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PREFACE

One of the goals of IIASA's Acid Rain project is to create a model that
could be used in negotiations about control strategies for acid deposition
between European countries. To that end it is necessary that the model
builders present the model users a clear picture of the credibility of the
model. One way to maximize credibility would be to create a very complex
model with as many as possible (mostly non-linear) relationships. Our stra-
tegy has been another one: construct a simple model and evaluate its uncer-
tainties. Thus uncertainty analysis forms an important part of the Acid Rain
project's research agenda. This paper describes a general framework for
our uncertainty analysis. Moreover the authors have applied the framework
to the atmospheric submodel of our RAINS (Regional Acidification Informa-
tion and Simulation) model. | am convinced that this paper not only is a sub-
stantial contribution to evaluation of the credibility of RAINS, but that it is
also of importance for the further development of the long range transport
model which is incorporated in RAINS and has been built by the Norwegian
Institute of Meteorology under the Co-operative Programme for Monitoring
and Evaluation of the Long-Range Transmission of Air Pollutants in Europe
(EMEP).

This paper is the product of a collaboration with the Institute for
Meteorology and Water Management in Warsaw (Poland) under a study con-
tract "Analysis of Uncertainty in Modeling Atmospheric Processes".

Leen Hordijk
Project Leader
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ABSTRACT

This paper presents a preliminary framework for analyzing uncertainty
of a long range air pollutant transport model. This framework was used to
assess EMEP model uncertainty. The uncertainty problem is defined in a
decision-making context and a distinction is made between uncertainty
analysis, sensitivity analysis, and model calibration/verification. A taxon-~
omy is introduced to organize uncertainty sources. The taxonomy includes:
model structure, parameters, forcing functions, initial state and model
operation. These categories are further subdivided into diagnostic and
Jorecasiing components. To limit the number of uncertainties for quantita-
tive evaluation, some uncertainties are "screened”. Methods are introduced
to evaluate uncertainties. These include (1) Monte Carlo simulation of com-
posite parameter, forcing function and initial state uncertainties, and (2)
statistical analysis of EMEP source-receptor matrices. Preliminary results
of applying this methodology to the EMEP model are presented.
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AN APPROACH TO UNCERTAINTY
OF A LONG RANGE AIR POLLUTANT
TRANSPORT MODEL

Joseph Alcamo and Jerzy Bartnicki

1. INTRODUCTION

Along with the recognition of regional and interregional air quality
problems, came the need for new tools to analyze these problems. Among
these new tools are atmospheric long range transport models which help to
establish the relationship between pollutant emissions and their deposition
hundreds or thousands of kilometers away. The importance given to these
models by the scientific community is clear from recent national and inter-
national publications (see, e.g., OECD (1979), U.S. National Research Coun-
cil (1983), MOI (1982)).

A key issue in using these and other air pollution models for decision
making (any mathematical model, for that matter) is the credibility of the
model’'s results. An essential aspect of this credibility is how well the model

user understands the model's uncertainty. This paper presents a framework
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to comprehensively treat the uncertainty of long range transport of air pol-
lutants models (sometimes referred to as LRTAP models) and applies this
framework to the analysis of uncertainty of the so-called EMEP model‘
(Eliassen and Saltbones, 1983). From a larger perspective, we believe that
the framework presented herein can be generally applied to other types of
environmental models. Throughout the paper we (1) discuss key issues con-
cerned with uncertainty analysis, (2) present numerical examples of dif-
ferent aspects of this analysis based on preliminary results from the IIASA
Acid Rain Project, (3) denote future work that will be conducted within the
frame of the IIASA Project. Since this research is only in its early stages,

we intend this to be a discussion paper.

In this paper we are specifically interested in determining the uncer-
tainty of using model results in a decision-making context. Our goals

for the uncertainty analysis include:

1. To quantify, where possible, the combined uncertainties of many
different uncertainty sources, i.e. determine the uncertainty

range of model calculations.
2. To determine under what conditions the model performs best.

3. To make more explicit the assumptions behind model parameters,

forcing functions, etc.

4. To identify the sources and relative importance of uncertainties

as a guide to model use and setting research priorities.

“The EMEP model is described in Section 3.2 of this paper.
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The analysis reported in this paper builds on previous work on model
uncertainty in the fields of decision analysis (cf. Howard and Matheson,
1983) and econometrics (cf. Griliches and Intrilligator, 1983), as well as
investigations in water quality modeling (cf. Fedra, 1983 and Beck and Van
Straten, 1983) and ecological modeling (cf. Gardner et al, 1982). Compared
to these fields, much less quantitative analysis has been conducted on
atmospheric model uncertainty. A notable exception is the work done at
Carnegie-Mellon University ( Morgan et al, 1984). Also, a report from an
American Meteorological Societ_.y Workshop outlines some key issues in the
quantitative assessment of atmospheric models (Fox, 1984). Unfortunately a

review of the aforementioned work is outside of this paper's scope.

1.1. Uncertainty and Model Credibility

Model credibility is based on several ill-defined criteria. One criterion
is the scientific basis of the model equations, i.e. the soundness of the
physical/chemical/biological concepts behind the model. Another is verifi-
catior. and validation, generally meaning the comparison of model results
with observations and the examination of model behavior to see if it is real-
istic. Still another way to enhance the credibility of model results is to per-
form sensitivity analysis. Collectively, these approaches make model users
more confident in using a model yet they do not specifically address the
question of the uncertainty of model results. In this sense model uncer-
tainty is the departure of model calculations from current or future "true
values”. Mathematically, our meaning of uncertainty can be expressed as

the following.
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Let us assume that an environmental model can be expressedt as:

Y =GX) (1.1)

where

Y = (¥4.....¥p ) is an output vector (model results)

X = (z4,...,Zy ) in an input vector (input model variables)
G isan operator (usually a differential).

Since the input vector usually contains variables which are dependent on
space and time, the output vector is also a function of space and time. In
addition, output variables depend on some constants in time and space, i.e.

parameters.
If we assume now, that "true values” of the output variables are
represented by vector Y, the model uncertainty can be defined as:
E=Y-Y 1.2)
where:

&= (81,...,8{ ""'Cﬂ)

Y’ (‘Ui.u--yt'----.y;;)

& =Yy — Yy
It should be mentioned here, that it is extremely difficult to compute
the complete uncertainty vector because, among other reasons, "true

values” are illusive. There are ways however to circumvent this problem.

Repeated comparisons of observed versus model computations (model

=Even though the model definition used in this paper is not the the most general possible,

it is still general enough for most of the environmental models.
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calibration/verification) yields insight to &£, though in sections 1.2 and 6.1
we discuss drawbacks to this approach. Another strategy, which is dis-
cussed in Section 6.3, is to assess the uncertainty of the X vector in (1.1),
and compute a new Y. This provides an indirect estimate of £. Other stra-

tegies are reviewed in the text.

The equation (1.2) used here to define uncertainty is related as well to
model calidration/verification. However, the important difference is,
that in the case of model calibration/verification, the components of the
vector Y have to be measurable, while in case of uncertainty, this is not

necessary. In this sense our definition of uncertainty is more general.

1.2. Sensitivity Analysis and Calibration/Verification

Though ’'sensitivity analysis” and "model calibration/verification” are

relevant to a model’s uncertainty, both approaches have limitations.

Sensitivity analystis in the conventional sense' is difficult to perform
for two or more variables and tends to emphasize extreme events. It is dif-
ferent from model uncertainty because sensitivity analysis is interested in
the incremental changes of model results caused by an incremental change
in input variables. In fact, the objective of most sensitivity analyses is, of
course, to determine the relative importance of one independent variable
compared to another; not how much model calculations depart from reality.
In this sense sensitivity analysis is an essential part of model development.

Mathematically we can express sensitivity analysis as a procedure for com-

“Rather than add yet another definition of sensitivity analysis we quote a published de-
finition: “Sensitivity analysis involves ... making a series of runs with a model and noting
the magnitude of the changes in results as assumptions, parameters and initial conditions
are changed in an orderly fashion.” (McLeod, 1982, p. 96).



puting matrix S:

o4

5X (1.3)

The elements of the sensitivity matrix S = [su] are given by the relation:

su

— oytt
- L

i=l,..m; j=1...n (1.4)

Model calibration/verification, i.e. comparison of model output with

observations has the following limitations in assessing model uncertainty:

i)

(i1)

(iii)

bservations are ofien unreliable. Eliassen and Saltbones
(1983) present one example of analytical errors in sulfate data

used to check EMEP model calculations.

Model output is not necessarily ''observabdle” in nature, espe-
cially if the model describes an aggregated system. For models
with large temporal/spatial resolution such as the EMEP model, it
is difficult to rely on comparisons of model output with observa-
tions. Strictly speaking, since the EMEP model computes SO2 gas
and SO in rain over 150 km long orthogonal coordinates and a 1
km vertical mixing layer, model output should be checked with
observations averaged over the same spatial scale. This class of
error is termed aggregation error and has been dealt with in
some detail in the ecological modeling literature (Gardner, et al,
1982). A related problem occurs when an important model output is

virtually unobservable as in the case of total sulfur deposition.

