constant at various values
and varying the other, we get a net of coordinate curves covering the' whole surface S.
Then ~l and ~2 are tangent vectors along these coordinate curves. By taking products of
these tangent vectors we obtain a set of interesting expressions. Starting with the "dot"
or scalar products we get the Gaussian first fundamental coefficients, traditionally
denoted

(102)

These completely define the metric structure of the surface S in terms of distances, areas,
and angles. An arc length element along the image of a parameterized curve X I (s ),X2(s) is

(103)

The formula is easily verified by using the chain rule. As transportation cost for an
infinitesimal displacement is kds, we require the square root in (103) to equal k in order
that distance on the surface be equal to transportation cost. Assuming S to be an arc
length parameter, by which we lose no generality, we have (dxdds)2 + (dx 2 /dsi == I and
can put dxdds = cos e, dx 2/ds = sin e. Hence

E cos2 e+ 2F cos e sin e+ G sin2e = k 2 (104)

If local transportation cost k depends only on the location coordinatesxl,x2 but not on
the direction of passage e (so that we are dealing with an isotropic problem), then (104)
must hold for all e with a constant right-hand side. Putting e equal to 0 and 1T12, in turn,
yields

E = G = k 2

Substitution from (105) into (104) yields

2F cos e sin e = 0

As this must be true for all e, we conclude that

F=O

(105)

(106)

Equation (106) tells us that the coordinate lines on S intersect orthogonally, like the
coordinate lines for XI. X2 in R, so that angles of intersecting curves are not altered.
Equations (105) tell us that the linear magnification factors are equal in the two coor­
dinate directions, and in fact in all other directions as well. This means that the mapping
is conformal and hence that the surface S must be conformal to the plane.

We now turn to the "cross" or vector product ~l x b. Unlike the scalar product this is
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a vector, orthogonal to both ~ 1 and ~2' As ~ 1 X b is thus orthogonal to both coordinate
lines it is orthogonal to the tangent plane and hence has the interpretation of a normal
vector to S. By normalizing to unit length we get the unit normal vector

(107)

This will be needed in defining curvature, but we first note that I~ 1 X ~2 Idx 1 dx 2 is the
area of the image on S of the rectangle dx 1 dx 2 in R. Accordingly, I~ 1 X b I is the areal
magnification factor. By an identity in vector algebra I~ 1 X ~212 == (~I • ~ I) (b .b) ­
(~I • ~2)2, which by (102) equals EG - F 2

• So

(EG - F 2 )112 (108)

is the areal magnification factor of the mapping.
Owing to (105), (106) we get (EG- F 2)112 = k 2. Thus areal magnification is com­

pletely determined by the transformation needed to make the images of optimal routes
geodesics. It is not possible to employ yet another transformation to make some areal
densities constant, as was conjectured by Bunge (1962). This was noted by Angel and
Hyman (1976).

Besides the metric structure of a surface its curvature structure is also important. If
we denote by ~ 11, ~ 12, and ~22 the three-component vectors of second partial derivatives
taken with respect to the parameters indicated by the subscripts, then the scalar products
of these with the unit normal vector

L = ~ 11 • ~ 1 x b/I~ 1 X ~2 I

M = ~12'~1 X ~2/1~1 X bl

N = ~22'~1 X ~2/1~1 x ~21

(109)

(110)

(111)

(112)

using the traditional notation, are the second fundamental coefficients.
Together with the first fundamental coefficients, these second fundamental coef­

ficients determine the curvature structure, and in fact, if E, F, G, L, M, and N are known
functions of XI,X2, they supply sufficient information to determine the surface com­
pletely, except for rigid translations and rotations in the surrounding space. This is true
provided only that such a surface exists, and for this a couple of integrability conditions
are required. These conditions impose constraints on the fundamental coefficients. As we
have seen, E, F, and G are determined by the k function. On the other hand we can
choose L, M, and N as we wish. The question is whether it is possible to choose them so
that the compatibility conditions are fulfilled. If not, the idea of mapping the solution
space lacks meaning, except in a few special cases.

The curvature of the surface in a normal section with direction dx 2 /dx l (as referred
to the parameter plane) is

L(dxd2 + 2M(dxd (dx 2) + N(dx 2)2

E(dxd2 + 2F(dxd (dx 2) + G(dx2)2

and this expression takes, at any point, a maximum and a minimum value in two specific
directions. These curvatures are called the principal curvatures. If they are of equal sign
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then the surface lies on one side of its tangent J?lane in the neighborhood of the point
of tangency. If they have opposite signs the surface crosses the tangent plane at the
point of tangency. Umbilical points are points where the curvature is equal in all direc­
tions. In the conformal case, we conclude that the numerator of (112) must then be
constant, as the denominator is, and hence L = Nand M = O. A sphere is a surface with
exclusively umbilical points. On the other hand, all normal curvatures must be zero for a
plane surface and hence L =M = N = O.

The product of the principal curvatures is called the Gaussian curvature and has the
simple formula

" = (LN - M 7')/(EG - F)2 (113)

There is a remarkable theorem by Gauss, which he himself called the "teorema egregium,"
which states that, even though L, M, and N can to some extent be chosen freely, the
expression LN - M 2 is determined by E, F, G, and their derivatives. Since we have seen
that the latter are determined by k in the conformal case, we get the simple expression

LN - M 2 = - k 2 div grad (In k) (114)

by the teorema egregium. This is one of the integrability equations. It must be noted that
the general form is much more complicated than that for the conformal case stated here.

The other two conditions, the Mainardi-Codazzi equations, are obtained by con­
sidering that various mixed third-order derivatives are invariant with respect to the order
of derivation. They too are particularly simple for the conformal case and read

(115)

and

(116)

where the subscripts denote partial derivatives with respect to Xl and X2'

We can now see how these formulas can be used. Let us first discuss the question: in
which cases can the surface S be a plane or a sphere? For the plane, L = M = N = 0, as
we have seen, and hence (115) and (116) are trivially fulfIlled. Then (114) reads div grad
(lil k) = O. Assuming that k is a function of r = (xi + xn1

/2 only, the solution is k = exr{3.
This agrees with Wardrop's (1969) conclusion that the only cost functions with circular
symmetry that admit plane transformations by analytic complex functions are of the
power variety. It should be observed that the conclusion applies not only to genuine
planes but to surfaces like cones and cylinders as well, where Gaussian curvature is zero.

For the spherical surface we have noted that all points are umbilical, i.e. L = Nand
M = O. Applied to equations (115) and (116), this information gives N1IN = 2kdk and
L 2 1L = 2k2 1k. These partial differential equations have a possible solution L =N = ,,112 k.
Substituting into (114) we get div grad (In k) = -" k 2

• Assuming again that k is a func­
tion of r only, we get the solution k = l/(a + ~r2). This again agrees with a result of
Angel and Hyman (1976). In this case the mapping could help us to find the solution.
The geodesics on a sphere are great circles and their stereographic projections on a plane
(which is a conformal mapping) are circles or straight lines. Finding these routes directly
from the complicated k function could be quite difficult.



THE CONTINUOUS TRANSPORTATION MODEL 65

Let us close this section by saying something about the existence of a suitable surface
S. Bonnard's fundamental theorem says that if E, F, G are any C 2 functions of XI, X2 and
L, M, N any C l functions of X I, X2 satisfying the Gauss and Mainardi~Codazzi equations,
then there exists a unique corresponding surface. In our case, we have a free choice of
L, M, N as long as the equations are not violated. As EG - F 2 = k 2 > 0, which is required
for the general theorem as well, it has been demonstrated that the second coefficients
can always be so chosen that the equations (114)-(116) are fulfille.d. Hence the surface
always exists (Guggenheimer 1963).

2.5.2 Bounded Flow

Suppose that there is a capacity limit

C = C(XI,X2)

on flow through point (XI,X2)

I¢I .;;; C(XI,X2) (117)

Then the cost-minimization problem is further restricted by (117). The Lagrangean
assumes the form

Maximizing this concave Lagrangean yields

(k + J1) !L = grad A ¢ =1= 0 (118)
I¢I

k + J1;;;' Igrad AI ¢ = 0 (119)

J1 = o • • I¢I ::} (120)
J1;;;' o ------ I¢I

When no flow is permitted through a certain point, J1 can be positive even where flow
vanishes.

Example: Consider a single source and a single sink. The line connecting the points
passes through a rectangular area where capacity is restricted. Then, in order to induce
flow to diversify and even use a northern bypass route, tolls J1 have to be charged for any
flow passing through the area of restricted capacity (Figure 2.19). Another example is
that shown in Figure 2.20.

2.5.3 Max Flow-Min Cut

The two-dimensional version of a famous network capacity problem (Ford and
Fulkerson 1962) is best illustrated by water flow through a river bed (Figure 2.20).
The river is bounded by two edges that are considered piecewise smooth. At each point
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Figure 2.19. A region of bounded flow.

in the river there is a capacity c(x 1, X2) limiting the flow. Suppose that the capacity
limits are applicable over a finite length of the river bed between curves C and D. The
object is to maximize total flow through curves Cor D.

The Lagrangean of this problem is

f ¢nds+f f -A[O+ div¢] +/1(c-!¢I)dx 1 dx 2

D

giving rise to the efficiency condition

¢
grad A = /1­

\¢I

(121)

(122)

The flow is a gradient flow. The potential function A has constant values on C and D.
These we may standardize

A = 0 on C A = 10nD (123)

and all isopotential curves in the bottleneck section are "min cut" lines. This means
that the capacity limits on through flow are effective on each potential line considered
as a cross section. As a degenerate case we have the possibility of a single potential
curve, representing a singular bottleneck.

2.5.4 Finite Approximation

For purposes of calculation, a continuous region must be subdivided into a set of
cells, and the continuous flow field must be approximated by a discrete set of vectors,
one associated with each cell. For convenience let
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/

/

/

Figure 2.20. Flow through a bottleneck.

i = 0,1, ... , m

j=O,l, ... ,n

(124)

(125)

be such a discretization of the continuous variables Xi. Then rewrite the flow vector

(126)

To obtain the divergence law, consider the outflow from and inflow into cell i, k across
its four boundary lines (see Figure 2.21)

- q(i,j) = net outflow from (i,j)

The cost-minimization problem becomes

m n

minI Ik(¢i(i,j)+¢~(i,j))1/2
i=O j=l

(127)

(128)

subject to (127). The efficiency conditions of this convex nonlinear program with linear
constraints are then

k ¢l(i,j)
b (¢i(i,j)+¢~(i,j))1/2 = A(i,j)-A(i-l,j)

k ¢2(i,j)
= A(i,j)-A(i,j-l)

a (¢I (i,j) + ¢~ (i,j))1/2

When a = b then (129) simplifies to

(129)
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(i.j + 1)

----I~. b
¢, (i ,j)

U.j )

a

a

U+ 1,j+ 1)

b

¢, U+ 1,j)

U+ 1,j)

Figure 2.21. Flow through a rectangular cell.

k ¢t (i,j)

(¢t (i, j) + ¢~ (i, j))112

k¢2(i,j)

A(i,j) - A(i - 1,j)

= A(i,j) - A(i,j - 1)

(130)

where A is now a times the previous A. When both components ¢t, ¢2 vanish at some
i, j then the left-hand side is undefined.

Equations (127), (129), and (130) are the discrete analogs of the two flow field
equations in the continuous case. Observe that, when the ¢ components do not both
vanish

¢t + ¢~ =1= 0

the squares of the left-hand side of (130) add up to k 2

[A(i,j) - A(i - 1,j)] 2 + [A(i,j) - A(i,j - 1)] 2 = k 2

The finite approximation of the cost function for Manhattan metric is

L L k11¢1 (i,j)1 + k 21¢2 (i,j)1
i j

(131)
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with the source-sink equation unchanged. The efficiency conditions are

k!signct>!

k2 sign ct>2

A(i,j) - A(i - 1,j)

A(i,j) - A(i,j - 1)
(132)

The conditions are not defined for ct>m = 0, m = 1 and 2. Writing ct>m = zm - Ym' with
zm ~ 0 andYm ~ 0, and the objective function as

2 m n

I I I km • (Zm +Ym)
m=! i=! j=!

one can show that

o
o

whenever IA(i, j) - A(i - 1, j)1 < k!}

whenever IA(i, j) - A(i, j - 1)1 < k 2

(133)

In a similar way one can show that, for Euclidean metric

ct>! = ct>2 = 0

whenever

[A(i,j) - A(i - 1,j)]2 + [A(i,j) - A(i,j - I)P < k 2 (134)

The discretization of the continuous transportation model with Euclidean metric
thus leads to a nonlinear program. It should be compared with the linear programming
version of the minimum cost flow problem when sources and sinks occur only in isolated
locations, viz. the transportation problem (Section 2.5.5). In the transportation problem
the underlying metric of transportation costs may be Euclidean or not. The flow variables
are no longer interpretable as vector components. We turn now to a brief description of
this situation.

2.5.5 Linear Programming Formulation

The linear programming formulation of the spatial market equilibrium problem with
given demand and supply is the so-called trans-shipment problem. Denote locations by i,
excess demand by qi, and flows from i toj by Xij. The divergence law takes the form

local excess demand = inflow - outflow

or

qi = I xji-I Xij

JERi jESi

(135)

The set R i is the set of origin locations j from which shipments can reach market location
i, while the set Si is the set of destination locations j to which shipments can go from
market location i.
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Efficiency of resource allocation in a competitive market results in minimum transpor­
tation cost. Let k jj be the cost of shipping one unit of the commodity from i to j. Total
transportation cost to be minimized is then

where T is the set of all admissible connections, i.e. of all links in the transportation net­
work joining locations i and j. T may be constructed from R i or S;: T = URi = USi . The
equation-inequality corresponding to the gradient law is the Koopmans price theorem

Iv - Ai = k ij ......o-------<.~ X ij > 0

Aj - Ai ~ kij -"--_.. Xij = 0
(136)

As in the continuous case, the level of the A is undetermined. The formal similarity is
obvious. The flow pattern is now one-dimensional: it is a tree, or can always be made into
a tree through the elimination of "neutral circuits" (Koopmans 1949, Koopmans and
Reiter 1951). Isopotential lines reduce to sets of isolated points on the flow tree (see
Figure 2.22),

:~

\
'.::
'.'.
~:
:::
:::

~~.
"

~~~:.:..:.

A= --5

Figure 2.22, Isopotentiallines reduce to sets of isolated points on a flow tree.



3 Short-Run Equilibrium and Stability

3.1 PARTIAL EQUILIBRIUM OF SPATIAL MARKETS

When studying spatial markets we can distinguish between three broad time periods,
in the same way as in general economic theory. In the very short run, a given fixed
supply is rationed among competing demanders (see Section 3.1.1). In the intermediate
run, the supply of given facilities may be expanded or contracted (see Section 3.2). In
the long run, facilities may be introduced at new locations or may depart from old
locations (see Chapter 6).

On a formal basis two types of supply function are of particular interest: the vertical
supply curve of Section 3.2 resulting from capacity limitations of facilities in place
(including land) and the horizontal supply curve of the procurement problem, treated
in Section 6.1.1.

3.1.1 Excess Demand Dependent on Price

Recall, so far, that the local price X has been considered arbitrary up to an additive
constant. This was quite natural in the context of supply and demand balanced at an
aggregate level. We can immediately add realism to the market model by allowing the
excess demand function q to depend on local price

q = q(X,Xl,X2)

divQ>(Xl,X2)+q(X,Xl,X2) = 0

Assume, in fact, that excess demand is a strictly decreasing function of X

(1)

aq < 0
ax (2)

We now show that X is then uniquely determined everywhere. Assume two solutions

Q>
k - = grad X

IQ> I

1/1
k- = gradp

11/11

and consider the boundary integral

(3)

(4)
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since both rf> and l/J must satisfy the boundary condition. By the Gauss integral theorem

o = f (X -1J)(rf> -l/J)n· ds = f f div [(X -1J)(rf> -l/J)] dx 1 dx 2

aA A

= f f (rf> - l/J). grad (X -IJ) + (X -1J)div (rf> - l/J)dx 1 dx 2

A

Now rf> vanishes wherever

rf>
k -I *- grad X

Irf>
(3a)

and the same applies to l/J. Since only the nonvanishing rf> and l/J contribute to the integral,
we may replace grad Xand grad Ji throughout by the expressions (3) and (4). Thus

o = f fk(rf> - l/J). (.:t -~) + (X - Ji) div (rf> -l/J)dx 1 dx2
1rf>1 Il/J I

Substituting (1) in the second term

o = f fk(rf> -l/J). (.:t -~) + (X - Ji) [- q(X) + q(Ji)] dx 1 dx 2
1rf>1 Il/J I

Now the first term was shown in Section 2.3.6 (uniqueness) to be nonnegative, and zero
only if

rf> l/J---
frf>1 Il/JI

Therefore, omitting this term we have

But for any strictly decreasing q

(X - Ji)[q (X) - qCJ1)] ~ 0

(5)

(Sa)

and = 0 only if X = Ji (6)

This may be shown as follows: if X> Ji then

q(X) < qCJ1)

and if

X < Ji
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then

q("A) > q(P)

In either case the two terms are nonvanishing and have opposite signs. Combining (Sa)
and (6) one obtains

Except on a set of measure zero it must therefore be true that

"A(x 1 ,X2) == Il(Xl,X2)

On sets of measure zero the conclusion follows by continuity (for "A is piecewise differen­
tiable and therefore continuous). We have thus just proved:

Theorem: If excess demand is a strictly decreasing function ofprice, then any equilibrium
price distribution "A(x 1, X2) is unique.

In spatial market equilibrium, one possible solution is that where markets are balanced
locally at prices whose gradients do not permit profitable arbitrage. Then there is no
integrated spatial market but merely a system of locally autarchic markets. As trans­
portation cost declines through technical progress such a system may become an inte­
grated spatial market. As a result of this integration the price spread must decrease. In
fact, importing locations must now have lower prices and exporting locations higher
prices.

In general terms this conclusion arises from the dual transportation problem, where
spread is maximized subject to the constraint that gradients may not exceed transpor­
tation cost; hence reducing transportation cost necessarily reduces gradients (cL Section
2.2.9). Note also that the efficiency conditions are linear homogeneous in k. Hence a
proportional reduction of all k reduces the "A in the same proportion and hence all differ­
ences of "A, in other words the price spread.

3.1.2 Welfare Maximization

As a special case, let the excess demand function

q(p,x) = a(x)-bp

be linear with constant slope -b and an intercept a~) that depends on location. The
consistency condition for a closed region is

from which

_ a
p=­

b (7)
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where

ffp(Xj, x2)dx j dx 2

ffdx j dx 2

ffa(xj, x2)dx j dx 2

ffdx jdx2

Average price is thus proportional to the average intercept. The utility function u (con­
sumers' surplus) is obtained by integrating the demand function

a-q
p =--

b
Q

U - f a - t dt = -b
a

q - ~ qb
2

- 0 -b-

It is well known that competitive market equilibrium can be described as the result of
maximizing the sum of consumers' surplus and profits, sometimes called social surplus.
When transfers are cancelled, this is equivalent to maximizing the integral of the demand
function minus costs

ff[ aG!) I 2 jmax - q --q -klr/>I dx j dx 2
Q.</J b 2b

subject to (1). Or, eliminating q by means of (1)

mrff[- ~ divr/> - 2
l
b diV

2
r/>-klr/>lj dx j dx2

The Euler equation of this calculus of variations problem is

[
a div r/>] r/>

grad b+ -b- = k ~

or, in view of

div r/> = -q

a div r/>
A = -+--

b b

r/>
grad A = k-

Ir/>I

-a+ bA

which is the equilibrium condition (3).
The generalization of this to an arbitrary demand function q (A,~) is as follows. Let

A = p(q,:s.)



(8)
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be the inverse function of q. The consumers' surplus is defined as

q

u(q,;J.) = f p(t,;J.)dt
o

consistent with (7). Competitive spatial market equilibrium can then be characterized as
the solution of the maximization problem

m:x f) [Ft~')dt-kl.l]dx'dx'
yielding the Euler equation

where

gradp(q,~) k~
11/>1

q = - div I/>

p now represents the local price, hitherto denoted by r...
An analogous construction for a discrete spatial market may be found in Samuelson

(1952).

3.1.3 Monopolistic Price Policies

So far, supply and demand have been considered to be perfectly competitive. In this
section we assume, in contrast, that there is a single supplier. Initially, the supplier
operates a single plant, which we assume to be located at the origin :f = (0,0). Three
specific spatial price policies are generally distinguished for special attention out of the
set of all possible policies:

• Mill pricing or Lo.b. (free on board): the supplier charges a price p at the mill and the
demander bears the transportation cost.

• Uniform pricing or c.iJ. (cost, insurance, and freight): the supplier charges the same
price p and absorbs the transportation cost. However, the supplier may refuse service
to certain geographical points.

• Perfect discrimination: the supplier charges profit maximizing prices for each location
but bears the transportation cost.

These cases have been thoroughly studied in the literature, mainly on the assumptions of
a uniform plane and of linear demand curves. The purpose of this section is to formulate
these policies for arbitrary transportation cost functions k(;J.) and the demand densities
q (:f), while retaining for the most part the assumption of linear demand curves. Production
cost is assumed proportional to total output. In the case of linear demand it can in fact be
ignored (Beckmann 1976b).



76 SPATIAL ECONOMICS

It is easiest to begin with perfect discrimination. When charging prices p(:;~), local
revenue is PU)· qU) and aggregate revenue is the integral of this expression. Total cost
consists of transportation costs and production costs

Profits

G = JJ(p-c)q(p)-kll/>\dx 1 dx 2

are to be maximized subject to the constraint

div I/> + q (p) = 0

(9)

(10)

Observe that the region is "punctured" at ~ = Qand that a free boundary condition at
~ = Qpermits the necessary flow to enter the region.
- Consider now the Lagrangean

The efficiency conditions are

(11)

and

grad "A = k-.:t
11/>1

I/> * 0 (12)

q+(p-c-"A)q' = 0 (13)

The first of these conditions is familiar. The second may be rewritten as the Amoroso­
Robinson formula in the following way

p-c-"A

p

q--, =
pq E

where E is the elasticity of demand. Solving

c+"A
p =

I - (I/E)
(14)

If "A(,K) is tentatively identified as transportation cost to location,! then c + "A is
marginal cost and (14) states that prices should equal marginal cost times the Lerner
factor of the degree of monopoly 1/(1 - (1 /E)). In particular, let q be a linear function
times population density p(~). After standardization, Le. a proper choice of units
(Beckmann 1976b)

q = p(,!)(1 - p)

Equation (13) then becomes

(15)
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p (1 - p) - p • [p - c - X] 0

or

p =
l+c+X

2
(16)

Here (1 + c)/2 is the optimal price at the mill. To this is added half of the freight cost X,
a result first reported by Singer (1937).

To show that X(K) is indeed transportation cost from Q to ~, observe that X in (12)
is arbitrary and one may set X(Q) = 0 without restriction. (Alternatively X(Q) = 0 may be
derived from the free boundary condition at Q.) Equation (12) shows that Xincreases by
Ii in the direction of actual shipment rt>.

The dual problem may be obtained as before by rewriting the Lagrangean function
(11)

using the identity

div Xrt> = Xdiv rt> + rt> grad X

By the Gauss integral theorem

(18)

On the outer boundary rt>n vanishes by assumption; on the boundary atx = Q, Xvanishes.
Therefore

Thus

J ILdx 1 dx 2 =J J(P-C-X)q+rt>.( gradX-k
l
:

l
)dx 1 dx 2

~J J (p-c-X)qdx 1 dx 2

for all Xsuch that

Igrad Xl ~ k

This proves the following duality principle

subject to div rt> + q = 0 subject to Igrad XI ~ k
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The case of uniform pricing is now obtained by making p constant rather than an arbi­
trary function of J:. It may therefore be considered as a restricted case of discriminatory
pricing.

Now suppose that q is linear. Then the maximand in the dual has the form

p(p - c - A)( 1 - p)

Now define

m=l+c-p

and substitute for p in (20)

p(1-m-A)(m-c)

(20)

(21)

(22)

Now m can be considered a mill price, and the first term in parentheses is quantity
demanded, if customers pay m + A; the second term in parentheses is then unit profit.
Comparison of (20) and (22) shows that finding the optimal mill price is mathematically
equivalent to finding the optimal uniform price, and that the optimal mill and uniform
prices are related by (21). This result is well known for the case of monopoly in a uniform
transport cost case (Beckmann and Ingene 1976).

For general demand functions the problem of determining the optimal mill price may
be formulated in a similar way using the dual (no formulation is known in terms of the
primal)

(12)

subject to

Igrad AI k

A(O) = 0

The Lagrangean is

L = (p-c)q(p+A)+1/Jo(gradA-ke)

where e is a suitable unit vector and the vector 1/J a Lagrangean multiplier. We now show
that 1/J may be interpreted as the flow vector. First we write

Now

vanishes on the outer boundary by the boundary condition and at Q since A(Q) = O.
Consider the maximum with respect to Aof



SHORT-RUN EQUILIBRIUM AND STABILITY 79

Differentiating the integrand with respect to Aand setting this equal to zero

(p - c)q I - div l/J = 0

If the maximand (22) is maximized with respect to p one has
-

q + (p - c)q I = 0

and comparing (23) and (24) yields

div l/J + q = 0

(23)

(24)

confirming the interpretation of l/J as the flow vector.
In the case of linear demand function the optimal uniform and mill prices may be

given explicitly. Differentiating the Lagrangean integral with respect to the uniform
price p and setting it equal to zero, we have

or

o = JJp(l - 2p + c + A)dx 1 dx2

from which

or

p =
l+c+~

2
(25)

(26)

Here ~ represents the average transportation cost from the mill to the customers. Using
the identity (21) we immediately obtain the optimal mill price

l+c-~
m=l+c-p=---­

2

These results, too, are well known for the special case of a uniform transportation plane.
Here they have been extended to general transportation cost metrics.

3.1.4 Monopoly with Multiple Facilities

A monopolist may control multiple outlets operating (in general) with different
marginal costs. In such a situation uniform pricing and mill pricing are much less natural;
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in fact, each plant should have its own mill price. In contrast, under "basing point pricing"
a mill price is defined for one outlet only, and prices are charged as if all supplies came
from that one point. Uniform price too could depend on the supply point but this
would invite retrading across boundaries where prices change discontinuously.

Rather than discuss these complex and often illegal possibilities, we will consider
here only a perfectly discriminating monopolist, particularly since this sets a standard
that other monopolistic practices can only approximate.

We begin by considering a monopolistic trader who has available quantities z(~) at
locations ;f, and these quantities are assumed to have zero opportunity cost. The monop­
olist faces demand q(p, ~) at location ~ and seeks prices P(;f) that yield maximum
profits. In view of the' commodity shipments ¢ required for these sales, his profits are

The constraint is now

div ¢ .;;;; z - q (27)

with the left-hand side representing net exports and the right-hand side the quantities
available for net export from a given location. In order to maximize G subject to con­
straint (27) we introduce the Lagrangean

Maximization with respect to ¢ and p yields

¢
k - = grad A ¢ -=F 0

I¢I

(p - A)q I + q = 0

(28)

(29)

(30)

Equation (30) is the well-known condition for a profit maximum if A is interpreted as
the opportunity cost of supplying the commodity at location;f.

It is possible that the monopolist will choose not to sell the entire supply

In that case the < sign in (27) will apply somewhere so that A will be zero at locations
of excess availability.

3.1.5 A Case of Duopoly Pricing

The theory of pricing under spatial oligopoly rightly occupies an important place in
spatial economics (Hotelling 1929). In this section we treat one illustrative example in
order to demonstrate how a continuous treatment of space may be incorporated into this
theory.
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Suppose that a duopolist offers a product slightly different from ours so that markets
will overlap. Assume an exponential distance effect, attractions al and a2, product prices
PI and P2 , and distances (in transportation cost units) Xand r, respectively. Our power of
market penetration at any point ,x is then given by

and the resulting market share is

ale - b (p I + A)

1 + a2 eb(p,-p,+A-r)

al

Writing

and

PI = P

this simplifies to

1 + aeb(P+A-r)

If the density of demand is p, our profit G is given by

(31)

(32)

(33)

(34)

If the duopolist behaves adaptively he chooses a profit-maximizing P regardless of the
other duopolist's price P2, which is implicit in a. Essentially, the problem has now been
reduced to the form of a monopoly problem, with a given, nonlinear demand function
q(p + X), as studied in Section 3.1.4

1

When choosing a mill price, P must be treated as a constant; when selecting a discrimi­
natory price policy one has instead P = p(,x). We illustrate this by considering a discrim­
inating price policy for distant customers. For customers distant from us but close to
the other firm, P + X- r is large, so that the integrand is approximately

( ~) p -b(p+A-r)p-c-I\-·e
a

Maximizing with respect to P yields

a = e-b(P+A-r) -b(p -c - X)e-b(P+A-r)

from which
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I
p =-+C+A

b
(35)

This is a policy of mark-up pricing in which a fixed profit margin lib is added to the cost
C + A of supplying a customer. Here discriminatory pricing is identical with mill pricing.
Notice that the terms P2 and r referring to the effect of competition no longer appear in
the price-determination equation, but that lib, which reflects the exponential distance
effect, does. In principle this price policy is still valid when more than two firms are
present, provided the market is always divided with one (for example, the nearest) of the
several competitors.

3.2 LAND USE: PARTIAL EQUILIBRIUM

Having derived demand from utility functions (cf. Section 3.1.2), the next step is to
obtain supply from production decisions. We start with the simplest type of production
function. Throughout it is assumed that producers maximize profit.

3.2.1 An Introductory Model

It is a fact of economic theory that supply is accessible to much deeper analysis than
demand. So far we have considered the short run, where supply is given. Having discussed
demand as the result of utility maximization (in a one-commodity model requiring no
budget constraint), we now turn to the supply side in the intermediate run: all facilities
are in place but they are subject to capacity constraints. Up to the limit of capacity,
production is possible at constant unit cost. This is consistent with (but does not require)
constant input coefficients. For linguistic simplicity, the production facilities will be
identified with the land they occupy. Therefore we consider in this section that land at
location ~ can produce the product in question up to an amount a(~) at constant unit
costs c(~). The supply curve is thus of the type shown in Figure 3.I .

Initially we assume demand to be given independent of price q (~). The competitive
market will allocate production so as to

(36)

subject to

div ¢ + q - z

a ,;;;; z ,;;;; a

a (37)

(38)

where all variables depend on location~.

Consider now the Lagrangean
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c

a

Figure 3.1. A simple supply function.

Optimization yields the efficiency conditions

<P
k- = grad A-

I<P I

z = a

O";;;;z";;;;a

z = 0

for

for

for

<P =F 0 (39)

(40)

Production takes place only where the value for the product A-, its competitive market
price, is at least equal to its marginal cost c. Production occurs at the maximum rate a
when the product's value exceeds its marginal cost.

Now, at locations where the commodity is consumed but not produced, its value
A- must be larger than at some location whence it is obtained. It follows that, at all
locations

A- ;;;, min cC!)

'"The minimum level of marginal cost is a lower bound for the commodity's market
price. This bound is particularly interesting when c(J:) == c is constant throughout. Then
c is in fact a lower bound on commodity prices everywhere. For

q ,,;;;; a, A- ~ c, and A- = c only where q < a

When

the aggregate production capacity is just sufficient to satisfy aggregate demand. We have
then, in fact, once again the continuous model of transportation.

When demand is price-dependent, the market will maximize a welfare function, in
which u (q) is the consumers' surplus

max f fU(q) - cz - k I<p Idx 1 dx2
rJ>,z,q
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subject to (37), (38). An additional efficiency condition determines consumption q

q 0

q ;;. 0

for

for

u'(q) < X}
u'(q) = X

(41 )

Thus no consumption takes place where marginal utility, even at the zero level of con­
sumption, falls short of the product's market price X; otherwise marginal utility equals X.

The dual of the problem with fixed demand is obtained as follows

II-k I¢ I- cz + X[z - q - div ¢] + P [0 - z] dx 1 dx 2

= II -¢·gradX+ [X-p-c]z-Xdiv¢+pa-Xqdx 1 dx 2

~ - I X¢n ds + I I pa - Aq dx 1 dx 2 for all X- p~ c

since ¢n vanishes, by the boundary condition. Thus

(42)mJnIIkl¢l-cz dx 1 dx2

subject to (37) and (38) subject to X- p ~ c

Igrad XI ~ k

The dual is in terms of efficiency prices X and p, while the primal is in terms of a vector
field ¢. For price.dependent demand, the dual is instead

00

max I I Iq(P)dP+ pa dx 1 dx 2
A,JJ.;;' 0

A

subject to

x-p~c

Igrad XI ~ k

This may be shown along the same lines as those of Section 3.1.2.

3.2.2 Variable Proportions

In this section we consider production of a single commodity with mobile labor and
fixed land according to a constant-returns production function
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z = f(/,m) (43)

where I is labor and m land. The cost of production is

wl+gm

where w is the wage rate and g the land rent, and land input is subject to the constraint

m ~ a (44)

Once again we consider demand to be fixed. A competitive market now allocates
resources so as to

min Ifwi + gm + k II/> Idx 1 dx2
I,m,,,,

subject to (44) and

div I/> = f(/, m) - q

Consider the Lagrangean

L = -wl-gm -kll/>I- X(divl/> + q - f(/,m» + p(a -m)

Optimization with respect to 1/>, I, and m yields the efficiency conditions

I/>
I/> =I=- 0k - = grad X

II/>I

0 for Aaf < w)al

I ;;;. 0 for
af

X- w
al

for
af

m 0
X- <g+")am

m ;;;. 0 for
af

X- = g+p
am

(37a)

(45)

(46)

(47)

Now, if in conditions (46), (47) the lower alternatives apply for some I, m > 0, then
they apply for all positive multiples of I and m so that production can be expanded to
the limit m = a. Conditions (46), (47) state the familiar marginal productivity principle:
each factor is employed to the point where the value of its marginal product equals its
wage.

For illustrative purposes consider a Cobb-Douglas production function

z = b(x.)lam(J 0:+(3 = 1 (48)

Notice that productivity b depends on location, but the output elasticities 0: and (3 are
technologically determined and independent of location. Conditions (46), (47) now take
the form
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z

:lI = 0 for aA- <
I

for
z

I ;;;. 0 aA- =
I

m 0 for
~: <g+")

m;;;' 0 for {3A- = g+1J.
m

Wherever production takes place the factor proportions are determined by

m w (3- = ---
g+1J. a

Substituting I from (49) into the production function (48) yields

(
g a)o<

z=b ~13 m

The production cost associated with a unit input of land is

(46a)

(47a)

(49)

Thus

m = a

m = 0

for

for

(50)

In particular, when the factors have no alternative use

g = 0

and

IJ. = 0 whenm < a

It follows from (50) that

m = a whenever A > 0 (51 )

Thus production takes place at full capacity wherever the product price is positive. In
that case labor input is determined by



(53)
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at
w "A-(l,a)al

"AQ:Z

"Aba af3 I'X-1

Aba(fY

from which

I = a· (~br{3 (52)

The case of flexible demand is similar, with the addition of the consumption condition
(41) from Section 3.2.1.

It is always possible, even with price-dependent demand, that the value of the com­
modity falls to zero in remote locations, because it cannot cover the cost of transpor­
tation to the consumption locations. In such circumstances even a zero land rent cannot
induce its utilization.

Substituting (51) and (52) into the production function yields output

(
a"A)aJf3z = a bl!f3 -;

Finally we obtain profits or rent g + 11 (setting 11 = 0)

g Az - wi

g = ~abl!f3(~rf3

Note that all the variables are proportional to land availability a.

3.2.3 An Illustration: Supply Areas

(54)

Let consumption of a particular commodity be concentrated in one small area,
assumed to be a circle of negligible radius (or even a point). In the surrounding area, land
has no alternative use other than to produce the commodity in question. Labor is avail­
able wherever needed at a constant wage rate wand transportation cost k is constant. The
production function is the Cobb-Douglas function of the previous section. Under com­
petitive conditions all variables are functions of distance'r from the consumption center.
In particular

"A = "A(r) = "A(O)-kr (55)
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Land is used productively wherever "A is positive

m

m

a

o
for "A(r)-kr> 0

for "A(r) - kr < 0

The limit of production R is determined by

"A(O) -kR = 0

or

"A (0)
R=­

k

Labor employed per unit of land is then, using (52)

(56)

(
cxh )11131= a' -; • ["A(O)-kr] 1113 r<R (52a)

Labor intensity is thus a convex function of r, decreasing with distance from the con­
sumption center to zero for r;;;;' R. Output is, using (53)

z = ab l/13 (~) G'/13 ["A (0) - kr] G'/13 (53a)

Output is proportional to land capacity a, and it also decreases with distance to zero at
r = R. Output is a convex, linear, or concave function of r depending on whether Q is
greater than, equal to, or less than 13. The standard case is Q > 13.

Finally consider profits or rent per unit area

(
Q)G'/13

g = 13abll13:- ["A(O)-kr]G'113 (54a)

Rent also decreases with distance and reaches zero at r = R. It is convex in the standard
case when Q > 13.

Qualitatively, these results remain true when some of the output is consumed locally
and some of the land is used for housing labor locally. In the simplest version only the
productivity coefficient b and the land availability a are then reduced, but the analysis
remains the same.

3.2.4 Land and Labor Immobile

Let both labor and land be available in fixed quantities

m < a

1< d

(44)

(44a)
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and have opportunity costs g and w, respectively. Assume once more a linear homo­
geneous production function

z = !U,m)

The competitive market solves an allocation problem

minff(wi + gm + k II/> I)dx j dx 2

subject to constraints (44), (44a), and

divl/> = !(/,m)-q

Consider the Lagrangean

L = -wl-gm-kll/>I-"A(divl/>-!U,m)+q)+p(a-m)+v(d-/)

Optimization with respect to I, m, and I/> yields

(38)

(37a)

k -.!L = grad "A
11/>1

I/> =F 0 (45)

o

I ~ 0

m = 0

m~O

for

for

for

for

"A a! < w )al

"A a! = w + v
al

< g )

= g+p

(46a)

(47a)

We now show that p >0, v> 0 cannot both be true but that, at most, one factor
can earn a scarcity rent p or v, respectively. In fact, performing the calculations of the
previous section (3.2.2) with w + v in lieu of w shows that, as before, either z = 0 or
m =a. Moreover, factor proportions depend on (w + v)/(g +p). But any positive value of
that ratio can be achieved by choosing either v positive or p positive or both zero. Thus,
even when both factors are fully utilized, the scarcity rent need go to only one factor.

It can be shown that factor prices w + v and g + P are continuous functions of loca­
tion ~. In particular, if wages wand rents g are continuous, so are the scarcity rents,
v and p, respectively.

3.2.5 Remarks on Diminishing Returns

Examination of the case of a production function with diminishing returns offers
nothing new, except that neither land nor labor need now be fully utilized in locations
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where production of the commodity takes place. Diminishing returns are due presumably
to the presence of other factors such as capital. Production with land, labor, and capital
is studied in detail in Chapters 4 and 5.

In the following section we turn from single-commodity models to those dealing with
multiple products.

3.2.6 Alternative Land Uses: The Specialization Theorem

In this section we discuss briefly a topic to be more fully developed in Chapter 4,
namely, how land should be allocated to competing uses. Our discussion is in terms
of a fixed-coefficient technology, but the result applies to any set of linear homogeneous
production functions.

Suppose a unit of product i can be produced at location.:f with unit cost Cj of mobile
inputs (including labor) and a fixed input of land, mj. Total land availability is again
a = a(~). Let the quantities desired for consumption be qj(x). The competitive market
will then minimize the cost of achieving this consumption program. Let Zj denote quan­
tities produced and tPj quantities shipped

min
Zj.1>j

subject to

div tPj + q i - Zi o (37b)

(44b)

The first constraint states the commodity balance equation for each commodity and the
second the limit on land availability.

We introduce the Lagrangean

L = - I CiZi - ~ kMiI- ~ Ai(div tPj + qi -Zi) + /l (a - Imjzi)
I I I I

The efficiency conditions are

k'~ = grad AI'
II tPi I

~

(45b)

Zi = 0

Zi ;;;, 0

for

for

Ai <Ci+/lmj}

Ai = Cj + /lmi
(46b)

Here /l obviously represents the rent of land that serves to ration its use among the
competing products.

Note first that not all land need be utilized, since production cost Ci for every product
could exceed product value Ai in some (remote) location. If a positive program of con-
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sumption q is to be carried out, however, land in some locations will have to be used
productively. Wherever this is true, a rewriting of (46b) shows that

A--c-1J.;;;;._I__1
mi

and

IJ. =
Ai-Ci

mj

for some i

It appears that IJ. represents the largest value added per unit of land, a statement expressed
more succinctly by

(
Ai -Ci)IJ. = max ---

i mi
(57)

Suppose that two products can be effectively produced in some location ~ because the
lower alternative holds in (46b) for more than one i. In order for this to be true in an
entire neighborhood, the two products must satisfy

Ai -Ci A- -c-__ == _J__J

mi mj

Suppose that costs C and land inputs m remain in the same proportion. Then the two
product prices must also stay in the same proportion. The two products must move in
the same direction. Products whose prices and movements are similar to this extent
should be considered identical.

We state this result as a

Land Use Specialization Theorem: Except on sets of measure zero land is used for, at
most, one product.

This theorem states, under more general market conditions, what is already known in the
von ThUnen case: that zones of specialized land use emerge under competitive conditions.

3.2.7 A Short-Run Model of Urban Structure

As a preliminary to a more comprehensive model of the location of production and
residential activities in an urban area, consider the following simple model of competition
for space between two types of industry and their labor forces. This is a von ThUnen
model based on a fixed-coefficient technology and it addresses the same problem of
urban structure as the Mills model (Mills 1972). However, the space demand of pro­
duction activities is expressed not in terms of a certain height of buildings but in terms of
floor-space and labor requirements per unit of output and in terms of weight (or transpor­
tation cost) per unit of output. Moreover, in the short run the amount of available
floor space f!. is assumed given. The total amounts to be produced of each product ZI, Z2
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are also assumed given; so are the total labor requirements L I , L 2 • Production costs are
independent of location. The objective is'to locate these activities so as to minimize total
transportation cost. This classic principle of location theory has recently acquired a new
significance through our heightened consciousness of the need for energy saving in
transportation.

Let 1/>; ,denote the flow of product i = 1,2 and 1/>0 denote the flow of labor, all
measured in the direction of the center. The objective function is then

where the domain of integration is a circle of radius R.
Let Z; be the density of activity i per unit of floor space. The following constraints

apply to the interaction of activities and flows. For production:

i = 1,2 (37c)

The divergence of the flow equals production. Let bo units of labor require one unit of
housing, and let production of i require b; units of labor per unit of floor space. Zo is
the density of housing. Then the commuter flow 1/>0 is governed by the divergence law

divl/>o = bozo -blz l -b2 z 2

The total output requirements are

(58)

i = 1,2 (59)

and the total amount of labor needed is

Conditions (59) and (60) will be restated as boundary conditions.
The amount of floor space available at ~ may be allocated to either housing or

production

Zo + ZI +Z2 .;;; a (43c)

Notice that we assume the space requirements of production activities to be unity. In
other words, we measure production levels in terms of their space requirements. The
problem is to allocate space in such a way that total transportation cost is minimized
subject to constraints (37c), (43c), (58)-(60).

The boundary conditions are as follows: no flow of labor or product through the
outer boundary, no flow of labor through the center, but total flows Z; of product i
through the center. We construct a Lagrangean

ff lJok; 11/>;1 + ;tAi(Zi - div I/>i) + Ao(bozo-itbiz i - div 1/>0)

+ J1 (a - Z0 - ZI - Z2)1dx I dx 2 + J/i (JfZidx 2 dx 2 - Zi)
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The efficiency conditions are as follows

k.~ = grad Ai i = 0,1,2 r/>j "* 0
(4Sb)

I Ir/>d

Zi = 0 wherever Ai < bjAo + P}
(46b)i = 1,2

Zi ~ 0 wherever Aj = biAO + P

Zo = 0 wherever bo AO ::} (46c)
Zo ~O wherever bo AO

Here Ai represents the values of labor and products. Labor commutes in the direction of
increasing value (equation (4Sb)). It is housed where its value equals that of the floor
space occupied (equation (46c)). Production takes place where the product value equals
the value of land and labor inputs (equation (46b)).

Floor space always goes to the highest bidder, for (46b), (46c) can be rewritten

maX(AI - b lAO, A2 - b2AO, bOAo)

max (PI ,P2 ,Po) (for example)

(S7b)

(S7c)

Since the product necessarily moves to the center, the product values Ai at distance r
from the center are

Ai(r) = Ai(O) - kir i = 1,2 (SSe)

The locations of the two production activities and the housing activity depends on their
rent bid functions for floor space.

Consider first the condition under which one industry, say i = 1, locates right next to
the center. Its rent bid function PI must then fall off more rapidly than the rent bid
function Po of labor for housing. Now

grad Po

grad PI

-kobo

grad(A} -blAO)

= -kj + blko

The condition for "heavy industry" to outbid labor for central locations is

grad PI < grad Po

or

or
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(61 )

The transportation cost of product 1 must be sufficiently large relative to the commuting
cost of labor. When (61) is satisfied, the inner zone immediately adjacent to the central
business district (represented here by a point) is occupied by heavy industry and the next
zone by labor commuting to work in the heavy industry zone.

Next we consider the possibility of mixed land use involving housing and industry. An
industry 2 using resident labor has a rent bid function

P2 = A2 -b2 Ao

in view of (57b), (57 c). Its bid must be the same as that for housing, Po

Po = boAo

from which

A2
Ao = ---=-­

bo + b2

and using (61a)

boA2

P2 = bo + b
2

If this zone is to follow that of commuting labor one must have

grad Po < grad P2

bo
-kobo < - -k2

bo + b2

or

(6Ia)

(62)

(63)

Thus, zones for "heavy industry" using commuting labor, and "light industry" using
resident labor and located beyond the housing zone for commuters are distinguished by
the criteria (61a) and (63). This model can be augmented by introducing industries whose
product is not marketed at the center but is exported through the outer boundary. Once
again, three zones are possible. Together with the CBD, here represented by a point, they
constitute the seven zones of a city. Incidentally, one of the "heavy industries" may be
the housing of rentiers and elderly persons who spend their time in the CBD but experi·
ence heavy transportation costs.

The mixed use of land for housing and production might seem to violate the special­
ization theorem of Section 3.2.6. However, labor is operating here as a mobile inter­
mediate good - and the specialization theorem did not allow for such intermediate
commodities. Housing and light manufacturing may, in fact, be considered as a joint
activity, characterized by its own constant coefficient of production. By contrast, if two
activities could take place in arbitrary mixtures at the same location, such fixed joint
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coefficients would not exist. In passing, it is interesting to note that exactly this type of
joint land use for housing and manufacturing was observed in Chicago after the fire (Fales
and Moses 1972).

3.3 A GENERAL EQUILIBRIUM MODEL

3.3.1 One Mobile Product

An economy in which there is only one transportable good cannot be organized as a
market economy. For how can the exporters of the commodity be compensated and how
can the importers pay for their demand? This is possible, however, when the importers
are absentee landlords and the exporters are serfs who pay their rent (personal or land
rent) by handing over specified quantities of the product to their landlords. Transpor­
tation is then arranged by other (possibly foreign) agents, who are paid in terms of the
good by either serfs or landlords. Thus the surplus produced by serfs takes care of both
the consumption of landlords and the transportation cost.

Another possibility is the following. Over a person's lifetime, the single product may
be net produced by the person while in one location and net consumed after retirement
to another location. In this case imports have been prepaid so that a combined inter­
temporal interregional equilibrium is possible.

Let us return to the general model. Let transportation cost be in units of the single
product and equal to h. The equation for local balance of the commodity is then

div ¢ = z - q - h I ¢ 1 (64)

Production of one unit of the commodity requires unit labor input so that no distinction
need be made between labor and product in production. Let labor availability be limited

o .:;;:; z .:;;:; a(~)

The object is to achieve the consumption program q with minimum labor input

minI Iz dx 1 dx2

subject to (64) and (65). Introduce the Lagrangean

L = -z-A(div¢+q-z-hl¢I)+tJ(a-z)

The competitive market achieves an efficient allocation of resources characterized by

¢
grad A = hA-

I¢I

z = a for A>

Jo .:;;:; z ':;;:;a for A =

z = 0 for A<

(65)

(66)

(67)
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While everything thus operates on a labor standard of value, the product value may lie
above or below the unit value of labor. However, in locations where production takes
place the commodity value is at least equal to one. The same applies a fortiori to con­
sumption locations. In fact, where the commodity must be imported its value must be
greater than one. Note that the transportation cost is itself proportional to the com­
modity value. Thus, equation (66) could be rewritten

¢
grad log A = h­

I¢I
(66a)

To see the implications of this consider a von Thtinen case where production is dispersed
and consumption is concentrated in a single point (or small circle). In terms of distance
r from the center, (66a) states that

d log A = -h
dr

A(r) = A(O)e -h r (68)

The commodity thus has a positive value at every distance. The present model minimizing
total labor input imposes, however, a cut-off distance r = R where A(R) = 1 as stated in
(67). Suppose, however, that labor is available everywhere at wages fixed in commodity
units WA, and that land input is fixed at unity. Let the production function be Cobb­
Douglas

z = bIOI.

Profit per unit of land using labor I on one unit of land equals

AblOi. - wAI

and its maximum with respect to I is the land rent

g max AblOi. - wAI
I

(

Q )01./(1 -01.)
g = A· (I - Q) ~ bll(l -01.)

and this is achieved by a constant labor intensity

(
Qb) 1/(1 -01.)

1= -
W

resulting in a constant output per unit of land

( )

01./(1 -01.)

Z = bll('J -01.) ~

(69)

(70)

(71)

(72)

The commodity price still falls exponentially with distance according to (68). But since
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wages and transportation cost are in commodity units, production takes place at constant
intensity up to a distance R determined by the demand at the center, q (0).

3.3.2 Exchange of Two Commodities: Rotational Flow of Value

Consider first the budget constraint that applies to local excess demand when eco­
nomic activities are restricted to trading in these two commodities and their transportation.
Specifically, let local income be earned from local transportation plus trade. In locations
that sell commodity 1 (and thus buy commodity 2), income is

and this income is spent on commodity 2

y(~) = q2p2

The budget constraint is therefore

qlpl + q2p2 -k11ct>I I-k2 1ct>2 1 = 0

(73)

(74)

and it has the same form in locations that sell commodity 2.
Under these conditions, an equilibrium exists in which the two commodity flows are

opposite and equal in value terms. We first prove:

Theorem: The flow of value pi ct>1 + p2ct>2 is purely rotational.

Proof: Consider

div(p1ct>1 +p2ct>2) = pi divct>1 +p2 divct>2 +gradpl.ct>1 +grad p 2 .ct>2

_plql _p2 q2 + k
l

ct>1 ,1,1 + k ct>2 ,1,2i¢ii''!' 21¢21''!'

o by (74)

On the boundary one has

plct>~ + p2ct>~ = 0 (75)

by the boundary condition for a closed region. A flow field whose divergence is identi­
cally zero and does not transcend a boundary is purely rotational, for div rot = O. Q.E.D.

The example of Figure 3.2 shows that, in a square region with production of each
good localized on one of the two diagonals, a nonvanishing rotating value flow can occur
as a solution. When k is isotropic, there is always another simpler solution: the two
commodity flows are opposed. Given the first flow the strength of the second flow is
chosen so as to make it equal in economic value at each point to that of the first flow.
The price of the given commodity increases, while that of the second decreases along
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Figure 3.2. Flows of two commodities in a square region, where production of each good is localized
on one half of the Northeast-Southwest diagonal.

the original flow lines. Then both gradient and divergence laws are satisfied for the
second commodity so that this flow is an optimal solution. (Recall that the efficiency
conditions are both necessary and sufficient for equilibrium.)

3.3.3 Extension to Multi-Commodity Trade

Suppose that transportation cost is distributed as income earned locally. Then the
net flow of value is purely rotational

(75)

Note: In the case of more than two commodities one can no longer conclude that one
flow is the opposite of any other, but rather that any flow is now the opposite of the
combined value flow of the other commodities.

On the other hand, when incomes from transportation are earned by persons residing
outside a subregion, there must be an outflow in value terms just sufficient to purchase
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the transportation services. Consider a subregion AoCA, which imports its transportation
services

f ~ p'¢~ds =f fdiv~pi¢idxldx2
aA o I A o I

=fJ~ pi div¢i + ~¢i ogradpidx 1 dx2
A

o
I I

The budget constraint is now

qlPI + q2P2 = 0

implying

(76) = f f ~ k;l¢i 1dxl dx 2 > 0
A o I

Therefore- net exports are now positive.

3.3.4 Production of Two Commodities

(76)

(74a)

Consider an economy producing two mobile products. Suppose that each location
produces exactly one of these i = 1,2. (Compare the specialization theorem of Section
3.2.6.) Assume the local outputs to be given independent of price. Let the cost of trans­
portation k be a given multiple of the price of one of the two commodities at a particular
given location. Assume demand to be generated by a logarithmic utility function

u = al log q 1 + a2 log q2

The problem is to determine the equilibrium price distributions

(77)

i = 1,2

Let the income oflocation (x I, X2) be obtained through production only

Y = I ZiPi
i

(78)

(where only one of the two summands is positive). The demand functions for the two
products are

aiY
qi =

(al + a2 )Pi

Without restriction assume that

1,2 (79)
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Now

ai
qi = - L PjZj

Pi j

If the chosen location exports product 1 then

al
ql = - 'PIZI = alzl

PI

a2
q2 = - ·PIZI

P2

The excess demand functions are therefore

(80)

(81 )

(82)

PI
q2 -Z2 = a2 z 1

P2

and the equilibrium conditions are

div cPI '- a2 Z I = 0

independent of price for commodity 1, and

involving the price ratio PI /P2, for commodity 2.

(83)

(84)

(85)

cPi
k- = gradpi

IcPd
i = 1,2 (86)

A consequence of the first two equilibrium conditions is that

PI div cPI + P2 div cP2 = 0 (74a)

This is the local trade balance equation, stating that payments for imports must equal
receipts from exports. Since transportation is supplied by outside agents, boundary condi­
tion (76) applies.

At points that export commodity 2, the indices must be interchanged in (84) and (85).

3.3.S A von Thunen Equilibrium Model

Let the metropolis, considered as a point located at the center, be the producer and
exporter of an industrial good and let the surrounding area of radius R produce an
agricultural good. The outputs are Z I of the industrial good and Z2 per unit area of the
agricultural good. The total quantities are then Z 1 and
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Let transportation require only good I as an input, so that transportation cost is

(88)

where

Pi = Pier)

is the price of good i at distance r from the center. The income of the metropolis equals

yeO) = Pi(O)Z I + PI (0) T

where T is the total amount of transportation. We assume that the suppliers of transpor­
tation live in the metropolis. Absorption of good 1 in the metropolis equals

QI (0) = ~) yeO)
PI (0

= 0:1 [ZI + T]

Consumption of good 2 in the metropolis is, using (79)

Q2 (0) = P:~O) yeO)

= PI(O)[Z +T]
0:2 P2 (0) I

The prices of the commodities at distance r from the center are then

for the industrial good, which flows outward, and

(89)

(90)

(91)

(92)

for the agricultural good, which flows to the center. Excess supply or export of the
agricultural good per unit area at distance r from the metropolis is given by

(93)

If we standardize the agricultural output of one unit of land as unity, demand for the
industrial good or imports per unit area at distance r, using (83), is given by

P2
ql = 0:1 -

PI

P2(0)-h 2PI(0)r
0:1

PI(O)+hIPI(O)r
(94)

The total flow of agricultural products from exporting areas beyond distance r through
the cross section 2rrr at distance r equals
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R

FC!) = f (Z2 - q2) 21Tr dr
r

= al1T(R2 -r2)

The flow through a unit cross section is then

IQJC!)I = FC!) = al (R
2 -r)

21Tr 2 r

and the transportation effort for the agricultural product is
R R

T2 = h 2 f f al 21Tr dr
o r

R

= h 2 f r'21Tr'al dr
o

= ~ 1T h2 a l R 3

(95)

(96)

The transportation effort for the industrial good is more complicated to calculate since
the density of consumption falls with distance. In fact, using (94)

R

f
P2(0)-h2Pl(0)r

TI = h l m I 21Tr' dr
PI (0) + hlPI (0) ro

= 21Ta l h l [P2(0)f

R

r
2

dr-h 2PI(0)f

R

r
3

dr]
o PI(O)+hIPI(O)r 0 PI(O)+hIPI(O)r

(97)

Substituting

TI + T2 = T

from (96) and (97) in (89) and (90), one obtains the demand for both goods in the
metropolis.

Equilibrium is now established by equating the demands for each good to the supplies
Zl and Z21TR2. The supply of the industrial good will be assumed given (as a measure of
city size), while the radius R of the agricultural supply area remains to be determined

R

Zl = al(ZI + T)+alf P2(0)-h2PI(0)r 21Trdr (98)
PI(O)+hIPI(O)r

o
PI (0)

1TR
2
al Z2 = a2 P2 (0) (ZI + T) (99)

The two equations (98) and (99), in conjunction with (96) and (97) for T I and T2 ,

determine the two unknowns R and PI (0)jp2(0). von Thiinen was perhaps wise to steer
clear of an explicit analysis of this spatial equilibrium problem, the details of which are
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rather messy! We merely state here without proof that R is an increasing and PI (0)/P2 (0)
a decreasing function of Z I. The radius of the supply area and the relative price of the
agricultural good increase with the size of the metropolis.

3.4 DYNAMICS

3.4.1 Dynamic Adjustment by Gradient Methods

Let X, (/) be a trial solution satisfying the boundary condition (/)n = 0 but not neces­
sarily the equilibrium conditions - the divergence law and the gradient law. Choose a
suitable time unit and introduce the following rules of adjustment

. (/)
(/) = grad X-k­

1(/)1

X = - (q + div (/))

In this first rule, the vector

(/)
grad X-k­

1(/)1

(100)

(101)

indicates the direction of shipment that yields maximum profit or minimum loss. In the
second rule

q + div (/)

is the sum of local net demand and net exports. If this is positive, there is excess supply
from this location and therefore prices should be lowered. Consider now the change of
the Lagrangean cost integral K = K ((/), X)

Now

d
-1(/)1
dt

and

ff Xdiv ~ + ~ grad Xdx 1 dx2 = f f div X~ dx 1 dx2

using the Gauss integral theorem and ~n = 0 on aA.

o

(102)

(103)
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Therefore

Substituting (103) and (104) into (102)

dK f f .(k¢ ).- = ¢ --gradX +X(div¢+q)dx 1 dx2
dt I¢I

Now the adjustment rules (100), (10 1) may be applied in (105) to yield

dK = -fflgradx-k..:L12 + [div¢+q]2dx 1 dx 2
dt j¢1

(104)

(105)

(106)

This is strictly negative as long as anyone of the equilibrium conditions is violated. It
follows that the adjustment process converges to the equilibrium solution. Here

K [¢, X] - K min (107)

where K min , the minimum value of the transportation cost integral, plays the part of
a liapunow function. It is nonnegative and vanishes only at the equilibrium, and it
decreases monotonically with time.

3.4.2 Extension to Price-Dependent Demand

When excess demand is dependent on price, we have a maximand

M =f f (u(-div¢)-kl¢l)dx 1 dx 2

where the utility function is a consumers' surplus

q

u(q) = f P(XO,Xl,X2)dxo = U(q,Xl,X2)

°
Let

(108)

(109)

P = p(-div¢,xl,x2)

throughout, so that local markets are always in equilibrium: excess supplies -q(Xt>X2)
are equal to net exports div ¢. The flow of product is adjusted according to the same rule
as before

¢
¢ = gradp -k­

I¢I
(100)
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while keeping regional outflows zero

¢n = 0

Now

on aA

moreover

(110)

au
-= paq

and

q - div¢

By the Gauss integral theorem

so that

Substituting (100) into (110) and using (111)

dM =ff¢o(grad P- k-.!t)dx 1 dx 2
dt I¢ I

and using (100)

dM I ¢ 1

2

- =ff gradp-k- dx 1 dx2 > 0
dt I¢I

(111)

(112)

This shows that flow adjustment alone is sufficient for convergence when prices are set
to equilibrate local excess supply and net exports. The Liapunow function is here

Mmax -M[¢]

3.4.3 Price-Flow Dynamics in a One-Commodity Model: Price Waves

Let us formulate another simple dynamic adjustment model. Suppose the local cost of
transportation to be a linear function of flow intensity so that we have a slight congestion
effect. We put, for convenience
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k = 1r/>1/2

Accordingly, we get total transportation cost as

(113)

(114)

This expression is to be minimized subject to a constraint on the divergence of the flow
and one boundary constraint. Suppose that local excess demand is price dependent, so
that we write q(X) with q '< O. Accordingly

divr/> = -q(X)

As shown above, the condition for (114) to be a minimum subject to (115) is

r/> = grad X

(115)

(116)

A combination X*, r/>* that fulfills (115), (116) and the boundary constraint is a solution
to the equilibrium problem.

The equations (115) and (116) can also be combined into the single equation

div grad X = - q(X) (117)

which has some similarity to the Laplace and Poisson equations that appear in potential
theory.

We examine two simple examples. First, let q == - 4 and X =,2, where' = (x i +
xD1I2

• As div grad,2 = 4, equation (117) is fulfilled. We have a case with a constant excess
demand everywhere and a price that increases with the square of the distance from the
origin. As r/> = grad,2 = (2x 1, 2X2), the flow is radially outward and the intensity Ir/> 1= 2,
increases linearly with the distance from the origin.

For the second example, set q = -6, and X = ,3. Then, once again, (117) is fulfilled.
The price rise as we move away from the origin is somewhat steeper and so is the increase
of intensity, Ir/> I = 3,2 . Flows are still radial and outward.

We are now ready to introduce the dynamics. Put

and

x= a(div r/> + q(X))

~ = b (grad X- r/»

(118)

(119)

Equation (118) tells us that the rate of change of price is proportional to the extent to
which the withdrawal of goods by the flow exceeds the desired excess supply at the local
price, or the extent to which the delivery from the flow falls short of the excess demand.
To make the process feasible, we have, as always with such adaptive processes, to intro­
duce local stocks of goods. Equation (119) states that, if grad X and r/> have the same
magnitude, then the direction of the flow is adjusted in proportion to the difference
between their directions. If, on the other hand, grad X and r/> have the same direction,
then (119) tells us that the intensity of the flow is adjusted to the extent to which it
deviates from the rate of spatial price increase.
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We now define the deviations from the equilibrium price and flow patterns

J1. = X- X"

and

(120)

(121)

Recalling that X" and 1/>" satisfy (115)-(116) and that they are time-invariant, we obtain
by substitution into (118), (119)

J1. = a(div 1JJ +q(X" + J1.)-q(X"» (122)

and

~ = b (grad J1. - 1JJ) (123)

Making a Taylor expansion of q (X" + J1.) around X" and truncating after the linear term
we obtain the approximation

q (X" + J1.) - q (X") = q' J1. (124)

This expression is then substituted into (122).
Next, we differentiate (122) with respect to time, to get Ii = a(div ~ + q'p), and

substitute from (123) to get ji = a(b div grad J1. - b div 1JJ + q'p). Finally, we substitute
from (122) for div 1JJ and get

ji + (b - aq')p - abq' J1. = ab div grad J1. (125)

This is a wave equation that includes a linear "friction" term, which may be expected to
give stability to the model. To solve the equation we use the method of separating vari­
ables, i.e. we put J1. = T(t) X(x 1, X2) and obtain

T"/T+ (b -aq')T'/T-abq' = ab(div gradX)/X (126)

This equation can hold as an identity in space and time only if both its sides equal one
and the same constant. Denoting this constant by 1', we get:

and

T" + (b - aq')T' + (I' - abq')T = 0

ab div grad X + KX = 0

(127)

(128)

Equation (127) is an ordinary differential equation with constant coefficients. Its roots are

- (b - aq')/2 ± ((b - aq'i - 4(1' - abq'»ll2 /2 (129)

As the real parts of the roots are negative, we see that any motion in time is damped,
always provided that the roots are complex so that there is some oscillatory motion at all.

Equation (128) can again be treated by the separation of variables method, if we
assume that the region has a simple form, such as a rectangle or circle. In the circular
case, already used for illustration, (128) should be changed into polar coordinates:
r = (xi + xW/2 and w = arctan (X2/Xl). Assuming X(xJ, X2) =R(r) new) we arrive at
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the two equations

R" + R'jr + ((Kjab) -n2 jr2 )R

and

o (130)

(131)

The procedure leading to these equations again follows a recognition of the fact that
the separated solution RQ only fits when the expressions involving only distance or
only angle must equal an identical constant. This constant is n2

, where n is an integer.
The reason for this is that (131) only makes sense when n 2 is a square of an integer,
since only then will the angular wave in space end up at its initial value after a full round.
Solutions to (131) are pure sine and cosine functions, representing waves of various
lengths travelling circularly around the region.

Equation (130) is Bessel's differential equation, whose solutions are Bessel functions.
These represent waves that travel radially between center and boundary. The principle of
superposition allows us to use any linear combination of solutions to (130), (131) for