Ceritain cause-effect relations may not be readily observable. An
example of this is the relationship between sulfur emissions from a

particular country and its deposition at a particular location in
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Europe. Though wind sector analysis may help to quantify this
relation for short periods of time, it is difficult to do so over a
longer time scale, say one year. Nevertheless this time scale and
relationship is computed by the EMEP model and is of particular

importance in decision making.

(iv) Agreement of model output with data does not settle the ques-
tion of model uncertainty when the model is used for forecast-
ing purposes. For example, model agreement with observations
does not address the impact of interannual meteorological varia-

bility on the uncertainty of model forecasts.

(v) Sometimes model parameters can be "artificially tuned’ such
that model output closely agrees with daia. Under these cir-
cumstances it may appear that the model has little or no uncer-
tainty, although the uncertainty has simply been transferred to
the uncertainty in choosing the correct parameters for forecast-
ing purposes.

(vi) It is often difficult to assemble data for a comprehensive range
of environmental conditions. Even though we test the model
against data from several time periods, we still may have low con-
fidence that we have covered a representative range of environ-

mental conditions.

Despite the preceding caveats, model calibration/verification remains
the only sure "benchmark"” of a model's relationship to reality. As such,
model calibration/verification together with sensitivity analysis is

necessary and useful though insyfficient in evaluating environmental
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model uncertainty. In the following sections we propose a comprehensive
framework to assess model uncertainty which incorporates elements of both

model calibration/verification and sensitivity analysis.



2. PROPOSED FRAMEWORK

A comprehensive approach to analyze long range transport model

uncertainty should include the following:

()

(i)

Problem Formulation - Despite the trivial nature of this step it is
surprising how often investigators discuss uncertainty of a model
without specifying the time and space scales of interest. In Section
7.2 of this paper we present an example of the dependence of
model uncertainty on the temporal-spatial dimensions of the prob-
lem. Before proceeding with an uncertainty analysis it is there-

fore vital to carefully formulate the problem of interest.

Inventory of Uncertainty - In this step we assemble and classify
the sources of uncertainty for further analysis. Our goal is to list
as comprehensively as possible every major source of uncer-
tainty. To do this we propose a taxonomy of model uncertainty in

Section 4.1 of this paper.

(iii) Screening and Ranking of Uncertainty - Virtually every model

used to describe a real system will have a very large number of
uncertainties. To limit the sources of uncertainty for quantitative
evaluation we try in this step to identify the most important
sources. This is accomplished through conventional sensitivity
analysis or qualitative judgement and need not have time-space

scales identical to those in step number one.

(iv) Evaluation of Unceriainty - The sources of uncertainty which

remain after step (iii) can be evaluated by a number of different

quantitative techniques. Sections 6 and 7 describes some
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approaches being taken in the IIASA Acid Rain Project’s analysis

of EMEP model uncertainty.

Application to Decision Making - Once an estimate of uncertainty
is derived in step (iv), we still must interpret this estimate in a
way useful to decision making. For example, we could express the
uncertainty of EMEP calculations of sulfur deposition as spatial
variations of deposition isolines, or as deposition ranges around
individual isolines. Alternatively we could apply an "average"
uncertainty estimate to each EMEP grid element. These and other

alternatives are addressed in Section 8 of this paper.
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3. PROBLEM FORMULATION

3.1. Time and Space Scales

The degree to which uncertainty can vary depending on spatial-
temporal scales is illustrated in Figure 7.1 which summarizes an analysis of
uncertainty in computed sulfur deposition due to interannual variation of
precipitation and wind pét.t.erns. Since we have specified above that we are
interested in 'determining the uncertainty of using model results in a
decision-making context”, we must now clarify the time and space scales
relevant to decision-making. First, we assume that we are interested in a
specific source-receptor relationship for sulfur emissions, sulfur deposition
and air concentration. Next we assume that the country-scale is the
appropriate spatial-scale for sulfur emission sources because (1) most
countries in Europe report their sulfur emissions as country totals,
although a few report additional spatial information, (2) most proposed
international control policies (for example, the 'Thirty Percent Club'")
refer to country-scale sulfur emissions. The EMEP grid element is an
appropriate spatial scale for receptor sulfur deposition since a coarser
resolution would be unsuitable for analyzing known spatial variations of
environmental impact (such as forest damage) which occurs within coun-
tries. In addition, since a model for analyzing internationai control policies
in Europe should cover all of Europe, a spatial scale much smaller than 150
km may increase the number of computational steps to an unacceptable
level. Moreover, the spatial resolution of meteorological data in Europe is

also approximately 104 kmz.
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The time scale of the source-receptor relationship should take into
account that confidence of any air pollution model increases with the
averaging period of result.s'. In addition, the time step should be compatible
with the long time period and broad spatial coverage needed for policy
analysis. With these considerations in mind, an annual time step is taken to
be an appropriate scale. This time step is also appropriate for assessing
forest damage since most field studies record annual pollutant deposition or

air concentration.

We may summarize the discussion to this point by specifying the
source-receptor time resolution as one year, country-scale as the spatial
resolution for sulfur emissions, and EMEP grid element as the spatial reso~
lution for sulfur deposition and air concentration. The relationship of
interest, therefore, between deposition and sulfuf' emissions can be

expressed as:

dyy =8¢ Qg4 (3.1a)
where
di! = total sulfur deposition at grid element 5 due to country i
(¢S mZyr Y
sy = total sulfur emissions from country ¢ (¢ S yr ‘1)
ay = element of source-receptor matrix

We define our uncertainty E“u of deposition as

Eq, =dyy ~ dyy (3.1b)

where d; is the "true” deposition.

“As an example, one EMEP review states that the model "continued to demonstrate its ef-
fectiveness in modelling air concentrations and depositions when averaged over seasons
or years” (WMO, 1883).
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We are also interested in the uncertainty of the total deposition at grid

element 7 (where bj is background deposition):

27
d; = ) a8, +by (3.2a)
t=1
forj=1,--"m
and

The same form of equations (3.1a) through (3.2b) can be applied to the other
EMEP state variables (e.g. SO2 air concentration). These other state vari-

ables will be introduced in the next section.

It follows from the above that we are interested in the uncertainty of
computed annual sulfur deposition at various locations in Europe, where
these locations are defined by EMEP grid elements. This can be expressed
either as an uncertainty range around a linear source-receptor relation-
ship (Figure 3.1) or a frequency distribution of computed sulfur deposition
(Figure 3.2). In summary, equations (3.1) and (3.2) define our uncertainty

problem. Figures 3.1 and 3.2 illustrate this problem graphically.
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Figure 3.2. Frequency distribution of computed deposition.
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3.2. EMEP Model Description
A general form of the EMEP model is:

8¢ dc . 8¢

—_—= - —_— + .
where
dc
E = change in concentration with time.
u,v = orthogonal wind velocities.
fe O = orthogonal concentration gradients
5z ' By )
R, = change in concentration due to chemical reactions and sink
processes.
Q = pollutant emissions.

The EMEP model uses a Lagrangian approach to solve equation (3.3).
Concentrations of SO, and 804= are computed along a moving frame of
reference. The computation procedure consists of two steps. Trajectories
are first calculated, and then mass-conservation equations are solved on
these trajectories to compute the concentrations at the receptor point. An

additional procedure is used for computing dry and wet deposition of sulfur.

The theoretical formulation of the EMEP model is described by Eliassen
and Saltbones (1975) and Eliassen (1978). This model is similar to the one
used in the OECD program (OECD, 1979). The main difference is that the
EMEP model is based on trajectories followed for 96 hours instead of 48

hours, and grid size of 150 km instead of 127 km.
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3.2.1. Determining Air Trajectories

A trajectory can be considered as the path of an air parcel followed
by the wind. In the EMEP model two-dimensional trajectories are calculated
which neglect vertical motion of the air. The wind field from the 850 hPa
level is assumed to be the transport wind within the mixing layer.
Petterssen's method (Petterssen, 1956) was chosen for numerical computa-
tions of the trajectories. If £ is the position of the trajectory at time ¢, the
next position £ + Az is calculated using the wind field v(Z,t) as follows. Let
Az be the first estimate for the position increment Az :

AT, = 5 (Z.t) At (3.4)
The i-th estimate Az, for Az is:

AZ, = Z(AZ, + T(F + Ayt + At) At) (3.5)

New estimates for Az are computed until:
EAE“ _&-i_II<€H&-‘-1I (3.6)

where £ is a small positive number equal 0.003 in the EMEP model. If the
condition (3.6) is satisfied for i-th estimate then:

AZ = AZ, @3.7)
The time step At is 2 hours, which means that each trajectory is
represented by a set of 49 discrete points, including the receptor point.
This procedure is sufficiently fast and in most cases condition (3.6) is

quickly satisfied.
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3.2.2. Model Area, Enixsions and Meteorological Data

The coverage of the EMEP model is shown on Figure 3.3. It covers all
Europe, a large part of the Atlantic Ocean and a small part of Northern
Africa. The numerical grid system has 39 points in the x-direction and 37 in
the y-direction. As was mentioned earlier, the grid size is 150 km. The grid
elements are identified by the coordinates (i,7). The relation between geo-

graphical latitude ¢, and longitude A and a point (i,7) is given by the equa-

tions:
=90 — 360 Arctan r (3.8)
m =1 + sin—‘"-)
d 3
— 180 i—-3
=-32 + Arctan 37 <7 (3.9)
where

1<i<39 and1 <j <37

r=VYi -3)2+ (G -37)°
(the coordinate of the Northern Pole is (3,37))

R = 6370km - radius of the Earth

d = 150 km - grid size

All meteorological and emissions data are given in the grid sysiem
denoted by equations (3.8) and (3.9). The meteorological data are: wind field
at 850 hPa level - every 6 hours (with linear interpolation in-between), and
precipitation for the last 6 hours. In the routine computations emission data
were taken from an inventory prepared by Dovland and Saltbones (1979).
Seasonal vartiation of emission is introduced into the model calculations. It
has a shape of sinusoidal function with amplitude 307 and maximum in the

beginning of January.
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Concentrations of SO, and SO5 and dry and wet deposition of sulfur

are computed for the entire grid system.