various n. Therefore, we get a set of radial and angular waves of different wavelengths,
travelling at various speeds. As K links the waves in space and time together, we can
conclude that the cycles travel faster the shorter their wavelengths. The exact mixture is
determined by the boundary conditions that determine, for example, whether waves can
travel undisturbed across the boundary or whether they are completely damped there.

As the price waves in p., which we have been studying, die away, so do the changes in
the gradient flows 1JJ = grad p.. Ultimately the oscillating system, disturbed by some
initial displacement from equilibrium, returns to the equilibrium state described by
X*, ¢i* = grad X*.

3.4.4 Alternative Derivation of Price Waves

Consider now the case where transportation cost is negligible, but assume the spatial
market to be in disequilibrium. The adjustment of flow is proportional to its profitability

a<t>
- = a gradpat

The adjustment of price is proportional to excess demand

(132)

(133)
ap
-=b[q+div<t>]at

Differentiating (133) with respect to time

a2 p aq ap a<t>
b-o-+b div-

at2 ap at at
Now substitute for a<t>jat from (132), use the dot notation for derivatives with respect to
time, and



SHORT-RUN EQUILIBRIUM AND STABILITY 109

,
q

to obtain

P

where

bq'P + ab !J.p (134)

a2 a2

!J. = divgrad = - +-­
axI ax~

In particular, if excess demand is independent of price (as in the simple continuous
transportation model)

p = ab !J.p ab > 0 (135)

and this is the wave equation in its simplest form.
We will not discuss the resulting price waves, since their space and time profile depends

crucially on the shape of the region. We will merely demonstrate the persistence of
fluctuations. Multiplying (135) by 2p one has

:t (p)2 = 2pp = lob P!J.p (136)

Now

P div grad p = div (p grad p) - grad p. grad p (137)

Integrating (137) over the region A and applying the Gauss integral theorem using the
boundary condition grad Pn = 0 on aA

JJpdivgradp dx 1 dx 2 = JJdiv(pgradp)-gradpogradpdx 1 dx 2

Assume that the boundary condition remains satisfied, so that cross flows do not change

a ( act» .o = - (ct>n) = - = a (gradp)nat at n

Upon integration by parts, the line integral vanishes and we have

(138)
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Integrating (136) over the region A and substituting (138)

or

(139)

If the system was initially not in equilibrium, then the constant is positive. If the system
ever passes through equilibrium, so that Igrad p 12 == 0, then

so that the motion continues. The system can never settle down to equilibrium and is
unstable. In the case where excess demand

q = q(p)

is a strictly decreasing function of price, the same argument applied to (134) leads to

(140)

since q' < 0 everywhere. Thus price-dependent demand acts as a damping factor with
regard to the fluctuations of p in time and space.

3.4.5 Diffusion of Expenditure

Let Y (x 1, X2, t) represent wealth in terms of liquid assets in locations Xl, X2 at time t.
Assume that spending units tend to spend this money at their own and in adjacent
locations Xi ± ~X at time t + ~t. In discrete terms

Y(Xl,X2,t+~t) = cOY(Xj,X2,t)

+ Cl [y(Xl - ~X,X2, t) +Y(XI + ~X,X2' t)

+ Y(Xl,X2 - ~x, t) +Y(Xl,X2 + ~x, t)]

(141)

where Co is the propensity to spend at home and Cl is the propensity to spend in any of
the adjacent locations. Rewriting the bracketed term

[Y(XI + ~X,X2) - y(Xl,X2)] - [Y(Xj,X2) - Y(XI - m,x2)]

+ [Y(XI ,X2 +~x)- y(x 1 ,X2)] - [Y(XI ,X2) - Y(XI. X2 - ~x)]

+ 4Y(Xl,X2)
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one observes that

Y(Xl,X2, t +.M) - Y(Xl,X2, t)

f::.t

I
(co + 4Cl -l)Y(Xl,X2, t)­

f::.t

+ f::.x
2~ [f::.1Y(Xl + f::.X,X2) _ f::. 1Y (Xl,X2)]

f::.t f::.x f::.x f::.x

+ f::.x
2.~[f::.2Y(Xl'X2 + f::.X) _ f::.2Y (Xl,X2)]

f::.t f::.x f::.x f::.x

Now assume that the total propensity to spend equals unity

Co + 4c 1 = I (142)

Then the first term on the right-hand side disappears. Let the ratio between the time
change and the space change be fixed at

/::;.x 2 m
-- = - = constant
f::.t Cl

Going to the limit we obtain

ay
- = mf::.y
at

or

m (a2y + a
2y

)
axi ax~

(143)

(144)

the well-known diffusion equation. This equation may be given the following interpre­
tation. Introduce the gradient field grad y. We observe that money flow in the region is
then described by

¢ = -grady (145)

and the change in liquid wealth is the divergence of this flow field. Thus liquid wealth
can change only through the net yield of money flows

Y -div¢ = -m dive-grady)

mf::.y

Add now the boundary condition ¢n = 0 on aA. Then it follows at once from the Gauss
integral theorem that

Total liquid wealth or money stock must remain unchanged.
Consider now an equal distribution of liquid wealth throughout the region
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(146)

We now show that this is the only stable equilibrium. Consider

using (144)

Now

(y - y) div grad y = div [(y - y) grad y] - grady· grad y

Also, by the Gauss integral theorem

II div[(y-y)grady]dx1dxz = I (y-Y)¢n cis a

by the boundary condition.
Substituting

(147)

proving the assertion.
Suppose now that spending by residents of a particular location is not financed

entirely by net receipts from trade but by outside earnings as well. Let Z(XI,XZ) be the
density of these net earnings, which may be negative. In that case residents of the loca­
tion pay wages to outsiders, presumably out of earnings from trade. The expenditure or
money flow equation is then modified as follows

ay
at Z -m dive-grady) (148)

Constancy of aggregate disposable wealth or aggregate liquid assets implies that

= I I Z dx 1dx z + mI(grad Y)n ds (149)

Thus, in equilibrium, aggregate net earnings Z from outside locations must add up to
zero. Now let y* be the stationary solution of this system

Z + m div grad y* = 0 (150)
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Consider

= JJ(y - y*) (z + m div grady) dx 1 dx 2 using (148)

m J J (y - y*)divgrad(y - y*)dx 1 dx 2 using (150)

m J J div [(y - y*) grad (y - y*)] dx 1 dx 2

-mJ J[lgrad(y - Y*)IFdx 1 dx 2

< 0

since the first integral vanishes by the Gauss integral theorem and the boundary condition.
This shows the stability of the equilibrium solution y * of (150).

3.4.6 A Migration Model

This section contains a brief restatement of a migration model based on the hy­
pothesis that, in a competitive spatial labor market, migration is motivated by interlocal
differences in (real) wage rates. Formally the equations describing equilibrium in a
spatially extended commodity market remain applicable. Suppose, however, that unlike
in the commodity model there exists a positive relationship between the size of the flow
and the gradient of wages (cf. Section 2.4.3). This may be due to the fact that moving
costs are difficult to know precisely, that they vary among households, and that they
may contain a significant nonmonetary element. Then it is not unreasonable to postulate

¢ = m . grad w m > 0 (152)

With m a positive constant this simple hypothesis states a proportional relationship
between the size of a migration stream and the magnitude of the wage gradient.

Consider now a stationary economy in which the demand for labor in each location is
constant over time, but of course different between locations. Assume that increments
-Q(Xl,X2) of populations are also given and independent of wages, but that they may
depend on location. A stationary equilibrium is possible only if the overall increase of
population, aggregated over the region as a whole, is zero. This hypothesis of zero aggre­
gate population growth means that

(153)
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Assume also that no immigration or emigration takes place from the region

(/>n = 0 on aA
The divergence law is, as before

div (/> + q = 0

Combining this and (152), and assuming m to be uniform

d
' q
IV grad W = - -

m

(grad w)n = 0

in A

on aA

(154)

(155)

(156)

This Poisson equation may be solved by means of a Green function

W(Xl,X2) = ;; -I fG(XI,X2'~I'~2)q(~I,b)d~ld~2

In simple cases the Green function depends only on distance

r = [(xl-~d2 +(X2 _~2)2]1/2

In the formulation (156), wages appear as dependent on the population increases q,
weighted by their distance from a given location (x 1, X2)' This is a formalization of the
idea of "Iocational potential" propounded by Zipf (1941), Stewart (1958), and Warntz
(1959). In particular, if we assume an unbounded region and postulate that the potential
function remains regular, the Green function is given by the logarithmic potential

1 1
G = -Iog-

21T r
(157)

so that

W(Xl,X2) = -l-·Jfq(~I,b)log [(xl-b)2 +(X2 -~2)2]-lI2d~ld~2 (158)
21Tm

The locational potential assumes here the form of a logarithmic potential function,
Locations that absorb migrants (q > 0) have an increasing effect on wages, while locations
that emit migrants have a decreasing effect, and in both cases this effect is proportional
to the logarithm of the inverse of distance.

A three-dimensional interpretation of the flow relationships is required in order that
the locational potential should take the form of Newton's potential. In that case the
gravity law may be applied to the interaction of populations at a distance where popu­
lation is considered in terms of flows rather than stocks (Beckmann 1957).



4 Long-Run Equilibrium ofTrade and
Production

4.1 INTRODUCTION

The equilibrium models examined in previous chapters were trade models for one, or
occasionally, two commodities. Excess demand functions were taken as given. In this
chapter we move towards traditional general equilibrium theory by explicitly formulating
the production and consumption decisions that underlie these excess demand functions.

Thus, one decision unit of each kind - one firm and one household - will be associ­
ated with each location. This coexistence need not be taken too literally. The micro­
structure of a location may well involve a physical division of space between households
and firms in a realistic way. The areal densities of population and production we are
interested in, however, are perceived on a more macroscopic level than that of a detailed
city plan.

4.1.1 Firms

We assume that only one good is produced according to a neoclassical production
function with traditional substitution among inputs. This good is assumed to be the
single commodity consumed by the households, i.e. it is composite and includes housing.
The same commodity is assumed to be invested as capital. The fact that it is also assumed
to be used up in transportation in the von Thiinen manner should not be thought of in
terms of a horse eating the goods it is carrying. All that the one-commodity assumption
amounts to is the specification of an identical production technology for consumer
goods, capital goods, housing, and transportation. This does not seem too unrealistic as a
first approximation.

We also assume that the same production technology is available at all locations.
Local differences in production densities and choices among various input mixes are
thus endogenously explained by the model. These depend on local prices, which in turn
depend on proximities to input supplies and market places and on transportation costs.
This is the classical land-use problem of deciding which type of production to establish
at a certain location. More specifically, we ask what should be done at a certain place,
and not where a certain activity should be carried out. The decision is thus of the von
Thiinen rather than the Weber type. The latter is relevant when we deal with colonization
of previously empty space. When all space is already occupied, the landlord can only
choose the use to which he will put his land, since he cannot transfer his piece of land
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to a place where the land rent is higher. Therefore the question of what to do where is
more relevant than the question of where to do what.

Production depends upon three primary inputs: capital, labor, and land. We assume
the production function to be linearly homogeneous, which implies that we can divide
throughout by land input to obtain the areal density of production as a function of the
areal densities of capital and labor used. This procedure makes land disappear as an
explicit input; it only remains reciprocally in the areal densities. The reason for this is
that housing and transportation services are produced (along with capital goods and
consumer goods). These activities use up output, while the use of primary inputs such
as land has already been accounted for elsewhere. Consequently production is the only
activity which uses land.

Capital is invested from current output at each location. In a long-run equilibrium,
capital stock is constant and we deal only with the replacement of used-up capital. Taking
the depreciation rate of capital as a universal constant, capital cost in commodity terms
equals this constant. Accordingly, an optimum capital stock is maintained if and only if
the marginal productivity of capital everywhere equals this depreciation constant. It
follows from this that capital incomes are entirely reinvested and that net profits are
due to landlords as land rent. Accordingly, land rent is determined residually by the local
profitability of land use in production.

4.1.2 Households

If the households at each location owned the firms located there, no interregional
trade could occur, since trade would balance locally everywhere. Therefore we assume
an ownership mapping that maps locations of owners to locations of property. This
allows for ownership concentration and absentee ownership. As a result we also obtain
the much more interesting aspects of trade and specialization among locations.

The households have to find the optimum use for their disposable income. Part of
their income originates from land ownership (= profits) and constitutes nonlabor income.
The rest of their income is obtained from labor. In other parts of this study we consider
commuting and labor flows. To simplify, we disregard commuting at this stage of the
analysis, and assume that all potential working time, except the share devoted to leisure
and household work, is used as an input to the local firm.

Each household decides upon the quantity to be consumed (including housing) and
the quantity of leisure (including household work) that are optimal in view of the local
price and wage rate. The quantities are determined within the bounds of each household's
income, which is composed of land rents and the value of all potential working time.

As in the case of the firms' decisions concerning how much capital to invest at each
location, the households are assumed to decide an optimum size of local labor stock
(family size, or whatever we choose to call it). Technically, this is achieved by assuming
an individual utility function, depending on per capita consumption and per capita
leisure, with each household maximizing the product of family size and individual utility
as a measure of its total utility. This maximization is achieved by choosing an optimal
family size (= labor force).



LONG-RUN EQUILIBRIUM Of TRADE AND PRODUCTION 117

This construction is assumed to replace a locational decision by the households. Again,
the question is what should be done at a certain location (i.e. which family size should be
chosen), and not where should a certain activity be located (i.e. where the residence for
a given family should be). Once again, the principle of where to do what, instead of
what to do where, would perform poorly as a modeling instrument. The households
would choose a combination of the highest real wage rate and the lowest price level,
with the exact balance depending on the size of their nonlabor incomes. The optimal
locations would then, at most, be on a set of nonzero linear measure. We have already
noted that the firms would similarly choose locations of maximum land rent if the
"where to do what" principle were applied. The result would be that both firms and
households would crowd into sets of area measure zero. This demonstrates that deter­
mination of optimal locations in the Weberian manner is a poor modeling principle for
investigating the structure of a space that is already occupied. It works for the colon­
ization of empty space, but breaks down in our case where the von Thimen "locational"
decision concerning the best activity at each location is preferable.

As applied to the household in particular, this principle may seem somewhat absurd
at first, but it is just as logical as in the case of the firm.

4.1.3 Trade

Once the households have chosen the optimal labor stocks and the firms have chosen
the optimal capital stocks, local balances for labor and capital are obviously established
everywhere. Implicitly, we also have a local balance for the land market, since all land is
used in production. This was assured by the definition of the areal densities.

Unlike the case for inputs, there is not necessarily any local balance for the output of
the produced good. A certain quantity of the malleable commodity is produced at each
location. This constitutes the supply. On the demand side, we have local household
consumption (which, as we know, includes housing). Added to this are the need for
reinvestment to replace used-up capital goods, in a certain proportion to the size of
capital stock maintained, and the use of the commodity for transportation, in proportion
to the flow volume. This last proportion may vary from one location to the next, depend­
ing on the variation in natural obstacles to road construction and transportation. (Linear­
ity with respect to flow volume does not necessarily mean abstraction from congestion,
as road maintenance costs are assumed to be included along with locomotion costs in the
multiplicative factor.)

By subtracting the three items of demand (consumption, investment, and transpor­
tation) from supply (production of commodities), we obtain a local excess supply. It
need not be zero, and generally it does vary from one location to another. It enters the
commodity flow, if positive, and is withdrawn from it, if negative.

Globally, as a consistency condition for equilibrium, we could assume that excess
demand should vanish for the whole region under study. This would mean insulation.
Instead, we use the weaker assumption that trade with the exterior balances, i.e. that in
aggregate the value of exports at sections of the boundary with an outflow of commo­
dities equals the value of imports at sections with an inflow.
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4.2 PRODUCTION

4.2.1 Constant Returns

According to our assumptions, production can be carried out according to a general
neoclassical production function

Q = F(K,L,M) (1)

which is homogeneous to the first degree in the three inputs: capital, labor, and land.
Land is used as space for production and as a source of raw materials, which, through the
application of capital and labor services, are converted into the finished product. Given
such broad categories of inputs the assumption of linear homogeneity is not too
unrealistic.

Increasing returns are often assumed in regional science, more often, in fact, than in
general economics. This may be due more to a desire to arrive at certain conclusions
concerning agglomeration of productive activities than to any conviction about the
realism of the assumption itself. Moreover, it frequently appears that authors who suggest
increasing returns, or externalities, or both, actually have accessibility to other important
activities in mind. If the facility of communication is explicitly accounted for in the
model, there does not seem to be any reason to add an assumption about external effects
or increasing returns. All this would be more clear-cut in a model more disaggregated
than the one introduced below. But, it is not unreasonable to assume that our single
production function (which actually represents many different productive activities)
is the analytical expression for a microcosm of all kinds of activities that require mutual
accessibility. Then the scale of operations could be reduced or increased, in any propor­
tion, and this would amount to nothing more than linear homogeneity. We do not argue
that linear homogeneity cannot be criticized; we only imply that the particular reasons
for assuming increasing returns in regional science applications may be weaker than is
generally thought.

Accordingly, we can divide through by M, and obtain

QIM = F(KIM, LIM, I) (2)

which demonstrates that the areal density of output depends only on the areal densities
of capital and labor. We denote the areal densities by lowercase letters and write

q = f(k,l) (3)

This function, of course, is no longer linearly homogeneous. It displays decreasing returns
in the areal densities of capital and labor.

4.2.2 Marginal Conditions

We can now, as usual, write the marginal conditions for profit maximization. These
state that the marginal value productivities of capital and labor should equal the prices of
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capital and labor services, i.e. the capital rent and the wage rate, respectively. Now, as the
produced good itself is invested as capital, capital rent is proportional to the commodity
price, where the proportionality factor is the constant rate of capital depreciation. Thus,
dividing both the value productivity of capital and capital rent by commodity price, we
conclude that the marginal productivity of capital must equal the depreciation rate.
Denoting this latter constant by K, we write

(4)

For labor we obtain the more familiar statement that its marginal productivity must
equal the real wage rate. Formally

(5)

Accordingly, we conclude that the real wage rate alone completely determines the areal
capital and labor densities used in production, and hence also the resulting output density
of commodities.

All the variables, the areal densities of capital, labor, and output, as well as prices and
wages, are functions of the location coordinates x I, X 2' We observe that they are not
expressly included in the production function, which means that locational productivity
differences are disregarded.

Now, according to Euler's theorem for homogeneous functions, the value of output is
exhausted in the income shares of inputs. Denoting land rent by g, we can write

or

pQ KpK + wL +gM (6)

glp = q - Kk - (wlp) I (7)

As we have seen the real wage rate determines output and inputs. Accordingly, it also
determines the ratio of land rent to commodity price. We also note that there is no
optimum condition for land. The original production function could have been used to
obtain such a condition, but its fulfillment would be automatically guaranteed by Euler's
identity. Land rent is thus determined residually from the profitability of land in
production.

As for the producers' optima, we only have to add the assumption that the relevant
second-order conditions are fulfilled. We also note that if the inputs are assumed to be
substitutes, which is reasonable, then either a capital-intensive or a labor-intensive tech­
nology is chosen, according to whether the real wage rate is high or low.

We also conclude that, unless production is "regressive" in the Hicksian sense, produc­
tion density will be higher, the lower the real wage rate; see Hicks (1946, p. 93).

4.3 CONSUMPTION

4.3.1 Ownership

We now know how the land rents are determined residually as net profits of the firms.
As usual in general equilibrium economics, an ownership pattern should be specified to
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indicate which households own which firms. The most general procedure currently
utilized in economics is to assume an (arbitrary) partitioning of the profits of each
firm among all the households according to some shareholding pattern. As our case
involves a nondenumerably infinite number of households, we would need a continuous
density function defined throughout the region for the distribution of the profits of
each firm. As the firms are also nondenumerably infinite in number, we would need a
continuum of such density functions to specify the ownership pattern. This would by
no means be impossible, but in order to avoid formalism we prefer a simpler construction
where each firm has one and only one owner. The results are as rich as those obtained
from the alternative construction, but the formalism is much less complex.

We can specify the entire ownership pattern by one single mapping that associates
locations of households (denoted XI,X2) to locations of property (denoted ~j, ~2)' The
mapping

~1(XI,X2)

~2 (XI, X2)

(8)

(9)

maps the region considered into itself. It is assumed continuously differentiable. In brief,
we shall denote it ~ = Hx).

Of course, this structure admits absentee ownership (with the sole exception of the
necessary fixed point). What may be less obvious intuitively is that any degree of owner­
ship concentration we would like to represent is admitted. Defining the Jacobian of the
mapping as

(10)

we know that the households in the small rectangle of area dx l dx2 own all the property
contained in the small rectangle of area d~1 d~2 = Jdx l dx 2 • The households are wealthy
or poor, depending on whether the value of J is high or low.

The nonlabor incomes of the households can now be defined by

y(X) = g(Hx))J(x) (11)

(12)

As we recall, capital incomes are always reinvested, labor incomes are paid to the local
workers (= residents), and what remains (land rent or net profits) are due to the owner.
These land rents are first shifted to the locations of the owners and then corrected for the
areal distortion introduced by the ownership mapping. This is accomplished through
multiplication by the Jacobian.

An interesting fact is that, since the mapping Hx) is a simple change of coordinates,
we get

•
JJy(XI,X2)dx l dx2 = J Jg(~I,~2)d~ld~2
A A

Since the notation of the integration variables is immaterial, we conclude that the aggre­
gate nonlabor incomes equal the aggregate land rents. This, of course, is due to the fact
that Hx) maps the region A into itself.
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4.3.2 Household Decisions

We are now able to state the budget constraints of the households. Denoting consump­
tion by q', leisure (including time for household work) by z', and all potential working
time by L, we get

pq'+wz' = y+wL (13)

In the following text, uppercase letters K and L are used to denote totals of capital and
labor. In the case of capital we simply have k = K, as all capital is employed in produc­
tion. Labor, however, is partitioned into working time and leisure, formally L = 1+ z'.

As implied above in the Introduction, we write the objective function as

LU(q'/L, z'/L) (14)

Maximizing total utility with respect to the choice of consumption and leisure, subject to
the budget constraint, we arrive at the conditions

and

au
a(q'/L) = Ap

au
= i\w

a(/'/L)

(15)

(16)

Obviously, these first-order optimum conditions, along with the budget constraint, serve
to determine the demand for consumer goods (including housing) and leisure (including
household work), provided we know the price, wage rate, and nonlabor income of the
household. Nonlabor income again depends on the price and wage rate, but at the loca­
tion of the property, and on the ownership mapping. As the latter is taken as given, then
once the prices and wage rates are given, the households' and firms' decisions are also
given. By determining the part of potential working time reserved for leisure and house­
hold work, the household also determines the remaining share, which is the labor input
supplied to the local firm.

This holds provided the total amount of potential labor L is known. Now, we assumed
that the firms would choose to maintain a capital stock that would make marginal pro­
ductivity equal to the rate of depreciation. Similarly, total potential working time is
assumed to be subject to optimization.

4.3.3 Optimal Size of Local Population

According to our objective function LU(q'/L, z'/L), an increase in L would have three
effects. Obviously, more people would profit from any given individual utility, and this
would increase the value of the objective function. On the other hand, individual utility
would be reduced for any given quantities of consumption q' and leisure z', as they would
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have to be shared by more people. Third, we see from the budget constraint that the
wealth of the household would be increased by total potential working time, thus enabl­
ing an increase in both consumption and leisure. Population size is optimal at a particular
location if these three effects are in exact balance so that there are no incentives to
increase or decrease population. We now establish the condition for optimal local popu­
lation (= potential labor stock) and implicitly assume that the relevant second-order
conditions are satisfied. (This is ensured by the reasonable assumption of "decreasing
returns to scale" for the utility function, analogous to the assumptions concerning the
production functions.)

Formally, the product LU is differentiated with respect to L, while ensuring that all
three of the above effects are taken into account. By using the marginal optimality
conditions for consumption and leisure we can write

d(LU) A, I (dq ' dI
I

)-- = U - - (pq + wI ) + A p- + w-
dL L dL dL

(17)

(18)

where we recognize the three effects.
However, if we differentiate the budget constraint with respect to L (regarding price

and wage rate as given), we get

dq' dI'
p-+w- = w

dL dL

which fits nicely into the last parenthetical term of the preceding expression. At the same
time we can substitute pq' + wI' = y + wL into the first parenthetical term from the
budget constraint and, after cancelling equal terms of opposite sign, obtain

d(LU)

dL

Ay
U-­

L
(19)

Setting this equal to zero as a condition for optimum population, we have

LU = Ay (20)

As A is the Lagrangean multiplier of the budget constraint, it should be interpreted in
terms of marginal gain from relaxing the constraint. In fact, calculation shows that

dU
L- = A

dy

Substituting this into the optimum condition, the condition then reads

dU ~ = 1
dy U

(21 )

(22)

which states that the elasticity of per capita utility with respect to income from property
should be unity. By again assuming "decreasing returns to scale," we expect optimal
population to be larger, the higher the nonla bor income.
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4.4 TRADE AND EQUILIBRIUM

4.4.1 Introduction

As we have already indicated, the capital and labor markets are in local equilibrium.
Strictly speaking, the capital market does not exist. The firms simply maintain capital
stocks such that the marginal productivities equal the depreciation rate. So, the capital
stocks K = k are determined endogenously by the system.

As for labor, the total stock is divided in two parts, labor outside the household and
leisure, formally L = / + I'. As l' is determined by the household and / by the firm, there
is actually a local market for labor. The obvious variable for arranging the balance of
supply and demand is the wage rate. So, if L is given, wages are then determined by
supply and demand at each location.

The situation is complicated somewhat by the fact that L itself is subject to optimizing
choice. In the long-run equilibrium, the local households adjust their sizes to their non­
labor incomes, in the way indicated in the preceding section. As these nonlabor incomes
are land rents, whose size depends on the prices and wages at the property locations, the
price-wage system becomes linked interlocally. But it is still correct to say that wages are
determined locally on the labor market. Of course, these wages depend on the distribution
of population. The latter becomes endogenous in the model, where the additional degree
of freedom corresponds to the additional condition for optimal family size.

So far we have accounted for how the equilibria for inputs are achieved and how
their total quantities are determined. We now turn to the output market. Unlike the case
for inputs, there are generally no local equilibria for output. There is one component of
supply at each location (local output). There are also three items of demand (consump­
tion, reinvestment to replace used-up capital, and transportation of the commodity
itself).

4.4.2 Local Excess Supply or Demand

In order to state the continuity equation for how the trade volume changes with
local excess supply and excess demand, we begin by introducing the flow of trade in
commodities. As usual throughout this study it is a vector field

(23)

where the direction </>/1</>1 = (cos 8, sin 8) is defined as the actual direction of flow,
and the norm 1</>1 = (</>i + </>~)lIZ is defined as the volume of flow.

According to our introductory assumption a given proportion of the commodities
traded is used up to provide for transportation. We denote this proportion

(24)

In general it depends on location x, whereas it does not depend on the direction 8. The
transportation cost is thus isotropic. It may be useful to recall that the assumption
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whereby the good itself is used up as it is transported merely implies that the good is
produced according to the same production technology as is transportation. Later on we
deal with cases where the technologies are different. It should also be kept in mind that
the function hex) represents maintenance as well as locomotion costs, thus making it
reasonable to assume that local transportation costs (in commodity terms) depend
linearly on the volume of flow. Hence,

hl¢1 (25)

is the transportation cost in commodity terms at each location. Multiplying by the
commodity price, we convert this cost into monetary terms. Accordingly, total trans­
porta tion costs are

T =JJph 1¢ldx j dx 2 (26)
A

As q is now the quantity produced locally, q' is the quantity consumed, Kk is the quan­
tity reinvested as capital, and hi ¢ i is the quantity used up in transportation, excess
supply equals q - q' - Kk - h I¢ I. Since this enters the flow we have the condition

div¢ = q-q'-Kk-hl¢1 (27)

which is a kind of local equilibrium condition for output. The market does not have to
clear, but if it does not the excess must enter into the flow, or if negative, be withdrawn
from it.

4.4.3 Optimum of Transportation

We are now in a position to consider the optimum of transportation. It is immaterial
whether we assume that transportation costs are paid by consumers, producers, or some
kind of specialized transportation enterprise. The outcome concerning optimal transpor­
tation is the same in all three cases. So, to be precise, let us suppose that specialized
transportation enterprises buy everything that is produced at prevailing local prices and
sell it to all the households and investing firms, again at prevailing local prices. We assume
that these firms are numerous enough to act competitively. Their aggregate revenues are

IJpq' dx j dx 2

A

from sales to consumers and

IIKpk dx j dx 2

A

from sales to investors, and their costs are

(28)

(29)

(30)
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due to purchases from the producers. The net profits are

IIp(q'+k:k- q)d.x 1 d.x 2 (31)

A

which, according to the equilibrium condition for the flow, equals the negative of

I Ip(div¢+h l¢I)d.x 1 d.x 2 (32)

A

As there are no externalities, the transportation enterprises act so as to maximize their
aggregate profits, i.e. minimize the preceding expression. They minimize this (p and hare
exogenous to them) by the choice of the flow ¢. Now, minimizing with respect to ¢ is
again a well-defined variational problem with

¢
ph - = gradp

I¢I
(33)

as the appropriate Euler equation. As usual, this equation only determines the flow
directions. But the divergence equation above serves to determine flow volume.

4.4.4 Some Implications

We have now derived all the equilibrium and optimum conditions. The last condition
has the usual implications: that goods are shipped in the directions of the steepest price
increase, and that in these directions prices increase by accumulated transportation costs.

From the last equation, after multiplying by ¢, we readily obtain the useful relation

ph I¢ I = (grad p) . ¢ (34)

(35)

When this is substituted into the expression for aggregate profits for transporters (32), the
latter expression is changed into the negative of

II(p div ¢ + ¢ . grad p) d.x 1 d.x 2

A

Now, we can substitute the elementary identity from vector analysis div (p¢) = p div
¢ + ¢. grad p, and apply Gauss's divergence theorem to obtain profits as

ff div(p¢)d.x 1 d.x 2 = f P(¢)n cis = 0 (36)
A aA

This last expression equals zero because (¢)n denotes outflow of commodities in the
direction normal to the boundary, P(¢)n is value exports, and hence the curve integral
is the net value export surplus for the whole region. Owing to our assumption of a trade
balance with the exterior, this net surplus is zero.

Accordingly, we conclude that aggregate profits for the transportation enterprises
equal the import surplus for the region, and that they are zero when trade with the
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exterior balances. This is as it should be in the presence of perfect competition and free
entry in the long run. The fact that the~e are no net incomes from the transportation
activity justifies our argument that it is immaterial whether producers, consumers, or
specialized transporters are assumed to provide the transportation services.

4.4.5 Walras' Law

When the conclusion that aggregate profits from transportation are zero is applied to
our initial expression ((32)), we have

JJp(div ¢ + h 1¢l)dx1dx 2 = 0
A

which may be used to obtain

(37)

T= JJPhl¢ldx 1 dx 2 = -JJPdiV¢dx1dx2 (38)
A A

After substituting the divergence equation, div ¢ = q - q' - Kk - h I¢ I, into the cost
expression and removing aggregate transportation costs from both sides, we obtain

JJp(q - q' - Kk)dx 1 dx 2 = 0 (39)

A

This equation states that the aggregate value of all excess supplies, evaluated at local
prices, is zero for the whole region. This last equation is derived from the equilibrium
condition, which states that local excess supplies are entered into and local excess
demands withdrawn from the flow, the condition that trade with the exterior balances,
and the condition that transportation routes are optimally chosen. This was the only
information used. In particular, the equations related to the individual producers and
consumers were not used.

Let us now see what we can find out from these latter conditions. First, the budget
constraints indicate that pq' + wI' = y + wL. According to the definition L = I + 1',
the budget constraints can be written

pq' -wi = Y (40)

On the other hand, the fact that the revenues of the producing firms were exhausted in
value shares of the inputs (or, if we prefer, that profits are due to the landlord as rent),
implies that

pq - Kpk - wi = g (41 )

But we have defined y = qJ, and· noted the fact that the area integral of nonlabor
incomes equals the area integral of land rents. (This was simply due to the fact that
multiplication by the Jacobian merely implied a change in coordinates.)

So, the integrals on the right-hand side of the last two expressions taken over the
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whole region must be equal, and the same must obviously apply to the left-hand side.
Equating the integrals of the left-hand side and cancelling the integrals of wi, we obtain

ffp(q -q'-Kk)dx 1 dx 2 = 0 (42)
A

which again states that the aggregate value of local excess supplies is zero. This relation
was derived in a completely different way from the identical statement above. In fact,
this new statement provides us with a sort of Walras' law. The fact that this is identical
to the statement obtained from aggregate market clearing and trade balance relations
provides a check on the consistency of the entire model construction.

4.5 HOW THE MODEL WORKS

4.5.1 Introduction

We are now in a position to see how the model functions. Its core is made up of two
partial differential equations that must be solved in sequence, after which the rest of the
equilibrium solution is easily determined. The first differential equation determines
commodity prices and is derived from the "gradient law" (the optimality condition for
the flow directions). The second determines flow volume and is derived from the "diver­
gence law" (the condition that states how excess supply is entered into or excess demand
withdrawn from the flow). Of course, appropriate boundary conditions are required in
both cases. The first case contains "world market" prices, established by trade in the
exterior and hence on the boundary. The second case involves trade volumes, likewise
established by exterior trade and crossing the boundary. In both cases the boundary
conditions combined with the corresponding differential equations serve to determine
the spatial distribution in the interior.

It is logical to begin with the differential equation for commodity prices. This equa­
tion is easy to derive from the gradient law ph ¢II</> I = grad p by taking squares of both
sides. As </>/I</> I is a unit vector, its square equals (scalar) unity, and we get

As grad pip = grad In p, we can rewrite this equation in the form

(a lnp/axd + (a Inp/ax2)2 = h(Xl,X2)2

(43)

(44)

where we have simply expressed the square of the gradient in terms of partial derivatives.
As h is a known function of the location coordinates, we obviously have a simple differ­
ential equation for the natural logarithm of commodity price.

4.5.2 Huygens' Principle

Equations of this type are well known from optics. Our flow lines (the integral curves
of the direction field ¢II</> I) correspond to light rays, our constant price contours to wave
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fronts, and our transportation cost (in commodity terms) to the refractive index. We thus
have complete correspondence and can apply all that is already known about this widely
studied differential equation.

Under fairly reasonable boundary conditions the equation always has a unique solu­
tion. The easiest way to explain this is by adopting the simple but ingenious method, due
to Huygens, for constructing new wave fronts from known ones. We put one point of a
compass on any point on the known price contour and draw a circle with a radius equal
to the reciprocal of the transportation cost h. The radius obviously equals the distance
commodities can be moved by using up one unit of them (as the cost is itself given in
commodity terms). This procedure is repeated for as many nearby points on the known
contour as necessary. The radius of the compass is continuously adjusted to the reci­
procals of transportation costs at the centers of the circles, until there are enough circles
to draw an envelope. This envelope for the family of circles is then the new price contour.
As long as the price corresponding to the old contour is known, we can label the new one
by its price. The price increases by the price of the commodity itself. This is because, by
construction, the new price contour represents the farthest locations that can be reached
from the old contour by using up the value of one commodity unit. As prices increase by
transportation costs equal to the prices themselves, the rate of increase is exponential.
This is also revealed by the fact that our differential equation is written in terms of the
logarithm of prices.

This method may be used to construct any number of new price contours and thus
to establish the whole price distribution in the interior. Of course, the procedure is
approximate; its accuracy increases with the number of intermediate contours we con­
struct by considering transportation that uses up not whole units, but smaller and smaller
fractions of commodity units. It is intuitively understood that by going to the limit, the
exact solution to the differential equation may, in principle, be obtained. This solution
should exist and be unique with respect to the method of construction.

Once we have established a map of constant price contours, we can also determine a
unique pattern of orthogonal trajectories. As goods are shipped in the directions of
price gradients, these orthogonal trajectories are the flow lines. Hence the commodity
price distribution and the flow directions over the whole region can be determined
simultaneously.

4.5.3 Boundary Conditions

Let us now consider the boundary conditions in somewhat more detail. It is unlikely
that commodity price would be constant on the boundary, and thus we cannot start from
the boundary as a known constant price contour. In general prices may be expected to,
vary on the boundary. Let us assume, however, that the flow lines and price contours in
the exterior are established in accordance with a transportation cost function h (x 1, X 2)
extended to the exterior, but merging smootWy with the function defined for the interior.
The situation is then exactly the same as before and we can start from any price contour
in the exterior that touches the boundary somewhere. This is the simplest assumption we
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can use and is by no means unrealistic. But such restrictive assumptions are not necessary.
After all, the passage of light from one medium to another (regardless of the shapes of the
boundaries and the wave fronts) is a well-understood phenomenon. Similarly, we could
introduce any discontinuities we wish and possibly obtain interesting refraction phen­
omena for trade, while retaining the desirable features of existence and uniqueness.

4.5.4 Equation for Flow Volume

As the price and flow directions yield the most important information concerning
regional structure, the less interesting differential equation for flow volumes can be
treated more briefly. We know that the firms decide on capital and labor inputs and
outputs as soon as prices and wages are given. These are also used to determine the local
land rents. But these land rents are transferred by the ownership mapping to the house­
holds as nonlabor incomes. The households also decide everything - family size, working
time, leisure, and consumption - once they know the price, wage rate, and nonlabor
income. Due to the mapping from land rents (dependent on prices and wages) to non­
labor incomes, we conclude that all endogenous variables of the firms (k, I, q, and the
resulting g) and all the endogenous variables of the households (I', I, and q') are deter­
mined by p and w. (The long-term stocks of capital K = k and labor L = 1+ t', of course,
are then given as well.)

We see that these decisions by firms and households are independent, except for one
aspect, i.e. that the 1 determined by the firm and the [' determined by the household
must match. Our present position is that prices have been determined, but wages still
represent a degree of freedom. It is natural to assume that wages are adjusted locally to
reach a balance between labor supplied and labor demanded. It may then be concluded
that all the variables dependent on the decisions made by firms and households depend
only on commodity price if it is assumed that wages adjust by local labor market equi­
libria. But, as the prices are known after solving the corresponding differential equation,
local excess supply (computed without regard to the commodities used up in transpor­
tation) is a known function of the space coordinates. Therefore we can define

Using the divergence equation we obtain

div <I> + h(Xl,X2) 1<1>1 = z(Xl,X2)

which is easily converted into a partial differential equation for flow volume 1<1> I.

4.5.5 Charpit's Method of Solution

(45)

(46)

In order to recognize the character of this differential equation, let us introduce some
new symbols (which are used only temporarily in this context and may have other
interpretations elsewhere in the text). First, we define the unit vector field
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and note that it is known because

1/>/11/>1 = gradlnp/Igradlnpl

(47)

(48)

is known, once we have solved for the price distribution in the region.' Next, we use the
identity

I/>
I/> = II/>I T;I

to obtain

II/>I (P, Q) (49)

div I/> = grad II/>I (P, Q) + II/>I div(P, Q)

Then, defining

R(Xl,X2' 11/>1) = z - (h + div (P, Q)) II/>I

we can write the differential equation as

(50)

(51)

(52)pa/I/>I +Qall/>I = R
aXl aX2

We note that P and Q are known functions of the location coordinates and that R, in
addition to its dependence on location coordinates, also depends on flow volume II/> I.
This last dependence is linear. Differential equations of this type can be solved using
the well-known Charpit method, whereby the partial differential equation is replaced
by two ordinary differential equations

dil/>l R(xl,x2,11/>1)

dx l P(Xl,X2)

and

dil/>l R(xl,x2,11/>1)

dx 2 Q(x l, X2)

(53)

(54)

Once we have solved these, and found two parametric families of solution curves in
Xl, X2, 1I/> I-space, we can easily construct the solution surface for I I/> I. This means that
existence and uniqueness theorems for ordinary differential equations instead of the
more tricky ones for partial differential equations apply.

4.6 THE SPATIAL STRUCTURE

4.6.1 Introduction

Having discussed determination of the trade flow volume and equilibrium in the
model as a whole, we return to the basic differential equation for determining prices. The
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solution of this equation provides the essential information about regional structure, by
determining the flow lines of commodity trade along with the price contours, which are
important determinants of production technology and scale of production.

If the transportation cost function h(Xl, X2) and the price distribution p on the
boundary aA are chosen appropriately, then the pattern of spatial price contours and
orthogonal flow trajectories could have any character we might wish to represent. Thus
the model is very rich in potential results, alth~ugh it contains very little substantial
information. We could represent spatial organization of, for example, the Christaller­
LOsch type, but such regular geometrical cases would be merely illustrative.

This situation is by no means peculiar to spatial applications of economic theory,
even though there is a greater desire to obtain more definite knowledge about visual
two-dimensional patterns than about the equilibrium price constellations in the puncti­
form markets of general economic theory. In the theory of general (or partial) economic
equilibrium, there is also a considerable lack of precise information, which would seem
strange in other sciences such as physics, where formal mathematical language is used.

In order to remedy this situation, Samuelson (1947) introduced the ingenious "corre­
spondence principle." By merely assuming the dynamic stability of equilibrium, he was
able to supply qualitative information concerning the effects of various kinds of distur­
bances on the equilibrium prices. The equilibrium model immediately gained a great
deal in information content. The premise was indeed nonrestrictive, since any equilibrium
analysis would, in fact, be pointless unless the equilibrium were stable. As all kinds of
disturbances are persistent in any real economy, they must be allowed for in model
representations. If the equilibria were unstable, any such disturbance would either set
the system in perpetual motion or move it to another equilibrium state that has a basin
of attraction. Such a state would deserve closer study as its basin of attraction, or
stability, would make it likely to be maintained for some time. The original equilibrium
state would not deserve any attention because it could never survive in a changing world.

4.6.2 Structural Stability

We can use exactly the same philosophy in our model of a spatially extended economy.
A prerequisite for such treatment is the concept of structural stability, which will have to
be explained in detail. Intuitively, it means that the flow pattern and the map of constant
price contours look qualitatively the same as before when small disturbances occur. The
expression "qualitatively the same" implies that flow trajectories (or price contours) are
deformed and displaced slightly, as are singularities (stagnation points of the flow and
critical points of the price surface), which, moreover, retain their character (whether of
sink, source, saddle point, etc.). In fact we could imagine the picture of constant price
contours and their orthogonal trajectories as drawn on a perfectly elastic rubber sheet.
The class of deformed pictures obtained by stretching this rubber sheet would then
represent the class of qualitatively equivalent flows (and price contours).

The price-flow pattern would then be considered structurally stable if small changes
(perturbations) in the differential equation left its qualitative features unchanged, i.e. if
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after a small perturbation it still belonged to the same equivalence class as described
above. We should. now specify the meaning of a small change or perturbation. This may
be accomplished by defining a normed space of differential equations, although the idea
should be intuitively clear. If the pattern of flow and price contours is deformed only
slightly when the differential equation whose solution determines this pattern is changed
slightly, then the pattern is referred to as structurally stable. If small changes in the
differential equation (or its boundary conditions) lead to drastic changes, such as splitting
or fusion of singularities, emergence or disappearance of singularities, reversals of flow
directions, etc., then the pattern of flow and price geography would be regarded as
structurally unstable. In these cases the new patterns could not be obtained by stretching
the rubber sheet. We would have to cut it and glue new sides together to arrive at the new
picture.

The idea we would now like to suggest is that a spatial price structure and a corre­
sponding system of orthogonal flow trajectories would not in themselves deserve any
attention, if they were not structurally stable. Constant change is again assumed in the
economy we wish to model; perturbations of the (spatially) dynamic system are thus
also admitted.

4.6.3 Topological Characterization

This poses the question of whether we can obtain (as Samuelson did) any qualitative
information from this reasonable assumption of structural stability. Otherwise, not much
is gained by introducing it. Fortunately there is a characterization theorem on struc­
turally stable flows in the plane, which has surprisingly rich features. It indicates that a
stable flow has only a finite number of isolated singular points of very few specified
categories, and is laminar everywhere else. There are also global results on how the
few singularities may be connected. This makes it possible to draw a very precise picture
of the structurally stable flow and the spatial organization of the economy corresponding
to such a flow. The characterization is again topological. Along with our basic picture
we have to consider all the deformations obtained by the class of stretchings when the
picture is drawn on an elastic rubber sheet.

The theorem which gives rise to these result was conjectured by Andronov and
Pontryagin in 1937. Later on, it was rigorously proved and further developed in the work
of Morse (1934), Smale (1967), and Peixoto (1973, 1977); for recent treatments see
Peixoto (1977) or Hirsch and Smale (1974).

Before turning to the formalities, two aspects should be emphasized. First, we have
actually obtained visual information concerning the pattern of flow and geographical
organization of the economy that we regard as desirable. The information is topological,
in contrast to the classical geometric information contained in the work of, for example,
Christaller and LOsch. Topology, however, tells us more than might be imagined at first
sight. For instance, it definitely contradicts the Christaller-Losch paradigm of spatial
organization, as their hexagonal pattern cannot be transformed into the structurally stable
flow characterized below by any topological transformation. Moreover, all traditional
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market-area theories, from Launhardt and Weber onwards, are contradicted, as they
imply boundaries of market areas at which trade stagnates. As already indicated, the
accumulation of singular points is ruled out in structurally stable flows. Readers used
to the Christaller-Losch paradigm may find this difficult to accept. But it should be
kept in mind that all traditional market-area theories (including that of Christaller and
LOsch) actually assume constant transportation cost and consequently linear routes.
Such models are thus linear in character, and it is well known that linear models can
never display any phenomena of structural instability. Now, it is often pointed out that
space is not homogeneous and uniformly traversible, as assumed in classical location
theory. But if we believe this then we have to admit the nonlinearities and draw the
proper conclusions. Since structural stability is not automatically guaranteed in nonlinear
systems, but must be expressly assumed, and since it then rules out certain basic features
of classical location theory, we should not try to fit the Christaller-Losch model to
nonhomogeneous space. Rather, the features that contradict structural stability should
be discarded.

Second, classical location theorists appear to have exploited almost everything in the
realm of Euclidean geometry with its regular shapes. If we wish to introduce a new,
more general, theory of economic organization in continuous two-dimensional space
(based on nonlinearities), we cannot expect a precise characterization in terms of regular
shapes from Euclidean geometry. A topological characterization is the most we can hope
to arrive at and is, in fact, the only way to regenerate this old field of research.

4.6.4 The System of Flow Lines

The dynamic system under discussion is described by the equation

¢
h - = gradlnp

I¢I

which can be written

(55)

¢

I¢I

grad In p

Igrad In p I
(56)

This is actually a poor formulation for solving the equation. But since we do not intend
to solve it, but rather to discuss the stability properties of the set of integral curves
corresponding to the directions ¢!I¢I, there is no harm in assuming p as known. In this
way we can incorporate the changes in the system caused by changed price distributions
on the boundary as perturbations, along with those caused by changes in the function
h(xl,xz)·

As the flow is in the direction of the gradient of p, we can find some parameterization
in which the equations for the flow lines can be written as

dx;
cis

i = 1,2 (57)
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This is a system of two ordinary differential equations in two variables. Normally, the
solutions to such a system are well classified only if the right-hand side is linear in Xl, X2'

The singular points, where F i (x 1, X2) = 0 for i = 1,2, are then known to be nodes,
ordinary saddles, spirals, and centers. Except for the singularities, the flow lines are
regular, Le. topologically equivalent to parallel straight lines. This can be learned from
any textbook on ordinary differential equations. Furthermore, if the equations are
nonlinear, then they can behave in almost any way, with lines or areas of accumulating
singularities, or singularities of a complicated composition of any number of elliptic and
hyperbolic sectors.

Fortunately, the assumption of structural stability removes these complications and
makes the solutions behave as if they arose for linear differential equations.

4.6.5 Perturbations

(58)i = 1,2

Along with the preceding system of differential equations, let us consider the following

dx i .
~ = C'(Xl,X2)

which differs only slightly from it. This slight difference is defined by the conditions

i = 1,2 (59)

and

i,j = 1,2 (60)

The system C i is called an E-perturbation of the system F i when the above inequalities
are fulfilled. We have now introduced a C1-topology in the space of differential equations
by the metric E. This C1-topology is usually considered necessary because if the inequali­
ties were only required to hold for the right-hand sides of the differential equations, but
not for their derivatives, then any isolated singularity could be changed into a line of
singularities (and vice versa) by an E-perturbation. In other words, a CO-topology would
not provide structural stability to coincide with the intuitive concept suggested above. On
the other hand, the requirement on derivatives higher than the first order makes the class
of perturbations unnecessarily narrow (cL Peixoto 1977).

Let us now consider the flow portrait for the F-system, along with the flow portrait
for the slightly disturbed C-system. If there is a one-to-one continuous mapping between
these solution spaces, such that trajectories are mapped on trajectories (of preserved
direction), and singularities are mapped on singularities (of the same type), then the
system is referred to as structurally stable. Of course, this must hold for any perturbed
system that fulfills the inequalities. If there is no such homeomorphism the system is
called structurally unstable.

It has been demonstrated that, in the space of differential equations, the subset
of structurally stable ones is dense and open. So, the mathematical definition of struc­
tural stability really does capture what we have in mind since we are assured that
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infinitesimally close to any unstable differential equation there is a stable one, whereas
the reverse does not hold.

4.6.6 A Characterization Theorem

The consequences of structural stability that have been demonstrated can be sum­
marized in three points:

1. The flow is regular everywhere, except at a finite number of isolated singular points;
regularity here means that only one trajectory passes through each point. Equivalently,
we can say that it is topologically equivalent to a set of parallel straight lines.

2. The singular points are hyperbolic, i.e. they are nodes, saddles, or spirals. As we are
dealing with gradient flows, it can easily be shown that the eigenvalues are real, and so
spirals are ruled out. We are left with nodes (sources and sinks) and ordinary saddles.

3. Finally, there is the global result that no trajectory joins saddle points. At each
saddle there are four incident trajectories, one pair directed inwards, and one pair
outwards. No outward trajectory can thus be incident to another saddle, nor can it
return after a loop to the same one in the inward direction.

4.6.7 Sinks and Sources

Let us now consider the interpretation of these conditions in terms of the organization
of the spatial economy. To begin with the organization around a singular point, a source
is a point from which all trajectories in a surrounding basin of repulsion diverge. They
obviously form a set of radiating trajectories that are orthogonal to (more or less) circular,
concentric price contours. As we have noted, commodity prices are important deter­
minants of the scale and technology of production chosen. The economic organization,
accordingly, is one of concentric rings of various activities, and the routes of transpor­
tation are radial (see Figure 4.1). The picture is thus very similar to the von Thiinen case
(or the case beloved of the proponents of the New Urban Economics).

The same is true for the case of the sink. There, all trajectories in a surrounding basin
of attraction converge to the singular point, the price contours are again concentric
closed curves, and the spatial organization is in terms of concentric rings. This case is
similar to the previous one, the only difference being a reversal of flow directions. If we
wish to interpret the cases of sources and sinks more specifically in terms of urban
geography, we can say that the sources are productive, and the sinks consumptive, centers.
We must, however, remember that our model is competitive. The consumption centers
do not play the "monopsonistic" role of the center of the von Thiinen model, or that of a
central business district (CBD). Nor are the productive centers to be compared with the
monopolistic firms of classical market area theory.

In our model production and consumption are activities going on everywhere, but at
various rates, and nobody is in the position of a monopolist or a monopsonist. Sometimes,
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Figure 4.1. Flow and spatial organization around a node singularity.

it has been argued that spatial economy is intrinsically associated with monopoly and
price discrimination. It is, of course, true that spatial (like temporal) distance is a perfect
means of segregation of a market according to various demand elasticities, but there is
no necessity to introduce monopoly merely because we are dealing with a spatial eco­
nomy. A spatial competitive economy is as well defined as the case treated in spaceless
economics, and as realistic or unrealistic as the latter. The only difference is that com­
petition in a spatial economy does not make prices equal; it only confines the price
differences to the intervals defined by transportation costs.

4.6.8 Saddle Points

Now that we have understood the character of the nodes (sources and sinks), let us
discuss the remaining types of singularities, the ordinary saddles. For each ordinary
saddle there are two pairs of incident trajectories, one ingoing and the other outgoing.
Therefore this case is very different from the cases of sources and sinks, where an infinity
of trajectories in a surrounding basin were incident. At a saddle, the surrounding space is
separated into four sectors, each containing hyperbolic trajectories, attracted toward the
singularity but missing it. The set of price contours, to which these hyperbolic trajectories
are orthogonal, is itself a set of hyperbolas but rotated by an angle of about 45°. The
various zones of economic activity are now contained between pairs of hyperbolas, in
opposite sectors, and the organization of space is sectoral (rather than ring shaped)
around a saddle singularity (see Figure 4.2).
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Figure 4.2. Flow and spatial organization around a saddle singularity.

Sectoral organization of space, where some activities are confined to North and South
and other ones to East and West, is not completely unrealistic in urban geography, even if
it does not appear so frequently in textbooks as the case of concentric rings. If we require
a more precise interpretation of the saddle singularity, we should note the fact that the
trajectories are curved towards it. Since all the routes of transportation are thus deflected
from the straight line, transportation must be very favorable in the neighborhood of a
saddle singularity. Recalling our former interpretation of sources and sinks as productive
and consumptive centers, we could say that the saddle points are far from both types of
centers and are, in fact, "condensation nuclei" of empty space with particularly favorable
conditions for transportation.

As we have now interpreted the three types of singularities admitted in structurally
stable flows, we recall that there are infinitely many of them, and that the flow is laminar
everywhere else in space. Later on we will see how the principle that rules out saddle
connections can be used to characterize the whole global picture of commodity flow and
spatial organization.

4.6.9 Transversality

Before continuing, let us consider structural stability at singular points from a slightly
different point of view, which will prove fruitful later when we are dealing with the
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subject of structural change. The trajectories we are dealing with can be obtained as a
gradient field to a potential function (commodity price). Let us therefore consider a
general potential function

A = A(xJ,x2)

The singular points of its gradient flow field are defined by

aA aA
-=-=0
aXI aX2

Let us suppose that we are studying just one singularity in Xl, X2, A-space and that it is
located at the origin, i.e. Xl = X2 = A = 0 at the singularity. We can always attain this by
a coordinate change, which is a simple translation, so that this assumption in no way
affects the generality of the following discussion.

The question we now pose is the following: how likely is it that the Hessian of the
potential is zero at the singular point we are studying? (In passing we note that the
Hessian is the Jacobian of the system of differential equations defining the flow lines.)
The formal condition for a vanishing Hessian is

a
2

A a
2

A (a
2
A)2- - - (63)

aXI ax~ - aXI aX2

To answer the question we consider the combination of values of the three second-order
partial derivatives as a point in three-dimensional space and observe that the condition
for a vanishing Hessian defines a surface (a double cone) in this space. Our question is
now transformed into the following: how likely is it that a point lies on a surface in
three-dimensional space? One answer to this is given by the principle of transversality.

Consider pairs of various linear subspaces of ordinary Euclidean three-space. Two
planes through the origin would be likely to intersect along a line, whereas one line and
one plane through the origin are likely to intersect in a point. Anything else would have a
vanishingly small probability of occurring. The likely modes of intersection are called
transverse. We note that, for transverse intersections, the sum of the dimensions of the
intersecting subspaces equals the sum of the dimensions of the intersection manifold
and that of the surrounding space. (For the case of two planes 2 + 2 = 1 + 3, for the
case of a line and a plane 1 + 2 = 0 + 3.) This principle is readily generalized to the
much more interesting cases of affine subspaces, and of manifolds in general. In the latter
case we transfer the dimension conditions to tangent planes and tangent lines to the
surfaces and curves considered.

We are now prepared to answer the question. As the double cone defined by zero
Hessian is a surface, we would need at least a curve for a transverse intersection. Of
course, a necessary condition for transversality is that the sum of the dimensions of the
intersecting manifolds at least adds up to the dimension of the surrounding space. Other­
wise, the dimension condition stated can never be met. As our value combination is only
a point (i.e. has zero dimension) it cannot meet the double cone (with dimension two)
transversely in a surrounding three-dimensional space. Therefore, we conclude that a zero
Hessian is ruled out by the principle oftransversality.
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In passing we should note that, if we were dealing not with one value combination of
the second-order partial derivatives but with their development over time, then we
would have to consider not a point but a curve, parameterized by time. Such a curve
could meet the double cone transversely, and so we note that the Hessian could be
zero at isolated moments of time. We could also consider a system dependent on several
(mutually independent) parameters. In that case, the parameterized curve could become a
surface, or even fill up the whole volume of the surrounding space, when we consider
two, or three, such parameters. It should be noted that only in the latter case (with three
parameters and a space-filling manifold) would it be likely that the apex of the double
cone would be met. This is interesting because a "monkey saddle" flow (with six hyper­
bolic sectors), which will be seen to occur if we try to organize space by a hexagonal tiling
(as do Christaller and Losch), is a manifestly pathological case in view of transversality.

We will return to the concept of transversality when we deal with structural change.
At present it is sufficient to note that transversality and structural stability are closely
related concepts, and that transversality assures us that the Hessian is nonzero at our
singular point.

4.6.10 Morse's Lemma

Now, if the Hessian is nonzero then we know that the potential surface can be changed
into a so-called Morse saddle by a smooth change of coordinates. We can thus define a
smooth mapping:

~l = ~1(Xl,X2) (64)

and

~2 = ~2 (Xl,X2) (65)

such that

"A = ± ~i ± ~~ (66)

in the neighborhood of the singular point. This is proved by Morse's lemma. A simple
proof for the lemma is provided in Poston and Stewart (1978). We see that the potential
surface in the new coordinates is either a circular paraboloid (turned right or upside
down) or a hyperbolic paraboloid (a saddle). Thus, the results of transversality and of
structural stability are the same. The difference is that transversality deals with the
qualitative features of the potential surface close to critical points, whereas the results
on structural stability (from the generic theory of differential equations) deal with the
flows (in our case, gradient to a potential, but not necessarily so in general). i

We can now use the standard cases of Morse saddle potentials to illustrate the struc­
turally stable flows and price contours in the neighborhood of a singular point. Let us put

p = [exp(±xi ±X~W!2

Accordingly, we have

(67)
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and

(68)

Igrad Inpi = (x1 + x~)jl2

Thus, if we assume

h(Xj,X2) = (x1 +xn1l2

and

(69)

(70)

(71)

then we clearly have the gradient condition, h¢/I¢ I = grad In p, and the differential
equation, (grad In p)2 = h2 , reduced to identities.

Two positive signs refer to the case of a source, two negative signs to that of a sink,
while one positive and one negative sign means we are dealing with a saddle. In fact,
we can illustrate all the structurally stable flows around singular points by this single
case. We refer back to the graphical illustrations in Figures 4.1 and 4.2. It should be noted
that all these cases result from one single transportation cost function, where the local
cost of transport is proportional to the distance from the singular point (at the origin).
Transportation is favorable close to the singular points, and gets progressively less favor­
able with distance from these points. We have already noticed this in connection with the
saddle singularity. Obviously, the situation is the same at nodes in our illustration.

The fact that different flow patterns result from the same differential equation

(grad In p)2 = (x1 +xn (72)

should not be taken as a contradiction of our conclusion above that flow patterns and
price potentials are unique. Of course, the solutions obtained for various sign combi­
nations in our example are associated with very different boundary conditions. It is well
known that the solutions of partial differential equations (unlike those of ordinary
differential equations), not only leave certain parameters to be determined by the bound­
ary conditions, but admit very different shapes of solution surfaces, depending on the
exact character of the boundary conditions.

4.6.11 A Global Picture of Stable Flow

It is now time to turn to the question of how to construct our global picture of
flows and price contours on the principle that no trajectories join saddle points. As
trajectories in only four directions at a saddle are actually incident, this means that
if we follow anyone of these we finally either cross the boundary or end up at a singu­
larity that must be a node. We note that two of the nodes must be sources and two of
them sinks.

Let us then try to organize the flow in terms of the trajectories incident on the saddle
points. As there are two pairs of such directions at each saddle, we should be able to
organize the trajectories incident to saddles as a square grid. The singularities at the points
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of intersection can now be identified. Starting from any saddle point (and knowing that
the incident trajectories must end up at nodes), we conclude that there must be a pair of
sinks in the outgoing directions, and a pair of sources in the ingoing directions. We have
thus determined the character of the nodes East, West, North, and South of the saddle
point. However, we can do more than that. Consider the four points NE, SE, SW, and
NW of the original saddle point. Each of these four singularities is associated with ingoing
as well as outgoing trajectories. This leaves no other possibility than that these four
singularities are again saddle points. And so we can continue, starting our discussion
anew at each of the new saddle points, until we have oriented the whole square grid
and determined the characters of each singularity. Thus we see that each saddle is con­
nected to four nodes, and each node to four saddles.

Once we have this basic graph, it is easy to fill in the whole families of trajectories, not
just the skeletons of those incident to saddle points, and to draw a set of orthogonal price
contours. We recognize in Figure 4.3 the local pictures of spatial organization from
Figures 4.1 and 4.2 around each singularity. But we also see that the circular price
contours become squarer, the farther we move from the nodes. Returning to our identifi­
cation of sources and sinks as cen ters of productive and consumptive character, respec­
tively, we discover that the basic subdivision of space, in areas of different characters,
is quadratic in shape. These basic squares each have a node as a center and four neigh­
boring saddles as corners. They alternate in space (as regards their basically productive or
consumptive character), and thus yield a chessboard pattern.

If we wish, we can also identify "market areas," by considering a different quadratic
subdivision. Take any saddle point as a center, and four surrounding nodes as corners in a
new subdivision of space. The result is that the original chessboard (defined by the
reverse procedure) is slightly translated in space. The squares in this new subdivision all
have four flow trajectories as sides. We note that no trajectory crosses such a square, so
that trade is completely confined within each square of this kind. This comes pretty
close to the traditional concept of isolated market areas. The only difference is that trade
does not stagnate along the boundary as is the case with the traditional linear models.
Trade follows the boundaries of our "market areas," but they are still completely self­
contained with respect to trade. This, along with the fact that our centers have no exclu­
sive character as sites of isolated firms (or "central business districts"), makes the
difference.

Later on we will consider the apparent contradictions between our approach and
traditional location theory more closely. Meanwhile, we conclude the present discussion
by stressing that in the basic picture we can, of course, leave out any number of singu­
larities, but that we must admit all the topological transformations of the basic pattern.
This means that our picture, again, must be imagined as drawn on a perfectly elastic
rubber sheet. It thus represents all the deformations that can be obtained by "stretching
without tearing." Nevertheless, the qualitative characterization is surprisingly precise.
The "correspondence principle" used here thus yields results at least as rich as in its
original context.
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Figure 4.3. Global picture of a structurally stable flow.

4.7 CONTRADICTIONS WITH CLASSICAL LOCATION THEORY

Let us now return to the apparent contradictions between our topologically character­
ized spatial organization, and that of classical location theory. There are two major
contradictions. First, as structural stability rules out the accumulation of singular points,
there are no boundaries of market areas in the sense that trade stagnates along these
boundaries. Second, as triangular or hexagonal flow patterns necessarily include monkey
saddle singularities that are manifestly unstable, the Christaller-Losch paradigm on tiling
space with hexagons is ruled out.

4.7.1 Linearity of Classical Models

We must clearly consider these matters in some detail, since the ideas contradicted are
deeply rooted in regional science. Consider the case of market areas as once defined by
Launhardt and Weber. There are two monopolistic firms, located at some distance from
each other and sharing the same two-dimensional space as their market areas. These
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market areas are separated by a boundary, which, by the famous and elegant "Launhardt
funnel" construction, is found to be an intersection of cones. The routes are linear, and
there is no question about the stagnation of trade along the boundary. This concept of a
market area plays a major role in all regional economics.

It should, however, be noted that the assumption of linearity (homogeneous space
with straight trajectories) is basic. Suppose that roads are built to connect the major
sites, defined by the locations of our monopolistic firms in an otherwise homogeneous
plane. These particularly good transportation facilities that now arise along the axis
connecting the two firms cause the routes to be curved towards this axis, thus destroying
the linearity of the model. In a continuous representation it is a relatively short step to
see that the intersection of the boundary and the connection line becomes a saddle point.
The trajectories become hyperbolic, and some trade (which may be as weak as we wish)
develops along the boundaries.

Thus the concept of isolated market areas, in the sense that trade is completely con­
fined within them, remains, as we have already noted. The difference is that there is now
some (possibly very weak) flow of trade along the boundary itself. If there were no such
trade, the situation would become unstable, because the model is no longer linear, and
the accumulation of singular points along the boundary would be completely destroyed
by any perturbation of the flow, however weak it might be.

4.7.2 Hexagonal Tiling

Let us consider the second problem, namely the case of a hexagonal tiling of space. A
flow organized according to this principle would display either three major. directions
(separated by angles of 120°), or six directions (separated by angles of 60°). This would
also be true for the incident directions at singular points.

Taking first the situation with three directions, we see that saddles could not fit this
case. An ordinary saddle point requires four sectors, and if we try to join three hyperbolic
sectors, we immediately find that the flow even becomes impossible to orient. Therefore
the singular points must be nodes. Assembling the picture, we discover that it is possible
to arrange a hexagon of adjacent nodes, with sources and sinks alternating. This is shown
in Figure 4.4. But if we try to fit in more trajectories there is obviously a singularity
missing in the middle of the hexagon, and this can only be a monkey saddle, consisting of
six hyperbolic sectors.

Let us next consider the case where there are six incident directions at each node. The
basic graph of the flow is then a regular triangular network. In trying to orient this net­
work, we can start from a source. We note that only three of the surrounding singularities
can be sinks. The remaining three singularities are associated with ingoing as well as
outgoing trajectories. If we continue in this way, always trying to avoid monkey saddles,
we again identify three of the singularities surrounding each sink as sources (one of these
being our starting point). Doing this for all three sinks adds to the picture six sources,
which are located on the sides of the larger hexagon shown in Figure 4.5. However, in
completing so much of the orientation, we have in fact drawn three monkey saddles.
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Figure 4.4. A missing monkey saddle.

Thus, our attempt to orient the graph so as to avoid monkey saddles actually leads to
monkey saddles, and we conclude that they are closely related to any triangular or
hexagonal type of flow. The resulting flow picture is shown in Figure 4.6.

As we have stated above, the monkey saddle case is highly structurally unstable, or,
equivalently, extremely unlikely according to the principle of transversality. As the
monkey saddle is one of the standard forms dealt with in catastrophe theory, we will
review all the structural changes that it can undergo in Section 4.8, on structural change.
But before this, we will consider accumulated singularities and monkey saddles from a
more formal mathematical viewpoint. As we will see, the two are in fact quite closely
related.

4.7.3 Fonnal Analysis

Recall our general potential function

(73)
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* monkey saddle

Figure 4.5. The occurrence of monkey saddles in a hexagonal lattice.

which, at a critical point, satisfies the conditions

(74)

where t\j, A2 denote the partial derivatives avaXj and aA/aX2. Now, suppose we have an
accumulation of singularities. Then we can find a line, parameterized by s, along which
these equalities hold identically. Differentiating, we get

(75)

and

(76)

From elementary linear algebra we know that these equations have a nontrivial solution
only when

(77)

i.e. when the Hessian is zero. A nonzero Hessian certainly rules out the accumulation of
singularities.

Next, let us consider the case of the monkey saddle. The monky saddle point is a
critical point of the potential. The potential surface has a horizontal tangent plane, and
intersects it along lines pointing in three different directions. These lines divide the
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Figure 4.6. Flows associated with hexagonal or triangular subdivisions of space.

tangent plane into six sectors, such that the potential surface alternately lies above and
below it. Our conclusion is that there are three directions in which the surface cuts the
tangent plane. The tangent plane being horizontal, there are thus three directions in
which A(xI, X2) = constant.

Differentiating this equation of constant potential twice we get

(78)

(79)

Assume for the moment that A22 is not zero. We can then divide through by A22 and
obtain a quadratic equation in dx2 /dx I, which can be solved to yield

dx2 Al2 (AT2 - All A22)1/2
- = - - + -'----''-=-_....:..:...---=-=-'------

dx l A22 - A22

Obviously if the Hessian (which appears in the square root) is nonzero we get two dif·
ferent directions dx2 /dx l in which the potential surface is constant. If the Hessian is
zero, then we only have one direction, provided that Al2 is nonzero. We note in passing
that this fits the case of a line of singularities. If the tangent plane "cuts" the surface
along one line only there must be a case of tangency.

Suppose instead that A22 is zero but that All is not. Then, again, we can proceed as
before, obtaining

dx l Al2 (AT2 - AllA22)1I2
- - + (80)

dx2 All - All

with the same conclusion. There is no particular significance in All or A22 being zero:
this just means that one of the directions of constant potential is parallel to one of the



LONG-RUN EQUILIBRIUM OF TRADE AND PRODUCTION 147

axes. There is still nothing unduly alarming if both All and A22 are zero, but AI2 is not:
then both directions are parallel to the axes.

Therefore we conclude that, if the Hessian is nonzero, we get two directions of con­
stant potential. If the Hessian is zero, but not all the partial derivatives are zero, then we
have a line of singularities. So, in order to have three directions of constant potential we
conclude that all the partial derivatives must be zero. This means that, in the space of
values of the three second-order partial derivatives that we discussed in connection with
the concept of transversality, the apex of the double cone must be met. (See pp. 138­
139.) We are therefore dealing with a manifestly unlikely and unstable phenomenon when
we consider monkey saddles.

The reader may wonder about the implicit assumption above that the term in paren­
theses would be positive, unless zero. However, if it were negative then the critical point
would be elliptic (and not hyperbolic) in the terminology of classical differential geome­
try. This would imply a quadratic form

(81 )

that is definite (positive or negative), and we would, in fact, be dealing with simple
maxima or minima of the potential. The singularities would then be nodes, not saddles,
and there would be no intersections at all between the potential and its tangent plane.
This also shows up in the fact that the directions of "intersection" dx 2 /dx l or dxddx 2

become complex numbers. Therefore, we need not consider further the cases involving
imaginary square roots.

Therefore we conclude that structural stability and transversality contradict both the
classical market area concept and the Christaller-Losch hexagonal organization of space.
If we think that structural stability is a reasonable assumption, then we must make the
corresponding change of paradigm. We should stress once again that our arguments say
nothing about these models in their original linear contexts. A linear system can never
be structurally unstable. Only when we wish to transfer these paradigms to the more
general (and realistic) assumption of nonlinearity do the contradictions arise.

4.8 STRUCTURAL CHANGE

4.8.1 Introduction

So far we have employed the concept of structural stability as our main modeling
instrument, both because it was a reasonably nonrestrictive assumption and because
it yielded such rich results in terms of characterization. Structurally unstable patterns
were disregarded because they would, at most, have a temporary existence in the course
of evolution. Structures existing before and after such temporary transitions would have
easily recognizable qualitative features and would only undergo smooth changes for most
of the time.

However, even if the structurally unstable patterns do not interest us as such (because
they exist, at most, momentarily), they have an indirect significance because the structures
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before and after the passage through instability are very different. If we could somehow
classify such possible transitions we might learn something about the possible sudden
changes of structure that can occur in the process of evolution.

Of course, any changes would be possible if we did not constrain the system in some
way, and the idea of classification would become meaningless. However, we might
begin by assuming that the system is dependent on a certain number of external param­
eters that can evolve independently of each other. The potential surfaces would then be
replaced by parameterized families of potential surfaces. If we assume transversality (or
structural stability), no longer for each potential but for families of potentials, then we
move into the realm of catastrophe theory as developed by Rene Thorn. This theory,
which is one of the major intellectual achievements of our age, yields a clear classification
of structural transitions. Again, the classification is topological. The canonical forms of
the surface families, again, represent all their topological equivalents. We do not venture
to give any intuitive interpretation of Thorn's classification theorem. The reader is re­
ferred to Poston and Stewart (1978) for an "easy" introduction. Here we just record the
main results.

4.8.2 Further Discussion

As we are dealing with two-dimensional space, the catastrophes of particular interest
are the umbilics. In passing, it should be mentioned that although regional scientists have
used a lot of catastrophe theory, they always deal with the one-dimensional catastrophes.
Perhaps this is another result of the fact that continuous two-dimensional space is almost
always forgotten in regional modeling.

Due to the so-called "splitting lemma," we can always dissociate one of the coordinates
from structural change when the number of parameters does not exceed two. With three
parameters (representing the causes of the perturbations we wish to consider), we get the
simplest, truly two-dimensional catastrophes: the elliptic and hyperbolic umbilics. As
these include the monkey saddle case, and since three parameters make it possible to
study a wide range of exogenous change, we will limit discussion to these cases.

The canonical fonn (or the "universal unfolding") of the elliptic umbilic is

A = XI - 3xjx~ + a(xi + xD + bXj + CX2

and that of the hyperbolic umbilic is

A = XI +x~ + 2aXjX2 + bXj +CX2

(82)

(83)

The three exogenous parameters are denoted a,b,c while X j, X2 are, as usual, the space
coordinates. To depict the potential Aas a function of two coordinates and three param­
eters, we would need a space of six dimensions. For this reason we have divided each of
the Figures 4.7 and 4.8 into upper and lower parts. The upper part is a three-dimensional
representation of the bifurcation manifold in parameter space. Each time the value
combination a,b,c crosses this manifold there is a sudden change of structure. The
lower parts of the diagrams are various flow pictures, corresponding to various value
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Figure 4.7. The elliptic umbilic case.
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Figure 4.8. The hyperbolic umbilic case.
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combinations of the parameters. In the middle is the flow picture in the particular (and
most unstable) case where a = b = c = O. This is, in fact, the monkey saddle flow in the
case of the elliptic umbilic, whereas in the case of the hyperbolic umbilic the corres­
ponding flow is laminar with the exception of an isolated stagnation point.

Depending on the exact course of parameter change, any of the transitions, from one
flow picture to another, is possible. We thus see how singularities fuse and split, emerge
and disappear, and how the entire pictures seem to be subject to sudden rotations when
the origin of parameter space is encountered.

Due to the classification theorem, we know that all structural change phenomena that
are likely to occur (with three parameters causing external change) have been depicted. Of
course, the characterization is topological, as always, and in contrast to our ideas on
stable structure, the characterization of structural change is local rather than global.

In conclusion, it should be borne in mind that the considerations of structural stability
and structural change developed above are equally applicable to the planning models in
the following chapters, even if we do not explicitly repeat the argument in each case.



5 Planning Models

5.1 A LONG-RUN MODEL WITH COSTLESS RELOCATION OF
RESOURCES

5.1.1 Introduction

The model presented here is designed to handle the following planning problem.
There exists a geographical region of given shape and extent. We consider a number of
different productive activities, represented by linearly homogeneous production func­
tions, allowing smooth substitution among inputs. In order to emphasize the advantages
of geographical specialization, even in the absence of localized input supplies, we assume
that the same production functions apply at all locations.

There is a local utility function, dependent on the quantities of produced goods
available for consumption. The goal is to maximize the total utility obtained by aggrega­
tion with respect to all locations. The maximum is obtained by means of appropriate
distribution of given aggregates of capital and labor among locations and among produc­
tive activities. The third classical input, land, is immobile and hence only the division of
land among various activities at each location is considered.

Local consumption may differ from local production for any good, so that commodity
flows and production of transportation services have to be specified. Transportation,
of course, also uses up inputs. More specifically, we assume that transportation services,
very specific in type, are produced by a Leontief technology without substitution and
that only capital and labor, but not land, are used. This is fairly realistic if we consider
transportation costs in terms of fuel, drivers' services, and wear and tear on vehicles.
The inputs embodied in the existing network of roads are not taken into explicit con­
sideration, as the planning of a new network is an even more long-run undertaking than
the planning of an optimal spatial distribution of production activities.

It should be emphasized that housing is included in the productive activities under
consideration. A "flow" of housing, which might seem at first meaningless, simply
means that workers live at locations other than those of their occupation. Whether the
commodities are physically moved to the consumer or the consumer moves in order to
consume housing or public services is of no importance. We can consider a movement
of either consumers or services, provided that the costs are accounted for correctly.

The main outcome of the analysis is a principle of geographical specialization as
opposed to the possibility of producing everything locally without any interregional
trade. This specialization occurs even in the absence of comparative advantages, since the
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same productive possibilities are available everywhere. It should be noted that the main
conclusions are independent of which particular utility function we postulate.

The mathematical paradigm is that of a continuous two-dimensional space where areal
densities of consumption, production, and inputs are taken into account. These areal
densities for land, of course, are fractions that, at any location, add up to a given constant,
which is at most unity for all space·consuming activities. All these areal densities are
assumed to be smooth functions of the space coordinates. In the same way, the flows of
goods are regarded as continuous flows in the plane. They take paths that minimize
transportation costs between any pair of locations. The structure of roads is represented
by a location-dependent, but direction-independent, need for capital and labor. Transpor­
tation cost is given by the line integral of the costs for inputs at all the locations traversed
by a particular route. The optimal paths are thus obtained by solution of Euler equations
for well·defined variational problems.

The continuous flow concept also implies that, if we know the optimal flow directions,
the local changes in flow volumes can be linked to the local excess supplies.

5.1.2 The Model

Let Xl, X2 denote the space coordinates. We are dealing with a region A of two-dimen­
sional Euclidean space, bounded by a simple smooth curve aA. Unless otherwise indicated,
all the variables introduced are functions of Xl, X2. Surface integrals are taken over all of
A and line integrals along the entire boundary aA, again unless counterindicated.

There are n different commodities (goods or services, including housing but not
transportation). If the quantities of these commodities available for consumption at a
given location Xl, X2 are q I, q2, •.. , qn, then the local utility is U(ql, q2, ... , qn,XI ,X2)

and the total utility to be maximized is

(1)

Explicit inclusion of the space coordinates makes it possible to assign different weights to
consumption in various locations. To begin with, however, we simplify the expression by
deleting these Xl>X2 and occasionally we let the utility function take the form LEjlnqj.
Unless otherwise indicated, all summations run over i = 1,2, ... , n.

Let k j , Zj, mj denote the areal densities of capital, labor, and land used in the ith
productive process at a given location Xl, X2. The linearly homogeneous production
functions are then

(2)

Unless otherwise indicated, expressions written for some index i are assumed to hold for
all i = 1,2, ... , n. Since the space coordinates are not explicitly included we assume that
the same production possibilities are available everywhere. For the sake of example we let

f j A k(l: ·Z{3· 'Y'= ii' i 1m; I
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where the indices Q; + (3; + 1'i = I. Local excess supplies are

tiCk;, Ii, m;) - q; (3)

which enter into the commodity flows or, if negative, are withdrawn from them. We
denote the commodity flows by ~;. These flows are vector fields, Le. the ~i are two­
dimensional vectors whose components are functions of the space coordinates Xl, X2'

Of course, a vector field has both direction and magnitude. The direction is simply the
actual direction of the flow considered and the magnitude is the quantity of commodities
shipped in the flow.

According to one of the basic theorems in vector analysis, Gauss's divergence theorem,
the divergence of a vector field represents the source density of an incompressible flow
such as the transportation of commodities. The source density, in this case, of course, is
local excess supply so that, in view of (3), we may write

(4)

Mathematically, the divergence of a vector field equals the partial derivative of its first
component with respect to the first space coordinate plus the partial derivative of its
second component with respect to the second space coordinate. Thus (4) are partial
differential equations for the magnitudes I~; I of the vectors as soon as the flow direc­
tions ~;/I ~j I and excess supplies on the right-hand side are known. Later on, we shall
return to the determination of the flow directions.

As stated in the Introduction, the transportation of goods uses up capital and labor
inputs, say K;I~;i and A;I~;I, respectively. The K; and A; are given functions of the space
coordinates and reflect the structure of fixed transportation capacity provided by the
existing road network. The linear dependence on flow magnitudes means that we abstract
from congestion. This simplifies the analysis a great deal. A nonlinear dependence on 1~i1

is not difficult to handle, but the interference of the different flows augments the degree
of analytical complication disproportionately to the increase in realism it achieves.

If there are given aggregate resources of capital and labor, denoted K and L, we arrive
at the following constraints

KffI (k j + K; 1~i1)dxldx2

ffI(li+A;I~;I)dxldx2 = L

(5)

(6)

Production uses up k j units of capital and I; units oflabar; transportation uses KiI~i1 units
of capital and Ai I~i I units of labor. Summing over all commodities and integrating over all
locations yields the total usage of these inputs.

As mentioned in the Introduction, it is assumed that in planning we are completely
free to move capital and labor among locations and among activities. As for land, this
may only be transferred between activities. So

Im; = m (7)
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where m is a positive, at most unitary, location-dependent number. In general it is less
than unity, since some space has already been used up in constructing the given fixed
transportation capacity or is otherwise unavailable for further exploitation.

We thus have a well-defined optimization problem, namely to maximize (I) subject
to the constraints (4), (5), (6), and (7) by choosing the appropriate scalar fields k j, Ii> mj,
and qi and the vector fields q;j. This will be accomplished using a Lagrangean method. We
associate Lagrange multipliers pj with (4), r with (5), W with (6), and g with (7). For the
time being they are only undetermined multipliers, but the notation indicates that they
turn out to be shadow prices for goods, capital rent, wage rate, and land rent, respectively.
They can also be interpreted as equilibrium prices in a competitive system with indivi­
dually optimizing agents.

5.1.3 Optimum for Production

We now derive the optimum conditions, starting with those obtained by maximizing
with respect to k j, Ij, and mj

and

Pi Ik (k j, Ij, mi) = r

pj Ii (k j, Ij, m;) = W

(8)

(9)

(10)

These can be recognized as the common marginal conditions for profit-maximizing firms.
With production functions homogeneous of degree one, the marginal productivity func­
tions Ik for capital, Ii for labor, and l:n for land become homogeneous of degree zero.
So, taking the first two marginal conditions alone we obtain the system

(II)

and

(12)

This system (II )-(12) is indeed smoothly invertible as the Jacobian is nonzero due to
second-order conditions for profit maximization. By the inverse function theorem, we get

and

Idm; = Fi(r/pi> w/pj)

As (10) can take the form

l:n (kdmj, Idmj, I) = g/pj

by substituting from (13) and (14) we obtain

(13)

(14)

(IS)
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g/Pi = f:'" (F~(r/Pi' w/Pi),Fi(r/Pi, W/Pi), 1) (16)

which links product price to the three input prices. The conclusion is that if capital rent,
wages, and land rent are given, (16) determines the prices of al1 goods produced at al1
locations, provided that production takes place. This is an important conclusion to be
used later on.

The equivalence of the optimum conditions introduced and the profit-maximizing
conditions for an individual firm at a given location will become obvious from the foUow­
ing considerations. Assume that a firm has to maximize its profits by choosing an appro­
priate mix of productive activities. Capital and labor services are freely available at the
local prices rand w, whereas the firm owns a fixed amount of land m available for al1 its
activities. For capital and labor, the optimum conditions at given product prices Pi are
(8)-(9) or equivalently (11)-(12). We can then invert the system to obtain (13)-(14).
Substituting (13)--(14) into the production function and using (2), the profits of the
firm are

I {pJi(F~ (r/pi, W/Pi), Fi(r/Pi, W/Pi), 1) - rF~ (r/pi, w/p;) - WFi(r/Pi, W/Pi) }mi

(17)

This is to be maximized subject to the constraint (7) on the total quantity of land avail­
able. In view of the fact that both the maximand and the constraint are linear, the solu­
tion is to put mi = m for that i which maximizes

(18)

and mi = 0 for the other activities. If several activities are to be profitable, (18) must be
equal for all of them. This common value could be called g, which represents the profits
imputed to the land-owning firms as land rent. If all activities take place, we get

pJi - rF~ - W Fl = g

for al1 i. In view of Euler's theorem for homogeneous functions

fi = f~ki +fi Ii + f:"'mi

(19)

(20)

and using (7), (11)-(12), and (13)-(14), we see that (19) is exactly the same as (16).
This establishes the local equivalence between profit maximization and overal1 planning.

Conditions (8)-(9) also contain additional information. In view of the fact that
(5)-(6) are integral constraints, the associated Lagrange multipliers rand W must be
constant with respect to the space coordinates. This means that the efficiency conditions
for al10cating capital and labor in space require capital rent and wage rate to be constant
with respect to location. This is not true for land rent g as it is a Lagrange multiplier for
the constraint (7), which is local, i.e. not in integral form.

The conclusions we can draw from al1 this are that (16) determines aU the Pi for which
production is to take place, and that the variations in production opportunity prices in
space are determined solely by variations in land rent. Capital rent and wages are spatial1y
invariant due to distributive efficiency requirements.
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5.1.4 Optimum for Flows

Next, we turn to the optimum conditions for the commodity flows, Le. the maxi­
mization of (1) with respect to the ¢i, given the constraints (4)-(7). The flows appear
in two ways in the constraints, as I¢il in (5)-(6) and as div ¢i in (4). The Lagrange
multipliers associated with these constraints are the Pi, r, and w. The optimum conditions
expressed as Euler equations are

(21)

These conditions mean that the flow directions ¢i/I ¢i I agree with the directions, grad Pi,
of the steepest increase in Pi, and that along the flow lines the Pi increase at a rate of
(rKi + WAJ. We recall that Ki and Ai were the local requirements of capital and labor for
the transportation of a unit of the ith commodity. Accordingly (rKi + wAi) is the local
cost for transportation. As the Pi were interpreted as product prices, (21) simply states
that each commodity flow takes the direction of the steepest increase in its price and
that prices in this direction increase by transportation costs. This makes good economic
sense.

In the preceding section we concluded that an efficient distribution of capital and
labor in the region requires capital rent and wage rate to be independent of location.
In passing, we may note that this can be interpreted in market equilibrium terms, i.e.
that when capital and labor are free to move, they seek the place of production where
the reward is the highest. In the absence of relocation costs this equalizes factor prices
in space. The consequence of this and the fact that Ki and Ai are given functions of the
space coordinates is that the increases in prices along the optimal routes are also given
functions of the space coordinates. In fact, from (21) we obtain

(22)

These are partial differential equations for the prices Pi with the right-hand sides as
given functions of the space coordinates.

5.1.5 Specialization

We are now in a position to prove a general specialization theorem. From (16) we see
that with rand W given, g and Pi are related by continuous one-to-one mappings as long
as the Jacobians of the systems (11 )-(12) are nonzero, which is assumed in traditional
economic theory. We could write (16) as

(23)

from which we obviously get Igrad Pi! = P;(g) Igrad g I.
In (22), the right-hand side designates given functions of the space coordinates, say

rKi + wAi = 0ih(Xl, X2)' The 0i can be interpreted as characteristic constants for each
good. It is a reasonable simplification to assume that if the shipping of one good costs
twice as much as the shipping of another good at one location, the same relation will
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hold everywhere in the region. Hence, equating the two expressions for Igrad Pi I, we
get

(24)

These conditions can hold for several commodities, say the ith andjth, only if the ratios
p;(g)/pj(g) take the constant value Oi/Oj everywhere. But there is no reason whatsoever
why the p ;(g) functions should be linearly dependent. After all, they were obtained from
(16), which depended on the various independent production functions.

We thus conclude that, with respect to goods that are transported, only one com­
modity will be produced at each point in the region. The continuity of the production
function and a nonzero Jacobian for system (11)-(12) guarantee that this specialization
will not only apply to sets of measure zero such as isolated points or curves, but will
split the region into a finite collection of subregions of nonzero areas with specialized
activity in each. The land rent in each of these regions will be determined by the local
revenue shares for these specialized activities.

The reader should note the affinity between our conclusion and von Thlinen's theory,
where specialization in concentric rings occurs, despite the fact that there are no localized
productivity differences. In general economic theory, trade is supposed to occur only