3.2.3. S0, and SO Concentrations

Emissions are computed by linear interpolation in each of 49 points
from the four nearest grid points, and occurrence of precipitation is
checked. Having this information, equations for SO, and SOf can be
solved. Denoting SO, concentration by ¢, and SO4= concentration by c,

(both measured in sulfur units), we can write these equations in the follow-

ing form:
1o (2 kg ke (Lma - L (3.10)
T dt h t w1 h )
Dc, Q
T =—KxcCp+k;cq + ﬁz (3.11)

The operator % is the total time derivative, @ is sulfur emission per

unit area and time. Values for all other symbols and parameters in equations

(3.10) and (3.11) are given in Table 3.1.
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Table 3.1. Parameter values in the EMEP long-range transport model
(from Eliassen and Saltbones, 1983).
Notation Explanation Parameter value Parameter unit
vy Deposition velocity for SO, 8x10 3 m st
T Deposition velocity for SO, 2x103 ms1
h Mixing height 1000 m
k, Transformation rate of SO, to SO;° 2x107% st
k,, Wet deposition rate of SO,,
used only in grid elements and
six-hour periods when it rains 3x10°° s
a Additional dry deposition in
the same grid square
where emission occurs 0.15 nondimensional
8 Part of sulfur emission assumed to
be emitted directly as sulfate 0.05 nondimensional
c Overall decay rate for SO, 4x107% s
a Proportionality coefficient in
equation (3.13)
In Finland and Norway 0.27x10° nondimensional
In other countries 0.69x%108 nondimensional
b Background concentration in
equation (3.13)
In Finland and Norway 0.27 mgSLt
In other countries 0.40 mgSL1
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Equations 3.10 and 3.11 are ordinary linear equations solved for a
particular trajectory. In regions where precipitation occurs either con-
stantly or not at all, there is also the analytical solution for these equations

presented by Eliassen (1978).

3.2.4. Deposition of Sulfur

Dry deposition of sulfur is computed by applying deposition velocities
to SO, and SO concentrations:
dg =(Cy vg +Ca045) T (3.12)
where:
dgy =dry deposition of sulfur during time T
T = period of the transport (T= usually 1 year
in the EMEP model).

and other variables are as previously defined.

In the routine model wet deposition is not calculated directly from the
mass-conservation equations 3.10 and 3.11, because of the constant k,
rate. It is estimated by an indirect method instead, in which the mean con-
centration of sulfur in p-recipit.at.ion & 3 is estimated from the computed mean
concentration of sulfate during the rain ¢ 2 using a linear empirical rela-

tionship:

where ¢, and g are averaged over time T. The precipitation-weighted mean

¢, Is calculated from

-~

1 .
°2="};2Pt‘°z.t
1
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where »; is the amount of precipitation observed on day i, Ca4 is the
corresponding calculated daily mean air concentration of .5'04= and P is the
total amount of precipitation during time T in a specific grid element. Days

without precipitation do not contribute to ¢5.

The empirical proportionality coefficient a in (3.13) corresponds to a
scavenging ratio for anthropogenic sulfate. The constant & accounts for
background concentration in the rain. The values of @ and b are also given

in Table 3.1.

The value of the wet deposition in the model d,, is computed as:

d, = 53 - P (3.14)
and total deposition of sulfur 4, is:

d, =dg +d, (3.15)
Units of dy,d,,. and d; are in g - m ~2. In order to compute the mass depo-
sited in a grid element, the values of the deposition must be multiplied by

the area of the grid element.
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4. INVENTORY OF UNCERTAINTY

4.1. Taxonomy
After formulating our uncertainty problem in Section 3 of this paper,

we now wish to assemble and classify the sources of uncertainty. To assist in

this classification we propose the following taxonomy of model uncertainty:

(1) Model Structure

(2) Parameters

(3) Forcing Functions

(4) Initial State

(5) Model Operation.

Uncertainty due to Model Structure results from imperfect or inaccu-
rate representation of reality by a model. In this sense model structure is
taken as the collection of model variables and parameters together with
their relationships.

Parameters are defined as those variables which are constant in
either time or space, are usually estimated or confirmed as part of the
model calibration, and are meant to approximate a more complicated pro-
cess.

Forcing function in this taxonomy is a model variable which inherently
changes in time and space, serves as input for model calibration, and is
assumed to be well known (or at least better defined) compared to parame-

ters.*

*Forcing function corresponds Lo the concept of input disturbance in systems science
terminology and exogenous variable in econometric terminology.
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Initial State uncertainty results from the error in assigning boundary

and initial conditions.

Finally, uncertainty due to Model Operation refers to errors in the
solution techniques of model equations or in processing model input and out-
put, e.g. numerical error arising from approximation of differential equa-
tions and interpolation of model input and output. The sum of forcing func-

tion and initial state errors can also be termed input uncertainty.

Each of the above categories can be further sub-divided into two addi-
tional classes: diagnostic uncertainty and forecasting uncertainty. Diag-
nostic uncertainty pertains to model use in simulating past and current
conditions. Forecasting uncertainty arises when the model is used to esti-
mate future conditions.** Each source of unceft.aint.y (according to the
model taxonomy, presented above) has hoth a diagnostic and forecasting

component.

Before proceeding with the application of the above taxonomy to the
EMEP model, we note that this taxonomy is hierarchically organized as illus-
trated in Figure 4.1. This figure notes that uncertainties due to parameters,
forcing functions, initial state and model operation depend on model struc-
ture. As an example, let us assume that we are uncertain of the exact value
of the dry deposition velocity vy in the EMEP model, but can estimate its
interval as [vy]. We then estimate the uncertainty of computed sulfur depo-
sition by using, for example, a Monte Carlo technique described in Section

6.3. This computed uncertainty will depend on the form and content of the

*=0Other investigators use different terms to make the same distinction. For example,
Beck (1983) uses Identification and Prediction.
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model equations, i.e. the model structure. Thus it is unlikely that the uncer-
tainty of Model ’A' will be exactly the same as the uncertainty of Model 'B’
even if both models use duplicate environmental conditions and parameters
values, etc., as input. This idea is illustrated in Figure 4.2. In other words,
quantitative est.irpat.es of uncertainty due to parameters, etc., pertain only

to a particular model.

Figure 4.3 also notes that parameter, etc., uncertainty depends on
environmeﬁt.ai conditions. This is also obvious if we consider that the uncer-
tainty of vy will have a small inﬂuenée on computed sulfur deposition if con-
ditions are very wet, i.e. if wet deposition is the predominant sulfur removal
mechanism. For drier conditions the reverse will be true. This implies that
conclusions about model uncertainty must always include information about
the environmental conditions under which these uncertainty estimates were
made. This leads to the concept of a "frequency distribution of uncertainty"”

and "expected value of uncertainty”, illustrated in Figure 4.4.

Of course if the departure of model calculations from observations is
relatively constant for many different environmental conditions, then we
may suspect that £ will also not vary very much for different environmental

conditions.

4.2 Application toc EMEP Model

The diagnostic and forecasting uncertainties due to model structure
will be the same if the system doesn't change, i.e. if the model contains the
dominant variables and interrelationships of the real system for both future
and current conditions. However, if for example the air concentrations of

co-pollutants such as O4 or NO, increase such that they affect the transfor-
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Figure 4.4. Frequency distribution of uncertainty (¢) for a range of en-

vironmental conditions.

mation of SO, or so; , then 2 new model structure may be required with new

variables and parameters. This implies that forecasting and diagnostic

uncertainty due to model structure will be different.

For the EMEP model, uncertainty due to model structure (diagnostic

case) includes; but is not limited to:

(1) Simplification of air chemistry - including, the question of linearity.
(2) Assumption of single vertical layer.

(3) Simplification of dry S deposition process.

(4) Simplification of wet S deposition process.

(5) Assumed immediate complete mixing of emissions into mixing layer.