when there are at least comparative localized advantages, due to immobility of inputs.
There are no such advantages in our model. Nevertheless, specialization does occur. The
reason is that when numerous outputs are ultimately produced from a few primary
inputs, output prices are tied to the few input prices. In order for production of all the
outputs to be equally profitable, their prices must covary spatially in a very specific
way. The result is a specialization pattern that is inherent in two-dimensional space itself.
It is then not surprising that this point is missed in trade theory, since general economics
lacks the spatial dimension.

5.1.6 Independence of Utility Functions

Before continuing, it should be noted that the optimality conditions for production
and transportation are independent of the utility function (I). Hence, regardless of how
we evaluate the availability of the various commodities in different locations, the follow­
ing conclusions apply. Labor and capital should seek the locations of best reward, which,
under conditions of free mobility, equalize capital rent and wages over space. Production
everywhere should be arranged as if land-owning firms tried to maximize their profits,
which must equal local land rents. Commodity flows should take the directions in which
prices increase most steeply, and the price increases in these directions should equal local
transportation costs. The result is such that, if there are commodity flows, then there
should be specialization in the production of only one commodity at each location.

These conclusions are derived from consideration of a planning problem constrained
by available resources. But the result could be interpreted equally well in terms of ration­
ally behaVing individual workers, capitalists, landowning producers, and transporters in a
state of general equilibrium. In particular the conclusions are independent of which
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social utility function U(q I, q2, ... , qn, XI, X2) is used. The only optimality conditions
in which this function plays a role are the

(25)

which state that marginal utility should equal price everywhere. Conditions (25) pose a
set of additional constraints on the model that relates local commodity prices to local
consumption of goods.

A similar result is obtained by considering the behavior of individual consumers who
dispose of their incomes so as to maximize their individual utility functions. The demand
functions thus obtained are similar in structure to the inverted system (25), but caution is
advised in the planning case where local budget constraints might not be fulfilled auto­
matically. If we still wish to admit customer autonomy, we might have to consider an
interregional income-transfer policy as a means of fulfilling the planning objectives. This,
however, is the only point where a contradiction between planning and market equili­
brium could arise.

5.1.7 Macro Relations

We now establish a number of macro relations within the model. Observe that, accord­
ing to a general formula in vector analysis

(26)

holds identically for any scalar field Pi and any vector field (/Ji. From Gauss's divergence
theorem it follows that

(27)

The left-hand double integral is taken over all of the region, whereas the right-hand line
integral is taken along the boundary of the region. The (¢i)n are the components of the
vector fields ¢i normal to the boundary. Hence, the Pi(¢i)n have the simple interpreta­
tions of value exports or imports, depending on sign, across the boundary. The line
integrals take care of all flows across the entire boundary and hence the right-hand side
of (27) equals net exports from the region. Let us therefore define

Next we note that, due to (21)

(grad Pi)¢i = (rKi + WAi) I¢;1

(28)

(29)

The right-hand expression is the product of local transportation costs (as evaluated by the
input requirements and the local factor costs) and the quantities of commodities shipped.
Taking the double integral of (29), we arrive at the total transportation costs, denoted Ti .

Thus
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(30)

On the other hand, (4) and the well-known fact that with linearly homogeneous pro­
duction functions all revenues are distributed as factor shares, i.e. pJi = rk j + w/j + gmj,
yield

pj div </>j = rk j + wlj + gmj - Pjqj (31)

(32)

Denoting, in aggregate for a given branch, capital incomes by R j, wages by Wj, the profits
of landlords by Gj , and the value of consumption at local prices by Cj , we get

ffpj div </>jdx 1 dx 2 = R j + Wj + Gj - Cj

Now, integrating both sides of (26) and substituting from (27)-{28), (30), and (32), we
obtain

Xi - M j = T j + (R j + Wj + G;) - Cj (33)

i.e. net value exports for each branch equal factor incomes plus transportation costs
minus consumption.

If we now sum over all the various branches, we can define X - M = ~(Xi - M j ),

T = ~Tj, G = ~Gj, and C = ~Cj. But with regard to capital and labor income it should be
recalled that not all of these inputs are accounted for in (33). Due to (5) and (6), some
quantities are used in transportation. We have not yet accounted for the incomes of the
transporters. Hence, ~(Rj + Wj) = R + W - T. The result is then

X-M=R+W+G-C (34)

which simply means that, in value terms, net exports equal factor incomes minus
consumption.

In a regional economy with zero balance of payments, where X =M so that net
imports of some goods are bought by net exports of other goods, we conclude that the
sum of aggregate factor incomes is the value of aggregate consumption. This is not a trivial
conclusion because both incomes and consumption are evaluated at local prices.

The result establishes an aggregate budget constraint for the economy and hence the
model is consistent with consumer autonomy and locally fulfilled budget constraints.
Consistency, however, does not guarantee local fulfillment of budget constraints for
states we wish to consider. But it does establish that if a socially desirable spatial organi­
zation of the region does not lead to local fulfillment of budget constraints, we can
always design an appropriate, completely internal income-transfer policy that makes
budget constraints hold locally and permits free choice for consumers.

5.1.8 Examples

We now describe two examples of possible spatial organization patterns based on
the model outlined above. Assume first that the fixed transportation capacity is equally
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distributed in space so that all the "i and Ai are constants. Owing to the constancy of r
and w, the local transportation costs 0i = (mi + wAi) are also invariant in space.

Let all rPi = ± grad P = ± (x lip, X2!p), where P = (x1 + XD II
2. If Pi = Pi + 0;1 P - Pi I,

then equation (21) is fulfilled. The flows all become radial and the constant price con­
tours become concentric circles. This suggests a production specialization structure in
concentric rings, as in the familiar von Thlinen case. The difference is that there is not a
single "central business district" in the center to which all commodities flow. Rather, the
whole region is supplied by commodities produced in each ring. This case is illustrated in
Figure 5.1 where, for illustrative purposes, we show a four-commodity model with
activities called public services (S), industry (I), housing (H), and agriculture (A).

In the second example we assume that fixed transportation capacity is not equally
distributed in space but is concentrated in the central parts of the region. Suppose that all
the Ki and Ai are proportional to P, where again p = (xt + x~ )112. Thus we can write local
transportation cost as (rKi + WAd = 0iP, where the 0i are again constants. We can now
set all rPi = ± grad hX1 - xn = ± (Xl, - X2). If we let Pi = j5 i + 0i IhX1 - X~) - 0i I then
(21) is again fulfilled. The flow lines integrate to hyperbolas, xy = constant, and the
constant price lines are hyperbolas, (x2 - y2) = constant, rotated by 45° in comparison
to the paths (see Figure 5.2).

These illustrations agree perfectly with the optimality conditions stated. They are not
chosen at random but represent spatial organization around singularities of the only types
admitted under the assumption of structural stability; cf. Chapter 4. Structural stability
considerations apply to the planning case, in the same way as the considerations in this
chapter on specialization apply to the equilibrium case.

5.1.9 Intennediate Goods

Intermediate products were not taken into account in the preceding analysis. In
particular, it is interesting to know whether the specialization theorem still holds even
when it implies that an output could be shipped to another place to produce something
that is reimported rather than locally produced. In fact, the theorem does still hold, as is
shown now for the case of a Cobb-Douglas technology. Let

I i = A ·k~il~im!i n (If)€ij
I " I • I

J
(35)

where I{ denotes the quantity of output j used as input in the production of output i.
The product in (35) is taken over all indices j from 1 to n. Linear homogeneity now
means that

(Xi + (3i + Ii + I Eij = 1
j

The optimum conditions corresponding to (8)-(10) are obviously

(36)
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Figure 5.1. Organization in rings of a four-activity economy.

Figure 5.2. Organization in sectors of a four-activity economy.
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{XiPJi/ki = r (37)

(3iPJi /Ii = W (38)

ripJi/mi = g (39)

and

€ijpJi/f{ = Pi

We can substitute back from (37)-(40) into (35) and, in view of(36), obtain

(40)

(41)

Taking logarithms we get a set of n linear equations in the logarithms of the (n + 3)
prices. Regarding r, w, and g as given, we can solve for the logarithms of all the Pi, as
the matrix of the system [€ij - <'iij] (where <'i jj is the Kronecker delta) is nonsingular.
Accordingly, the In Pi are obtained as explicit linear expressions of In r, In w, and In g.

After taking exponentials and substituting, we transform (41) into the explicit form

Pi =B/·iW~ig.yi (42)

where the Bi , as well as the exponents, are constants that can be calculated from the
original constants in (35).

Consider now a proportional change in r, w, g, and all the Pi' The solution to (37)­
(40), whatever it is, is obviously unchanged so that (35) is still fulfilled. This demon­
strates that (42) must hold for proportional changes in all prices, that is

(xi +~i+ri = 1 (43)

We can thus substitute back from (37)-(39), disregarding (40) altogether, and obtain

f i = A.k~i/~imii (44)
I J J i

due to (43). Now these are Cobb-Douglas production functions in the primary inputs
only and they are linearly homogeneous in them.

Accordingly, as (44) fulfills the condition (2), the entire chain of reasoning with
regard to specialization still holds. This, of course, does not preclude the possibility
that if there is a certain hierarchy, so that goods produced at a certain stage are never
used in the production of any of their inputs, then the flows should simply take a one­
way-route to higher levels. When interdependence is more complicated, however, it is
possible that goods are reimported at a later stage of refinement.

5.1.10 Local and Global Optima

It should be noted that the optimality conditions stated so far are local in character.
Determination of the global optimum is a matter the outcome of which is likely to change
with the boundary conditions.
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Our specialization theorem states that at every location in the region there is complete
specialization in the production of traded goods. But if the utility function does not
include the space coordinates as explicit arguments, i.e. if a certain consumption is
equally valued at all locations, then local production and no trade constitute a solution
that fulfills all local optimality conditions. And, since the goods are not traded, the
specialization theorem does not exclude this possibility. For certain cases the solution is
probably a global optimum, as the given input quantities are used most efficiently when
no portion of them is "wasted" in moving commodities around.

This can be illustrated by simplifying the model. As trade rather than specialization
is at issue, we can discuss a one-commodity economy. The production function for this
commodity can be rendered in a Cobb-Douglas form and the utility function can be
assumed to be logarithmic and without explicit dependence on the space coordinates. We
do not specify any transportation technology, but assume in the traditional von Thiinen
way that the product may be used up in transportation. The unit of distance is normal­
ized so that the cost of moving one unit of goods one distance unit uses up exactly one
unit of the goods.

We thus have the following problem. Maximize

subject to

K = ff k dx 1 dx2

L ffldx 1 dx 2

and

k Q 1/3 - q - I¢I = div ¢

The optimality conditions are then

l/q = p

ak Q I/3/k = rip

{3kQ I/3/1 = w/p

and

¢/I¢I = grad In p

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

In these conditions rand ware independent of the location coordinates, whereas p is not.
The conditions state that:

(i) Local marginal utility is everywhere equal to the opportunity costs for goods in the
flow.
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(ii) Production is everywhere so arranged that marginal value products of the inputs
equal their local opportunity costs. With constant rand w, these opportunity costs
are equal in space and there is no incentive to relocate inputs.

(iii) The flow of traded goods is in the direction of the steepest price increase and the
rate of increase in this direction is exponential, since moving one unit of goods
uses up one unit of its own value.

We see that (49)-(51) determine inputs k and Z, output kCY.ZfJ, and consumption q,
once r, w, and p are known. As rand w take constant values, determined by the con­
straints (46)-(47), we see that p completely determines the spatial densities.

So, let us choose any function P(Xl, X2) such that Igrad In p I = 1. Then (52) is fulfilled
and ¢f1¢1 = (cos 8, sin 8) is a known unit vector field. As div ¢ = grad 1¢1"(cos 8,
sin 8) + I¢ I div (cos 8, sin 8), (48) becomes a partial differential equation in the flow
intensity I¢ I. Solution of this differential equation solves the whole problem. Hence we
have seen that any price structure such that

Igrad In pI = 1 (53)

(54)

holds can represent a sensible local optimum. This can be illustrated by two different
solutions.

First, set p = (xi + xD1
/
2 and ¢/I¢I = grad p. This flow obviously satisfies (52) for

p = eP • Assuming now that Q = 13 = r = w = 1/4, we get from (49)-(51) that kCY.ZfJ = p,
and q = l/p. Thus kCY.ZfJ - q = eP - e- P = 2 sinh p. This result can be substituted into
(48). But div ¢ = grad I¢ I. grad p + I¢ I div grad p. Using polar coordinates, Xl = P cos w
and X2 = P sin w, we easily get grad I¢I" grad p = cll¢l/dp. Moreover, div grad p = l/p.
Thus (48) becomes an ordinary linear differential equation

cll¢1 (1) .-- + 1 +- I¢I = 2 slllhp
dp p

Given a simple boundary constraint, the equation is readily solved. The spatial orga­
nization associated with this solution is one where goods flow radially outwards and
price increases at an exponential rate in this direction, whereas consumption decreases
outwards and production increases outwards. As excess supply is zero at the origin and
decreases outwards, the case is impossible unless there is a singularity with net outflow at
the origin.

Second, we easily see that by setting k, 1, kCY.ZfJ = q = l/p constant, and f¢ I identically
equal to zero, all the equations are fulfilled. Thus, this case of no trade and local produc­
tion is another local optimum. It is difficult to tell which of the two cases is a global
optimum.

The reader might ask whether there are always just two local optima: one with trade
and one without. In fact, it is easy to find cases with more than two local optima. Let us
change the model (45)-(48) by assuming that the cost of movement is not the same
everywhere in the region, but that it increases in proportion to the distance from the
origin, so that communications are best in the center and become worse at the periphery.
Thus, we assume that pi ¢ 1units of the goods are used up in moving one unit of goods
one distance unit. Then (48) is changed to
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k CX [13 - q - p I¢ I = div ¢

Only (52) in the optimality conditions is changed by this and now takes the form

p¢/I¢1 = gradlnp

In accordance with this, (53) is changed to

Igrad In p I = p = (xi + xD1
/
2

(55)

(56)

(57)

(59)

(60)

We can now easily find at least three different solutions to (55), namely p = constant and
p = exp«±xi ±x~ )/2). The latter are actually four cases, but after discarding reversals of
flow directions we are left with two qualitatively different flows, one radial and one
saddle. It is immediately apparent that the nontrade, the radial, and the saddle flows
are all local optima. Again it is difficult to tell which one is a global optimum without
considering the boundary conditions.

This multiplicity of local optima did not occur in our equilibrium model in the pre­
ceding chapter, as a price-flow distribution on the boundary was taken as given from
world market conditions. To the extent it seems reasonable to use an analogous boundary
condition in the planning problem, the arbitrariness will be removed. This may be reason­
able, as acceptance of the trade conditions, determined by trade outside the region
studied, may lead to maximum benefit from trade with the exterior.

5.1.11 Boundary Constraints

Let us consider these constraints from a more formal point of view. From (55) we see
that

pkCX [13 -pq = pdiv¢+ppl¢1 (58)

But, from (56), pp I¢ I = grad p' ¢. Substituting this and using the identity div (p¢) =
grad p' ¢ + P div ¢, we get

ff(PkCX[I3_pq)dxldx2 = ffdiV(P¢)dxldx2

From Gauss's theorem, the right-hand side equals the curve integral JP(¢)n. This, how­
ever, is zero in two cases: when (¢)n vanishes identically on the boundary, and when it
does not vanish but trade with the exterior balances. Obviously, we only need to be
concerned with these two cases of either complete insulation or of balancing interregional
trade.

Setting the right-hand side of (59) equal to zero yields

f f pk
cx

[13 dx 1 dx2 = f f pq dx 1 dx2

Accordingly the aggregate value of output equals the aggregate value of consumption.
Now, the optimality condition (49) states that marginal utility equals product price.
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With our logarithmic utility function we have pq = 1 in the whole region. As the inte­
grand in the right-hand side of (60) is unitary, we conclude that the integral equals the
area of the region. Denoting this (the total quantity ofland) by M, we get

ffpk",,/fJdx\dx2 = M

Let us next substitute from (50)-(51) into the production function and solve for

( )
aJ"Y {Q )f3/"Y

k""/f3 = 7 ~: p(""+f3)/"Y

(61)

(62)

where "y = 1 - a - {3. As rand ware spatial constants, local output is proportional to a
power function of the price p. We can also solve for k and / from (50)-(51) and integrate
to obtain

(63)

(64)

and

~ ffpk"",f3dx\dx2 = L

Substituting from (61) into (63)--(64) we get air = KIM and (3lw = LIM, which can be
substituted into (62). The result is

(65)

Local output is thus a Cobb-Douglas function of the average areal densities of capital
and labor, multiplied by the aforementioned power function of local price.

These relations must hold in any case where either there is no trade with the exterior
or exterior trade balances.

We note that output k"" /f3 is an increasing function of price. This function is given and
identical in all cases that may be regarded as candidates for a global optimum. From (49),
on the other hand, we know that consumption q is a decreasing function of price. So,
excess supply

z = k"" /f3 - q (66)

is certainly an increasing function of p. Thus, considering two different cases, distin­
guished by subscripts i andi, we conclude that

(67)

must hold at all locations.
Let us now treat two alternative price-flow patterns that fulfill the optimality condi­

tions. Consider the value flows
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Pik~ If - Piqj = Pi div <1/ +PiP 1<1/ I

It is true that

(68)

(69)

since projection of the vector <1/ on the direction <Ii/I <1/1 results, at most, in the norm
I<1/ I. SO, using the optimality condition (56) for the flow ¢i, (69) yields

PiPI¢j, ;;;:. gradpi,¢j (70)

If we substitute from (70) into (68), we see that the right-hand side must at least equal
div(Pi#)' Using the notation Zj for excess supply from (66) we thus get

PiZi ;;;:. div(Pi¢i) (71)

and by integration and use of Gauss's theorem

(72)

with equality when i = j, as seen from (56).
With regard to the right-hand side of (72), we conclude that it is zero if i = j, as already

seen. This results from the trade balance condition. We also conclude that it is zero if
both cases considered involve trade across the boundary, as Pi = Pj are then determined
by the "world market" on the boundary, and the trade balance condition requires the
integrals fPi(¢i)n and fPj(#)n to be zero. The same is true when both cases represent
insulation, as (¢i)n and (¢i)n are then identically zero.

The only situation where the right-hand side of (72) can be nonzero is when case i
represents insulation and case j represents balancing trade. The nonzero flow across the
boundary in the case of trade is then evaluated at the prices characteristic of insulation.
We have no reason to expect that an integral such as this should be zero. As for the
situation where both cases represent insulation or balancing trade, the right-hand side of
(72) is zero regardless of how we permute i and j. Recalling that (72) holds as equalities
when i = j, we get

(73)

The only way a nonpositive integral can be obtained from a nonnegative integrand
according to (67) is through an integrand that is identically zero, i.e.

(74)

As our excess supply function is strictly increasing we conclude that Pi = Pj and Zi = zi
must hold identically. Thus, any two solutions fulfilling the optimum conditions, together
with the boundary condition, which states either that there is no trade with the exterior
or that trade balances, are identical. So, the solution is unique. More specifically, there is
a unique solution with trade and a unique solution with insulation,

Let us return to the situation where one case, say i, represents insulation and the other,
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i, represents trade. Then one of the right-hand side integrals of (72) does not have to be
zero and accordingly, the zero in (73) is replaced by the expression

(75)

If this line integral should turn out to be strictly negative, then we are in trouble, as
(73) does not hold, and the discussion leading to uniqueness would no longer be valid.

How likely is it that the curve integral in (75) is negative? Negativity obviously means
that insulation prices Pi are lower than world market prices Pi where the flow q/ leaves
the region, and higher where it enters. On the other hand, world market prices are low
where the flow enters and high where it leaves the region. This is because the flow of
trade adjusts to the direction of increasing prices. We conclude that spatial price differ­
ences in the case of insulation must be smaller than the differences in world market
prices.

But the price differences in the case of insulation are obtained as accumulated trans­
portation costs. Therefore, since world market price differences between various points
on the boundary are greater than the costs of transportation between them, it seems that
a profit can be obtained from arbitrage across the region. This profit can be converted
into increased consumption in the region.

As a result, it appears as if planning authorities should open up trade with the exterior
when boundary price differences exceed transportation costs. This was the only case that
caused trouble with respect to the uniqueness proof. We may conclude that it holds when
the planning authorities give due consideration to trade opportunities with the exterior
that benefit interior consumption.

5.2 RELOCATION COSTS FOR CAPITAL AND LABOR

5.2.1 Introduction

Let us now return to the problem of planning the use of capital and labor in a region,
but relax the assumption that relocations of capital and labor are costless. We still have
initially given quantities of capital and labor. Now, however, not only aggregates, but
spatial distributions of these aggregates are also given. The future distributions can
differ from these initial distributions in two ways. First, capital wears out and if it is not
completely replaced by new equipment the stock of capital will change, whereas labor
stock normally changes at the net reproduction rate. Second, labor and capital can
actually be transferred in space by the application of transportation services.

The relevant assumptions should be stated more precisely. Suppose we consider only
one produced commodity, and that this commodity can either be used as consumers'
goods or, equally well, be invested as capital stock.

Capital stock wears out exponentially at a given depreciation rate. Accordingly, local
production, minus local consumption, minus local capital depreciation, minus local net
capital accumulation, is the quantity entered into the flow of capital goods, or, if negative,
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withdrawn from it. As we are focussing on capital flows and accumulation, we disregard
flows of consumers' goods. If we wished to include them, there would be no difficulty in
so doing because the model does not distinguish between consumers' goods and capital
goods.

Labor stock accumulates at a given net reproduction rate. The quantity entered into
the flow of labor or, if negative, withdrawn from it, is local labor reproduction, minus
local accumulation of labor. Again, we disregard short-run phenomena such as commuting,
and focus on migration and labor accumulation.

Production is thus determined by the local labor and capital stocks, per unit land area,
or rather by what remains of them after the fixed-coefficient transportation technology
has withdrawn what is needed for the transportation of capital goods and migrants.

5.2.2 Analysis

The goal function is now a utility index dependent on local consumption, aggregated
over both space and time. Accordingly, we maximize

(76)

By introducing the space and time coordinates as arguments in the utility function we
can account for spatial and temporal discounting. Of course, q denotes consumption. The
rate of consumption and the utility index are continuous and differentiable functions of
the space and time coordinates.

The production technology is again represented by a neoclassical production function

f(k, l) (77)

where k is capital stock used in production of goods and I is labor stock used for the same
purpose.

Transportation services are again produced by a Leontief technology of fixed coef­
ficients. We assume that each unit of flow uses up K units of capital and Xunits of labor.
In order to simplify the notation, we normalize the units of measurement of capital and
labor so that transportation costs for one unit are the same for both flows.

Denoting the flow of capital by ¢ and the flow of labor by 1/1, we know that
K (I¢ I+ 11/1 I) units of capital and X(I ¢I+ 11/1 I) units of labor are withdrawn from the
local stocks for production of transportation services. What remains is used in production
of goods (for consumption and investment). Thus, denoting the local stocks of capital
and labor by K and L, respectively, we have

and

k = K - K(I¢I + 11/11)

I = L - X(I¢I + 11/1 I)

(78)

(79)

Suppose capital wears out in proportion to the accumulated stock at the rate Q.



PLANNING MODELS 171

We then have a replacement requirement of uK. Denoting net capital accumulation by K,
where the dot represents a derivative with respect to time, we see that the quantity
uK + Kis withdrawn for investments. As the quantity q is withdrawn for consumption,
the difference f(k, I) - q - uK - Kis added to the flow at each location or, if negative,
withdrawn from it. Accordingly

div¢ = f(k,I)-q-uK-K (80)

For labor the stock increases at the net reproduction rate, denoted 13. Thus, the local
increase in labor due to reproduction is I3L, whereas the local accumulation of labor is
denoted L. The difference enters the migration flow or, if negative, is withdrawn from it.
Formally

div I/; = I3L - L (81)

The optimization is now a well-defined problem. We seek the maximum of (76)
subject to the constraints (78)--(81). As a preliminary step we substitute for k and I
from (78)-(79) into (80). In this way we dispose of two constraints and the two sub­
stituted variables. Only the constraints (80)--(81) remain (with the substitutions already
made). We have to choose consumption q, capital stock K, labor stock L, and the flows
of capital and migrants, ¢ and 1/;, respectively. We want to find optimal function forms
defined over space and time. In other words, this is a variational problem whose solution
is obtained in terms of Euler equations. We associate Lagrangean multipliers p and w
with (80) and (81), respectively. It should be noted that the Lagrangean multipliers are
not constants, but change over space and time, due to the fact that the constraints are
in local, not aggregate, form.

We can now state the Euler equations for optimality. For consumption, we obtain

U'(q) = p

For production, we obtain the two conditions

pfk = cxp - j;

and

pfz = -l3w-w

For transportation, we obtain

¢
P(l<.fk + VI) I¢I = grad p

and

(82)

(83)

(84)

(85)

(86)

These conditions are arrived at as solutions to a planning problem. But again, it is
not too difficult to find interpretations of the conditions in terms of market equilibrium.
We note that the left-hand sides of (83)-(84) are marginal value productivities of capital
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and labor. Hence, we expect the right-hand sides to be input costs. Owing to the fact that
the goods produced are also capital goods, p is also related to the price of capital stock.
Compared to the static optimum conditions, we might be surprised to find, not the input
prices, but their time derivatives (and reversed signs).

However, if we assume that the firms do not maximize their momentary profits, but
rather their accumulated profits over a time interval, then it is obvious that a future
decrease in input prices should be an incentive to postpone accumulation of capital stock.
Thus the negative of the time derivative of price is a reasonable measure of temporary
input cost. Likewise, capital depreciation and consequent capital replacement requirement
are obvious cost items.

As for labor, net reproduction plays the same role as capital depreciation, but the sign
is reversed. This may seem a bit odd at first, but in fact a natural increase in the local labor
stock makes it possible to avoid wage raises in the future to attract more immigrants. The
firm is to some extent protected by transportation costs from surrounding competitors.
Any local surplus of labor may be assumed to emigrate only if the wage difference is
greater than the migration cost. Likewise, in order to attract immigrants, the local wage
rate ought to be higher than in the surroundings and again greater than migration costs.

So, in termS of dynamic optimum, the conditions (83)--(84) are not irrelevant in a
market economy setting. These conditions are fairly close to those found in the recent
theory of "microeconomic foundations of macroeconomics," where firms are supposed
to plan their stocks of inputs by designing an appropriate dynamic price policy.

Conditions (85)-(86) are even easier to interpret in market equilibrium terms. Each
unit of flow uses up K units of capital and X units of labor. The marginal productivities
indicate the sacrifice in terms of goods not produced due to this withdrawal of inputs.
The opportunity cost in terms of commodities is (Kfk + Atl). If we multiply by com­
modity price p, we obtain the monetary opportunity cost p(Kfk + Xfz). This, of course, is
the local cost of transportation, so that it is natural to find it in the left-hand sides of
(85)-(86). Accordingly, these conditions again tell the familiar story that flows take the
direction of the steepest price increases, and that the price increases in these directions
equal transportation costs. Thus (85)-(86) are conditions of efficient trade and spatial
equilibrium.

We can take squares of both sides of the vector equations (85)--(86) and equate them.
The unit flow fields then multiply up to unit scalars and we obtain the equations

(87)

Next, we can substitute for the marginal productivities from (83)--(84), so that (87)
becomes

(OlKp -I3Xw - Kp - XW)2 = (grad p)2 = (grad W)2 (88)

This is a pair of differential equations in the price of commodities and the wage rate.
Through solving it, we establish the developments of prices and wages in space and over
time.

By substituting the solutions for prices and wages into the right-hand sides of (83)­
(84) we can then solve for the 'capital k, and labor I, used in production, Next, (77)
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gives the resulting output. But as capital and labor stocks used in production are known,
we see that total capital and labor stocks, K and L, depend only on flow volumes. Accord­
ingly, the right-hand sides of (80)-(81) depend only on flow volumes.

On the other hand, (85)-(86) indicate that the directions of the flows are gradient to
price and wage. Knowingp and w, we also know the unit flow fields ¢/I¢I and lb/llbl. But
we also know that div ¢ = grad I¢I"¢/I¢I + I¢I div (¢/I¢I), and likewise for lb. Thus, the
left-hand sides of (80)-(81) also depend only on flow volumes and their gradients. This
means that (80)-(81) supply us with another pair of partial differential equations. After
solving them for flow volumes, we know all the variables of the model.

Thus, the differential equations (88) contain the initial information from which
everything else can be calculated. As soon as we know prices and wage rates, we know the
essential structural facts in terms of the flow lines and the corresponding potentials,
including their development over time. This means that the solution to (88) is extremely
interesting in the context of this model.

In fact, these equations are easy to discuss if we introduce an artifice to separate the
spatial and temporal aspects of price-wage changes. Let us define a new scale for time
and space by putting t = or, Xl = e~l, and X2 = e~2' We note that this coordinate change
does not distort space; it only introduces a linear change in scale. By letting e approach
zero the scale is magnified so that, in the limit, we are dealing with a single point. Like­
wise, by letting 0 approach zero, the time scale is magnified so that in the limit we are
dealing only with conditions at a certain point in time.

Let us now change system (88) so that we let the time derivatives be referred to the r
coordinate, whereas the gradients are stated in terms of the ~l, ~2 coordinates. As a result
of this

If we now let e ~ 0, 0 = 1, then

KP + KW = CXKp - (jAw

whereas if we let 0 ~ 0, e = 1, we get

(89)

(90)

(grad p)2 = (grad W)2 = (CXKp - (jAw)2 (91)

Equation (90) is a pair of dependent linear differential equations in p and w. It is very
easy to solve because we have ordinary linear differential equations with constant coef­
ficients. The only special fact to be taken into account is that, with respect to (90), one
of the functions can be chosen arbitrarily. Likewise, equations (91) are easy to deal with
in terms of the qualitative features of two-dimensional flows. These equations separate
the spatial aspect so that we can study flow patterns, as in the stationary cases. In the
same way, equation (90) separates the temporal aspects, so that we can study the price­
wage dynamics in a point economy without spatial extension, as in traditional economic
theory.
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5.3 DIGRESSION ON THE WEBER AND von THUNEN PRINCIPLES
OF LOCATION AND LAND USE

5.3.1 Introduction

There are two ways of formulating the location problem. One, due to Weber (1909), is
to ask: "Where should a certain activity be established?" The other, due to von Thunen
(1826), is to ask: "Which activity is the best one to establish at a given location?" In
Chapter 1 we suggested that the Weberian approach applies to cases where production is
not land-consuming, whereas the von Thunen model is appropriate for cases of land­
consuming activities. Suppose, however, that we wish to compare the performance of the
two approaches in the case of land-consuming activities by putting the Weberian solution
in a form where land rent is taken into account along with transportation costs.

We are going to establish a number offacts concerning the two alternative approaches.
It will be demonstrated that the von Thunen problem emerges in a natural way from the
question of how located scarce resources should be used in order that the total welfare
of the inhabitants of an extended region be maximized. Accordingly, the social opti­
mality of the Weberian solution depends on whether it coincides with the von Thunen
solution or not. It is, therefore, interesting to discover that the Weberian solution is
weaker. Its conditions are implied by the von Thunen conditions, but the reverse does not
hold.

5.3.2 The Frame for Comparison

To compare the two approaches we need a setting sufficiently general to do justice
to both. We note that both von Thunen and Weber are concerned with a set of potential
production sites, that is, the continuous two-dimensional plane itself. Both have a located
market place. Weber assumes a discrete set of located input supplies, whereas von Thlinen
deals with the input of land of constant fertility dispersed everywhere. Both seem to have
a technology of constant coefficients in mind that allows one to proceed directly to the
cost functions.

A continuous space model, where input supplies and output demand can be lumped in
certain locations or more or less dispersed everywhere, and where production can take
place anywhere, seems to provide a sufficiently general frame for the comparison (also
cf. Section 6.1.3).

Instead of the classical fixed-coefficient technology we assume one with substitut­
ability. For illustrative purposes we choose a Cobb-Douglas function. This choice is not
crucial, as the analysis will work with any linearly homogeneous production function. But
linear homogeneity is essential. Land is one of the inputs. By dividing through both sides
of the production function by the input of land we wish to obtain the areal density
of output as a well-defined function of the areal densities of the remaining inputs. This
only works if the original production function is linearly homogeneous.

The question is one of whether linear homogeneity is too restrictive an assumption or
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not. The answer depends on the general purpose of the analysis. In spatial economics
increasing returns are very often assumed. The purpose of this is apparently to explain
agglomeration. Realistically speaking, if there were only decreasing returns no production
would ever be established, and if there were no decreasing returns nothing would limit
production once established. In practice, of course, the size of each producing unit is
determined at the margin between increasing and decreasing returns.

Formally, with free entry, the production of each unit is established at the level of
minimum average costs. Then, at any given set of prices, all changes of inputs and outputs
are multiplicative due to the entry and exit of producing units. Once we are concerned,
not with the individual firm, but with production conditions at a given location, linear
homogeneity does not seem unreasonable.

5.3.3 Production

Assume a production function

n
Q = A OVq<i

i=O I
(92)

where the Vi are inputs and Q is output. We reserve Vo for land, but otherwise we do not
speCify the inputs. As a condition of linear homogeneity

We now divide through by Vo, obtaining

n
q = A L Vfi

i=l

(93)

(94)

The lowercase letters represent the areal densities of output and inputs. By definition we
always have Vo = 1.

5.3.4 Resources and Trade

The use of inputs for production Vi need not be equal to the local availabilities Wi'

Local excess resources are transported to areas of local shortage. The flows of com­
modities transported are construed as vector fields

that associate a flow vector with each location Xl, X2' The unit tangents

qiflqil = (cos 0i, sin 0i)

indicate flow directions, and the Euclidean norms

(95)

(96)



176 SPATIAL ECONOMICS

(97)

measure flow volumes. From Gauss's divergence theorem, the divergences of the flows,
defined as

(98)

denote the local changes in the flows due to local sources, as in hydrodynamics. In our
case the local sources are excess resources not used in local production, and so

(99)

This spatial transfer of resources is not costless. By assumption the costs of transportation
are given in commodity terms. Hence, at each location a quantity Ai I¢i I of the produced
good is used up in transportation of the ith input. The local transportation cost functions
can be taken as spatial invariants, or as any given functions Ai(x I, X2) of the space coordi­
nates. In the latter case the ratio of any two such functions should be a spatial invariant,
provided the same transportation system is used for the different flows. To complete the
picture, we should add that, land being immobile, there is no flow for i = O. Accordingly,
Wo = Vo = I everywhere.

As productive resources are moved from their original locations to the sites of produc­
tion, the finished goods are moved from the production locations to the final consumers.
Accordingly, there is a flow of produced commodities

I/; = (1/;1(XI,X2), 1/;2(XI,X2))

of direction

(100)

I/; /11/; I

and volume

(cos T, sin T) (101)

The cost of shipment of produced commodities at each location is

(102)

If we denote the final consumption by q', we can write the divergence-source relation­
ship for the produced commodity

n

div I/; = q -q' - L Ail¢il- 1l 11/;1
i=1

(103)

The local change of flow is local output, minus local consumption, minus local transpor­
tation cost, in commodity terms for all the flows.

5.3.5 Social Optimum

We now only need an objective function in order to arrive at a well-defined optimi­
zation problem that can be handled by calculus of variations methods. To this end assume
a local utility function
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that depends on local consumption. We also include the space coordinates explicitly- so
that we can put different weights on consumption at different locations, reflecting, for
instance, different population densities.

We aggregate over locations and maximize

ffU(q',Xl,X2)dx1dx2 (105)
R

subject to constraint (94) on available production technology and constraints (99) and
(103) on resource availability and on the necessary consumption of resources for
transportation.

We associate Lagrangean multipliers '; with the constraints (99) and p with (103).
Unlike the case in ordinary constrained optimization, the Lagrangean multipliers are not
constant. They depend on location. This is because our constraints are in local, not
integral, form. The notation indicates that the'i and p are efficiency prices for inputs and
outputs as is to be expected from duality in ordinary mathematical programming.

Maximization is with respect to input and output densities and flows, Vi, q, q/, and
t/J. The Euler equations (necessary conditions for maximum welfare) are

and

du/dq = p

(Xiq/Vi = ';/p

pr...jifJi/lifJil = grad'j

PJ1t/J/It/J1 = gradp

1,2, ... , n

1,2, ... , n

(106)

(107)

(108)

(109)

Condition (106) states that the price of output be everywhere equal to local marginal
utility. Its main interest lies in the fact that this is the only optimality condition that
involves the utility function at all. Accordingly, the rest of the conditions, (107) for
production, and (108)-(109) for trade and transportation, are efficiency conditions of
Paretian type.

5.3.6 The von Thiinen Conditions

Conditions (107) state that marginal value productivities of all the inputs, except
land, equal their efficiency prices. Accordingly, they are conditions for optimal choice
of production program by profit-maximizing firms at each location. In other words
the conditions (107) provide an answer to the von ThUnen question of which process
to choose at any given location.

From (107), using (93), we also find that net profits per unit land area are

n

pq - L: 'iVi = (Xopq
i = 1
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These profits are due to the landowners as land rent. Denoting land rent by ro, and
recalling that, by definition, va = 1, we can equate the preceding expression to rovo. Thus

(110)

This resembles (107), but it is not an optimum condition. It is a definition ofland rent as
net profits from the productive activity that is most profitable at the location concerned.
Substituting from (110) and from (I07) into the production function (94), we find a
necessary condition among all the prices, including land rent

(Ill)

5.3.7 Optimal Trade

Even though the conditions for optimum transportation and trade (108)-(109) are
not our primary concern here, we should at least give them a brief interpretation. They
tell us two things. Firstly, flows of inputs and outputs are in the directions of the gradients
of their efficiency prices. As the latter express local scarcities, the conditions tell us that
all resources are shipped in the directions where their valuations increase most. Secondly,
the conditions tell us that in these directions the prices increase at the rate of transpor­
tation costs. As conditions for efficient trade and transportation these clearly have an
intuitive appeal.

We can now see how the picture of production and trade fits together. Taking the
gradient of both sides of (Ill)

n

grad pip = L Qi grad r;lr;
;=0

If we now substitute from (I 08)-(1 09) and use (96) and (10 1) we get

n

J1 = L Q;A;(plri) cos (e; - T)
;=0

(112)

To be exact, we have not yet defined eo and Ao, but if we let the former be the direction
of steepest increase of land rent and the latter equal the ratio of the rate of increase in
this direction to product price, then (112) indicates the limits for the spatial variation
ofland rent.

5.3.8 The Weber Condition

Returning to our main concern, we conclude that so far we have established that
optimal resource allocation in space entails the von Thunen conditions, whereas there is
no obvious relation to the Weberian approach.

Let us therefore examine how the von Thunen and Weber problems are related to each
other. To this end we first note that the relation
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n

pq - L rivi = 0 (113)
i=O

always holds, irrespective of any optimality, once we assume that net profits are due to
landowners as relit. Taking the gradient of this identity we get

(q grad P - ito Vi grad ri) + (p grad q - Jo'i grad Vi) = 0 (114)

However, from (94), for any production activity that satisfies the assumed technology,
we obtain

grad q
n

L Q:i (q/Vi) grad Vi
i=O

(115)

Strictly, the right-hand side can be derived only with the lower summation limit 1.
As Vo = 1 and hence grad Vo = 0, the lower limit can be extended to O.

We next substitute from (115) into (114) and obtain

(q grad P - Jo Vi grad ri) + Jo(Q:iPq - rivi) grad In vi = 0 (116)

This condition allows us to compare the Weber and von Thiinen approaches. The first term
in parentheses in (116) is an expression for the spatial rate of change of profits as we move
the given production process (q, Vl, V2 , .•. , vn ) to another location. Only when this term
vanishes is there no incentive to relocate the process. Accordingly, we can interpret

(q grad P - it
o
Vi grad r i) = 0 (117)

as the Weber condition for optimal location. In order to understand this, we recall from
conditions (108)-(109) for optimum trade and transportation that the spatial rate of
change of input and output prices equals the cost of transportation. This cost is measured
along the minimum-cost routes that solve the differential equations (108)-(109). Should
transportation cost be spatially invariant, then these routes are straight lines. In the case
where inputs are available at certain specified locations only and the output has to be
sold at another specified location, we see that (117) then expresses exactly the balance of
forces in the classical Weberian location optimum.

There is still one difference. Weber does not include rent as a cost for not using land
for some alternative purpose. However, it seems fairer to the Weberian approach to allow
for a variable land rent in the model. We obtain the Weber case exactly if land rent is
assumed to be spatially invariant.

5.3.9 von Thiinen Implies Weber

We have finally interpreted both Weber and von Thiinen within the framework of a
single model. The von Thiinen conditions are (107), together with definition (110),
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whereas the Weber condition is (117). Recall that (116) holds everywhere, irrespective
of any optimality. It hence applies independently of which conditions we use. If we now
substitute from (107) and (110) into the second summation of (116), we find that it
vanishes and hence that (117) is implied. We therefore conclude that the von Thiinen
conditions for the choice of an optimal process at each location imply the Weber condi­
tions for the choice ofan optimal location for each process.

5.3.10 Weber Does Not Imply von Thiinen

Does the reverse hold too? To answer this question we construct a counter-exampie
where (117) holds, so that the second summation in (116) is also equal to zero, but where
the parenthetic term within the summation does not vanish. Suppose all the Vi, except
that for land, vo, change in proportion everywhere. Accordingly, all the logarithmic
gradients are equal, except of course that for vo, which vanishes. Next, choose any set of
constants ~, such that

n

L. ~i = 1
i=()

but

~i =F- (Xi for some i

Then put

~iq/Vi = rdp i = 0,1, ... ,n

(118)

(119)

(120)

Substitution from (118) and (120) into the second summation of (116) makes it vanish,
and hence (117) does hold. However the conditions (107), due to (119) and (120), do
not hold.

Hence, the Weber condition for optimum location of each process is strictly weaker
than the von Thiinen condition for optimal choice of process at each location. As the
von Thiinen conditions correspond to social optimum in the spatial allocation ofavailable
resources, we conclude that the Weber condition is too weak to ensure this.

5.3.11 Conclusion

Sometimes one encounters in spatial economics the combined question: which activity
should be established, and where should it be located? As we have seen, the first question
alone, asked for each separate location, works sufficiently well as an organizing principle
for the spatial economy. Combining the questions in the way indicated, we only get the
answer that the best thing to do is to establish the most profitable activity at the location
where land rent is highest. As land, if anything, is immobile, this cannot work as an
organizing principle for extended space.



6 Some Long-Run Location Theory

6.1 CLASSICAL PROBLEMS

6.1.1 The Procurement Problem

Classical location theory is a long-run theory; its main purpose is to explain where
facilities are located and where various economic activities take place on a permanent
basis. It requires a long period for plants to be located and for an industry to reach
locational equilibrium. Moreover, only in the long run can products be offered at constant
unit cost for any quantity in a given location - the short or medium run would always
impose capacity limitations on output. But constant unit cost has so far been the standard
case in location theory.

As a starting point we consider the seemingly simple problem of procuring at minimum
total cost quantities q(x) of a commodity for consumption when this commodity can be
produced without limit at constant unit costs c(X) in various locations x. The result is a
natural extension of the continuous transportation problem in which production cost was
uniform among locations. Now, however, it is necessary to consider the sum of both
transportation and production costs; for total production cost is no longer simply propor­
tional to total output when production cost depends on location.

Let production per unit area, i.e. production intensity, be denoted by z = z (x). The
divergence law then assumes the form

div ¢ = z - q (1)

or stated in words, flow divergence equals local production minus consumption. Consider
now the problem of minimizing total costs

minff [kl¢l+czjdx 1 dx 2
<1>, Z

subject to (1). As before we obtain the gradient law

¢
grad A = k­

I¢I
¢ i= 0 (2)

The efficiency conditions for z are obtained as in a discrete linear program

::: ;::: ::} (3)
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Thus production takes place where and only where the product value equals the cost of
production. In no case can production cost be less than the product's value: that would
imply unbounded profit opportunity, which is inconsistent with competitive equilibrium.

When production takes place at constant unit cost cCr), subject to no capacity con­
straints, then the potential function A is independent of the consumption program. It
depends in fact only on production locations, and more precisely on the spatial pattern
c(~) of production cost. This case has been implicit in much of the earlier location
theory, which is a theory of the supply side only. This is transparent in the special case
when production costs do not vary very much

Igrad cl ,:;;; k

In this case the solu tion is in fact

A== c

(4)

(5)

and production is for local use only. There is no integrated spatial market, but only a set
of independent local markets where the product price equals local production cost.

It has been assumed so far that production is possible in all locations. The impossibility
of production could be signalled by a very large value of c. At the transition from possible
to impossible production locations the gradient condition (4) would be violated, so that
flows may now occur.

To see that the price structure Ais independent of the consumption program in general,
we consider the dual problem. The Lagrangean integral of the primal problem is

= JJ- k I¢I + (A - c)z - div(A¢) - Aq + ¢ grad A dx 1 dx2

By the Gauss integral theonn

and this vanishes by the boundary condition. Now

for all A':;;; c and all

Igrad AI ,:;;; k

The dual problem is therefore
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subject to

(6)

and

Igrad AI <:;;; k (7)

Constraints (6) and (7) do not contain q and the efficiency condition (1) does not contain
A. We therefore conclude that A is independent of q. The intuitive reason is that each
location can procure its supply from the cheapest source, regardless of what other loca­
tions may demand, for costs, and hence prices, are independent of quantities.

When condition (4) is violated a singular solution will result such that the demand of a
two-dimensional region is produced in a one-dimensional set of locations. To illustrate
this consider a circular region in which production cost depends on distance r from the
center

e = e(r)

When

de-< -k
dr

unit production cost falls more rapidly than the rate of transportation cost. It is then
economical to shift all production to the perimeter of the circle. The areal density of
production on the circular perimeter is then infinite. Conversely, when

de-> k
dr

production is most economical at the center, once more resulting in an infinite produc­
tion density, but this time in a point location. The procurement problem may thus
involve singular solutions. Production will no longer be dispersed at finite areal densities
but will be localized along lines or in isolated points. Such lines have been referred to as
belts of production by Losch (1940).

A standard problem in location theory concerns the location of production activities
that require as inputs no localized resources. The necessary raw materials (known as
ubiquities) are assumed to be available everywhere at zero or constant cost. Labor is
always required. When wages are uniform, the only locational factor is distance from
points of consumption. This distance is minimized when production takes place right
at the point of consumption. In this connection one speaks of "market orientation."
This concept is usually extended to the case where production is localized, i.e. it is
concentrated in a few points inside the consumption area in order to reap economies of
scale (see Section 6.2.4).

The only factor that can cause the processing of ubiquities to be located away from
consumption points is cheap labor. Differences in wages rates must exceed differences in
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commodity price, i.e. the levels of transportation costs for commodities. This is possible
when the cost of migration exceeds the costs of transporting goods (see below). As
Adam Smith once remarked (but this was more true in his time than at present),
"After all that has been said of the levity and inconstancy of human nature, it appears
evidently from experience that a man is of all luggage the most difficult to be trans­
ported" (Adam Smith, T7w Wealth of Nations, ed. Edwin Cannan, Methuen, London,
1950, p. 84).

It is now apparent that this so-called "labor orientation" phenomenon is a special case
of the procurement problem that is obtained when production costs are equal to a constant
plus labor costs. It is also assumed in labor orientation that labor is available in unlimited
amounts at wage rates depending only on the location. The model thus describes the
location of a labor-oriented industry. It is clearly not market oriented since prices are
determined independently of demand. Of course the locational distribution of production
levels z will depend on the locational distribution of demand q ,while the spatial pattern
of prices is independent of demand.

6.1.2 One Mobile Input: Resource versus Market Orientation

Now let production involve one mobile input, typically a material. This input is found
in so-called resource deposits at certain locations. The question is, will the material be
processed at the site of the deposits, at the market, or in transit?

We may assume that production transforms one unit of resource into one unit of the
product. Demand is for products only. The resource can be extracted at constant unit
costs e(r) in unlimited amounts. (For problems associated with the exhaustion of deposits
see Section 6.2.1.) Costs of labor or other ubiquitous inputs are assumed constant and
can be ignored. Labeling product as 1 and resource as 0, we have the problem formulation

min IIezo + ko I¢o 1+ k 1 1¢lldx1dx 2
zo' <Po. <P I

subject to

div ¢1

div ¢o

(8)

(9)

Consider the Lagrangean integral

I I - ezo - ko I¢o 1- k 11¢11 + ;\(ZI - ql - div ¢1) + p(zo - ZI - div ¢o)dx 1dx2

The efficiency conditions are

grad;\ =

grad p

k~
1 1¢11

k~
o I¢o I

¢o i= 0 (11)
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Zo 0 wherever /1<c

Zo ;;;" 0 wherever /1 = c

Zl 0 wherever X</1

Zl ;;;" 0 wherever X = /1

(12)

(13)

Suppose first that k o and k 1 are constant everywhere and that both resource and
product move along the same paths from deposit to consumption location. Then the
price of the good with the higher transportation cost must rise faster. If this is the pro­
duct, then its value relative to the resource is lower at the deposit than at the consump­
tion location. Hence the last equation, (13), implies that production takes place at
consumption sites and that only the resource is transported. The opposite holds when the
resource is costlier to ship. We have therefore the following principle governing market
versus resource orientation: Processing is market oriented when the resource is easier
to transport, and is resource oriented when the product is easier to transport.

Suppose now that there is a discontinuous change in the levels of k o and k 1 such that
in some region k o < k 1 while in the adjacent region k 1 < k o . This may be due to a
change of mode of transportation, say from water to rail transportation. Then production
will be attracted to the switch point and so-called "processing in transit" will then take
place (Hoover 1948, pp. 38-40).

6.1.3 The Launhardt-Weber Model

It is instructive to examine how the classical Weber problem (actually treated by
Launhardt before Weber), which is the epitome of the discrete-point approach, appears
when treated in a continuous framework. We consider an industry using two material
inputs in fixed proportion to produce a single mobile output for a single (point) market.
(On this topic see also Section 5.3.)

A particularly interesting case is that in which the sum of the weights of any two of
these three commodities exceeds the weight of the third. (In modern steel production,
for example, the weights of coal, ore, and steel produced are almost equal, so that this
would meet the requirements.) For then it is possible - depending on the location of the
input sources and the output market - that the optimal location of the processing plant
falls into neither source location nor market, but in between. As is shown in standard
works on location theory, the condition that determines the production location is then
that the three weights, "pulling" in their respective directions, should constitute an
equilibrium of forces (Beckmann 1968, p. 16). We assume, of course, that the given
locations and the given weights permit this type of solution.

To establish a correspondence between the classical Weber problem and a continuous
model, we interpret the raw material sources as small regions of limited area. In the case
of mineral deposits this can only add realism to the model. Also, the market is not a
point but a small region. One way to introduce the source locations into the model is by
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means of a resource cost function that has a finite (possibly zero) value C in the deposit
area and is infinite (or finite and very large) outside. Market demand is described as usual
by q(~). Let the subscripts 0, 1,2 refer to the product and to the two inputs, respectively.
The object is to

mJn f{to[kil¢d+ ci zd dx l dx 2

Zi ;;'0

subject to

div ¢o = Zo - q

div ¢i = Zi - biz O i = 1,2

(14)

(15)

The first constraint states that net outflow of product equals production minus consump­
tion. The second condition states that net outflow of a material input equals the amount
mined Zi minus the amount used in production, where bi is the input coefficient.

Consider the Lagrangean

2 2

L = - L [kil¢il + cizd + L Ai(zi - bizO - div ¢i) + Ao(zo -q - div¢o) (16)
i=O i= 1

The efficiency conditions are then

k·~ = grad AI'
II¢i l

i=0,1,2 (10)

Zo 0 wherever Ao < p'>," CO)
(17)

Zo ;;;. 0 wherever Ao = L biAi + Co,
zi 0 wherever Ai < Ci} (18)
zi ;;;. n wherever Ai = ci

Condition (17) requires us to find the production location where the output value equals
the sum of the input values, while everywhere else it must be less. Clearly at a production
location all three flows must be nonvanishing. What is the change in net profits that
results when a production location is moved in the direction v? This is given by the
directional derivative D v of the profit function

D v (Ao -.f biA; - co) =
1=1

v' grad (Ao - .f biAi - co)
, = 1

(
¢o ~ ¢. )v· ko-- - L. kib i - '

I¢o I i= 1 1¢;1

(19)

(20)

using (10) and observing that costs Ci are constant.
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At a profit maximum this directional derivative must be nonpositive for all v. It
follows that the vector in parentheses must vanish. Hence

(21 )

But this is precisely the condition that there is an equilibrium of forces between the
weights of the resources pulling with strength kib i in the directions of the resource
locations and the pull k o of the product in the direction of a consumption location.

We may also investigate the set of production locations that emerges when demand is
widely dispersed across the entire region. For given resource locations, the locus of
optimal production points is determined as follows. It is a circular arc through the two
resource deposits such that the two rays from the resource deposits form a constant
angle with the direction of flow to the market location. All markets lying on such a ray
are served by the same production location. The angles are determined in the same way
as in the previous particular solution for a single market point, because they depend only
on the relative weights that must be moved. In this way all points lying between lines A
and B (Figure 6.1) will be served by production locations lying on this circular arc. The
same applies for market locations lying in the opposite directions between lines D and C.

The circular arcs containing all production locations are symmetric. All markets lying
between lines A and D are served by a production location at resource deposit I, while
all market locations lying between lines Band C are served by a production location at
resource deposit 2.

All markets that lie on the same flow line of the product are therefore served by the
same production location. The production density on the two arcs and in the two
resource deposits will therefore be infinite again: once more the solution becomes sin­
gular. The interior of the area spanned by the two circular arcs contains locations of
production for local consumption: production and market location coincide. Here the
areal density is finite.

Generalizations to more than two inputs or to alternative sources of supply will not be
developed here. The point was simply to show how a continuous flow model can handle
the classical Weber problem, and in fact extend it.

6.1.4 Indivisibilities

The purest case of allocation of indivisible resources in spatial economics is the
following. Suppose that production requires no land input (or rather a negligible amount)
but requires one unit of an indivisible resource. With one unit of this indivisible resource
any quantity of the product may be produced for export from one location, the location
being considered as a single, dimensionless point. How many units of this indivisible
resource should be used and where should they be located?

Consider first how to locate a single facility (or unit of the indivisible resource). The
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Figure 6.1. Solution of the Launhardt-Weber problem for different market locations.

object is to minimize total transportation cost. Formally the problem is the continuous
transportation model of Section 2.1, with this modification

Q(Xl,X2) ;;;. a throughout A

A single singular source, represented by a point (x~, xg) surrounded by a circle of infini­
tesimal radiUS, may still be chosen, as shown in Figure 6.2. The problem is now as follows



SOME LONG-RUN LOCATION THEORY 189

Figure 6.2. Location of a single facility.

subject to

div ¢ + q

¢n = 0

o inA

on the outer boundary of A

(22)

(23)

1¢n ds =ff-q dx 1 dx z at the singular point Xo (24)
~o A

Consider its dual, as discussed in Section 2.2.9. In the present problem it assumes the
form

~~n m~xJf ;\ q dx 1 dxz

subject to

Igrad;\1 ~ k

Assume in particular that

k(X) == k

(25)

(26)

(27)

so that the flow lines are straight lines. Let r(x,;&O) denote the straight-line distance
between ;& and ;&0. Now A is punctured at Xo and therefore constraint (22) does not
apply there. Its Lagrangean multiplier must be zero. Thus

(28)

Then
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(29)

(30)

(32)

(31)

The dual becomes

mlffr(,J,,J°)q dx l dx2

in agreement with the ordinary formulation of the facility location problem when costs
other than transportation are constant.

An interesting conclusion may now be drawn from the primal formulation. Since
kG!) == k it may be set equal to unity. The flow field consists of the radius vectors issuing
in all directions from,J° . Suppose that flow vectors at,J° are replaced by strings to which
weights are attached equal in strength to the flow vectors. Now the combined sum of
weights times path lengths will be a minimum if and only if these vectors, considered as
forces, are in equilibrium at ~o. This is a continuous analog of the Varignon machine
for the Weber problem (Beckmann 1968, p. 18). Hence the optimum facility 10cation,J°
must represent an equilibrium of flow when flows are interpreted as forces.

With the Manhattan metric this becomes the Principle of the Median, for it must now
be true in the North~South and East-West directions separately: as many customers
must pull from the North as from the South, and as many from the East as from the
West. In fact, this principle still applies to each of several facilities separately, but the
visualization and implementation of the principle become more difficult.

The solution of the indivisibility problem is well understood in the case of a homo­
geneous unbounded two-dimensional plane. It can then be reduced to finding that spacing
of points which minimizes average costs per unit area when the market area surrounding
anyone point is considered. It is not hard to see that these market areas constitute a
regular net of hexagons. (eL Section 4.7.2.) (When demand depends on price it is not
obvious that deliveries will be made to all points of the hexagon - corners may be
rounded off in the case of linear demand curves (Beckmann 1971). This is the classic
Loschian equilibrium problem.

6.2 SOME RECENT DEVELOPMENTS

6.2.1 Optimum Utilization of Exhaustible Resources

The following is essentially based on Beckmann (l982b). At location (Xl,X2) let
there be a total A(XI,X2) of the resource in the ground, but let the maximum feasible
rate of extraction be a(xl,x2)' Thus if Z(XI,X2, t) is the rate of extraction at location
(Xl, X2) at time t one has two restrictions

Z ,,;; a
tfz(s)ds ,,;; A

°With a planning horizon T one may restrict oneself to t";; T. The technology assumed
is one of fixed coefficients. Thus the cost of extraction should depend only on location
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Presumably, the exhaustible resource will be converted a t some point into consumable
products, which then generate utility. We may sidestep this conversion and feed the
resource directly into the utility functions

(34)

where q is the rate of consumption (in the form of final products) of the exhaustible
resource at location x I, X2.

The cost of transportation will be treated as exogenous. A transportation cost

(35)

is associated with a flow ¢ to location x I, X2 . The welfare function to be optimized is
thus a sum of utilities minus costs. Therefore utility must also be measured in money
units

T

W = IIIU(Xj,X2,q(XI,X2))-k(XI,X2)1¢(XI,X2)1
o A

- C (x I , X 2 ) Z (x I , X 2 ) dx I dx2 dt

(36)

In addition to the constraints on resource extraction we have the source-sink equation

(37)

(38)

Consider the Lagrangean
T

III u-kl¢l-cz+A[z-q-div¢J +/l[a-z]
o A

+ vet) [A - fz(s)dsj dx l dx 2 dt =IIf L dx l dx 2 dt (say)
o

where all variables except A and a depend on location (XI, X2) and on time t. For simpli­
city, we have not discounted future utilities and costs. The efficiency conditions are as
follows

(39)

Obviously A is the price of the resource at location (x I, X2) and time t. (If the resource is
not shipped directly but only after some transformation, then A is the value of the
resource content of this transformed good at location (XI, X2) and time t.) The condition
states that consumption should not take place if marginal utility, even at zero consump­
tion, falls short of the resource price. Otherwise marginal utility should be made equal to
price. With Cobb-Douglas or logarithmic utility functions, where marginal utility is
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infinite at zero consumption, some of the resource must be consumed everywhere and at
all times. Next

T

Z = 0 -- A < c+p+ [TV(S)ds)
(40)

z;;;'O- A=C+p+IV(S)dS
t

This condition specifies where extraction should take place at a given time. It should not
take place where the market price A falls short of extraction cost c plus capacity rent p

plus exhaustion rents
T

IV(S)ds

Notice that

p= 0 - z < :}p;;;' 0 -- z =

and

(41)

(42)

v

t

o --- Izds < A)

"" 0 - IZd' ~ A
o

Thus rent p is incurred only when the location is worked to capacity a, and the rent v
falls due only after exhaustion of the site. Finally

~ }k- = grad A where ~ =1= 0
I~I (43)

k ;;;. Igrad AI where ~ = 0

Equation (43) states the familiar equilibrium condition for interlocal trade in a two­
dimensional spatial market.

This general model will now be illustrated in terms of a simple one-dimensional
example. Let consumption be concentrated in a single location, placed at point zero, and
let the resource be available in an interval extending from ro rightwards to infinity
(see Figure 6.3). Further, let

a(r) = a

A(r) = A

the extraction cost

c(r) = c
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o fa f

Figure 6.3. Location of an exhaustible resource.

and the transportation cost

k(r) = k

all be constant. Assume the utility function to be logarithmic

u = log q

The welfare function is then

(44)

Tooff [log q - k I!/J I - cz1drdt (45)
o 0

Let rl (t) be the largest distance from which the resource is shipped to the consumption
point initially. Then (40) implies

X(rl,t)=c

and (43) implies

X(O, t) = kfl + c

From (39)

X(O, t)
au 1

ap q

so that

(46)q
c + krl

Since the marginal utility of consumption equals the marginal cost of production, the rate
of consumption thus depends on the distance from which the resource must be brought,
and as this distance increases with time, the rate of consuinption necessarily falls.

Consider now production. At time zero the resource must be extracted in an interval
(ro, rl) such that supply equals demand

I
q = --- = aO(fl -ro)

c + krl
(47)

(48)

From this

rl = ~fo-f)+ [±to-fr +a~ +fror12

The initial period during which resource extraction takes place in the interval (ro, rd
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lasts A/a units of time. After that, the operation shifts to an interval (r1, r2). Clearly,
each successive termination point rn + 1 may be calculated from the previous one rn in the
same manner, for (4'6) and (47) must again apply, yielding

rn + 1 = ~tn-f)+ [±(rn-fr +.alk +frnr12

(49)

Although the setting of this problem is essentially continuous, the solution consists of a
sequence of discrete shifts of operations.

This result clearly also applies in a two-dimensional context. Thus the interval can be
replaced by a succession of concentric rings surrounding a von Thiinen city as the mining
operations are successively shifted farther away. Each interval of operations has the same
duration A/a. But the discrete nature of the selection of mining sites still applies and
continues to apply, even when the resource does not occur in all places beyond distance
ro but only in selected areas, and also when consumption is not concentrated in one
place but is dispersed in a continuous manner. The details must be worked out in every
specific case, but the qualitative nature of the solution applies in general.

6.2.2 Water Resource Management

The continuous model of transportation offers a natural framework for modeling the
production, distribution, and consumption of water in a region. Such regions need not be
self-sufficient - as a watershed is - but may be importers and/or exporters of water to
neighboring regions or to the ocean.

In the absence of man-made water channels or pumping activities, etc., there is the
natural water flow </>0 generated by the naturally existing source-sink distributions qO
and satisfying

div </>0 + qO = 0

</>~ = gO on

in A (50)

(51)

Any change through the production z or consumption q of water will lead to a super­
imposed flow pattern I/; such that

z - q = div I/; in A

I/;n = b on aA

(52)

(53)

where b is the desired change in net exports of water. Actual physical water flow will
then be

(54)

but the cost of moving water will be a function only of the additional superimposed flow
1/;. The overall objective may be, for example, to minimize production and moving costs

(55)
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subject to (52) and (53). For the program z, q, b to be feasible, one must have

ff(-qO +z-q)dx l dx 2 = f (g+b)ds (56)
A aA

or, since the natural water flow may be assumed as feasible

ff(z-q)dx l dx 2 = f bds (57)
A aA

A broader objective would be to maximize the net utility of water consumption

subject to (52) and (53).
The cost function k will not be isotropic. Rather the costs of pumping water in the

direction opposite to the natural flow direction - the topographical gradient - will be
a maximum, while the cost will be a minimum and may even be zero in the direction of
the topographical gradient.

For the natural flow 1/Jo, the potential function 'A° will correspond to the topo­
graphical level or altitude. Now the potential function 'A(x I ,X2) for the 1/J field represents
the economic value of water in the various locations (XI, X2), on the assumption that in
the natural flow field 1/Jo the value of water was equal everywhere.

The principal advantage of the continuous flow field approach to changes 1/J in water
flow is that it does not require assumptions or previous commitments about a network of
water channels. Rather, this approach determines the principal directions along which
water should be directed, and thus this analysis should precede any analysis based on
assumed hardware locations. A convenient starting point would be to calculate the value
of water (the potential function) that would result if the present pattern of production
and consumption were achieved by an efficient distribution system on the basis of given
transportation cost functions k( 1/J, XI, X2)' Any discrepancy between values so calculated
and costs actually incurred would indicate wastes or inefficiencies of one sort or another.

6.2.3 Investment in Transportation Facilities*

Suppose a (small) region is to be developed for the production of a single commodity,
and that production and transportation will be undertaken in a market framework by
hiring capital and labor at competitive prices. Land is free, i.e. owned by the developer.
There is a capacity limit a(xI, X2) for production. Variable inputs are proportional to
output z and their cost is h(x I, X2)'

The utility of consumption of the product at location (XI, X2) is u(q, XI, X2), to
be expressed in money terms. In addition to production, transportation must also be

*This subject is treated more fully in Puu (l979b).
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financed. Let the operating cost of the transportation system depend on capacity c
according to the following simple law

77 > 1 (59)

and let the construction cost (appropriately distributed in time) and maintenance cost
per unit of capacity c be m(xl,x2)' Then the total net benefits of the development
project are:

and this is to be maximized with respect to the policy variables

q(Xl, X2), ¢(Xl, X2), Z(Xl, X2), and C(Xl, X2)

subject to constraints

z<a(xl,x2)

and

div ¢ = z-q

The efficiency conditions are

q = 0- u' < X}
q ~ 0 -u' = X

(61)

(62)

(63)

(64)

(65)

Consumption should take place only where its marginal utility can be made equal to the
price X(Xl,X2)

Z=O-X<h+'Y}

z~O-X=h+'Y

Here 'Y is a rent on land (or on resource capacity a)

'Y = 0 ----- Z < a}
'Y~O- z=a

(66)

Condition (65) specifies where production should take place: only at sites that can yield
a nonnegative rent 'Y. In fact, where 'Y is zero, the limits of the development are reached.

(67)

The marginal cost m of transportation investment should equal its marginal benefit. This
may be solved for C



SOME LONG-RUN LOCATION THEORY

1
11(1 +'1)

e = [2; ok'<1>''1

In the special case where T/ = I

(
k )112

e =: m l<1>i

Finally we have the following efficiency condition for flow

197

(68)

(69)

(70)

Here we may substitute for e

[

T/ ] - '1/(1 +'1)
T/k mkl<1>I'1 1<1>1'1- 2 <1>

or

grad A

(T/k)lI(1 +'1) m'1/(I +'1) 1<1>1-(2+'1)/(1 +'1) <1>

In the special case where T/ = I

(km)1I2 1<1> I3/2 = grad A

grad A (71)

(72)

In this way optimal flows and investments are determined simultaneously.
The following result is easily derived along the same lines. Let the unit cost of trans­

portation be given by

k = k(I~1 ,~)

and let congestion toll charges k' 0 (1<1> lie) be charged (where k' denotes the partial deriva­
tive with respect to (1<1>l/e) as suggested in Section 2.4.4. Then the optimal local
expenditure on road capacity equals the local income from congestion tolls

me = k' !!lol<1>1
e

6.2.4 Increasing Returns in Production

The problem to be considered next is best introduced by looking at a discrete set of
locations, some of which are producer locations and some of which are consumer loca­
tions or markets. When production takes place under constant or diminishing returns,
one can associate with each location an excess supply function in terms of local price, and
competitive market equilibrium can be visualized, defined, and described. In fact let Pi be
price at location i, qi(Pi) excess demand, xij commodity shipment from i to j, and hij
transportation cost per unit shipment. The equilibrium conditions are the two equations
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qi(Pi) +L (Xij - Xj;)
j

and

o (73)

Xij = 0 - Pj - Pi < kij}

Xij;;;' 0 ---- Pj-Pi = kij
(74)

It can be shown that these equilibrium conditions may be obtained through the maxi­
mization of a suitable consumers' and producers' surplus integral with the transportation
cost introduced explicitly (Samuelson 1952). It is then a straightforward matter to study
the comparative statics of this equilibrium system.

Introducing increasing returns changes the nature of the suppliers and the markets. At
each location there will be only one supplier (if increasing returns continue for ever, as
we shall assume here). As before, each market is served by only one or a small number of
supplier locations. If we assume profit-maximizing behavior in terms of Edgeworth­
Bertrand strategies of mutual price cutting, one firm will survive in each market, i.e. the
lowest-cost supplier, whose costs are determined by his scale. The price actually charged
is determined by the cost of the second cheapest supplier and equilibrium occurs at a price
below that cost. This equilibrium need not be unique and hence will depend on initial
conditions and on dynamics of the price-setting and entry-exit behavior assumed for
each of the participating firms.

Fascinating simulation games may be played and a multiplicity of outcomes observed.
These will show some degree of regularity and predictability only when transportation
costs are large relative to the extent of the returns to scale. For then, the final result is a
large number of firms occupying locations at fairly regular distances and each command­
ing their own territory with safety.

A technical change, a shift in demand, or even a change in the ownership of firms
may upset such an equilibrium, particularly if the equilibrium was only locally stable, i.e.
stable against small changes. Just such a change of ownership occurred in the American
brewing industry through the takeover of some large brewers by conglomerates. Backed
by larger financial resources, Budweiser and Miller have engaged in more aggressive
marketing strategies. This has reduced the market share and even threatened the existence
of such former giants as Schlitz and it has eliminated or jeopardized many local brewing
companies. Schlitz's misfortunes are in part attributable to a change in product design
(taste) that did not find favor with consumers. This is one illustration of the dynamics
of an industry characterized by increasing returns and significant transportation and
communication costs. It appears that monopolistic competition in the national beer
market of the United States is going to be superseded by massive oligopoly.

A deeper understanding of the spatial side of these issues requires an explicit intro­
duction of spatial coordinates. This in turn means an analysis in continuous space.

It has become fashionable to contrast two fundamental approaches to the location
of economic activities, associated respectively with the names of von Thiinen and Weber
(cf. Section 1.1). In its boldest form, the Weberian type of model locates discrete acti­
vities at discrete points ignoring space requirements but emphasizing the economics of
distance, while keeping in mind cost factors that may vary with location. The von Thiinen
approach asks to what economic activity a given piece of land should be allocated. It
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emphasizes land requirements as well as distance to market and pays due attention to
the dependence of other cost factors on location. In a complete analysis of spatial equili­
brium there is room for both approaches. In partial analysis, the Weberian model is better
adapted to production activities that have increasing returns to scale and are thus local­
ized, i.e. concentrated in a few places, even in an otherwise perfectly homogeneous
economic environment. The von Thi.inen model seems more "natural" when activities
with constant or diminishing returns to scale are considered.

Suppose, however, we try treating economies of scale in a von Thi.inen setting. Can it
be done, what does it mean, and might it be useful? This is the problem addressed in this
section. To simplify the analysis we keep all other complications to a minimum. Thus we
consider a single commodity offered in a market whose participants act as if they are in
perfect competition: as price takers. As before, let the density of local demand be a
given function of the local (delivered) commodity price P(Xl, X2)

(75)

In other words consumers are acting as price takers.
To gain some experience we first treat production under constant returns to scale.

Let the production function involve only two factors, land M and labor L, both available
at given prices g(Xl, X2) and w(x 1, X2), respectively. The production function is assumed
to be Cobb-Douglas

Z=b(Xl,X2)L(>M{3 0:+/3 (76)

In terms of the densities

z = Z/A = output per unit area

I = L/A = labor input per unit area

m = M/A = land input per unit area

one has

(77)

Consider the utility function underlying the demand function q(p, x). Let p(q, X) be
the inverse function of (75), which exists if the demand function is strictly decreasing.
The utility function is then the consumers' surplus integral

q

u(q,~) = I p(t,~)dt (78)
o

The cost of transportation associated with a local flow vector ¢ is given by

Total transportation cost in the region is then
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Between commodity flow ¢ and the excess production z - q there exists the divergence
relationship

div ¢ = z - q = bt<Y. m IJ - q (79)

It is well known that competitive equilibrium is attained when and only when the con­
sumers' surplus, net of costs of production and transportation, is maximized

subject to the constraint (79) and the restriction on land use

m ~. I

The Lagrangean of this problem is

ffLdx 1 dx 2 == ff{u-Wl-gm-kl¢I+A[b{Y.mlJ-q-diV¢]

+}J.[1-m]}dx 1 dx 2

Variation with respect to q, I, m, and ¢ yields

U'-A ~ a
> a}= a if q

z
1-w + AQ- ~ a

I

= a if! > oj
z

ifm > 0 ]

-g-}J.+A{3- ~ a
m

a

¢ a ll.~O]-k- + grad A =
!¢\

- k + Igrad AI ~o if ¢ = a

(80)

(81)

(82)

(83)

(84)

}J.~o

= a when I < I} (85)

Notice that the Lagrangean function, the maximand, is concave so that the "efficiency
conditions" are necessary and sufficient for a maximum. Their solution may also be
shown to be unique.

An interpretation of these conditions now follows. It shows that we are dealing with a
competitive market in which the production and consumption activities are spatially
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dispersed and the equilibrium is brought about through commodity arbitrage: interlocal
shipments whose flow field is 1/>.

Observe first that A(XI,X2) is the commodity price and P(XI,X2) the profit rate or
rent per unit area of the firm(s) located at (x I, X2). Condition (81) states that consump­
tion is brought to the point where its marginal utility (in money terms) equals price. No
consumption takes place where price exceeds marginal utility even at the zero level of
consumption. Equations (82) and (83) state that each factor is used to the point where
the value of its marginal product equals the factor price. When a factor is not used ­
which in the Cobb-Douglas case means the product is not produced - the factor price
exceeds the value of its marginal product. This can also be stated as marginal cost exceed­
ing the product price. The factor price of land includes an extra rent p over and above the
given land rent g. According to (85) this extra rent is zero when a piece of land is not
fully utilized. Finally, equation (84) states that commodity shipments are in the direc­
tion of the steepest increase in price and are just profitable in only that direction. In no
case can the rate of local price increase exceed the rate of transportation cost.

To study increasing returns we must return to the production function (76). Dividing
by area we obtain a production function for output density in terms of input densities
and area itself

z = ~ = bAa+~-1 (~r(~r

z = bAa+~-1 lam~ (86)

The economic interpretation is that output intensity increases with input intensities and
with the size of the contiguous area A over which production takes place. In fact, areal
extent A, a measure of scale, acts as another factor of production. In the Cobb-Douglas
case its output elasticity equals the degree of returns to scale, Q + (3 - 1.

This positive effect of the extension of a production activity over an area is coun­
tered by the negative effect of the increasing cost of internal communication and trans­
portation. For simplicity we assume that all labor must move at least once during a shift
from the center to the working place and back. If the area is circular and this round trip
has a transportation cost of h per unit distance, then the total cost equals

.,j<AITr)

hi f 2rr,2 dr h/~rr((A/rr)l/2)3
o

The cost incurred per unit area, i.e. the density of this cost, is then

~ hlrr- 1/2 A 1/2

As before, the intensity of land use is restricted to unity

(87)

(88)

The density of labor may be similarly restricted. A more natural approach is to consider
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the cost of housing production activities directly. Increasing labor intensity can be
accommodated only through the use of tall multistory buildings and this is subject to
increasing cost. In fact, assuming a Cobb-Douglas function for construction and main­
tenance, one has cAP' for total "housing cost" of production and

cP' r> 1 (89)

for its density per unit area.
The maximand (80) is now replaced by

max Jf{u-wl-gm-kl<1>l-jhl1T-1/2 A I12 -cP'
q.~m,</>,A

(90)

Before we carry out the optimization it is appropriate to ask what the economic
interpretation of such a maximization should be. Under increasing returns the suppliers in
one location or area can no longer be considered as perfect competitors. Rather, the
entire contiguous area A is taken up by one enterprise. Firms in different areas are
identifiable and the industry is thus characterized by oligopoly or at best by monop­
olistic competition. Which of the two is realized depends essentially on the size of the
returns to scale relative to the size of transportation costs, as noted above.

Maximization of a welfare function is consistent with monopolistic competition and
regulated entry, but constitutes only a limiting case under oligopoly. In fact, when the
space is homogeneous, maximization describes the Loschian type of spatial market equili­
brium with regulated entry and competitive pricing, associated with a welfare maximum.
Free entry, on the other hand, would require profits to be zero, an additional condition
not considered here.

The efficiency conditions are obtained through variation of the integrand with respect
to the decision variables q, m, I, A, and <1>.

u' ~ A

> o}whenq

A{3z
~ M+g 1m

whenm > oj
M ~ 0 }

= whenm < 1

A~ j~ w + ~ h1T- 1/2 A 112 + crP'-1

= when I > 0

(81)

(83)

(85)

(91 )
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A(a +~- l)z ,,;;; ~ hrr- 1I2 A- 1I2 )

(92)
- whenA > 0

¢
k I¢I = grad A

k ;;. Igrad AI

when ¢ =t- 00)

when ¢ =
(84)

The qualifications I> 0, m > 0, A> 0 may be replaced by z > O.
Notice that these conditions impose a consistency requirement in terms of A. Output z

must be positive precisely in a contiguous area of size A. Notice also that the maximand
is no longer concave since - lA 1/2 is not concave. This means that the efficiency con­
ditions are necessary but not sufficient for a maximum. Moreover their solution need not
be unique.

In the spatially homogeneous case it is possible to verify the LOschian soiution (LOsch
1954). The solution consists of isolated areas of production having a regular shape at the
center of regular market areas of the same shape. Whether this shape is hexagonal or
circular or hexagonal with the corners rounded off by a circle depends on the relationship
of "overhead cost" to transportation costs, as first observed by Mills and lav (1964).

The versatility of the continuous modeling approach appears mainly when the homo­
geneous spatial setting of Loschian equilibrium is replaced by a spatially inhomogeneous
environment in which locational choice and size of market areas are affected by variations
in local conditions. The efficiency conditions remain the same, but all parameters must
be considered as functions of location (XI, X2)' Qualitatively we still observe contiguous
production areas serving larger surrounding market areas. Their extent and location is no
longer regular but is affected by a variety of local conditions. For purposes of calculation
one may, of course, want to replace the continuous region by a net of discrete cells. But
this in no way affects the mathematical analysis or its economic interpretation.

In conclusion we may ask what happens when returns are diminishing

a+l3< 1

rather than increasing. We must consider once more the nonspatial production function

a+13 < 1

The usual justification for diminishing returns is that there is a production factor K that
is being held constant but whose inclusion would then generate constant returns to scale

a+I3+-y=1 (93)

(94)

Suppose now that K is fixed with respect to the entire area under consideration. Then the
production function in terms of areal densities has the form

Z (L)O< (M)13A = b A A K1" A-1"
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The implication is that yields per unit area will be maximized when the area under
utilization is minimized - an absurd conclusion. It brings to mind Stigler's dictum: when
returns to scale are constant and returns to substitution are increasing then the world's
demand for wheat could be grown in a flower pot, provided the pot is small enough! In
the present case the density of labor and land inputs could be held constant (the latter
at unity) and the yield per unit area increased to infinity if the pot were made small
enough. We must conclude that (94) and hence (93) are misspecifications. The missing
factor that is being held constant should be held at a constant level of density. The pro­
duction function is accordingly

z=bIO<m{3 a+~<l (95)

Except for the constraints on a + ~ this has the same form as the production function
with constant returns to scale. While under constant returns profit maximization would
imply m = 1, here it need not. For solving

G = max Ah 10< m (3 - wi - gm

without the constraint (44) yields

aAz
= w

~A
=g

m

ag

m ~w

G = m~x Ah (*fr m 0<+{3 - g (1 +*) m

and finally

m = [AgO<-lw-O<baO<~I-O<] 1/(1 -0<-(3) (96)

and this is small when g is large or A is small. Thus diminishing returns may induce a less
than full utilization of locally available land (the unused part being taken up by other
economic activities) and hence a larger areal spread than under constant returns. Con­
versely, increasing returns, while offering an inducement to large areal expansion, are
checked by the increasing cost of internal transportation and communication while labor
intensity per unit area is checked by the increasing costs of facilities needed to accommo­
date such an areal intensity oflabor.

To sum up our argument: space acts as a counterforce to increasing returns in produc­
tion and can thus bring about economic equilibrium in a way that is not only natural but
in fact inescapable.
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6.2.5 A Commuter Model

Urban structure is approached here in terms of a spatially extended labor market. We
restrict ourselves to one homogeneous type of labor, e.g. white-collar employees of
specified qualification. At job location (Xj, X2) let there be z(x j, X2) jobs of this type
available. At residential location (Xj, X2) let there be living q(Xj, X2) employees of this
type. We assume free mobility between residences and between jobs. There will be a
tendency for households to arrange themselves such that cross-hauling is avoided. This is
true even in the presence of preferences for housing locations. We assume that the com­
petitive market maximizes the aggregate net utility of housing and commuting. Let Xo be
the amount of housing per household, and let there be q households at location (x j, X2)
occupying an amount h(xj, X2) of housing. Then

(97)

The next constraint concerns the total number of households to be housed. Assuming
(for simplicity) one jobholder per household, this number equals the number J of jobs of
the type considered, and this number is assumed to be given

(98)

The aggregate gross utility of housing is

I Iq(Xj, X2)' u(xo, Xj, X2 )dx j dx2

Net utility is obtained by subtracting commuting costs.
Commuting flow is described by a flow field 11 whose direction is that of commuting

and whose strength 1111 is the number of commuters moving across a unit cross-section per
working day. Actually it will be convenient to consider commuting in terms of the return
trips from work to home. At any location (Xj,X2) the number of commuting trips
terminating is then q(Xj,X2) and the number of commuting trips starting is Z(Xj,X2)'
The net origination of trips is then

By the "equation of continuity" for continuous flow fields, net origination or source
density equals the divergence of the flow field. Thus

div 11 = z-q (I)

Next, consider the cost of commuting trips. In an urban context and for rush-hour
traffic, it is reasonable to assume that this cost is strongly nonlinear. In fact, assume that
the cost of commuting unit distance is a quadra tic function of the volume of traffic 111 I

! k(Xj,X2) 111(xj,x2)12

Subtracting the aggregate commuting cost from aggregate housing utility, we obtain
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aggregate net utility - the welfare function that is optimized through the competitive
labor and housing markets

subject to

qxo < h

div ¢ + q - z = a

(99)

(97)

(98)

(1)

The Lagrange function of this problem may be written as

ffqU-~,¢,2 -A[div¢+q-z] + J.1[h-qx o]dx1dx 2 + v~-ffq dx1dx2]
(loa)

Maximization with respect to q, xo, ¢ yields

q = a
q ;:;;. a

-
----

u-J.1xo - A

U-J.1Xo -A
(101)

au
q---qJ.1 a

axo

or

au
= J.1

axo

-k¢ + grad A

or

1
¢ = k grad A

a

(102)

(103)

Efficiency condition (l02) is the most straightforward: space Xo is used by a house­
hold up to the point where its marginal utility equals rent. Efficiency condition (101)
determines the net utility v that can be obtained by a household through a wise choice of
residence for a given job or a wise choice of job for a given residence. This net utility
equals the gross utility of housing u, minus rent payments J.1Xo, minus A. Observe that
utility is in money terms, i.e. the utility function is linear in terms of "general consump­
tion" and can thus be expressed in income units. Arepresents the cost of commuting, to
the nearest job. More-distant firms must make an adjustment in their wages to compen­
sate for job location. If A= a at the site of the best located firm, then A;:;;' a at the
location of any other firm. The value of A at the location of a particular firm measures
the extra cost to commuters of reaching this firm. Salaries must be raised by this amount
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above the level at the best located firm, and this will happen when the labor market is
perfectly competitive. To the extent that commuting involves a significant expense as a
result of energy shortages, allowances for commuting costs may be expected to be incor­
porated into job compensation. The rising cost of commuting can be expected similarly
to encourage efficiency in the choice of location of residence in relation to a given job,
or of jobs in relation to a given residence as assumed in this model.

Equation (103), perhaps the most interesting, describes how the commuter flow is
oriented. It is the gradient field to a potential function A that measures the distance
from the job along the best route (except for an additive term, depending on the location
of the firm). Equations (I) and (103) may be combined

div (i grad 0+ q - z = 0 (104)

Thus, once the density of the household population q and the distribution of jobs z are
given, the flow field is determined through (104).

6.2.6 Structure of a Dispersed City

We now consider an illustrative - essentially one-dimensional ~ example.
In a hypothetical city let jobs be located in the (circular) center and in an outer ring

(Figure 6.4). Let the density of jobs be A in the central area and a in the suburban area.
Let the density of housing be zero in the center and b households per unit area in the
outer ring. Assume a single job market. The total number of jobs is

J = TTA r~ + 7Ta(d -d)
The total number of households is

H = 7Tb(ri - r~)

Feasibility requires that

H=J

or

Ar~ + a(d - rD = bed - r~) (105)

The commuter flow pattern will be as follows. There is a critical distance r* for
commuters such that those employed in the center will live at distances less than or
equal to r * away from the center, with commuter flow toward the center. Beyond r *
live those whose work is in the suburban fringe area and their commuting direction is
outward with respect to the center. Now r * is given by

Ar~ = b(r; - r~) (106)

In view of (105) it is then also true that

a(d-d) = b(ri-r;) (107)

If aH housing is equaHy preferred, then the rent of housing wiJ] depend on distance r
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Figure 6.4. Zones of the city.

from the center only. In fact, the sum of commuting cost to the most distant job plus
rent must equal a constant. In view of the a pn"ori equality of supply and demand, this
constant is arbitrary. If commuting costs were proportional to distance, then rents would
fall from '0 to r* at a constant rate k and rise from r* to r2 at the same constant rate k.
Since commuting cost depends on flow density, however, the rent pattern is slightly
more complicated.

To obtain the density of traffic at any distance r

Observe that an amount nb(r; - r2) of traffic must cross the circle of circumference 2nr.
Thus the density of flow is

nb(r; -r2) b(r; -r2)
lep(r)1 = =

2nr 2r

The cost of all traffic moving unit distance at a given point is

(109)

and the cost to one unit of traffic is (kj2)lepl. The cost of commuting to the center is
then

r r

f~21,f,(X)ldx -- k
4
b f r; -x x

2

dx kb 2 1 2'f' = -(r*lnr-!r )+c
4

o 0
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(Actually the integral cannot be extended to r = 0 since traffic density would approach
infinity there.) We conclude that in the inner residential ring, i.e. for

rent is

(110)

where Po is some constant.
In the outer residential area, total traffic passing through a circle of radius r is

rrb(r 2
- r;)

so that traffic density is

b(r 2 -r2
)

1¢(r)1 = *
2r

Commuting to distance r2 costs

kb [r
2

]= -- c - - + r2 In r
4 2 *

Rent is then

per) = PI - ~ t; In r - ~-) (111 )

At r = r * the two expressions for rent must be equal. Therefore Po = PI and the same
expressions for rent apply in both zones. In fact, minimizing per) with respect to r

r;o = --r
r

yielding r = r*
Consider also the potential function A

A = U - pxo - v (112)

Since u, v, and xo are constant this is a linear transformation of p. It is remarkable that,
although the flow field reverses its direction at distance r = r* and is thus discontinuous
(when looked at in terms of unit vectors), the potential function A remains continuous
and differentiable - in fact analytic - everywhere.



7 An Interaction Model

7.1 INTRODUCTION

7.1.1 Basic Concepts

All of the preceding chapters have dealt with trade models of various kinds. Each
commodity was shown to have a unique flow, representable by a well-behaved vector
field. In some cases there were several commodity flows, but their number was always
finite and the flow for each commodity unique.

In our simplified world of single transportation systems, where cross-hauling is ruled
out, uniqueness is the result of rational behavior. Whenever this is the case it seems
superfluous to record information about the origin and destination of each single com­
modity unit. It is immaterial whether such a unit, delivered to consumers at a certain
location, has followed a flow line all the way from producers at a distant location, or
has entered at an intermediate location to replace an identical unit in the original flow.

But what if the units "produced" at different locations are all unique? As long as we
are dealing with commodity trade this would appear to be an unnecessary complication,
since any real commodity has a sufficient degree of homogeneity to justify the mild
abstraction from individual variations. We should at least be able to break the set of
commodities down into a more refined, but still finite, set of brands for which the
abstraction would be justified.

However, if we consider general purpose communication (or interaction) between
individuals at different locations, rather than commodity trade, then the "units" pro­
duced and consumed are all different as soon as either the origins or the destinations
differ. All locations have to communicate with all the other locations, and no such
communication can be replaced by an equivalent communication, obtained by changing
the origin or the destination. No equivalents exist!

This takes us into the world of interaction models. In order to maintain our con­
tinuous paradigm, we have to deal with a nondenumerable infinity of vector fields, each
corresponding to a fixed origin or a fixed destination. These vector fields do not merge
into one resultant field, as they do in any physical application. They coexist separately,
so that an infinity of flows, all with different origins and directions, pass through each
location. The aggregate of the norms of all these flows is a measure of traffic through that
location.

Traffic, defined in this way, is one of the important variables in the model of regional
structure that follows. Ultimately, traffic depends on the demand for communication
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between various locations and on the choices of optimal routes for these communications.
The demand for communications is assumed to depend multiplicatively on population
densities at the locations of origin and destination. This is a very simple variant of inter­
action theory, where cost-distance dependence is ignored completely, along with the
so-called balancing factors.

Cost-distance dependence is omitted because otherwise communication costs could
be minimized by the absurd method of making communication so difficult that people
would abstain from it altogether. Of course, we could evaluate communication and
weigh its value against its cost. But it is easier to stipulate a pattern and volume of com­
munication as a constraint and minimize the costs of realizing it. As we have a limited
urban area in mind, this is not too unreasonable.

It also seems reasonable to delete balancing factors when dealing with general-purpose
communication. With regard to commuting, for example, the idea that a doubling of
workers and jobs entails a quadrupling of trips is just as absurd as the idea that total
communication quadruples in a doubled population is sensible. This is because population
growth also increases the diversity of activities.

7.1.2 Traffic Distribution and Land Use

So far we have discussed the demand for communication. In order to determine the
(infinity of) flow fields in our model, we also have to consider the choice of routes.
This problem is dealt with as elsewhere in the book, by choosing routes so that the path
integrals of local transit costs are minimized along them. The transit cost is again a
location-dependent, but direction-independent (isotropic), scalar field. However, we do
not take it as a given datum, but assume that it depends on congestion measured as the
ratio of traffic to road capacity at the location concerned.

These two theoretical aspects, the simple interaction model for communication
demand and the optimal routing paradigm, can be used to derive all the flow fields and
hence the traffic distribution. It should be noted that a complicated feedback mechanism
is involved, as traffic depends on optimal routing, which depends on traffic! So, the
resulting traffic distribution is an equilibrium and may be difficult to compute in practice.
The given data, which result in an equilibrium traffic distribution, are the distributions
of population and of road capacity.

Before considering these data and the rest of our model, let us clarify the fact that we
are attempting to compute the communication costs for each location within the flow
field. We know the numbers of communications terminating at each of the other loca­
tions, we know the best communication routes, and we know the local transit costs
along them. A location separated from the main part of the population by some higWy
congested area will obviously suffer from high communication costs.

Suppose people are free to move from one location to another. What could make them
accept such high communication costs? Low housing costs is one self-evident answer. So,
let us stipulate a spatial invariance of the sum of communication and housing costs as a
condition for equilibrium in the spatial population distribution.
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In line with our assumption that each individual needs a certain number of com­
munications with each of the other individuals, we also assume that each individual
requires a certain living space. If few people live in an area, they can be housed in one­
story buildings of relatively weak construction; but with a growing population density we
have to build higher and higher, at an increasing capital cost per unit of artificial housing
space created. The assumption is that the higher the ratio of population to the space