(8) Omission of horizontal diffusion.



(7) Omission of vertical advection and related phenomena (e.g. frontal

movements and deep convection).
(8) Onmission of exchange between boundary layer and free atmospherae.
(8) Omission of shallow convection.

(10) Omission of orographic effects.

Model parameter uncertainty should also be the same for both diagnos-
tic and forecasting cases uniess the system changes. As an example of how
the "system could change”, let us assume that the SO, wet deposition rate,
k.. is currently oxidant-limited. In this case we should expect the uncer-
tainty of k&, to change in the future if the background level of oxidant
increases, i.e. such that &k, is no longer oxidant-limited. For the EMEP

model, uncertainty will arise from the parameters listed in Table 2.1.

In comparison to parameter uncertainty, there is a clear difference
between diagnostic and forecasting uncertainty for forcing functions. In
the diagnostic case uncertainty arises from our interpretation of the
actual forcing functions, i.e. either data is incomplete or we must transform
it to make it compatible with the model. We can illustrate this point by con-
sidering the use of precipitation data as a forcing function of the EMEP
model. The density of precipitation stations from which these data are
derived is very crude compared to EMEP’s spatial coverage. Consequently,
these data must be interpolated before they can serve as input to the EMEP
model. This "interpretation” ts an example of diagnostic error due to the
model’s forcing functions. Other error of this nature arises from estimation

of S emission and wind velocity fields.



On the other hand, the forecasting aspect of forcing function uncer-
tainty refers to our inability to accurately forecast future forcing func-
tions. In other words, we can only estimate the magnitude of future precipi-
tation, S emissions and wind velocity. Interannual meteorologic variability
and future climate change are part of this category of uncertainty. The
sources of forcing function uncertainty in the EMEP model are summarized

in Table 4.1.

There is also a difference between diagnostic and forecasting uncer-
tainties related to initial state uncertainty. As with the forcing functions,
uncertainty arises in the diagnostic case because we are unable to accu-
rately translate actual boundary and initial conditions into our model, .l.e.
we cannot input the exact SO, and SO boundary and initial concentrations

into our model. The sources of possible initial state uncertainty are sum-

marized in Table 4.2.

For the forecasting case, uncertainty arises because we are unable to
exactly estimate the initial states at the beginning of the forecasting
period.

Uncertainty due to the final category of uncertainty in the EMEP
model, model operation includes: (1) input-output processing, (2) trajec-
tory computations, and (3) solution of EMEP equations. One type of input-

output processing error is the interpolation of input emissions’ data. As an
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Table 4.1. Forcing functions in the EMEP long-range transport model.
Symbol Explanation Unit
Q Sulfur emissions kt yr -1
u,v Components of the ms?
transport wind
vector
P Precipitation mm hr 1
Table 4.2. Initial State Uncertainties in EMEP Model.

Horizontal boundary conditions
Vertical boundary conditions

Initial conditions

example, emissions’ input data are illustrated in Figure 4.4. During trajec-
tory calculations, however, emissions’ data are interpolated as in Figure 4.5

which causes some error in the input to equations (3.10) and (3.11)'.

Uncertainty in the trajectory calculations arises from the so-called

Petterssen method described in Section 3.2.

Uncertainty due to solution of EMEP equations refers to the technique

for solving equations (3.10) and (3.11).

Finally, we summarize the above uncertainties of the EMEP model in

Table 4.3.

“In this example we call the transformation of actual sulfur emissions to the input data in
Figure 4.4 forcing function uncertainty, and the interpolation of these input data by the
mode! from Figure 4.4 to Figure 4.5 as model operation uncertainty. We term it operation
uncertainty becauss il refers to en internal operation of a specific model.
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Figure 4.5. Form of emission data whiéh are input to the EMEP model.
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Figure 4.6. Interpolation of emission data from Figure 4.5 for model

computations.
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DIAGNOSTIC
UNCERTAINTY

As listed in section 4.2

Estimation errors of
parameters in
Table 3.1

Estimate of current
magnitude and spatial
distribution of sulfur
emissions

"Smoothing" errors
and measurement
errors of

of precipitation

"Smoothing" errors
and measurement
errors of wind
velocities

Estimation and
approximation errors:

boundary conditions
initial conditions

Input/output
processing

Trajectory calculations
for processing
wind velocity data

FORECASTING
UNCERTAINTY

Changes in co-pollutant
concentrations

Changes in co-pollutant

concentrations

Forecasted sulfur
emissions

Interannual meteorological
variability (precipitation

and wind patterns)

Long term climate
change

Future boundary and
and initial conditions

Forecasting uncertainties

same as Diagnostic
uncertainties
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9. SCREENING AND RANKING OF UNCERTAINTY

The goal of this screening exercise is to limit the number of uncertain-
ties which must be quantitatively evaluated in the next step of vt.he uncer-
tainty analysis. To do so we draw on sensitivity analyses conducted by EMEP
and other investigators (cf. Eliassen and Saltbones, 1983 and Anon, 1983),
as well as additional calculations, reviewed in a separate paper (Bartnicki

and Alcamo, forthcoming).

As pointed out in Section 1.2, there are difficulties in translating
results of sensitivity analysis to conclusions about uncertainty since sensi-
tivity analysis and uncertainty analysis (as defined in this paper) have dif-
ferent goals. We therefore take a pragmatic approach, and rather than
eliminate any uncertainties from further consideration, we assign them to
categories of first and second priority. We will be conservative and assign
to the second priority only those uncertainties where there is strong evi-
dence that they are less important than other uncertainties. Remaining
uncertainties are considered to have first priority. As will be seen, most
uncertainties are placed in the first priority category, though further sen-
sitivity analyses may permit us in the future to increase the number of

"second priority” uncertainties.

Model Structure - The following uncertainties described in Section 4.2
are assigned to a lower priority: (1) Assumption of immediate complete mix-
ing of emissions into mixing layer, {2) Omission of horizontal diffusion, and

(3) Omission of shallow convection,

(1) There are physical reasons why the assumption of immediate

complete mizing of emissions info the mizing layer would not add large
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uncertainty to the EMEP calculations. During the day, especially with con-
vective conditions, pollutants are mixed relatively quickly after emission.
The characteristic time in which a parcel of pollutants rises to the top of
mixing layer is less than one hour (Lamb, 1984), which is less than the com-
putational time step. Therefore, the assumption of complete initial mixing
of pollutants can be justified for daytime transport. During the night,
although stable conditions usually inhibit vertical mixing, lateral mixing
still occurs because of the different heights of emissions. Even if the above
arguments are not strong enough to put this uncertainty into a lower prior-
ity, in practice this phenomenon is parameterized by coefficient a in equa-
tion (3.10), the local deposition coefficient. Consequently we take this model
structure uncertainty into account by investigating the parameter uncer-

tainty of a.

(2) The omission of horizontal diffusion is considered less important
than other uncertainties because of the smaller scale effects of this diffu-
sion compared to the scales treated by the EMEP model. Considering the
large initial size assumed for a parcel of air poliutant in the EMEP model
(150 x 150 x 1 km) we do not expect horizontal diffusion to affect the mixing
of pollutants during the lifetime of a typical 96 hour trajectory. In support
of this conclusion, Prahm and Christensen (1977), using an Eulerian one-
layer model similar to the EMEP model, found small changes in computed 502

and SO4= air concentrations (around 31) when they compared models with
and without horizontal diffusion.
(3) Shallow convection intensifies pollutant mixing within the mixing

layer and also chemical transformation of pollutants. The first effect would

influence the value of a in equation (3.10) and the second effect, k; in the
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same equation. We can take this uncertainty into account, therefore, by

investigating the parameter uncertainty of a and k;.

The remaining model structure uncertainties listed in section 4.2 are

placed in the first priority category.

Model Parameters and Forcing Functions - All of these uncertainties

are currently considered very important.

Initial State - Of the uncertainties of this type listed in Table 4.3, we
may consider the uncertainty due to the vertical boundary condition to be
contained in the the uncertainty of parameter b in equation (3.13). We can
therefore transfer this type of initial state uncertainty to parameter
uncertainty. Consequently 'vertical boundary condition” as a separate
uncertainty has been placed in a lower priority category.

Model Operation - Bartnicki et al. (forthcoming) present evidence that
uncertainty due to the frajectory calculation method is relatively unim-
portant. They examined analytical versus numerical trajectories for an
artificial rotational wind and found that after 96 hours of travel, trajectory

positions differed by less than 15 km.

The sources of uncertainty currently assigned "Second Priority" are
presented in Table $5.1. By default all other uncertainties have a higher

priority.
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Table 5.1. "Second Priority” Model Uncertainties

1. MODEL STRUCTURE

. Assumption of immediate complete mixing of
emissions into mixing layer.

. Omission of horizontal diffusion.

. Omission of shallow convection.

2.  MODEL PARAMETERS - none

3. MODEL FORCING FUNCTIONS - none

4, INITIAL STATE

. Vertical boundary condition.

5. MODEL OPERATION

. Trajectory calculation method.
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6. METHODS TO EVALUATE DIAGNOSTIC UNCERTAINTY

In this section we concentrate on the evaluation of diagnostic uncer-
tainties assigned "first priority"” after screening and ranking of Section 5.
Unfortunately, a discussion of all important diagnostic uncertainties is out-
side the scope of this paper, though we try and highlight some of the more

important sources.

6.1. Model Calibration/Verification

In Section 1.2 we reviewed the drawbacks to model
calibration/verification in assessing model uncertainty. We also pointed out
that model calibration/verification is necessary and useful though insuffi-
cient for this task. It is necessary, as noted earlier, because without data
comparisons we have no standard with which to compare model output with
reality. It is useful because the departure of model output from observa-
tions is a measure of the magnitude of model diagnostic uncertainty. The
goodness of this measure naturally depends. upon the amount of data and
range of environmental conditions that the model is tested against. Since
diagnostic uncertainty varies with environmental conditions as noted in Sec-
tion 4.1, the more environmental conditions, i.e. data sets, the model is
tested against, the closer we come to the "expected value” of diagnostic
uncertainty. Using the EMEP model as an example, a single comparison of
annual average model output with observations provides only one value of
model uncertainty under specific environmental conditions. This com-
parison does, however, give us an idea of the possible maximum diagnostic

uncertainty.
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6.1.1. Interpretation of Hodel Calibration/Verification

There is no straightforward way to translate the resuits of model cali~
bration and verification into estimates of &, model uncertainty. In Figure 6.1
we illustrate three possibie ways in which model calibration and verification
can be combined in modeling practice. In Case I, model parameters are
adjusted so that model output agrees with Data Set A ("calibration”). Using
these calibrated parameters and new forcing functions, model output is com-
pared to Data Set B (''verification”). We denote the departure of model out-
put from observations as &,, and &;,, respectively. In Case II, the model
parameters are again adjusted so that model output agrees with Data Set A.
This exercise is repeated with new forcing functions so that model output
also agrees with Data Set B. We have therefore "calibrated” the model
separately to two independent data sets and obtain two independent parame-
ter sets. In Case III, we are interested in finding the single parameter set
which fits both Data Sets A and B simultaneously. In other words, this pro-

cess yields a single parameter set for the two data sets.

In general, given an identical model and an identical calibration pro-

cedure for all cases, we expect

E1q = &2q N &y < E3q NEy <2y (6.1)
Each epsilon is an estimate of diagnostic uncertainty since we assume
our forcing functions and initial states are input to the model. Individually
they are not necessarily good estimates of average diagnostic uncertainty.
Even though ¢,, and &,; from Case II are smaller than £3, and &5, from
Case III, uncertainty was "conserved”, i.e. "apparent"” diagnostic uncer-

tainty has decreased but we have increased forecasting uncertainty
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CASE 1

DATA SET A

;

MODEL

'

DATA SET B

"CALIBRATION"” ——a= PARAMETER SET 1A

"VERIF1CATION"

CASE 11

DATA SET A

!

MODEL

)

DATA SET B

"CALIBRATION” ——s= PARAMETER SET 2A

"CALIBRATION” ——s~ PARAMETER SET ZB

CASE I11

DATA SET A

{

MODEL

'

DATA SET B

"CALIBRATION "
' PARAMETER SET 3

"CALIBRATION”

Figure 6.1.

Three ways of combining model calibration and verification.
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because we do not know which of the two parameter sets in Case II to use for

forecasting.

In conclusion, caution must be used in interpreting comparisons of

model output with observations.

6.1.2. Data Observations and Uncertainty Estimates

Later in this section we describe how to obtain quantitative uncertainty
estimates of the EMEP model. The simplest check of these uncertainty esti-
mates would be, of course simply to compare the observations with the com-
puted frequency distribution. In the hypothetical example in Figure 6.2a we
compare observed annual SO, air concentration with the frequency distri-
bution of computed SO,. We expect, for example, that S0Z of the time an
observation such as this would fall within the frequency distribution's 90%
confidence interval. Though a single comparison of this nature proves lit-
tle, a comparison of observations versus computed frequency distributions
at five stations would serve as a check on our procedure for analyzing diag-
nostic model uncertainty. (This of course also depends on the accuracy of
the data.) In fact, the probability that all five observations are outside the
90Z confidence intervals of the frequency distributions is (0.1)5 = 0.001 7.
The probability of two or more being outside the 902 confidence interval is

1%Z. This serves as a way to check our procedure with data.

6.2. Model Structure

There is only one satisfactory way to evaluate this uncertainty and that
is of course to compare different model structures. If alternative models

are available then these comparisons can be performed with identical input
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Figure 6.2a. Hypothetical comparison of observation with computed fre-
quency distribution of SO2 air concentration.
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data (cf. MOI, 1982). If alternative models are not available, then certain
mathematical terms which reflect key questions about model structure can
be changed and comparisons made between original and revised model equa-
tions. A proposal for such a revision regarding non-linearity is given in the

following section.

Recall, however, from Section 4.1 that these model experiments will
yield the difference between mean calculations of different model struc-
tures. Even if the two model structures have an identical set of parameters
and parameter values, initial states, etc. it is likely that the € of the output
uncertainty will be different for the two model structures. This idea is

illustrated in Figure 4.2.

We should also note that uncertainty of model structure is sometimes
expressed as uncertainty of parameters. For example, since k; is known to
be a "lumped parameter” related to complex atmospheric sulfur chemistry,
it is not "observable” and we are therefore unsure of its values. In more
complicated models there is a more detailed description of this chemistry
and hence there will be a better chance that the new model's oxidation

parameters will be observable, and therefore, better known.

6.2.1. The Linearity Question

The current configuration of variables in the EMEP model (equations
3.10 and 3.11) results in a proportional or '"linear” relationship between
sulfur deposition and air concentration and sulfur emissions. However the
parameters in these equations are admittedly simplifications of much more
complicated processes which occur in the atmosphere. The key "linearity”

question is not whether these processes are non-linear, since to a certain
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extent they are.' Instead it is whether they result in a significant depar-
ture from the implicit proportional relationship between a sulfur source
and its deposition at another location. There are two reasons why this is a
critical question for those interested in using the EMEP model for assess-
ment of control scenarios. First, the linearity assumption permits us to
superimpose the contributions from different sources together which allows
us to examine the expected benefits of reducing sulfur emissions in a par-
ticular country independent of other countries. Otherwise we would have to
take all sources and co-pollutants simultaneously into account. Second, by
assuming linearity we can further assume that if we reduce the amount of
sulfur emitted it will result in a proportional reduction of sulfur depnsited.

This linearity assumption was expressed as a straight line in Figure 3.1.

The linearity question in the decision context introduced in Section 3
of this paper is whether there is a linear relationship between source coun-

try i and receptor element ;.

In order to answer this question we recall that the source receptor

matrix between country i and receptor j depends mainly on:

1. synoptic scale atmospheric transport - i.e. wind velocity and

deposition.
2. micrometeorology and dry deposition processes.
3. precipitation and wet deposition processes.

4. atmospheric chemistry.

TA description of relevant sulfur chemistry {s outside the scope of this paper. The reader
is referred Lo U.S. National Research Counctl (1983) for a good overview.
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Since non-linearities occur mainly in numbers 3 and 4, our task then is
to evaluate the importance of non-linear chemical factors relative to these

other factors.

OTA (1984) and the U.S. National Research Council (1983) approach
this task by using non-linear chemical models which represent some of the
complex non-linear chemical mechanisms. In these model experiments a
hypothetical parcel of air is followed for a period of days. Factors (1), (2),
and (3) are included in the calculations in only a rudimentary fashion. As
the U.S. National Research Council pointed out, conclusions deduced from
these models are very sensitive to the modeler’s assumptions of chemical
pathways. Nevertheless, as knowledge of atmospheric chemistry improves,
these models will give increasingly valuable insight to the linearity ques-

tion.

EMEP investigators (Anon, 1983) added a non-linear term to the basic
equations of the EMEP model to explore the effect of non-linearity.
Oppenheimer et al. (1985) and Granat (1978) reviewed the data from
Western U.S. and Northern Europe, respectively. A drawback to this data
analysis is that it can only treat wet sulfur deposition, not total sulfur depo-
sition, though most non-linearities are thought to occur in the wet phase

rather than the dry phase.

Unfortunately a review of this previous work is outside the scope of

this paper.
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6.2.2. Non-linear Coefficients

One way to approach the linearity question is to non-linearize the
coefficients in the EMEP model which represent possible non-linear atmos-
pheric processes, i.e. we would treat the wet deposition rate (k,,), the SO,
transformation rate (k;) and the SO,= removal rate () as non-linear param-
eters rather than as constants. As an example, we could assign k,, the non-
linear relation to SO, air concentration illustrated in Figure 6.2b. The basis
of this relationship would be expert opinion. We would then investigate how
much the overall relationship between sulfur emissions in country ¢ and
deposition or air concentration in receptor 7 departs from linearity due to
these non-linear parameters. Since the relationship in Figure 6.2b is non-
linear we would have to assign "background” SO, and SO4= air concentra-
tions along the trajectory paths from country i to receptor j. This is a
disadvantage of the method. Advantages include: (1) The linearity question
would be investigated in the same time and space scales as presented in Sec-
tion 3. This means that we could compare in a consistent fashion the uncer-
tainty of non-linearity with other uncertainties, such as the parameter and
forcing function uncertainties discussed in the next section of this paper;
(2) Experts could prescribe any number of different non-linear relation-
ships of the type illustrated in Figure 6.2b. Therefore, this method provides
a convenient opportunity to compare the views of different experts regard-

ing non-linearity; (3) The method is relatively easy to perform.
The procedure would be as follows:

(i) Assign non-linear relationships to k,,,k,;, and «.
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(if) Select country i, receptor J.