available for housing the more expensive it is to provide an individual with the required
living space.

We are now in a position to close the model. The natural space available for housing is
obviously the part of it not used for the transportation network. We have the option of
using each piece of land to facilitate either housing or communication. If we use it for
the first purpose, the result will be a decrease in population crowding and residential
construction costs and an increase in traffic congestion and local transit costs. A balance
obviously has to be struck for land use at each location so that the sum of housing and
communication costs is as small as possible. On the other hand, we also stipulated that
this sum should be a spatial invariant. This was the condition for a population distri­
bution in spatial equilibrium. This equilibrium condition eliminates our last degree of
freedom.

7.2 OPTIMAL FLOWS

7.2.1 Flow Fields and Population

Let us now formalize the model. As usual, we denote the region studied A and its
boundary aA. In this model we deal with pairs of origin and destination locations. Let
them be denoted ~ = (~l, ~2) and x = (Xl,X2)' respectively. Next, define the population
density function

(1)

For convenience we abbreviate population p = p(~ 1, ~2) at the origin, whereas we let
P = P(Xl, X2) denote population at the destination. This convention is useful because
the origins are kept fixed as long as we deal with individual flow fields. (We could have
chosen the destination as fixed instead, which would have worked equally well.) Total
population is

p = ffPdx 1 dx 2 (2)
A

As already indicated, an individual flow field can be defined uniquely when the origin is
fixed. Denote it

(3)

Of course, the vector field also depends on the location ~ of origin, but by keeping it
fixed we can delete it as an explicit argument in (3). It should be noted that with a
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fixed origin, all the vector operations (such as taking the divergence) are carried out with
respect to the variable x-coordinates, not the fixed ~-coordinates.

According to our assumption on communication demand, the number of "communi­
cations" originating in ~ and leaving the flow ¢ in the destination x equals the product
pp of population densities. This is the sink density, so that we obtain

div ¢ = - pp (4)

as the relevant divergence law. In order to avoid confusion, it should be kept in mind
that the divergence, a¢l/aXl + a¢2/aX2, is taken in terms of the x-coordinates.

In order to formulate the gradient law, the transit cost function has to be defined.
It is not a given function of location, but depends on the ratio of traffic to capacity as a
measure of congestion. Denote traffic by i and capacity by m. Then transit cost is

k = kU/m)

Using expression (5), the gradient law, as always, reads

¢
k- = grad A

I¢I

7.2.2 The Potentials

(5)

(6)

Two observations concerning A are in order. First, it is similar to ¢ in its dependence
on the location of origin t and we cannot delete its coordinates as arguments of the
scalar field unless the origin is kept fixed. When ~ is regarded as variable, we get a double
continuum of vector fields ¢, and likewise a double continuum of scalar fields A. Second,
A is now an undetermined Lagrangean multiplier function, associated with the constraint
(4). An interpretation is given below. But note that (6) says nothing more than that
the unit flow field is gradient to some, as yet undetermined, function whose gradient
norm equals local transit costs.

Let us multiply both sides of (6) by the unit vector ¢/I¢j. On the left-hand side the
unit vectors multiply to scalar unity, so that k(¢/1¢1)2 = k. On the right-hand side we get
grad A' ¢/I ¢I = dA/da, where a is an arc length parameter. This is so because ¢/I ¢I is the
unit vector in the direction of the optimal route. Thus

k = dA/da

and, integrating along any optimal route having its origin at t we obtain

(7)

(8)

s

A = fkda
o

because (dA/da)da = dA is an exact differential. The arbitrary integration constant in
equation (8) was chosen to be zero. This makes A the path integral of local transit costs
along the most efficient routes of communication. Thus, the potential A will have zero
value at the origin and increase in all directions at the rate of local transit costs. Any
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positive A defines a closed curve surrounding the origin t and consists of points as far
as possible from ~ when !he total amount A is spent on transportation.

7.2.3 A Digression

Let us go somewhat deeper into the matter of determining the unit flow field ¢Ii ¢ I
from equation (6) to ensure that it does not matter if A is an unknown Lagrangean. In
doing so we abuse the terminology from vector analysis somewhat and regard curls and
cross products as scalar quantities. A cross product of two vectors (in three-space) is
actually a vector, perpendicular to the plane spanned by these two vectors, and pointing
in the direction that forms a right-handed set of axes with them. The norm of the cross
product is the area of the parallelogram spanned by the two original vectors.

Likewise, the curl is actually a vector along the axis of rotation in a flow, pointing in
the direction that makes the rotation counterclockwise, and having a norm equal to
the velocity of revolution.

When considering vectors in the plane, both the cross products and the curls always
point in directions perpendicular to this plane. Thus, they have only one nonzero com­
ponent. Our "abuse" entails disregarding the vectorial character of these two concepts
and treating them as if they were identical with the (scalar) values of the single nonzero
components. This simplification cannot cause any confusion. The only remnant of the
vectorial character is the sign (or sense), which depends on whether the resultant vectors
point outwards or inwards from the plane.

Using this terminology, the formal definition of the cross product of two arbitrary
vectors ¢ and I/; is

Similarly, for an arbitrary vector field ¢, we define

curl ¢ = a¢2/axj - a¢daX2

With respect to the cross product, we should note the trigonometric formula ¢ x I/; =
1¢111/;1 sin Q!, where Q! is the angle between the directions of the vectors. As we similarly
have ¢ol/; = 1¢111/;1 cos Q!, we derive the useful relation (¢ x I/;)/(¢'I/;) = tan Q!.

7.2.4 Equation for Route Directions

After these preliminaries we may begin with equation (6) by taking the curls of both
sides. Now a gradient field is always irrotational and the curl is hence identically zero. So

curl (k ¢l1¢1) = 0

Expanding this expression we get

grad k x ¢/I¢I + k curl (¢lI¢1) = 0

(Note the similarity of this expression to the corresponding one for the divergence.)

(9)

(10)
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Next, denote the direction of grad k by wand the direction of ¢/I ¢ I by 8. Using our
trigonometric relation between cross and dot products, and noting that grad k· ¢/I¢I =
dk/da, we get

dk/dasin(8-w)+kcur!(¢/I¢I)cos(8-w) = 0

But, ¢II ¢I = (cos 8, sin 8) and so, by definition of the curl and using the chain rule

curl (¢/I¢I) = cos 8 a8/aXl + sin 8 a8/aX2

However, as (cos 8, sin 8) = (dx1/da, dx 2 /da), we immediately transform (12) into

cur!(¢/I¢I) = d8/da

Substituting into (I I) we get

sin (8 - w) dk/da + k cos (8 - w) d8/da = 0

(I I)

(12)

(13)

(14)

Let us briefly consider (14). The angle w is defined by the gradient direction to k,
the local transit cost, which is known. The variation of this cost in the direction of the
route, dk/da, depends only on the direction. Accordingly, as we follow the route, (14)
involves only the direction of the route 8, and its rate of change d8/da, as unknowns. We
thus have a differential equation for the route direction with arc length as argument.

This differential equation in fact justifies our assertion that (6) would allow us to
derive the flow lines, despite the fact that A is unknown. Its character is most easily
understood by considering some special cases.

7.2.5 Refraction of Traffic

First, we assume that w is invariant in space, so that dk/da = 0 and we can drop the
first term in (14). What remains can be written

d/da(ksin(8-w» = 0

which has the first integral

k sin (8 - w) = constant

(15)

(16)

Obviously, the sine of angular difference between the direction of maximum transit cost
increase and the direction of the route is related reciprocally to transit costs. If the route
takes us to locations where transit costs increase, we decrease the angular difference in
order to pass through the high-cost region as rapidly as possible. If transit costs decrease
along the route, we increase the difference in order to profit from the low costs during
transit, which is as long as possible.

Equation (16) again reminds us of geometrical optics. At a separation point between
two media with refractive indices k 1 and k 2 (and w = 0 arbitrarily, as it is not defined
when k 1 and k 2 are sectionally constant) we have

(17)
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This is Snell's law, which states that the sines of angles of incidence have the same ratio as
the refractive indices. .It is noteworthy that the corresponding refraction law for trans­
portation, on land and sea combined, with different transit costs (k I, k2 ), was formulated
by two economists, Palander (1935) and von Stackelberg (1938).

7.2.6 Circular Symmetry

Second, relax the constraint of a constant k, but assume that it displays circular
symmetry. Thus, we can write k(p), where p = (x~ + XD1I2. In view of our complete
model this, of course, means that the congestion ratio i/m itself depends on location x
via p = Ixl only. From this circular symmetry of k, we get

(18)

But, as w was defined to be the angle of the gradient of k, we can identify the vectors
(XI/P, X2/P) and (cos w, sin w). So

p cos w

p sin w

(19)

(20)

and we note that we have introduced polar coordinates in place of the Cartesian ones.
Let us now differentiate (19)-(20) with respect to the arc length parameter a, and for
convenience denote derivatives with respect to arc length by a dot. So

x I Pcos w - pw sin w (21)

X2 Psin w + pw cos w (22)

However, as 8 is the direction of the route, XI and X2 denote the direction cosines, since
differentiation is with respect to arc length. Accordingly

cos 8

sin 8

(23)

(24)

We substitute from (23)-(24) into (21)--(22) and use Cramer's rule to solve for p and
pw, which are treated as the two unknowns in the resulting system. In the explicit
solutions we use the formulas for the cosine and the sine of a difference to obtain

p = cos (8 - w)

pw = sin (8 - w)

(25)

(26)

These trigonometric expressions are now substituted back into our original differential
equation (14), which now reads

pwk + kjiJ = 0 (27)

If we now differentiate (26) with respect to arc length once more and use (25) for cos
(8 - w), we get kpO = 2kpw + kpw. Substituting this into (27) and collecting terms,
(27) becomes



d/do(kpw) + kpw

But this is the same as

d/do(kp2 w) = 0

which has the first integral

kp2 W = constant

o
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(28)

(29)

(30)

Expression (30) is well known from the mechanics of central fields (such as planetary
motion). In order to understand the character of this new differential equation, let us
denote the constant by c, write out w= dw/do, and note that the arc length element
do equals (p2 + p'2)112 dw (where p' = dp/dw). Thus wis the reciprocal of (p2 + p'2)112
and (30) reads

(31)

(32)

which is an ordinary differential equation expressed in polar coordinates. It has been
studied widely in theoretical mechanics, and in fact its solution can always be obtained
by integration (if the independent and dependent variables are interchanged).

Explicit solutions are either easy or difficult to obtain, depending on the character of
k. Before giving some illustrations, let us note that if we substitute arc length do =
(p2 + p'2)112 dw, (8) reads

s

A = Ik(p2 + p'2)112 dw

o

If we regard pew) as an unknown function that we have to choose so as to minimize A,
then we obtain (31) as the appropriate Euler equation for this variational problem. This
corroborates the gradient law, as we obviously get the same condition by seeking the
optimal routes one by one (as parameterized curves pew)) so that they minimize trans­
portation costs. Once we have solved for the flow lines, so that we know p(w), we can
calculate A. All of this, of course, applies to the given origin ~. For another origin, we
would have to work through the whole process again.

7.2.7 An Illustration

Let us conclude this section by giving a very simple illustration using power functions

k = pa-l (33)

Unless a is zero, the solution is

pa = 0: sec (aw + ~) (34)

This is a two-parameter family of routes, but one can be removed by fixing a point of
origin, so that we obtain a set of radiating curves. From (32) we can also calculate A,
using (33)-(34), and obtain
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a'f.... = [p2a + p2a - 2papa cos (aw - aw)] 1/2 (35)

where p and ware the polar coordinates for the fixed point of origin t and p and ware
the polar coordinates for the variable point of destination. The calculation of (35) is
somewhat awkward and is therefore not reproduced here. The logic, however, is simply
evaluation of (32) with substitutions from (31)-(34).

For constant 'f...., (35) describes a set of concentric transportation cost contours to
which the routes defined by (34) are orthogonal. It should be emphasized that the
sufficiency conditions for extremality are fulfilled for (34)-(35) only in the neigh­
borhood of the origin, more specifically in a wedge with vertex in the origin (of the
coordinate system, not the central flow field).

The geometrical characters of these solution curves are easily recognizable for low
integral values of a. The value zero is a special case for which (34) does not hold (see
below). The simplest of the remaining cases is that where a = 1. Then, transforming
(34) back into Cartesian coordinates, we get

a = 1

This is obviously a two-parameter family of straight lines. This nature of the routes is
intuitively obvious, as k = pO = 1 makes transportation costs equal to route length
according to (32).

In the case where we let a = 2, so that k = p, transportation is cheap in the center
and becomes increasingly expensive towards the periphery. We expect optimal routes
to be deflected from the straight line and to become convex to the origin. This is verified
by the formal solution. Turning again to Cartesian coordinates, we have

a = 2

This formula represents the family of all hyperbolas that can be arranged symmetrically
around the center (of the coordinate system). By varying a we fill the four sectors,
formed by a pair of orthogonal axes through the center, by rectangular hyperbolas.
By varying ~, we simply rotate any such set of axes and its corresponding family of
hyperbolas.

Next, letting a = 3, so that k = p2 , we note that the transportation advantages in the
central areas become even greater. We suspect that the convexity of the routes will be
even more pronounced. This is confirmed by the formal solution

a = 3

Now, for any fixed ~, the space is split into six equal sectors (with vertices in the center).
This is similar to the previous case where space was split into four sectors. Again, the
sectors are filled by hyperbolic curves, now more sharply convex as they are compressed
within angles of 60° (instead of 90°). This is a so-called monkey saddle flow, whereas the
saddles were ordinary in the previous case. A change of the value of ~ again rotates the
whole system of solution curves.

Since space is split into sectors (of 60° or 90°) in the last two cases, we can understand
that there is no solution curve according to (34) that joins an origin and a destination
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separated by an acute angle larger than 60° or 90°. Thus it becomes clear that (34) only
provides a local solution - as previously hinted. Fortunately, there exists another solution
to the optimal routing problem for the remaining cases, Le. radially from the origin
towards the center and out towards the destination again.

As we have covered positive values of a in sufficient detail, let us now move in the
reverse direction. Let a = - 1. Then (34) in Cartesian coordinates reads

cos 13 Xl - sin 13 X2 = a(xI + xD a = - 1

This equation represents the set of all circular arcs through the center of coordinate space.
As expected, the shape of the routes is now concave with respect to the origin. As k = p-2

it is least expensive to travel in the periphery and to avoid the center as much as possible.
Our final illustration of (34) is to set a = - 2. We expect the pressure to avoid the

central areas to be even more pronounced in this case. The formal solution

a = -2

represents the family of lemniscates through the center. Again, for each 13, space is split
into four sectors. These sectors are now elliptic (not hyperbolic). These cases should
suffice for an intuitive understanding of solution (34) in general.

Let us also record the special case of (33) where a = O. Then

In p = a + I3w

is the solution that replaces (34). The value of (32) is obtained according to

A = [(In p -In 15)2 + (w - W)2] 112

which replaces (35).

7.3 TRAFFIC

7.3.1 Differential Equation for Flow Volume

As indicated in the Introduction, we define traffic at location X by

(36)

(37)

i = ffl<l>l d~ld~2 (38)
A

The norms of all the vector fields passing through X are integrated with respect to all
possible points of origin ~. But we cannot integrate according to (38) until we have
calculated the norms 1<1>1, which are not yet known. The discussion thus far has concerned
the routes of communication, not the volumes.

In the Introduction we also indicated how the demand for communication determines
sink density and thus flow volumes by means of a gravity type of model. As a matter of
fact, the exact mathematical condition for how flow volume changes with sink density
has already been presented in equation (4). Note that when we know the unit flow field
#1<1>1 equation (4) becomes a partial differential equation in flow volume alone. As
<I> = 1<1>1(#1<1>1), we get
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div I/> = grad 11/>1·1/>/11/>1 + 11/>1 div (1/>/11/>1) (39)

where 1/>/11/>1 and div(I/>/11/>1) are known as soon as we know the flow lines. The only
unknowns in (39) are 11/>1 and grad 11/>1, i.e. the flow volume and its partial derivatives.
So, (4) does indeed provide a differential equation for 11/>1.

Once we know 11/>1 for all ~ we can proceed to the integration (38) and calculate
traffic.

7.3.2 An Illustration: Constant Transit Cost

The procedure may be illustrated by a few examples. For our first example, suppose
that transit cost is constant, i.e. k = 1 over the whole region. Moreover, suppose popula­
tion density is uniform, P = 1, everywhere and that the region is the unit disk A =

{(Xl. X2) Ix~ + x~ .,;; I}. This is the simplest imaginable case.
Insert a = 1 into (33). We then know that (34) is a solution. For the present case it

reads

p = 0: sec (w + (3) (40)

which is the familiar equation of a straight line written in polar coordinates. It is not
surprising that the optimal routes with constant transit costs are straight lines, as in all
classical Iocation models.

It is more convenient to put the equation of these straight lines into parametric
form. Using our familiar notation, where ~l, ~2 are the coordinates of the point of
origin and 8 is the constant angle of the flow line, we write

~l + 0 cos 8

~2 + 0 sin 8

(41)

(42)

As always, 0 denotes the arc length parameter. Obviously (41)-(42) are equivalent to
(40) when we have a set of lines with a common point of intersection. Using (41 )-(42),
we can easily calculate arc length

o = [(xl-~d2 +(X2 _~2)2]1/2

Let us now check the gradient of this arc length measure. Obviously

grad 0 = [(Xl - ~l )/0, (X2 - ~2)/0]

(cos 8, sin 8)

1/>/11/> 1

(43)

(44)

We can thus identify the unit flow field with the gradient of the arc length. As arc length
is measured along straight lines, we obviously have a Euclidean metric. The loci of equal
distance are then concentric circles as defined by (43) for any given 0, and the pencil of
radials through their common center is obviously the gradient field to this, the simplest
of all metrics. Now, using (44)
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(45)

div (1/.>/1 I/.> I) = div grad a (46)

But the Laplacian div grad 0= a2o/axi + a 2o/ax~ can easily be calculated, from (43),
to equal I/o. On the other hand, grad 11/.>1- grad a is obviously the derivative all/.>//ao. So,
according to (39) and (45)-(46)

div I/.> = all/.>I/ao + 11/.>1/0

Using the information that p =- p =- 1, equation (4) becomes

all/.>I/ao+ 11/.>1/0+ 1 = 0

(47)

(48)

which is quite easy to solve. As neither 0 nor any derivative with respect to it appears in
(48), we can treat it as an ordinary differential equation with a as the only independent
variable. Dependence on the angle 0 is confined to a variation of the arbitrary integration
constant. Denoting this constant by 52 , we obtain the solution

(49)

As we are concerned with communication solely within the closed disk, there is no
flow crossing the boundary. Moreover, as the routes are straight lines radiating from
interior points of the circular region, no route can be tangential to the boundary curve.
So, the condition that no flows cross the boundary translates into a condition that all
flow volumes are zero on the boundary, Le. 11/.>1 = O. From (49) we see that 5 = a on the
boundary, which means that 5 can be interpreted as the straight-line distance to the
boundary aA from the point ~. In other words, 5 is the distance from ~ to the boundary
in the direction O. This last formulation indicates how 5 depends on O.

7.3.3 Solution by Elliptic Integrals

Our next task is to evaluate the double integral (38) from (49). But in order to perform
the integration efficiently we start by changing integration variables from ~I, ~2 to a, O.
Now, (41 )-(42) tell us that ~ I = XI - a cos 0 and ~2 = X2 - a cos O. Note that when we
integrate according to (38), we treat the point X I, X2 as fixed, thus reversing the roles of
~ and x. It is easy to evaluate the Jacobian of the coordinate transformation as

= a
a(~1> ~2)

a(o, 0)

Accordingly

d~1 d~2 = a dadO

and, from (38) and (49)

i = ~ff (52 - 02)dodO
A

(50)

(51)

(52)
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The evaluation of the innermost integral is messy, but straightforward, and yields
21T

~ f ((S' + S")3 -S'3 -S"3)d8 (53)
o

where

S' (1 - p2 sin28)112 - p cos 8

S" == (1 - p2 sin28)112 + p cos 8

(54)

(55)

Note that S' and S" are the lengths of the two segments into which ~ divides a chord of
the unit circle in direction 8. Now

(S'+S'Y-S'3_S"3 == 3S'S"(S'+S") (56)

(57)

(58)

and from (54)-(55)

S'S" == (1 - p2)

(S' + S") == 2(1- p2 sin28)1/2

Substituting from (56)--(58) into (53) yields
21T

i == (1 - p2) f (1 - p2 sin28)112 d8 (59)

o
where we note that S'S" == (1 - p2) could be moved outside the integration sign, as it
does not depend on 8. The rest of our expression is also handy. The integral of (1 ­
p2 sin28)112 taken over an angle 11/2 defines the complete elliptic integral of the second
kind. As sin28 has a perfect periodicity over 11/2, our integral is simply four times the
elliptic integral, denoted as usual by E(p). Thus

i(p) == 4(1 - p2)E(p) (60)

For convenience, we record the Taylor series for E(p), which is the most accessible way
of computing it. Thus

E(p) == ~ (I-(~r Pl2 -(%r P3

4

-(~~r p; - ... ) (61)

The resulting traffic distribution is illustrated in Figure 7.1. Several comments are in
order. First, even though the volumes of each flow, according to (49), do not possess
circular symmetry, the traffic distribution has such symmetry. This is reasonable as the
model as a whole is symmetric. The region is a circular disk, population is uniformly
distributed, and transit costs are spatially invariant. According to intuition, traffic i
should have the symmetric property. On the other hand the origin t associated with the
flow volume Irp I, is in general asymmetrically located in the disk, so that we should not
expect any symmetry.

Second, the traffic distribution was relatively difficult to derive despite the fact that
we were dealing with an extremely simple case. In general, considerable computational
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Figure 7.1. Traffic: linear paths.

difficulties can be expected, regardless of the type of example chosen. For a detailed
discussion of traffic distributions and simulation techniques, the reader is referred to
Puu (I979b).

7.3.4 A Second Example

Let us now turn to our second example, which is much easier to treat - although this,
of course, is an exception. What happens to the solution (34) if the exponent in (33)
increases? If we draw the curves (34) for increasing a, we see that they become more and
more sharply convex with respect to the origin. In the limit, as a goes to infinity, the
routes become as convex as they can, i.e. they degenerate into pairs of radials joining the
points of origin and destination to the center of the region, which is still the unit disk.
Thus we arrive at the case of radial transportation, familiar from von Thtinen and the new
urban economics with its central business district.

Along with the disk-shaped region we retain the assumption of a uniformly dispersed
population. From each point of origin, all communications now go to the center first and
then radiate out from it in all directions. Thus we conclude that the present flows are
all in the direction of grad p. So, #1 ct>! = grad p and formulas (43)-(48) continue to hold
true, but with a replaced by p and ~I = ~2 = O. The differential equation equivalent to
(48) is now

alct>l/ap + 1ct>I/p + I = 0

Its solution resembles (49), but is simpler

(62)
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(63)

Most of the simplicity is due to the fact that the distance to the boundary is a unitary
constant, independent of (J. Accordingly, integration with respect to all the origins
amounts to multiplication of (63) by the area rr of our region. This results from the invari­
ance of (63) with regard to ~. It should be borne in mind that we have only accounted for
communication radiating out from the center. There is just as much communication
radiating in towards the center, so that our measure has to be doubled. Thus, we get

(64)

This traffic distribution is illustrated in Figure 7.2. As traffic becomes infinite at the
center, we have removed the infinite peak at a certain level. It is not surprising that in
comparison with linear transportation, radial transportation leads to a higher degree of
traffic concentration at the center.

It should be noted that even though traffic is infinite at the center, this does not mean
that total traffic, the volume under the surface shown (including the infinite peak), is
infinite. In fact total traffic f f idx 1 dx2 is an improper integral that converges. Thus

A

ffrr(1_p2)/Pdx1dx2 = 4rr2 /3 (65)
A

which can be compared to

ff4(l-p2)E(P)dx1dx2 = 128rr/45 (66)
A

As 4rr2 /3 ~ 13.2 and I 28rr/45 ~ 8.9, about 50 per cent more traffic is created by radial
than by linear transportation. Since linear transportation should lead to a minimum of
total traffic, because it corresponds to the choice of the shortest route for each com­
munication, the excess created by radial transportation is surprisingly small.

Our two examples, expressly chosen to admit analytical treatment, should not convey
the impression that it is easy to derive explicitly all traffic distributions for any case we
would like to treat. On the contrary, the computation is in general very difficult. This is
particularly unfortunate in the sense that we should deal with the formidable task of
deriving an equilibrium traffic distribution when traffic is fed back, via congestion, into
local transit costs, which determine the choice of routes and ultimately the traffic distri­
bution itself. We have to conclude that the final equilibrium traffic distribution cannot
actually be computed using analytical methods. Computer simulation could be helpful,
but would entail a formidable task with respect to the model as a whole.

7.4 COMMUNICATION COST

7.4.1 Alternative Expressions for Communication Costs

Once we are far enough along to be able to calculate traffic, the communication costs
for each point of origin can ~ in principle, of course - also be calculated.
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(68)
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Figure 7.2. Traffic: radial paths.

Let us begin by deriving a general relation between various expressions for communi­
cation costs. According to our assumption, if p people live at ~ andp live at x, then they
need a number pp of communications. Each of these has a cost A, as defined by (8) when
optimal routes are chosen with respect to the given transit cost function k. The most
obvious expression for transportation costs is

T = IIpp A dx l dx 2

A

To be exact, T depends on the location of origin ~. This point is fixed and the integration
runs over all destination points. Note that this is the reverse of the case in which traffic
distributions were derived.

Now, equation (2) makes it possible to substitute - div </J for the product pp. So

T = - IIAdiV</Jdx1 dx2

A

This expression can be transformed conveniently by using Gauss's theorem, but there is
one snag. The theorem is not applicable to region A, because the vector field is not regular
within it. The troublesome point is the single location ~ of origin. If there were no net
outflow from this singularity there would be no difficulty, but we know there is!

So, we use the artifice of defining a new sort of region with a small hole in it. The hole
must contain t but can be as small as we wish. For convenience, since we know that the
constant A contours are concentric closed curves surrounding t we let the boundary of
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the hole be defined by some X= constant. Denote this boundary a'A and the region with
the hole A'. Obviously, we can make the hole as small as we like by letting X -->- O. In
other words, we can make A' approach A as closely as we wish by this limiting procedure.
The important feature of A' is that rp is regular within it, which makes Gauss's theorem
applicable.

Consider the formula

ffdiV(Xrp)dxldx2 = fX(rp)nda (69)
A' a'A

which states that the surface integral of the divergence of value flow Xrp equals the curve
integral of the normal component of this flow along the boundary. This boundary a'A is
the inner boundary of the hole. Of course, there is an outer boundary aA of the whole
region. However, we are studying only internal communication within the region, so that
this boundary integral can be deleted from the outset, as (rp)n is zero on all of aA.

In equation (69), X can be moved outside the sign of integration, since the curve a'A
was conveniently defined by a constant X. Next we use Gauss's theorem once again to
transform the remaining curve integral of (rp)n to a surface integral of div rp. Thus

f X(rp)n da = xf fdiVrpdxldx2 (70)
a'A A'

But, div rp = L pp, where p as a constant can be moved outside the integration signs.
Population density in (70) now remains to be integrated. Let us denote the total popu­
lation of A' as p', by analogy with (2). Accordingly

f X(rp)n da = - XpP' (71)
a'A

By letting X approach zero p remains constant, whereas P' goes to P, the population of
the whole region A. Formally,

lim fX(rp)n da = 0 (72)
-"'-0

a'A

because p and P are finite, whereas Xgoes to zero. In this limiting process A ' goes to A, so
that the following relation is obtained from (69) for our (improper) integral over A

ffdiV(Xrp)dxldx2 = 0
A

Next, use div(Xrp) = grad X· rp + Xdiv rp to get

ffgrad X· rp dx 1 dx 2 = - ffX div rp dx 1 dx 2

A A

We are now prepared for the last step. From (6)

grad X· rp = klrpl

(73)

(74)

(75)
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and substituted into (74), this yields

- ffXdiVrt>dxldx2 = ff klrt>ldx1 dx2
A A

But according to (68), this equals transportation costs and so

(76)

T = ffklrt>1 dx l dx 2 (77)
A

It is interesting to compare the initial equation (67) with the final derived equation
(77). Transportation costs, originally expressed as the aggregate of the number of trips
from the origin to other locations multiplied by the cost of each trip, can obviously also
be obtained by taking the aggregate of the flow volume at each of the other locations
multiplied by the local transit cost. In passing we should note that the equivalence of
(67) and (77) applies to all flow fields, not only the optimal (cost-minimizing) field,
provided X is defined as accumulated transit cost along the arbitrary flow lines. This is
because we do not need the optimality condition (6) itself, but only its weaker conse­
quence (75).

Equation (77) is much more useful than (67), both in actual computation and in the
general discussion that follows.

7.4.2 Derivation of Transportation Costs

We will now give a simple example of how transportation costs can be derived for the
case of k == 1, p == 1, and A ={(Xl,X2)!Xj + x~ ~ I}. This is the familiar case of homo­
geneous space, and hence linear transportation and uniformly distributed population on
the unit disk. Traffic distribution has already been derived for this case.

As indicated, it is useful to start from (77). Since k = 1 we get

T = fflrt>ldx1dx2 (78)
A

Note the difference between this and expression (38), which defined traffic. Integration
with respect to destinations x, not origins t makes a big difference, and the outcome will
be different from (60). However, part of the derivation leading to (60) is still relevant, so
we can use (49) directly. In order to facilitate integration, we again use the coordinate
transformation (41)-(42). The Jacobian is

a(XI, X2) = a (79)
a(a,e)

which happens to be the same as that in (50), due to the symmetry of x and ~ in (41)­
(42). Accordingly,

dx 1 dx 2 = a dade

By substituting (49) and (80) into (78), we thus get

(80)
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T = ~ If(S2 - a 21dadO

Now, recall that S denotes the distance from ~ in direction 0 to the boundary circle. The
chord segments (distances in direction 0 and 0 + rr) have been recorded in (54) and (55).
However, we only need one of them. So, we can set

S = (1-[52sin20)1I2_[5cosO (82)

(84)

(86)

Note that we take [5, not p, which again has to do with the fact that the origin rather than
the destination is fixed.

We still have to fix the limits of integration in (81). Obviously, 0 has to make a full
round of 2rr, but as the second half-round merely repeats the first, we can let 0 range
from 0 to rr and take twice the integral (81) with the limits for 0 thus fixed. As for a, it
obviously ranges from 0 to S.

Evaluation of the innermost integral is trivial. We simply obtain
sf(S2 - a2)da = ~S3 (83)
o 3

Thus (81) becomes
rr

T = %fS3dO
o

where S is defined in (82). The process of evaluating this last integral is somewhat com­
plicated. By expanding the third power of (82) we get four terms, two of which involve
cos 0 and cos 0 sin2O. Now, the integrals of these from 0 torr are zero. The remaining
terms are (1_[52)(1_[52 sin20)112 and 4[52 cos20(1-[52 sin20YI2, respectively. Both
have a perfect periodicity over rr/2 so that

rrl2 rr/2

T = ~(1 - [52) f (1 - [52 sin20)112 dO +~ f [52 cos20 (1 -I? sin20)1/2 dO (85)
3 0 3 0

We again recognize the definition of the complete elliptic integral of the second kind in
the first integral. The second can also be evaluated in terms of complete elliptic integrals,
but of both the first and second kinds. The series expansion of the elliptic integral of the
second kind has already been recorded in (61). For convenience we write the corre­
sponding expression for the elliptic integral of the first kind

F(p) =~(l+(~r p2+(%f p4+(:~r p6+ ...)
which is similar to (61). In fact, the minus signs have been reversed and the denominators
of the powers of p deleted, but otherwise they are the same.

Using these elliptic integrals, we have

4 16
T = - (1 -I? )E([5) + - «(1 + [52 )E([5) - (1 - r? )F(p))

3 9
(87)
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This distribution of transportation costs is illustrated in Figure 7.3. Obviously, trans­
portation costs are lowest for those living in the center and increase monotonically, the
farther the origin of communications is from the center. This is intuitively appealing.

We might also compare Figures 7.1 and 7.3. Both resulted from integration of the
same I¢ I, the first with respect to t the second with respect to x. The difference between
the two figures illustrates the importance of the coordinates taken for integration. How­
ever, the volume under the two surfaces is equal. Regardless of whether we take the
integral of(60) with respect to x or the integral of(87) with respect to t we arrive at

ffffl¢ldx1dx2 d~ld~2 = 1287T/45 (88)
A A

since the order of integration is immaterial. One interpretation of this integral is total
traffic, as we have seen. Another is total communication costs. As local transit cost is
unitary, we can equate total communication costs to total communication distance or,
in more familiar terminology, total transport work. Hence, total traffic equals total
transportation work. This conclusion is not limited to the case illustrated, but holds in
general.

7.5 LAND USE AND EQUILIBRIUM SETTLEMENT

7.S.1 The Problem

Thus far we have considered how the choice of optimum routes, in connection with
the demand for transportation, determines the distribution of traffic in the region in
question and the distribution of communication costs for various points of origin. The
computational aspects were covered in some detail in order to show how complicated an
analytical solution can become in even mildly complex cases. In this process the local
transit cost was taken as given. We noted only that it depended on the congestion ratio of
traffic to space available for transportation. Moreover, due to the feedback mechanism via
traffic, we could not regard transit cost as a datum, even if the fraction of space allocated
to transportation was assumed given everywhere.

The quantity of land available for transportation results from a decision concerning
the use of land. The quantity allocated to transportation is determined by the value of
the best alternative use of land, which, in the framework of our model, is housing. The
value of land use for housing, on the other hand, depends on population. If, as indicated
in the Introduction, we seek a spatial equilibrium where locations are indifferent, due to
an exact balance between housing and communication costs, then the distribution of
population must be regarded as variable in the model. But let us deal with the problems
one at a time. We first consider land use, and then proceed to equilibrium settlement.

Local transit cost k was defined in equation (5) as an increasing function of the
(traffic to carrying capacity) congestion ratio i/m. We already have a lengthy derivation
of i. Total land available at a location is divided into two fractions, m, used for the
transportation network and n, used for housing. If our simplified model is to make any



230 SPATIAL ECONOMICS

Figure 7.3. Cost and location.

sense, "housing" should be interpreted broadly to include the construction of buildings
for productive purposes along with residential construction.

Let us briefly discuss the dependence of k on i/m. Obviously, numerous empirical and
theoretical studies (of,for example, the "follow-the-Ieader" type) suggest a monotonically
increasing relation. The increase is very drastic since there is usually a critical congestion
level at which the velocity of traffic flow is reduced to zero, and hence its reciprocal,
transit time (a proxy for transit cost), goes to infinity. The general picture is not altered,
even if we let k include capital costs for maintenance, since repair requirements due to
wear obviously increase with congestion, as do the locomotion costs proper. The transit
cost function could also take care of the fact that it is possible to push the critical conges­
tion ratio to a higher value by creating artificial space, Le. by setting up several storys of
elaborate networks. However, capital costs for such constructions obviously increase with
the ratio of traffic to natural space available, so that we can retain our specification.

7.S.2 Allocation of Land

As indicated earlier, a decision on land use has to be reached. Now, the use for trans­
portation has been accounted for, but we still have to formalize the use for housing (in
the broad sense). Let us suppose that there is a cost function

h = h(p/n) (89)
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for providing each individual with his or her required living space. This cost increases with
the crowding ratio, measured by the quotient of population to natural space available for
housing. As in the case of land use for transportation, we have in mind a process whereby
artificial space is created at an ever-increasing capital cost, the greater the amount of
artificial space, in relation to natural space, that has to be constructed. As the need for
space was proportional to population, pin is the correct argument. For convenience, we
can restate equation (5)

k = k{i/m) (90)

and the fact that the proportions of land used for the two purposes included in the model
add up to unity

m + n = 1 (91)

We now have to select the proper expression to be optimized by the choice of m and n.
In the Introduction we argued that it would be reasonable to let the sum of housing and
communication costs be minimized. However, it would be somewhat absurd to do this for
each location separately. From an empirical point of view, public agencies are usually
responsible for the planning of land use with respect to entire regions. In theory, all the
communications, and not only those from a certain point of origin, will be affected by
changing transit cost at this point. Therefore, we can expect to encounter analytical
difficulties if we set up a local optimum condition for something that has global effects.

So, dealing with the region as a whole, the total transportation costs are obtained by
integrating (77) with respect to ~ and using definition (38), as

ffk{i/m) idx 1 dx2

A

On the other hand, total housing costs are

(92)

f fh(p/n) p dx 1 dx2 (93)
A

Accordingly, we can minimize the sum of housing and transportation costs (92)-(93)
with respect to m and n, subject to (91). This yields

kl(i/m)(~r = hl(P/n)(~r = P(Xl,X2) (94)

where p is a (location-dependent) Lagrangean multiplier associated with the constraint.
This optimum condition has the attractive property of stipulating a universal relation that
must hold everywhere between the local traffic congestion and population crowding
ratios. We conclude, assuming second derivatives to be positive (as is reasonable in terms
of our discussion), that a high transit cost due to congestion is linked to a high housing
cost due to crowding. This seems reasonable as a condition for optimal land use.

H can also be seen that (94) and (91) combined determine both m and n, once i and p
are given. The same is then true for k and h. Supposing that we have somehow managed
to solve the complicated feedback process of traffic as a determinant for route choice and
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obtained the equilibrium traffic distribution, we find that the single remaining degree of
freedom is the spatial distribution of population.

7.5.3 Equilibrium Settlement

It is assumed that there are no migration incentives if the sum of transportation costs
and housing costs is a spatial invariant, i.e. if

f fkCi/m) I1fJ1 dx 1 dx 2 + h(pjn)j5 = constant (95)
A

Observe that the barred symbols again refer to conditions at the fixed point of origin ~.

The model is now complete. If we limit our discussion to the case of a region with
circular symmetry, we conclude that something like the case illustrated in Figures 7.1
and 7.3 has come part of the way towards an equilibrium solution. Of course, this is
true only in a very general sense.

However, the traffic displayed in Figure 7.1 arose from unit population density and
linear communication routes. The latter occurred if transit cost was a spatial constant.
Now, transit cost depended on the traffic congestion ratio. As seen from Figure 7.1, there
is traffic concentration towards the center of the disk. Accordingly, we have to allocate
more land to transportation in the central parts in order to arrive at the constant transit
cost (Le. constant congestion ratio).

On the other hand, little land is available for housing in the central parts as it is used
for transportation instead. So, housing should be expensive in the central parts. As for
communication costs, we see from Figure 7.3 that they are low in the center and high
in the outskirts. It is thus possible that housing and communication costs could balance
everywhere.

There is only one qualitative feature in this case that violates our conditions. It was
shown that, for optimal land use, the high population crowding in the center should be
balanced by a high congestion ratio. The latter, however, is a spatial constant.

Thus it seems that we should either have lower crowding or higher congestion in the
center. In equilibrium, a higher congestion ratio would lead to avoidance of the center,
and, via feedback, to a reduction in the concentration of traffic there. This could be
brought about by allocating less land in the center to transportation and more to housing.
This change would result in a better balance between crowding and congestion. However,
the cost of communication would be increased for all those who have to communicate via
the central parts, not only for those who live there, whereas housing costs would be
decreased only locally. Therefore, it is likely that such a reallocation of land would make
the center more attractive and encourage people to migrate there.

Finally, we recognize the features of reality: congestion and crowding in the center; a
tendency to avoid the central parts for trips not originating or destined there, but never­
theless a considerable concentration of traffic; more land used for transportation than for
housing in the center; high costs of housing, offset by centrality of location; etc. In other
words, the general case is far too complicated to allow explicit solution.



8 Spatial Business-Cycle and
Growth Models

8.1 INTRODUCTION

Most of the foregoing analysis has been static in the sense that time was not explicitly
included along with the space coordinates. In a very formal sense all our models have
been "dynamic," as space plays the same role for us as does time in the dynamic analysis
of traditional economics. Spatial analysis is even more complicated than temporal analysis
due to the two dimensions of the space we are dealing with. This, however, does not
remove the need to include time along with space in the models.

In spaceless economics, dynamic analysis usually means either of two things: the study
of price adjustments in a dynamized multimarket equilibrium, or the study of business
cycles in macroeconomic aggregates. We have occasionally touched upon the former type
of dynamics in the study of price-flow adjustments and in the stability analyses. The
present chapter will be devoted to the study of spatial business cycles.

As trade is the natural conveyor of economic change a coupling of business-cycle
theory, as developed by Hicks (1950) and Samuelson (1939),* with interregional trade
theory is an obvious step towards understanding economic fluctuations. However, this
coupling really only gives new insights once we have conceived of trade among geographi­
cal locations related to each other by some well-defined distance metric.

If we choose the continuous format we have the advantage of using all that is known
about the wave equation for physical oscillating systems. If we keep this analogy in mind
then the usual business cycle of the multiplier-accelerator type can be compared to a
simple harmonic oscillator. Typically, it has only one frequency of oscillation. In order to
admit superposed cycles of different periods, as observed in reality, it has been necessary
to introduce complicated lag structures for economic responses so that the beautiful
simplicity of the basic model is destroyed.

In comparison to the simple harmonic oscillator a vibrating string is capable of
producing any compound of the infinity of natural harmonics. As Fourier's analysis
demonstrates, such a system is capable of producing any periodic motion, however
irregular it is. This is already much better than the single cosine or sine waves of the
simple harmonic oscillator. We attain realism without having to complicate the basic
physical laws with something like a distributed lag structure. The single spatial extension
of the string makes all the difference!

Obviously, a one-dimensional region in business-cycle theory would give us the same

*J.R. Hicks, A Contribution to the Theory of Trade, Oxford University Press, London, 1950. P.A.
Samuelson, Interactions Between the Multiplier Analysis and the Principle of Acce1era tion, Review of
Economic Statistics, 21 (1939): 75 -78.
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possibility. But, we can do better than this. The oscillations produced by a string are still
strictly periodic, though possibly irregular. This is so because the vibration is compounded
by natural harmonics. In everyday life we note this fact by ascribing a fundamental pitch
to each string.

With a two-dimensional membrane things are completely different. A string can only
produce resonance with its harmonics. A membrane, as we know from violin plates or the
soundboards of pianos, can be resonant with any of the tones produced from the strings
mounted upon it. Accordingly, the membrane can vibrate at the same time in frequencies
that are no longer natural multiples of each other, and the compound motion is no longer
strictly periodic. Again, it is the two dimensions that make the difference, since the result
comes from the same fundamental laws that govern the simple harmonic oscillator.

We can therefore expect a business-cycle model for a two-dimensional region to be
capable of producing irregular and nonperiodic change, even though it is produced by the
simple multiplier-accelerator mechanism. This is because the physical and economic
models are equivalent in introducing second-order differential equations with constant
coefficients. We note that the mere introduction of space yields completely new
conclusions, even for the single point.

As is the case in acoustics, we have to deal with idealized systems. In particular, we
will deal with rectangular and circular plane regions, and with the sphere (as an approxi­
mation to global trade-cycle diffusion in the world economy). The regions dealt with are
assumed to be uniform in the sense that the economic reactions are the same in all parts
of them. This is obviously unrealistic, since the impulses of change are communicated
much more rapidly through locations provided with good transportation facilities than
through deserts and forests. Likewise, the economic inertia of various parts is different in
the sense that highly industrialized areas are not easily switched into modes of change
from modes of rest, but once they are excited exert an enormous influence on the
surrounding areas.

But the situation is quite similar in physics. To learn something about the vibrations of
a real physical system, like a violin plate (an irregular curved shell of nonuniform thick­
ness), uniform plane shells of regular shape or systems of similar simplicity are studied.
Like physicists we can hope to learn something about reality from the study of idealized
(unrealistic, but analyzable) systems.

8.2 THE BASIC MODEL

8.2.1 The Spaceless Original

As indicated above we will start out from the well known multiplier-accelerator
model. However, we wish to deal with differential (not difference) equations, and there­
fore the appropriate formulation is not the original Samuelson-Hicks model, but a
continuous equivalent due to Phillips. A complete discussion of it may be found in Allen
(1956).

The model has two parts. First, aggregate demand is given by
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Z=A+I+(I-s)Y

where s denotes the rate of saving out of income Y (so that (1 - s) Y is consumption), I
denotes induced investments (i.e. those induced by the acceleration principle), and A
denotes autonomous expenditures (autonomous investments, government expenditures,
and the like). In equilibrium, aggregate demand Z would be equal to aggregate supply or
income Y. Thus Y = A +1+ (I - s) Y, or in another form sY = A + I. The equivalen t of
this equilibrium condition in adaptive form with lagged response of savings would read

Y = A(A + I-sy) (1)

This is the multiplier part of the model.
Second, the principle of acceleration states that capital stock be in a certain proportion

to income, or, which amounts to the same thing, the rate of change of capital stock
(investments) be in that proportion to the rate of chan~e of income. Denoting the
proportionality factor by v, the formal condition is 1= vY. Again, we assume a lagged
response in the change of capital stock from the actual to the optimal, and write in
adaptive form

I = K(VY-I) (2)

One way of handling these relations is to ignore the lagged response structure and
start out from the equilibrium conditions. Then, deleting autonomous expenditures,
sY = vY is obtained. This is simply the Harrod-Domar model of balanced growth
generating exponential growth at the rate s/v. Another way to use the relation.s is to take
(1) and (2) together, differentiate (1) once more and then substitute for I from (2).
Finally, we substitute from the original form of (I) for I and get

iT + (AS + K- KAV)"Y + KAS Y = KA + AA

The autonomous expenditures can, in principle, lead to forced vibrations of the system.
In the original model, however, A is treated as a constant so that the time derivative is
zero and a constant equilibrium Y can be obtained as a particular solution. Oscillatory
deviations from this can be obtained from the solution of the homogeneous form, where
the right-hand side is zero.

The homogeneous form, in fact, corresponds to a damped (or explosive) simple
harmonic oscillator. The solution, as stated in the Introduction, is a simple sinusoidal
wave with one definite period. And this is the construct we are going to study in a spatial
format. Since the basic linearity of the model is not destroyed by the spatial general­
ization, the particular solution can always be added to the one obtained from the
homogeneous form. Therefore we can, without loss of information, disregard autonomous
expenditures in the discussion that follows.

8.2.2 . Space and Trade Added

Our next step in making the model a spatial one is to introduce exports and imports.
The simplest way is to treat them in the same way as consumption, i.e. assuming that
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imports are in a certain proportion to income. In this way exports too are determined by
the incomes at other locations. Net exports should therefore be proportional to the
difference between income abroad and at home. In traditional international economics
"abroad" is a simple concept; it is just another abstract region withou t spatial dimensions.