(iif) Assign background SO, and SO air concentrations.

(iv) Solve EMEP equations for one year and for a unit sulfur emissfons
from country i to receptor j.

(v) Repeat (iv) for different levels of background SO, and SO4 air

concentrations.

From this analysis we obtain an estimate of uncertainty of computed
sulfur deposition (or air concentration) at receptor J which accounts for a
unit sulfur emissions from country i, non-linear relationships from (i), and

a range of background SO, and SO, levels specified in (v).

802 AIR CONCENTRATION

figure 6.2b. Hypothetical relationship between k., and SO, air concentra-
tion.
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6.3 MNonte Carlo Analysis of Composite Uncertainty
(Parameter, Forcing Function, Initial State)

8.3.1. Overview

Monte Carlo Analysis provides a general and flexible approach to exa-
mining the combined uncertainties due to parameters, forcing functions and
initial state errors. To illustrate how we apply this method recall the gen-

eral model presented in Section 1:

Y=&X (6.2)
For the EMEP model:
Y = (01vc2:dw !dd !dt )

X=(8y " Bm P1(x.t) " @s(z,t))

where

€ 1.6 2.y . dg .dy

EMEP state variables:
SO, air concentration, SO, air
concentration, wet deposition, dry deposition .

total deposition.

By Bm parameters defined in Table 3.1

p4(z.1) ... @p(z.1) = forcing functions: sulfur emissions,

wind velocities, and precipitation

Using random numbers vy o, 4y, € [0,1] we sample from the cumula-
tive frequency distributions F(8) and F(¢) and obtain a gt and (p‘ such that
F(B‘) = ! and F(¢‘) = y.‘. In this analysis we have neglected all initial
state uncertainties for the time being except for the vertical boundary con-
dition which is represented by 4. in equation (3.13). In this analysis we

treat this boundary condition as a parameter.
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Each ﬂ‘ and ¢! is used to compute Y = (01.02,-'-) by equations (3.10)
through (3.14). An individual computation of Y is called a "realization” of
Y. We repeat this sampling and computation N times, until a statistically sig-
nificant sample of v and u is drawn. We then compute the frequency distri-
bution s (Y)from the set of realizations of Y. The frequency distribution f(Y)

indicates the uncertainty of the state variables due to uncertainty reflected

in F(84), ..., F(Byz) and F(¢y), .... F(o,).

6.3.2. Frequency Distribution of Forcing Functions

The forcing functions (¢(z.,t)) of the EMEP model include winds, pre-
cipitation and sulfur emissions. In this section we present a method for
assigning frequency distributions for wind velocity inputs to the model.

First we take the general form of the velocity vector 171 =(uy,vy) and

transform it into a magnitude |I7¢ | and directional angle «;.

Second we divide winds into 10 "transport wind" classes such that:

- i -
;| =1 -—)|V. 6.3
and
a;=a, + 24, i=1,.,10 (6.4)
where
|I7¢ | = magnitude of transformed wind

i = number of "transport wind" class

If;o | = magnitude of original wind

2
[}

angle of original wind
a; = angle of transformed wind

angle changed by 29 increments.

N
-,
"
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Using the Peterssen method described in Section 3.2.1, we compute the
trajectories between the source and receptor of interest according to the

ten classes of |I7, | and ay. This yields ten sets of trajectories {T; .

Finally we construct f{T; | by assigning probabilities to the occurrence

of each of the 10 trajectory sets (Figure 6.3).

FREQUENCY
oF -
H
OCCURRENCE _L
—
TRAJECTORY CLASSES
Figure 6.3. Hypothetical frequency distribution of trajectory classes.

6.3.3. Frequency Distribution of Parameters

A critical exercise in using Monte Carlo Analysis is to intelligently
select the frequency distribution of parameters. Interpretation of these
frequency distributions becomes a key issue because through their selec-
tion we express our a priori uncertainty about these variables. An impor-

tant question is, what is the least biased way for an analyst to express
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his/her uncertainty in a parameter frequency distribution? First, we recall
that the EMEP model parameters (Table 3.1) are mostly "lumped"” parame-
ters, i.e. they reflect a conglomeration of processes occurring in nature
and averaged broadly in time and space. The particular parameter values
used in the model are very unlikely to be observed at any single time or
location in Europe, though it may in fact be an excellent average for all of
Europe over an entire year. For example, it is well known that k; varies
according to sunlight intensity, temperature, amount of co-pollutants, humi-
dity and other factors and therefore fluctuates according to time of day,
season, etc. It is rather unlikely that any single literature value of k; will
coincide with the European lumped average. Also it is unlikely that the
exact shape of the frequency distribution for any of the parameters listed
in Table 3.1 will be known. Under these circumstances, we assume that the
parameter frequency distribution is a triangular distribution with a median
equal to the EMEP parameter value and extremes from the literature or

experts.

Another possible starting assumption is that parameters have a rec-
tangular or uniform frequency distribution. However this makes the unlikely
assumption that all values between the extremes are as equally likely to
occur. As explained above, this is not necessarily a good assumption. How-
ever it does give the analyst an idea of what effect a conservative estimate

of parameter uncertainty will have on model output.

6.3.4. An Algorithm for Composite Uncertainty

in practice the Monte Carlo analysis of combined uncertainty would be

conducted in the following steps:
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(i) Sample f{T}], i.e. using a random number, select a set of trajec-

tories from the frequency distribution f{T].

(ii) Sample f(B), f(¢(z.t))
(iii) Compute Y(') by equations (3.10) through (3.15) and store.

(iv) Repeat (i) —» (iil) N times, i.e. until a statistically significant sam-

ple of [T}, B and ¢(x,t) are drawn.

(v) Compute frequency distribution f (Y).

6.3.5. An Example

In order to illustrate the above method we have made some a priori
assumptions about frequency distributions of four of the parameters in the
EMEP model. First, we have assumed that they represent the frequency of
occurrence of particular annual and European average values. Second, we
have assumed that they are triangular-shaped with EMEP parameter values
as the median, and extremes based on the literature and expert opinion. As

a result we have selected the distributions in Figure 6.4.

We examine how EMEP state variables are affected by the assumed fre-
quency distributions of the four parameters in a case study of U.K. sulfur
emissions and Southern Sweden sulfur deposition. This is only the first of
five case studies. The source-receptor combinations which have not yet
been analyzed are: Netherlands - Northern Denmark, Czechoslovakia -
Northern GDR, FRG - Southern Poland, Poland - Central Hungary. These
comktinations were selected to cover a wide range of geographic and
meteorologic conditions. In this analysis we use 1980 meteorological inputs

and are interested in an annual time scale.
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Figures 6.5 through 6.9 presents the resulting frequency distributions of
SO2 (air), SOg (air), dry sulfur deposition, wet sulfur deposition, and total
sulfur deposition. For example, Figure 6.5 reflects the uncertainty in com-
puted annual average 502 air concentration in an EMEP grid element in
Southern Sweden (resulting from U.K. emissions) due to uncertainty of
vq.h ,k;, and k. The coefficient of variation (c.v. = o/ z where g = stan-
dard deviation and £ = mean) of these distributions are reported in Table
6.1. Note that the largest ¢.v. occurs for SO2 air concentration (0.27) and
the smallest for dry and total sulfur deposition (0.09). This reflects the
integrative nature of sulfur deposition in the EMEP model. For all forms of
deposition the c.v. is rather small (around 0.1 or 10%) suggesting that the
uncertainty in computed deposition due to uncertainty of these four param-
eters is rather small. But this conclusion depends on the a priori accep-
tance of the model structure and confidence that the uncertainty of these
parameters is truly reflected in the frequency distributions of Figure 6.4.
Also this method has so far been applied only to the U.K. - Southern Sweden

case.

Table 6;2 presents the c.v. for SO2 air concentration and total sulfur
deposition as it is affected by the uncertainty of each of the four parame-
t.érs individually. Note that v4 has the largest effect on uncertainty of SO2
air concentration (c.v. = 0.23) yet a small effect on total sulfur deposition
(c.v. = 0.02). An examination of the EMEP equations can explain this com~
pensation, though the question remﬁins whether nature behaves in the same

manner.
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Figure 6.5. Computed frequency distribution of SO, (air)
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Figure 6.6. Computed frequency distribution SO¢ (air).
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Computed frequency distribution dry sulfur deposition.
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Figure 6.8. Computed frequency distribution wet sulfur deposition.
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Computed frequency distribution total sulfur deposition.
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Table 6.1. Influence of Simultaneous Uncertainty of 4 Parameters
(vgq.h .k k) on EMEP State Variables

State Coefficient
Variables of Variation
SO,(air) 0.27
SO, (air) 0.14
Dry Sulfur Deposition 0.08
Wet Sulfur Deposition 0.11
Total Sulfur Deposition 0.09
Table 6.2. Influence of Indiiridual Parameter Uncertainty on EMEP
State Variables
Parameter Coefficient
Varied of Variation

SO, (air) Total Sulfur Deposition

vg 0.23 0.02
h 0.09 0.04
k, 0.04 0.06
ky 0.04 0.02

vg.h kg ke, 0.27 0.08
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6.4. Future Work

Section 6 presents some preliminary work in evaluating EMEP diagnos-

tic model uncertainty. Future tasks concerning composite uncertainty will

include:

(1)

(i)

@dit)

(iv)

(v)

(vi)

Refinement of probability encoding techniques to systematically
translate expert opinion into parameter and forcing function fre-
quency distributions.

Analysis of combined parameter, forcing function and initial state
uncertainties by using the Monte Carlo algorithm presented in this
section.

Application of composite uncertainty analysis to at least five
source-receptor combinations in Europe.

Development of algorithms to take into account co-variance
between different parameters and forcing functions.
Experimentation with a wide variety of different forms of fre-
quency distributions (e.g. triangular, rectangular, etc.) for
parameter and forcing function frequency distributions.
Comparison of observations with uncertainty estimates of SO, and

SO¢ air concentrations and wet sulfur deposition.

Future tasks concerning model structure will involve:

M

(i)

Model experiments concerning linearity described in this section.

Comparison of results from different European long-range tran-

sport models.

(iii) Further analysis of model structure uncertainties identified in

Section 4.2.
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7. METHODS TO EVALUATE FORECASTING UNCERTAINTY

In this section, as in the last section, we emphasize those uncertainties
which are considered of higher priority after the screening and ranking
exercise of Section 5. Full consideration of these uncertainties, is however,

outside of this paper’s scope.

7.1. Model Structure: The Linearity Question

In Section 6.2 we formulated the so-called "linearity question” in terms
of the decision making context of the EMEP model. Even though data
analysis or model experiments indicate that there is currently a linear
relationship between sulfur emissions and deposition it is still possible that
their relationship will not be linear under future atmospheric conditions.
Put in another way, under current levels of sulfur co-pollutants, e.g. NO,_,
H70,, O3, we might expect that SO, oxidizes to SO, at such a rate that the
relationship between sulfur emissions to deposition is apparently linear.
However, the question remains whether this relationship will continue to be

linear if the molar ratio of SO, and its co-pollutants significantly changes in

2
the future. It is possible that this molar ratio can change if, say, power
plant emissions are controlled but not vehicular emissions. We conciude,

therefore, that the linearity question has a "forecasting' as well as a ""diag-

nostic"” component.

One way to approach this problem would be to assume wider ranges for
the non-linear function of wet deposition rate (k,) presented in Figure
6.2b. In addition we may wish to assume the SO, transformation rate (k;)

also has a larger uncertainty due to the effect of co-pollutants.



-63-

7.2. Forcing Functions: Interannual Meteorological Variability

This uncertainty arises from our inability to anticipate future sulfur
emissions and meteorological variables such as wind velocities and precipi-
tation. If we assume that the EMEP model will be used to forecast the results
of changing sulfur emissions then we may also assume that these sulfur emis-
sions will be given. Consequently, in this paper we do not address sulfur
emissions’ uncertainty. Meteorological variability cannot be so easily
neglected. We can make two alternative assumptions to analyze this uncer-
tainty:

(1) That future interannual meteorological variability will be affected

by global climate change brought on by, say, increasing tropos-
pheric concentrations of CO2 and other trace gases; the "Climate

Change" approach;

(2) That future interannual meteorological variability will resemble

past variability; the "Past Variability" approach.

7.2.1. "Climate Change"” Approach

Analysis of interannual meteorological variability could involve use of
global general circulation models (GCM) from which we could derive new
precipitation and wind patterns for Europe consistent with scenarios of glo-
bal climate change. These patterns could then be used in the EMEP mode} to
generate new source-receptor relationships. To use GCMs for thi§ purpose

we must first determine:

(1) Will the temporal and spatial resolution of the GCM be appropriate

for running the EMEP model?
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(2) Does the scientific community have sufficient confidence in partic-

ular GCMs to allow their use in this kind of analysis?
(3) What scenarios of climate change should be investigated?

(4) How can interannual variability be derived from these scenarios

of climate change?

An altermative approach is being used within the IIASA Acid Rain Pro-

ject by Pitovranov (forthcoming). This involves:

(1) Correlating historical hemispheric temperatures with long term

precipitation data at several European stations.

(il) Using (1) to estimate future precipitation changes at these stations
for various scenarios of future hemispheric temperature changes.
(These future temperature scenarios can be taken, for example,
from current work on assessing the impact of increased CO2 and

trace gas concentrations in the atmosphere.)

(iii) Using revised precipitation values from (ii) as new input forcing

functions for the EMEP model and recomputing sulfur deposition.

7.2.2. "Past Variability’ Approach

The simplest version of the 'Past Variability” approach is utilize
results from multi-year runs of the EMEP model. Since the only inputs which
were varied from year to year were meteorological inputs, differences
between computed sulfur deposition should reflect interannual meteorologi-
cal variability. The following summarizes a statistical analysis conducted on

4 source-receptor matrices covering the annual periods in Table 7.1.
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Table 7.1. Time periods for EMEP source-receptor matrices.

October 1978 - September 1979

October 1979 - September 1980

October 1980 - September 1981

October 1981 - September 1982

(i) Since the effect of interannual meteorological variability will
depend on the geographic pattern of sulfur emissions, we selected
3 scenarios computed by the IIASA RAINS model (see for example,
Hordijk, 1985 and Alcamo et al., 1985). These scenarios were
selected because of their large spatial variability and are noted

in Table 7.2.

(ii) Each of the four unit-source-receptor matrices is multiplied by
each of the three sulfur emission scenarios. This yields four sul-

fur deposition matrices for each sulfur emission scenario.

(iii) The four deposition matrices produced by each sulfur emission
scenario are compared on a grid element by grid element basis
with the 4-year mean deposition matrix. The following statistics

were used for this comparison:
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root mean square (rms) = %‘{-\/ 2 (Amn = Omn )é
absolute deviation (ad) = |a.,,m bmn I
mean absolute deviation(mad) = 1—1\'{-2 |@mn = bmn |
I - by |
relative deviation (rd) = |a."m Ly
|  %mn |
|a'mn = byp

mean relative deviation (mrd)

i
= |-
’P
3

where

Qpn = grid element of the 4-year mean deposition matrix
(October 1978 - September 1982)

bpn = grid element of the comparison matrix
(from periods listed in Table 6.1)

N = # grid elements

Table 7.3 summarizes the computed root mean square error (rms) for
the four annual deposition matrices compared to the four-year mean. In this
case the rms indicates which computed deposition matrix has the largest
variability from the four-year mean on an aggregated basis, i.e. which
matrix year has the "argest" interannual meteorologic variability. Note
that the rms depends on the sulfur emission scenario, not only the meteoro-
logic input data. This suggests that in order to choose the "most meteoro-
logically variable” year we must also be able to estimate the sulfur emission

pattern.
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Table 7.2. Sulfur Emission Scenarios.
Country 1980 2010 2010
Ref. Scenario. Major Poll Controls
kt/yr kt/yr
Albania 54.4 50.1 14.9
Austria 208.9 185.9 101.0
Belgium 543.8 429.7 244.0
Bulgaria 590.6 853.2 196.0
Czechoslovakia 1723.5 1353.1 359.3
Denmark 329.3 211.2 148.4
Finland 327.3 260.9 193.7
France 1387.5 769.1 447.0
FRG 2060.9 1498.4 658.7
GDR 2427.2 2041.4 758.6
GB 1254.7 188.1 72.4
Hungary Tr2.4 745.8 189.3
Ireland 137.0 170.4 48.8
Italy 1510.0 1448.4 516.2
Luxembourg 41.4 36.9 7.8
Netherlands 455.3 703.4 324.8
Norway 94.9 80.9 56.1
Poland 2447.7 2042.2 633.9
Portugal 63.9 49.8 21.2
Romania 624.5 916.2 272.3
Spain 1155.9 1085.5 3118
Sweden 347.9 266.5 171.6
Switzerland 69.6 53.4 25.6
Turkey 382.0 215.8 86.4
UK 2118.6 1487.5 719.3
USSR 10125.4 7392.9 2462.4
Yugoslavia 1374.3 1294.0 348.6
Total 31628.0 25842.0 9390.0

The computed mean absolute deviation (mad) is summarized in Table 7.4
which presents mad for the grid elements of three countries and all
Europe. (The countries shown are the last three in an alphabetical order of
the 27 largest European countries in Europe.) Results for two of the three
sulfur emission scenarios are shown. The absolute deviation, of course,

strongly depends on the amount of sulfur emitted. The difference in absolute
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Table 7.3. Summary of computed root mean square error.