Once we introduce an economic space, however, things become more difficult.

To simplify matters we assume local action between spatially contiguous locations
only. This is equivalent to the assumptions regarding actions in time. Interaction spatially
with remote locations would be equivalent to a structure of distributed lags in the
temporal interactions. But even with local actions only we have to be careful in defining
a local income difference between a location and its immediate surroundings. If our
region is one-dimensional and we are dealing with an interior point, we have one income
difference to the right and another one to the left. Since in continuous space the income
differences are spatial derivatives, the net difference between these, in the limit, equals
the second spatial derivative. Denoting net export surplus by X and the space coordinate
by x we get X = m d2 Yjdx 2

, where m is the propensity to import.
Our main interest, however, is two-dimensional space, and there we are faced with an

infinity of directions in which we can move from an interior point to its immediate
surroundings. To define a net change of income between a location and its immediate
surroundings we can again use Gauss's theorem in the plane. Let us consider the divergence
of the gradient of income

This is also called the Laplacian and denoted V2 Y. Let us take the double integral of
this over any bounded portion of the plane. Then, according to Gauss's theorem, we have

The right-hand side is a curve integral along the closed boundary of the region of
integration on the left-hand side. The integrand, (grad Y)n, is the component normal to
the boundary of the gradient of income. Therefore the integrand at each point of the
boundary is the rate of change of income as we leave the enclosed region in a direction
normal to the boundary, and the curve integral is the net change of income as we leave
the enclosed area, all possible points of departure being taken into account. Let us now
shrink the enclosed region to a point. In the limit we conclude that the Laplacian actually
defines the net change of income as we pass from a point to its immediate surroundings,
all possible directions leaving the point being considered. So, we define local export
surplus as X = mV2 Y. Defining net exports in this way we can, by Gauss's theorem, see
that trade is conserved in the model. What is exported from one location is always
imported to another one. Hence, the model is consistent. We also note that in the one­
dimensional case the Laplacian degenerates into the second derivative of the single
spatial coordinate as conjectured above.

But so far we have only stated an equilibrium condition for trade. As was done for the
multiplier and accelerator relations, it is logical to assume a delay in the adjustment of
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trade and introduce an appropriate adaptive process. We do this as Phillips and Allen
would have done, by putting

x = p(m'il 2 Y - X) (3)

Together with (1) and (2) this defines the whole model. We will make a slight simplifi­
cation before discussing the model further, by assuming that the delay coefficients K, p,
and X are equal. This corresponds to the way Samuelson and Hicks treat delays in their
discrete models and has the advantage of keeping the order of the resulting differential
equation relatively low. By doing this we can also define a unit of time so that these
coefficients are unitary. This saves us a lot of symbols. As already mentioned, we also
ignore autonomous expenditures.

Before proceeding, we must make a slight change in equation (1) and in its equilibrium
counterpart. The latter becomes A + I +X = sY in the "open" economy, and the corre­
sponding adaptive relation becomes

Y = X(A + I + X - sY) (1 a)

which we will use from now in place of the original equation (1). .
. Then, differentiating (Ia) with respect to time, using (2) and (3) to eliminate I and

X in the resulting equation, and (la) as it stands to eliminate I and X, we obtain

(4)

which is the differential equation we are going to study. Before proceeding, note that we
could utilize the trade condition in equilibrium form together with the other conditions
in the same form to yield

Y- (slv) Y = - (mlv)'il 2 Y (5)

which is the spatial counterpart of the Harrod-Domar balanced-growth model. The
counterpart in physics to (5) is the heat diffusion equation, whereas the counterpart to
(4) is the wave equation.

8.2.3 Solution by Separating Time and Space

In setting out to solve (4), we first introduce separation between the spatial and the
temporal coordinates, i.e. we suppose that the solu tion can be written in the form
Y = T(t)S(x I, X2). Equation (4) can then be split in two parts, namely

and

T" + (1 + s - v)T' + k 2 T = 0 (6)

(7)

This splitting arises because, on introducing the attempted solution, the differential
equation (4) breaks down into two different parts, which exclusively depend on the
temporal and the spatial coordinates, respectively. The only way two expressions that
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depend on different independent coordinates can stay in a certain algebraic relation to
one another is if they both equal some constant. This constant is arbitrary and has been
introduced here as k2

.

The ordinary differential equation (6) is familiar from business-cycle theory. It has the
solution

T= e-at(A cos (3t + B sin (3t) (8)

where

a - (1 + s - v)/2 (9)

and

(3 = (k2 - ( 2 )112 (10)

We have a damped solution when (1 + s - v) is positive, and an explosive solution when it
is negative. The stability condition is exactly the same as in Hicks (1950).

The great difference, however, is that the period (3 of the simple harmonic motion
represented by the trigonometric factor in (8) now depends on the arbitrary constant k2

.

The latter is not determined by the structural coefficients of the model. It can take any
value that suits us in a solution to the spatial equation (7), and when several k 2 values
are possible, we need to take a sum of the harmonic functions of all the corresponding
frequencies (3 according to (10) instead of the single harmonic. We remember at this point
our introductory remarks that a one-dimensional region admits all natural multiples of
the basic frequency, while a two-dimensional region admits both natural multiples and
other frequency combinations. These facts now remain to be formally demonstrated.

8.3 EXAMPLES

We will now examine in more detail the behavior of our model for rectangular and
circular plane regions and then for the curved surface of a two-dimensional sphere. In
treating the rectangular case we will also cover the one-dimensional case in the limit
where the rectangle becomes very long and narrow. Finally we will make some remarks
on the general case of more irregular shapes.

8.3.1 The Rectangular Region

Our discussion will now concentrate on equation (7), which is a partial differential
equation, not an ordinary one like (6). In the science of acoustics, (7) is usually called the
Helmholtz equation. The degree of difficulty encountered in solving this equation depends
on the shape of the boundary and the boundary conditions. For simple boundaries a
suitable choice of coordinates, together with the separation method (already used to sep­
arate the temporal and spatial factors), will yield separate ordinary differential equations
for the separate coordinates, and from these the solution can be simply compounded.
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The natural starting point is the rectangular case, since our equations have been
expressed in Cartesian coordinates from the outset. The region dealt with will be a
rectangle with sides a and b. Suppose the boundary condition states that there is total
income stability on the boundary of this rectangular region, which means that it is zero at
all times. (Observe that zero here means zero deviation from the equilibrium value
determined by the autonomous expenditures.) We will try the solution S = X 1(XI)X2(X2).
Then equation (7) splits in two equations

(11)

and

where the new constants can be introduced, provided that they fulfil the condition

(rri/a)2 + (rrj/b)2 = (k2 - s)/m

(12)

(13)

We can thus choose i and j in any way that fulfils equation (13). As k 2 was linked to the
temporal period of the variation we thus know that, by (9) and (10), i and j are related
to (3.

The solutions to (II) and (12) are

(14)

and

(15)

for any natural numbers i and j. The solutions are restricted to the natural numbers, and
only the sines (not the cosines) appear, due to the boundary conditions that Xl and X 2

be zero for Xl = 0 and a and for X2 = 0 and b, respectively.
The complete solution to (4) is then

t,"" irrxl j rrx 2Y = e- a
~ ~ sin -- sin -- (Aij cos (3t + Bij sin (3t)
i jab

(16)

(17)

where the summations range over all natural numbers i and j from unity to infinity. In
each of the terms (3 is determined by the combination of natural numbers. For con­
venience, we condense here the conditions (10) and (13)

rr2(~ + j2 ) = a
2

+ (32 _.!
a2 b2 m m

Remember that the a coefficient (the damping factor) is determined by the structure of
the model according to (9), whereas the (3 coefficient (the temporal period) is determined
by the spatial wavelengths according to (17). The damping factor is the same for all
vibration frequencies.
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We will illustrate the four lowest periods and the corresponding spatial configurations
in terms of the nodal lines (lines of constant income). For illustrative purposes we assume
that the region is square with a = b = 11. Suppose the structural constants are s = m = v =
0.2S. The result is a slightly damped motion with Q: = O.S, as we can see from (9).

For this special case (17) is {3 = (i2 + j2)l!2/2. We can see that, even for this simple
case, the sequence of successively shorter periods contains numbers that are not simple
fractions of each other. For values of i,j equal to 1,1,1,2 or 2,1, 2,2, and 1,3 or 3,1 the
corresponding {3 values are y'2/2, y'S/2, y'8/2, and y'1O/2, respectively. The implication is
that whenever several of these modes coexist, the motion of income at a certain location
is no longer strictly periodic.

We can also see from this example that cyclic variation of a given period is not always
associated with any given spatial variation pattern in terms of the nodal lines. Obviously,
the same period is obtained when we interchange the values of i and j. Moreover, any
weighted sum of vibrations due to i,j and j, i also leads to the same period for the
compound vibration. These considerations lead to the study of expressions of the type

Csinixl sinjx2 +Dsinjxl sinix2 (18)

We can get some ideas about the possible spatial variation modes associated with a
given frequency by studying the four basic cases: C = 0, D = 0, C + D = 0, and C = D.
This will be done for the four lowest frequencies enumerated above. First we note that if
i = j = I, then the two terms in (18) are equal and there are no nodal lines (except the
edges of the square). The oscillations are greatest in the center and diminish as we get
closer to the edges. All points of the square oscillate in phase. The frequency (3 = y'2/2 =
0.71 is associated with this mode.

Next, for i, j = 1,2 and 2, I

Csinxl sin 2X2 + D sin 2x 1 sinx2 = sinxl sinx2(CcoSXl + D COSX2)

The factor outside the parentheses only gives the edges as nodal lines. Therefore we need
only study the parenthetic term. If C = 0 there is an additional nodal line when cos X2 =
0, i.e. when x 2 = 11/2. As the side of the square was given as 11 there is a horizontal nodal
line halving the square. In the same way D = 0 gives a vertical nodal line bisecting the
square. As cos (11 - Xl) = - cos Xl we see that Xl + X2 = 11 results for the case where
C + D = O. This nodal line is a downward-sloping diagonal. Finally, C = D obviously
results in Xl = X2, which gives the other diagonal. The four modes are illustrated in Figure
8.1. For all of them we have {3=y'S/2 = 1.12. We see that the ratio of this frequency to
the lowest frequency (corresponding to i = j = I) is 1.12/0.71 = I.S8. So, compounding
only the two lowest frequencies destroys perfect periodicity.

The case of i = j = 2 is also easy to deal with. Then the trigonometric expressions in
(18) are once again equal, and the relation of C to D does not matter. As sin 2Xl sin 2x2
takes zero value for Xl = 11/2 and for X2 = 11/2 (and on the edges, of course), there are
both horizontal and vertical nodal lines through the center of the square. The square is
divided by these lines into four smaller squares of equal size. The oscillation in two
adjacent squares is always in opposite phase, so that when there is prosperity in the NE
and SW squares there is depression in the SE and NW squares. This demonstrates the fact
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Figure 8.1. Basic oscillatory modes of a square (ratio of frequency to lowest one = 1.58).

o
Figure 8.2. Basic oscillatory modes of a square (ratio of frequency to lowest one = 2.24).

that cyclic change in various parts of the region under study may be out of phase due to
the friction in impulse transmission through space. The frequency associated with this
mode is ~ = -./8/2. The ratio of this to the lowest one is 2, so that we are actually dealing
with a natural harmonic. This case is not illustrated since the reader may easily visualize it.

From this case we can make a general observation. When the square oscillates in parts
separated by nodal lines then the frequency is higher than when it oscillates as a whole.
In other words, cycles of long period may be expected to extend over large areas (all
moving in phase), whereas fast cycles are confined to small areas (with the immediate
surroundings moving in opposite phase).

Let us finish with the case of i, j = 1,3 and 3, I. Then (18) becomes

C sin XI sin 3X2 + D sin 3xI sin X2 = sin XI sin X2(4C COS
2
XI + 4D cos 2

X2 - C - D)

Again the multiplicative factor gives the edges as nodal lines, and hence only the paren­
thetic term is of interest. If C= 0, we get COS2X2 = 1/4, or X2 = rr/3 and 2rr/3 as the
solution; i.e. there are two horizontal nodal lines dividing the square into equal strips. By
the same reasoning, D = 0 gives three vertical strips of equal breadth. When C + D = 0,
we get COS

2
XI = COS2X2, which is satisfied when XI = X2 and when XI + X2 = rr. Accord­

ingly, both diagonals are nodal lines. Finally, if C =D, we get cos2
X I + cos2

X 2 = 1/2.
This defines a closed curve that is almost but not quite circular. The four basic modes are
illustrated in Figure 8.2.

The temporal frequency associated with all these modes is -./ I0/2 = 1.58. Its ratio to
the lowest frequency is -./5 = 2.24. Again we are dealing with a frequency ratio that is
not rational. There is one interesting observation to make in this case. The frequency of
temporal oscillation is not even associated with a given number of separately oscillating
parts of the square. In Figure 8.2 we can see cases of two, three, and four areas into
which the nodal lines divide the square.

The square is particularly simple to deal with. Even if not all the modes have
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frequencies in rational ratios, there exists the whole sequence of natural harmonics with
twice, three times, ... the basic frequency. These arise when the square is subdivided in
4,9, ... equal small squares.

For an oblong rectangle with sides whose lengths are not in rational proportions things
are entirely different. The sequence of rational harmonics does not exist and it is
generally impossible to compound a strictly periodic motion, even by selecting particular
modes of vibration. An exception is when the rectangle becomes a very long and narrow
strip. Then the system degenerates into the one-dimensional case and, as in (17), there
remains only one ratio in the left-hand parenthetic term so that we are left with a series
of natural harmonics.

We conclude this discussion by returning to the general case of the solution (16) and
state a way in which the undetermined coefficients Aij and Bij may be calculated from
the initial conditions. As any initial state is compatible with the solution, we are con­
vinced of its full generality. By the orthogonality of the various sine and cosine functions
we have

and

4 II . i1TXl . j 1TX2A ij = - Yo SIn -- SIn -- dXl dX2
ab a b

(19)

(20)4 II I. i1TXl . j 1TX2
Bij = ab(3 Yo SIn -a- SIn -b- dXl dX2

where Yo is the income distribution at t = 0 and Yd is the rate of change of income at
t = O. Integration is over the whole rectangular region considered. When the system is
initially at rest the Bij coefficients vanish.

8.3.2 The Circular Region

The circular case can be dealt with more briefly, since it so much resembles the
rectangular case just discussed. As a matter of fact, it is included merely in order to
demonstrate that many of the conclusions have a greater generality than might otherwise
be supposed. To deal with the circular disk efficiently we introduce polar coordinates, by
the transformation

Xl = P cos w

and

X2 = P sin w

A little calculation then shows that

(21)

(22)

(23)

is the Laplacian in polar coordinates. The choice of coordinates already suggests the
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method of separation to be attempted. Assume a solution of the form

S = R(p)n(w)

Equation (7) then splits again into two ordinary differential equations

n" +i 2n = 0

and

" 1 I (k 2
-S i

2
)R +-R + ---- R = 0

p m p2

(24)

(25)

(26)

Equation (25) very much resembles equations (11)~(12) above. Its solution is any
compound of sine and cosine functions with frequency i. Since we can thus represent the
solution by a simple cosine function with a suitable phase lead, and as the phase shifts
yield nothing of general interest, we represent the solution by

n = cos iw (27)

In the present case i must be a natural number because of the angular character of the w
coordinate. Only then will (27) end up at the same value after a full round at w = 21T.

Equation (26) is Bessel's differential equation. The solutions are the two kinds of
Bessel functions, much studied in the context of physical applications and tabulated in
great detail. Only the Bessel functions of the first kind stay finite at the center of the
disk. Since only this makes economic sense we will only use Bessel functions of the first
kind as solutions to (26). The traditional notation for these functions is uppercase J
subscripted by the "order" i. So

(28)

where

(29)

solve (26). As a boundary condition we again assume constant stability. So, (28) must
vanish when p equals the radius of the disk that presently represents our region. Without
loss of generality we can assume this radius to be unity. This assumption amounts to the
choice of a unit of distance (in the same way that above we adopted a time unit that
made the adjustment speeds unitary). With this convention, h must be so chosen that

(30)

(31)

As in the rectangular case there is a uniform exponential damping (or antidamping) of all
frequencies at a rate 0:, which is determined by the structural constants of the model
according to (9). The frequencies for each mode i,j are determined by (29) and (10). For
convenience, we condense these equations to

0:2 + {32 S
h 2 = --

m m

Since 0: is fixed by the structural constants, (3 I) determines the temporal frequency {3 for
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Figure 8.3. The lowest oscillating modes for a circular disk.

each h that is a solution to equation (30). And since the solutions (28) and (27) depend
solely on the radial and angular coordinates, respectively, we can see that the nodal lines
must be either concentric circles or equally spaced radials. At present there is no
ambiguity concerning the spatial mode of oscillation that corresponds to a given temporal
frequency, as was the case with a square region. Interchange of the subscripts i and j never
results in the same (3, because the polar coordinates do not have the symmetry of
Cartesian coordinates.

In Figure 8.3 we illustrate the spatial modes of vibration associated with the six lowest
frequencies (deleting the first one that arises when the whole disk oscillates in phase).
The frequencies of the illustrated modes, expressed as ratios to the lowest one, are 1.59,
2.18,2.30,2.65,2.92, and 3.16, in this order. These numbers result from again assuming
s = m = v = 0.25 for the structural coefficients.

In the general case we can again determine the Aij and the Bij coefficients from initial
conditions, since the Bessel functions, like the elementary trigonometric ones, are ortho­
normal. Multiplying the initial income distribution Yo by fi(hij p) and by cos i wand
integrating over the whole disk we get Aij. If we substitute Yd for Yo we get Bij. (In order
to obtain the actual values we have to divide by certain constants as in (19)-(20).)

8.3.3 The Spherical Region

The idealized simple regions examined so far have been approximations to, at most,
single countries or continents. As a first approximation to world-wide trade and cycle
propagation we will now study the spherical shell. For simplicity we can assume the
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(32)

(33)

(34)
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radius to be unity. Again, this only amounts to a convenient choice of distance unit. For
the circular region we found it convenient to introduce curvilinear coordinates (polar
ones). For the present case, as we are dealing with a curved surface, we must use curvi­
linear coordinates. No Cartesian ones will do.

The simplest coordinate system for the present case is the spherical, given by the
angles of longitude and colatitude. Suppose the sphere is embedded in three-dimensional
Euclidean space with Cartesian coordinates t fI, r Denoting the spherical coordinates 8,
¢ we have the transformation

~ sin 8 cos ¢

fI sin 8 sin ¢

~ = cos 8

Computation shows that the Laplacian in these coordinates equals

as a2s I a2s
V' 2s = cos8 -+ - + ----

08 08 2 ~n28 a¢2

This expression is the one to be inserted into the Helmholtz equation (7). The appropriate
separation of variables in the solution is obvious. Let us try S = 8(8)<l>(¢). The result, as
before, is that our partial differential equation breaks down into two ordinary ones

8"+COS88'+(j(j+l)-~)8= 0
sm2 8

and

For convenience we define a new constant

k 2 -s
j(j+ 1) =--

m

From (9) we see that hence

. . 0:2 + {32 S](] + 1) = ----
m m

(36)

(37)

(38)

(39)

which relates j to the temporal frequency {3, everything else being determined by the
structural constants of the model.

The solution to (37) is obvious. Any compound of sine and cosine functions of period­
icity i will do. As in the case of the circular plane disk, the solution must end up at the
starting value after a full round, and therefore the argument of the trigonometric
functions must be i¢, where i is a natural number. Since compounding sines and cosines,
or, equivalently, introducing phase leads, does nothing but rotate the whole set of nodal
lines, we can without loss of generality put

<l> = cosi¢ (40)
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This solves (37) for any integral value of i. Equation (36) may seem more complicated,
but as a matter of fact. it is Legendre's associated differential equation. Solutions to this
are the Legendre functions of the first and second kinds. Since the latter take on infinite
values only the first ones make economic sense. They are traditionally denoted as
Pj(cos 0), and there is a simple analytical expression

. siniO d i+i (sin 2iO)
P!(cos 0) = -.- . . (41)
J 2Jj! d(cos 6)'+J

These functions have been thoroughly studied and tabulated in most mathematical hand­
books. One thing to note from definition (41) is that the functions obviously become
zero whenever i exceeds j.

Accordingly we have

E> = Pj(cos 0) (42)

as the solution to (36) and can compound the general solution to (4) from the solutions
(40), (42), and (8). Thus

Y = e-ca L L pj(cos 0) cos icf>(Aij cos ~t + Bij sin ~t)
i~j

(43)

where the temporal frequency is determined from (39) for each spatial mode of vibration.
As before the whole system of oscillations is uniformly damped or antidamped (due to
the Hicksian condition for the structural coefficients).

We will illustrate some basic modes of oscillation by studying the nodal line systems
for cases with low i and j. (For these, the expressions for pj are tabulated below. The
formulas can be derived quite easily from the definition (41 ).) We note that expressions
are only tabulated for i at most equal to j, since otherwise the Pj become identically zero.

j pj (cos (J) cos i</>

0 0
0 1 cos 8
1 1 sin 8 cos </>
0 2 3cos'8-1
1 2 cos 8 sin 8 cos </>
2 2 sin' 8 cos 2</>
0 3 5 cos' 8 - 3 cos 8
1 3 sin 8 (5 cos'8 - 1) cos </>
2 3 cos 8 sin' 8 cos 2q,
3 3 sin) 8 cos 3</>

Two facts from this table are noteworthy. First, if i = 0, the tabulated expression only
involves the coordinate O. Second, if i = j, then, except for factors that are powers of
sin 0, the expressions only involve the coordinate cf>. As sin 0 only produces zeros at the
poles of the sphere, the corresponding nodal lines are degenerate points (at the



SPATIAL BUSINESS-CYCLE AND GROWTH MODELS 247

i = 0 (zonal)

i = 2 (mixed)

i = 1 (mixed)

i = 3 (sectoral)

Figure 8.4. Oscillating modes of a sphere U = 3, (3 = 1.73).

intersections of other nodal lines). Accordingly i = 0 produces nodal lines parallel to the
equator, whereas i = j produces nodal lines that are great circles through the poles. The
modes associated with these cases are called "zonal" and "sectoral", respectively. The
intermediate cases where 0< i < j represent the "mixed" modes.

In Figure 8.4 we illustrate the different modes. We choose the case of j = 3, which out
of the cases tabulated yields the richest set of possibilities. If i = 0, we get nodal lines for
cos e = a and for cos e = ± "';(3/5), i.e. for e = 39

0
, 90

0
, and 141 0

. So, the nodal lines
are the equator and two parallel circles. This zonal mode is the first case illustrated.

Next, let i = 1 (and j = 3 still). Once again, as we can see from the table, the nodal
lines are produced by sin e = 0, cos e = ± "';(1/5), and cos ¢ = O. The middle possibility
gives e = 63

0
and 117

0
, i.e. two parallel circles, whereas the third one gives ¢ = 00, i.e. a

great circle through the poles. The first possibility is degenerate, giving e = 0
0

and 180
0

•

These are the poles, which we already have through the great circle. The corresponding
mixed mode has two parallel circles and one polar great circle.

Letting i = 2, we read from our table that cos e = a and cos 2¢ = a define the nodal
lines, The first gives e= 90

0
, which is the equator, whereas the second gives ¢ = 45

0

and
135

0
, i.e. two polar great circles. The remaining possibility, with sin2e = 0, can be dis­

carded from the outset, since it yields only the poles, which we already have twice by the
great circles. Thus, the mixed mode has the equator and two polar great circles as nodal
lines.
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There remains the case with i = j = 3. Again discarding sin 30 = 0, we get the nodal
lines from cos 3¢ = O. Equivalently ¢ = 30°, 90°, and 150°. These define three polar
great circles, dividing the sphere into six sectors. This, finally, illustrates the purely
sectoral mode .

We obviously have a great variety of possibilities as to the spatial modes when only j is
given. In addition to the four cases illustrated we can of course combine them as we did in
the section on the quadratic plane region. As there are four modes to combine (in
contrast to the two resulting from interchanging the subscripts i and j in the quadratic
case), even more combinations are possible.

It should be borne in mind that, due to (39), only the value of j (and not that of i)
is related to the temporal frequency ~. So, all the four cases illustrated (and also all linear
combinations thereof) have the same period of oscillation. If, for instance, we again have
the structural coefficients s = m = v = 0.25, as in the above illustrations, then from (39)
we get 3 ·4= 4~2. Hence ~ =";3 = 1.73.

We should also remember that the oscillations of different periods can be combined
linearly in any way, which results in a superposition of the various corresponding spatial
oscillation modes, and in the composite temporal motion having no perfect periodicity.
This is due to the fact that the sequence of ~ = (j(j + 1))112 for ascending integralj is not
one of integers.

Nevertheless, it is possible to calculate the Aij and Bij from initial conditions as in the
previous cases. For the general solution we have

(j-i)l2n+lff i .
Aij = -('')' -- YoPj(cos 0) cos l¢dOd¢

J + I. 1T
(44)

(45)

(46)

(j-i)! 2n+ Iff' .
Bij = (j+i)!-1T- YoPJ(cosO)cosi¢dOd¢

due to the orthogonality of the Legendre functions. In fact, (44)-(45), as in the previous
cases, allow the representation of any initial distribution of income and rate of change of
income over the region. So, the solution is again perfectly general.

With this example we conclude our set of illustrations. For more complicated shapes
of regions there exist approximate methods of computing the eigenvalues. On this topic,
and on much of the other mathematics used in the present chapter, Sneddon (1957) or
Courant and Hilbert (1953) can be usefully consulted. Other valuable references are Duff
and Naylor (1966) and Rayleigh (1945).*

8.4 THE REGIONAL GROWTH MODEL

Before summing up the discussion, let us say something about the spatial variant of the
Harrod-Domar growth theory. Thus we are dealing with (5) rather than (4). Let us try
separation of variables again. Put Y = T(t)S(Xl,X2)' The result is two equations

T'-(k+;)T=O

*Lord Rayleigh, Theory of Sound, Vo1s. 1 and 2, MacMillan, London, 1894; reprinted as a Dover
paperback, New York, 1945.
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and

The solution to (46) is

T = e(s/v+k)t

(47)

(48)

(49)

multiplied by any arbitrary constant, which we ignore here. Equation (47) will be
discussed for the case of a rectangular region only. Separation of variables by S = Xl (x d
X 2(X2) again splits the equation. Denoting the sides of the rectangle by a and b, we get

.x;'+(~JXl = 0

and

where

X" + (f!!)2 X
2 b 2 o (50)

(

·2 ·2 )2 I ]
rr - +-

a2 b 2

v
k­

m
(51)

Solutions to (49)-(50) are any sine or cosine functions of frequency i and j, respectively.
If we assume again that income does not change on the boundary, we can forget all about
phase leads and use the pure sine functions. So

(52)

and

(53)

are solutions. We can compound (52) and (53) with (48) to obtain the solution for any
pair of i and j that are integers and a constant k that satisfies (51) for these. The general
solution is a weighted sum of all these solutions.

The rectangular area is thus subdivided into ij small rectangles in which S alternates
between positive and negative values. This makes Y alternate in the same manner, which
might seem absurd, but remember that Y is the deviation from the level of income
induced by autonomous expenditures. So, the alternation means that income alternates
between values above and below the values it would locally have in stationary equilib­
rium. The discrepancy that initially exists between the actual and the equilibrium values
of income grows everywhere at the rate s/v + k. So to the Harrod-Domar growth rate
there is added a growth rate k, which depends on interregional trade.
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This additional growth rate is higher, the higher the values of i and j, as we can see
from (51). The process hence goes faster, the finer the mesh of spatial subdivision.
Observe that even the Harrod-Domar model with autonomous expenditures generates an
exponential "growth" downwards when the initial income is lower than the equilibrium
value obtained by applying the multiplier to au tonomous expenditures alone. Actually, it
is the discrepancy between the initial and the stationary equilibrium values that grows
exponentially.

In our spatial variant of the growth model with trade there is an additional growth rate
due to the dynamics from interregional trade. If, spatially, locations with initial income
above the equilibrium value alternate with locations where the reverse holds true, the
additional growth rate is higher the more inhomogeneous space is in this respect. Actually
it is proportional to the square root of the sum of squares of the horizontal and vertical
subdivisions.

In addition, the additional growth rate is proportional to the ratio m/v, as we see from
(51). This is similar to the case of the original Harrod-Domar model, where the natural
growth rate is s/v, i.e. the ratio between the propensity to save and the accelerator. This
ratio appears in our model as well. The additional growth rate is proportional to the ratio
between the propensity to import and the accelerator. This seems logical since imports,
like savings, constitute a "leakage" of expenditures.

Let us finally state the general solution, where different growth rates are compounded
together

(54)

where we have put g = s/v as a convenient abbreviation. Observe that the spatial model,
by combining as many growth rates as we wish, can generate any pattern of irregular
growth, not just one single exponential growth rate. This is an advantage of the spatial
version. The coefficients can be determined from the initial income distribution by again
using the orthogonality of the trigonometric functions. So

(55)

By Fourier's analysis any initial income distribution can be expressed in the form (54) by
an appropriate choice of the Aij coefficients.

The reader who feels uneasy about the very precise conclusion that interregional trade
in the growth process tends to speed up the process of ever-increasing regional inequality
should keep one thing in mind. All linear growth models, whether spatial or not, sooner
or later become unacceptably unrealistic. With business-cycle models, where the oscil­
latory movement is the primary result, the variables tend to stay within certain bounds
for a sufficiently long period to justify the assumption of constant coefficients, at least as
a first approximation. But a model generating exponential growth, by its very nature,
sooner or later violates any linear approximation, however generous a tolerance we admit.
This is why we regard the business-cycle dynamics as the primary contribution of this
chapter. It should, however, be borne in mind that the reservations above also apply to



SPATIAL BUSINESS-CYCLE AND GROWTH MODELS 251

business-cycle models in cases where the exponential part of the solution creates
explosive cycles.

8.5 A MORE GENERAL CASE

The cases of rectangular, circular, and spherical regions examined above were not
meant to be anything more than examples. The general conclusions drawn, however,
remain true for any region with a sectionally differentiable boundary curve and a homo­
geneous boundary condition. Such a homogeneous boundary condition may, for instance,
state that the deviation of income from the equilibrium is zero on the boundary, or, more
generally, that it displays a certain relation to its rate of change.

We can even dispense with homogeneity, as a nonhomogeneous boundary condition
can always be translated into a nonhomogeneity of the differential equation. We already
have one nonhomogeneity, i.e. the autonomous expenditures, and can thus absorb the
one translated from a nonhomogeneous boundary condition into the one that already
exists.

At the same time we will make another generalization. Trade surplus was supposed to
result from income differences to which a constant import propensity was applied. We
had X adapted to mV 2 Y. A more general version is obtained by replacing mV 2 Y by
div (m grad Y), with m(xj, X2) being a function of location. This is interpreted as mean­
ing that there is a net trade flow proportional to the gradient of income. The divergence
of the flow equals local export surplus.

As long as m is a spatial constant the resulting equations are not changed, but once it
is location dependent we get

div (m grad Y) = grad m . grad Y + mV 2 Y (56)

This differs from our previous mV 2 Y in two respects. First, m is now a function of the
location coordinates. Second, there is an additional term arising from projecting the
gradient of income on the direction of the gradient of m. As the main reason for spatial
variation of the propensity to import is the variation of transportation facilities, we see
that the present generalization introduces inhomogeneous space with local differences in
the facility of transportation.

Mathematically, we arrive at the two-dimensional version of the Sturm-Liouville
problem (which originally dealt with vibrations of a nonhomogeneous string). The general
theory for this case is well developed. Adapting to the business-cycle case we obtain

div (m grad S) + (k 2
- s)S = 0 (57)

to replace (7), whereas (6) remains the same as before. (Observe that s, unlike m, must
still be a spatial constant as the separation of variables would otherwise not work.)

For clarity, let us define the linear, self-adjoint, differential operator

L(S) = div (m grad S) - sS

so that we have an eigenvalue problem defined by

L(S) + k 2 S = 0

(58)

(59)



(60)
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for an arbitrary region with a sectionally sm?oth boundary. As the boundary condition
we have S = 0, which means that any inhomogeneity in the original boundary condition
has been absorbed into the corresponding inhomogeneous equation obtained by adding
the autonomous expenditures.

It is well known (Courant and Hilbert 1953) that (59) has a denumerable infinity of
solutions for a sequence of eigenvalues ki, k~, ... , and that there correspond solutions
S 1(x 1, X2)' Six 1, X2), ... , to each of these eigenvalues. Moreover, the solutions can be
normalized so that they are orthogonal and fulfill the conditions

ffSiSjdxl dX2 = Oij

Accordingly, it is possible to represent the general solution by

(61)

where Q is defined by the structural coefficients as in (9) and the (3i are defined from the
eigenvalues k i by (10).

Owing to the orthogonality of the eigenfunctions (60), the solution is perfectly general
and the constants of the series expansion can be computed from

and

Ai = ffYoSidxl dX2

B i = ff YOSjdXl dX2

(62)

(63)

This general case in fact covers all the particular cases dealt with, since the sines, cosines,
Bessel functions, and Legendre polynomials are all sets of orthogonal eigenfunctions
presently denoted by Si(Xl, X2)' The reader may wonder why we now use a single
sequence of solutions, whereas in all the examples the solutions were obtained as double
sums. We could, of course, have defined the set of solutions as Sij(Xl, X2), but this would
only be meaningful if we could work out some further separation of coordinates by
putting Sij = S/ (~dS/(~2) for some suitable change of coordinates x ..... ~. It must,
however, be remembered that the separation of variables is not always possible, and the
reasoning above is applicable to cases much more general than those for which the
possibility of separation exists.

In this context we should also record a useful method of approximating the eigen­
values. By starting from a set of functions that need not be the real eigenfunctions for the
problem but that have the useful property of vanishing on the boundary, it is possible to
get fairly good approximations of the eigenvalues; see Weinstock (1974).

We have been specifically discussing business cycles, but an analogous line of reasoning
is applicable in the growth model as well. Thus, our general conclusions hold for regional
shapes that are as general as we wish to deal with, as long as the boundary is sectionally
smooth. (From this we only rule out boundaries of the Mandelbrot type that tend to be
space filling.)
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8.6 CONCLUSION AND PERSPECTIVES

The analysis presented in this chapter has been based on a spatial generalization of the
multiplier-accelerator models of economic growth and business cycles to a spatial variant
with interregional trade. The models chosen as appropriate starting points were the
continuous variants due to Harrod and to Phillips, respectively, though all of those that
emerged from the "golden age" of the growth and cycle models were based on the same
principles and had very similar results.

The principal difference betweeen the results of the spatial and spaceless models is the
irregular and nonperiodic temporal patterns of economic change that the former can
generate. For this we need not complicate the delay structure, only introduce space. (In
a very formal sense we do, of course, introduce a distributed lag structure, since in
bounded space the delays in propagation of impulses reflected back later on are in fact
equivalent to distributed lags. Through spatial friction the history of economic develop­
ment at a given location does continue to exert an influence over a longer period.)

Obvious generalizations concern the removal of the linearity assumptions, so that
such phenomena as unlimited growth disappear. The same is true of the spatial uniformity
that was assumed even in cases where world trade over the whole globe was implied.
However, any discussion must necessarily start with models as simple as those that we
have introduced.

One interesting exercise would be to use statistical spectral analysis to implement the
model for economic activity over a vast region. There already exist time series of
indicators of economic activity for sufficiently many locations to make such an analysis
possible.

Finally, it is clear that a generalization to a more complicated metric, where impulses
spread very fast to centers all over the world, and diffuse more slowly from there, would
be most desirable and timely. Some impulses of economic change, like a stock exchange
collapse at a major economic center, obviously spread very fast, whereas changing orders
through chains of enterprises responsible for processing at various stages of the refine­
ment of a product propagate in a more gradual way for which the model of local action
is more realistic.



9 Conclusion

The continuous flow model has emphasized theoretical analysis rather than compu­
tation. In the tradition of economic theory the discussion has been on general structural
properties rather than numerical results. This is in line with classical land-use and location
theory, but not with recent trends in regional science where discrete models based on
graph theory have superseded the traditional geometrical ones. These recent develop­
ments in regional science seem to be due to the evolution of computers and algorithms, as
discretization is a precondition for access to these facilities. However, there is the draw­
back that the intuitively appealing picture of shapes in geometrical two-space disappears
with discretization of space.

We do not suggest the continuous model as a competitor to the discrete one, but
rather as a companion. One need not choose between the two approaches on the basis
of which one provides the most "realistic" description of real-world observations. Reality
can always be described at different microscopic or macroscopic levels, and it is only a
matter of convenience which description we choose for a given purpose.

This point is beautifully illustrated by Benoit Mandelbrot (1977) in his discussion of
what a ball of thread is. "Indeed, at the resolution possible to an observer placed 10 m
away, it appears as a point, that is, as a zero-dimensional figure. At 10 cm it is a ball,
that is, a three-dimensional figure. At 10mm it is a mess of threads . .. At 0.1 mm each
thread becomes a sort of column . .. At 0.01 mm resolution, each column is dissolved
into filiform fibers . .. " So, each system in reality can be conceived in different ways;
on certain levels, reality seems to be more or less chaotic, but on others, it may lend
itself to systematic description and modeling involving different kinds of abstraction and
idealization.

Mandelbrot's argument could easily be transferred to a system of physical matter, or
to a regional economy, among many other systems. A fluid can be described as a
collection of particles whose configuration is governed by a huge set of ordinary inter­
related differential equations, or as a continuum that evolves according to a few partial
d ifferen tial equations.

Likewise, in the regional economy, we can conceive of the system at the level of a
detailed map, where each piece of land is used for some particular purpose and the roads
represent some given network, keeping track of each vehicle as it traverses the arcs of the
network. Taking a more macroscopic view, we can disregard the anisotropic character of
roads at each street corner, smoothing out the kinks of flows, and regard different land­
uses in terms of densities that, in principle, can be combined. It is this last viewpoint that
we have adopted throughout most of this book.
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Though discrete and continuous modeling are complementary rather than competitive
approaches, our view is that the former has dominated the market to the point of excess.
The aim of this book has been to stimulate renewed interest in continuous-space
modeling.

One of the reasons for the sparsity of recent literature in this vein may be that the
classical location theorists have exploited almost everything that can be done with
Euclidean geometry (using the assumption that space is homogeneous with respect to
transportation cost). Once constant c.ost is abandoned the possibilities become very rich,
in fact, so rich that specific structures tend to have illustrative character, rather than the
logical necessity characteristic of the location classics.

One way out of this dilemma has been hinted at in the book, viz. the use of topology
instead of Euclidean geometry and the principle of structural stability as an additional
modeling principle. The discussion by no means exhausts all that can be done using these
instruments. We only intend to provide starting points for exploration of the field.

This is also true for the book as a whole. We cannot claim to have exhausted the
possible uses of continuous flow models in spatial economics. Rather, our purpose has
been to stimulate a wider audience to adopt the continuous flow approach to spatial
economic phenomena.



Appendix

DERIVATION OF THE DIVERGENCE LAW

<lx,

<lx,

Figure A.I. Net outflow of a cell (Ax I' Ax ,).

In Figure A.I, the inflow into and outflow from a rectangular cell of side lengths llXl ,

llX2 are broken down into horizontal and vertical components:

Horizontal inflow

Horizontal outflow

Vertical inflow

Vertical outflow

¢1(Xl,X2)llx2

¢1(XI + llXl,X2)llx2

¢2(X1,X2)llxl

¢2(Xl,X2 + llX2)llxl

The difference of outflow over inflow is therefore

[¢I(XI + llXl,X2)-¢I(Xl,X2)] llX2 + [¢2(Xl,X2 + llX2)-¢ixl,X2)]llxl (AI)

We assume the flow field ¢(~) is continuously differentiable. For the flow variables a
Taylor expansion can then be used



APPENDIX 257

Substituting this in (AI) and dropping all terms in O(Llxi) and O(Llx~), the net outflow
becomes

Then net outflow equals the net supply of fluid in the area Llx[ . LlX2, which is

-q(x[, x2)Llx[ LlX2

Therefore

o (A2)

or

div <t> + q 0
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integral theorem, Gauss, 72,77,103,105,109,

111,113
interaction models, 210-23 2
intermediate goods, 161-163
investment in transportation, 195, 196
isolated points, 70
isopotential lines, 70
isotimes,2
isotropic metric, in two-dimensional space, 6-7
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Laplacian, 221, 236
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local demand, 25, 27
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local transportation cost, 62
location classics, bibliography of, 258
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classical, 142-147, 181
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long-run, 181-209
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115-151
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macro relations
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Mandelbrot boundaries, space filling, 252
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mapping, 21,61,62,63,64,120

conformal,21
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median, principle of the, 190
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and corresponding isovectures, 53
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isotropic, in two-dimensional space, 6-7
linear homogeneous, 49-54
Manhattan, 7, 49, 52, 53, 68
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of a transportation network, 3
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Riemann, 7, 52, 53
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microeconomics, 47-48
migration, 56,113-114

model of, 113-114
mill pricing, 75, 78, 79, 82
Mills model, 91
"min cut" lines, 66
minimax principle, 18, 28-29,65-66
Minkowski metric, 7,52,53,54
mixed boundary conditions, 47
mixed land use, 94
mobile input, one, 184-185
mobile labor, 84
mobile product, one, 95-97
modes of travel, alternative, 5-6
money flow, 111, 112
monkey saddle flow, 218
monkey saddles, 143,144,145,147,148,151
monopolistic price policies, 75-79
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with multiple facilities, 79-80

Morse saddle, 139
Morse's lemma, 139-140
multicommodity trade, 98-99
multiplier, 235

neoclassical production function, 118, 170
net utility, 206
Neumann problem, 58, 59
neutral circuits, 38, 70
node singularity, flow and spatial organization

around,136
nodes, 18, 19,20, 136
nonhomogeneity, 251
nonlinear programming, 18, 33, 67

objective function, 121
optics, 127-128,215
optimal

capital stock, 116, 117
conditions, 121, 155, 157
flows, 212-219
labor force, 116, 121-122
land use, 232
routes, 229
trade, 178
utilization of exhaustible resources, 190­

194
optimum

for flows, 157
for production, 155-156
of transportation, 124
social, 176-177

orientation, resource versus market, 184-185
orthogonal trajectories, 5
oscillation, 240,241,246

modes of, 246
oscillator, simple harmonic, 233, 235
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areal density of, 118
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ownership, 119-120

partial equilibrium of spatial markets, 71-82
perfect discrimination, 75
perfect planning, 17-18
perturbation, 132, 134-135
Phillips model, 234, 237,253
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plane, continuous, 3-5
planning

models, 152-180
perfect, 17 -18

Poincare index theorem, 18
points, isolated, 18
Poisson equation, 31, 56, 57,106,114
polar coordinates, 216,218,220
population

density, 212
flow fields and, 212-213

potential function, logarithmic, 114
potential theory, 57-58, 61
price

contours, 128, 131, 135, 139, 140, 161
equilibrium, 17
theorem, Koopmans', 70
waves, 105-110

price-dependent demand, 71-73, 104-105
pricing

c.i.L, see pricing, uniform
discriminatory, 75, 76-77, 81, 82
duopoly, 80-82
Lo.b., see pricing, mill
mill, 75, 78, 79, 82
monopoly, 47, 75-79
uniform, 75, 78, 79

primal, 40,78,182,190
principal curvatures, 63
procurement problem, 71, 181-184
production, 118-119
production

areal density, 116
belts of, 183
increasing returns in, 197 - 204
optimum for, 155-156
von Thtinen-Weber comparison, 175

production functions, 82,84,85,89,118,153,
170, 199

Cobb-Douglas, 85,199
constant returns, 84
linear homogeneous, 89
neoclassical, 118, 170

productivity, marginal, 119
profit maximization, 118,156
profits, 87, 88
propensity to import, 236
propensity to spend, 110

quadratic transportation cost, 56
quantity equilibrium, 17

radial transportation, 223, 224
rate of consumption, 193
rectangular cell, flow through, 68
refraction, 44, 45, 127-128

of flow lines, 6
of traffic, 5
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regional growth model, 248-251
regions

circular, 242 - 244
rectangular, 238-242
spherical, 244-248

relaxation of constraints, 25-27
relocation costs

for capital, 169-173
for labor, 169-173

rent, 87,88, 196,209
bid functions, 93

resident labor, 94
resources, 175 -176

allocation, 70
exhaustible, optimal utilization of, 190-194
management of water, 194-195

returns
constant, 84, 118, 197,203
diminishing, 89-90, 197,203,204
increasing, 197-204

Riemann metric, 7,52,53
rings, von Thtinen, 158, 161, 194
rotational flow of value, 97
route directions, equation for, 214
routes, optimum, 229

saddle points, 18,20,28,136-137
Samuelson-Hicks model, 234
scalar fields, 211, 213
sensitivity analysis, 27 - 28
settlement, equilibrium, 229-232
shortest path, 18,20,21
short-run equilibrium and stability, 71-114
short-run model of urban structure, 91-95
simple harmonic oscillator, 233, 235
single facility, location of, 189
single sink, 58-59
single source, 58-59
singular flows, 37, 38
sinks, 18, 38, 58, 60, 135-136, 191, 213

density of, 213
discrete, 60
single, 58-59

Snell's law, 216
social optimum, 176-177
solution space, mappings, 61-65
sources, 18,38,58,60,135-136,191

discrete, 60
single, 58-59

source-sink equation, 191
space, Euclidean, 62
spatial business-cycle and growth models, 233­
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spatial economics, bibliography of current,
258-262

spatial market equilibrium, 15,71-82,172,229
spatial oligopoly, 80
spatial organization

in rings, 158, 161, 162
in sectors, 162

spatial structure, 130-142
specialization theorem, 157-158
spherical region, 244
spiral, 18, 19
SPUR, vii
structural change, 147-150
structural stability, 131-132, 135, 139, 147

characterization theorem for, 135
Sturm-Liouville problem, 251
supply, aggregate, 235
supply areas, 87 -88
symmetry, circular, 216 - 217

Taylor-series expansion, 107, 222, 256
technology

Cobb-Douglas, 161
Leontief, 152, 170

teorema egregium of Gauss, 64
theoretical geography, bibliography of current,

258-262
topological characterization, 132-133
trade, 98, 117, 123-127, 175-176, 178

multicommodity, 98
traffic, 210, 211, 212, 219-224

distribution, 211-212
trajectories, 4, 5, 6

orthogonal, 5
transit cost, 213, 215, 220, 227, 229, 232
transport lines, 4, 5
transportation

investment, 195-196
linear, 224, 227
network, discrete, 3
optimum of, 124
radial, 223, 224
surfaces, 2

transportation cost, 2,4, 17,21, 23, 24, 27, 28,
32,38,44,49,54,55,60,61,62,73,79,
92,94,95, 98,101,105,123,124,125,
140,153,157,158,159,169,191,199,
225,227-229,231

as a power function of flow, 54-55
concave, 61
convex, 55
isotropic, 4
local,62
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transportation cost (continued)
quadratic, 56-57,59-61
uniform, 21-23

trans-shipment problem, 69- 70
transversality, 137-139

ubiquities, 183
umbilical points, 64
umbilics

elliptic, 148, 149, 151
hyperbolic, 148, 150, 151

uniform pricing, 75, 78, 79
uniform transportation cost, 21-23
uniqueness, 35-37

theorem, 36
urban structure, short-run model, 91-95
utility function, 74, 99, 104, 116, 158-159,

170,191,199

value, rotational flow of, 97
vanishing divergence,S 7
Varignon machine, 190
vector fields, 210, 213
von Thiinen

conditions, 177
model, 1,91,100-103,135,223
principle oflocation and land use, 117, 158,

161,164,174-180,198
comparisons with Weber, 115, 174-180

rings, 158, 161, 194
school oflocation theory, 1-2

Walras' law, 126-127
water flow, 65-66
water resource management, 194-195
wave equation, 107
wave fronts, 127-128
Weber

condition, 178-179
model, see Launhardt-Weber model
principle of location and land use, 133,

174-180,198
comparisons with von Thiinen, 115,

174-180,
school of location theory, 1-2

welfare function, 191, 205
welfare maximization, 73-75