Root Mean iquare Error

(gm™<yrl)

Scenario European Matrix:

Emissions T879 7980 8081 8182

(kt/yT)
Yr 1980 31629 .208 .188 A74 201
Yr 2010 25842 .183 170 57 .183
Reference
Yr 2010 9390 Korerd .080 072 .102
Major Poll
Controls

deviation between the two sulfur emission scenarios shown in this table (a
factor of 2 to 3) reflects the difference in total sulfur emissions of the two

scenarios.

The mean relative deviation (mrd) is summarized in Table 7.4. As
expected, the mean relative deviation is relatively independent on the geo-
graphic pattern of sulfur emissions. The mean relative deviation for all grid
elements in Europe is approximately 13%1 and is relatively constant from

year to year.

The question arises: do these similar deposition patterns correspond to
invariable meteorologic patterns in the years 1878-82? Insight to this ques-
tion is provided by den Tonkelaar (1985) who has analyzed meteorologic
differences between these years by analyzing the frequency of occurrence
of Grosswetteriagen, (GWL) i.e. synoptic-scale circulation patterns. Since
these Grosswetterlagen are related to precipitation and wind patterns,

their frequency of occurrence within a year provides a useful indirect
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basis for comparing the gross climate patterns of different years. Den
Tonkelaar (1985) used 13 categories of Grosswetterlagen in his analysis,
and noted the number of days in which each Grosswetterlage' occurred. He
analyzed each of the four annual periods of the EMEP source-receptor
matrices (Table 7.5). He then compared the frequency of occurrence of
Grosswetterlage for each of these years with their long term (1949-80)
annual occurrence. He also compared the four-year (October 1978-
September 1982) average annual occurrence with the long term annual
occurrence. An example of his results is presented in Table 7.5. Prelim-

inary conclusions of den Tonkelaar’s analysis are:

1. The four year annual average (October 1978-September 1982) was
climatologically similar to the long term (1949-1980) annual aver-
age.

2. The climate patterns of the individual years (Table 7.1) departed

significantly from one another and from the long term average.

In short, GWL records suggest that the interannual meteorologic varia-
bility which occurred within the period of October 1978 to September 1982
was significant from a meteorologic point of view. However, as we have
seen, this variability does not create a large difference in forecasted pat-
terns of total sulfur deposition when these patterns are averaged over all

of Europe and an entire year.

There are a number of possible reasons for this:
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Table 7.5. Occurrence of Grosswetterlage for October 1978-
September 1979 and Annual Average 1949-80.

Category of b Number of Days
Grosswetterlage October 1978- Annual average
September 1979 1948-1980
1 89 82
2 65 29
3 15 24
4 17 24
S 25 39
6 7 25
7 38 26
8 13 12
9 13 13
10 26 27
11 19 21
12 0 12
13 3 4

3Source: den Tonkelaar (1985).

bFor an explanation of these categories see den Tonkelaar (1985).

(i) The EMEP model is not sensitive to interannual meteorologic
changes. For example, the EMEP model version upon which this
paper is based, assumes a constant mixing height throughout the
year and from year to year.' As a result the EMEP model may
"smooth out” differences between computed sulfur deposition
which would occur from year to year due to changes in average
mixing height. On the other hand, the interannual variation of mix-
ing heights is not known, nor is it known whether this would affect

interannual sulfur deposition variability.

*Newer versions of the EMEP model are expected .0 include variable mixing heights.
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(ii) The actual meteorology did not vary much in the years 1978 to
1982. This would imply that the frequency of Grosswetierlagen
are nol reliable indicators of interannual meteorological variabil-
ity. One way to check this would be to examine the correlation
between wind and precipitation data at several stations and the

occurrence of Grosswetterlagen.

(iii) Deposition is compensated by sulfur emission sources and/or
wind and precipitation. Assuming the EMEP model does ade-
quately incorporate the main effects of interannual meteorologi-
cal variability on sulfur deposition, and assuming this variability
was significant between 1978-82, then the relatively low variabil-
ity of sulfur deposition may be due to compensation between sulfur
emission sources, i.e. if prevailing winds transport sulfur from
source 'A’ to receptor 'B’ in one year, then in the next year pre-
vailing winds from a different direction bring the same amount of
sulfur to receptor 'B’, but from a different source, 'C’'. Using
Southern Sweden as a receptor example, perhaps the principal
source of sulfur in one year will be U.K. and the next year Poland,

but the net difference in deposition will be small.

Another type of compensation could result from meteorological fac-
tors. For example, if precipitation at receptor 'B’ is much lower than usual
during a particular year, the reduction in wet deposition may be compen-
sated by longer range transport of sulfur to this receptor location from
more distant sulfur sources. It is also possible that (i) through (iii) occur in

some combination.
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Using the same data base as above we can also compare how the magni-

tude of interannual variability affects sulfur deposition on different time

and space scales. Figure 7.1 summarizes these results for the case of U.K.

sulfur emissions and deposition into a single EMEP grid element in Southern

Sweden (Rorvik). Results from this analysis (Figure 7.1) show that there is a

great difference in mean relative deviation for the combination of monthly

country emissions and monthly grid deposition versus annual country emis-

sions and annual grid deposition (mrd = 64.1% vs B.5%). However this exam-

ple is useful for only illustrative purposes since it was based on only four

data points from the four simulation years.

Conclusions of Matrix Analysis

(i)

(i)

(i)

@iv)

The rms of the computed sulfur deposition matrices depend on the
prescribed sulfur emission scenario. Therefore, to identify the
matrix with "highest” interannual meteorological variability, we

must also estimate the geographic pattern of sulfur emissions.

The absolute deviation from year-to~-year of sulfur deposition in a
grid element depends, of course, on the magnitude of sulfur emis-
sions. The absolute deviation in any single grid element spatially
varied from about .06 to .25 g m 2 yr-1 for the lowest sulfur emis-

2

sion scenario and from about 1.0 to 6.0 g m_ yr-l for the highest

scenario.
The relative deviation of sulfur deposition in any single grid ele-

ment varied spatially by about 5 to 20%.

The average grid element in Europe had a relative deviation of
about 13X. This European-average was fairly consistent from

year-to-year for the four years examined.
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Comparison of Uncertainty due to Interannual Meteorological
Variability with Uncertainty due to Parameters

In Section 6.5 we present some preliminary results of uncertainty in
computed total sulfur deposition due to uncertainty of parameters v a h, kt'
and kw as expressed in frequency distributions in Figure 6.3b. In that exam-
ple we looked at the combination of U.K. emissions and Southern Sweden
(Rorvik) deposition for 1980 environmental and sulfur emission conditions.
We can compare this parameter uncertainty with the uncertainty due to
interannual meteorological variability by using the data base quoted above
and computing the mean deposition from the four unit source-receptor
matrices (.216) and a standard deviation (.025) which ylelds a coefficient of
variation of .12. We compare parameter and meteorologic uncertainties for
this source-receptor combination and 1980 environmental conditions and

find:

coefficient of variation = A2
(interannual meteorologic

uncertainty)

coefficient of variation = .09

(parameter uncertainty)

In this case they are of the same order of magnitude. However, as
noted above, the estimate of interannual meteorologic variability was based
on very little data and should therefore only be used for illustration. Simi-
lar computations for several other stations would add more statistical vali-
dity to the comparison of meteorological variability uncertainty with other

types of uncertainty.
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7.3. Future Work

Section 7 only outlines the analysis of forecasting uncertainty of the
EMEP model. The analysis of model structure uncertainty will include exper-
imentation with different functional forms of the sulfur long range transport
equations. The investigation of interannual meteorological variability will
include, for example, the analysis of historical climatic data as outlined in
Section 7.2.1. This investigation will also be extended to include:

(i) A study of the correlation between grosswetierlagen and observa-
tions of wind velocities and precipitation.

(ii) Statistical comparison of annual frequency of occurrence of
grosswelteriagen in the 1878-82 period and their long term
annual frequency of occurrence.

(iii) Statistical analysis of results from SO, and SO4= air concentration
matrices from EMEP.

(iv) Comparison of results from "climatic” standard source-receptor

matrix with other matrices.
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8. APPLICATION TO DECISION BMAKING

Once we have assembled quantitative estimates of uncertainty of long
range air pollutant transport models, we must still translate this informa-
tion into a form suitable for decision making. Specifically, we would like to
incorporate uncertainty information in computer tools used by policy

analysts. There are a variety of ways to accomplish this.

8.1. Parallel Hodels

An obvious way to include uncertainty information in decision making is
to provide policy analysts with a convenient way to use alternative models
for analysis of control strategies. If we can accept the assumption of linear-
ity between sulfur emissions and deposition, then information from LRTAP
models can be concisely summarized in so-called source-receptior or
transfer matrices. These matrices describe the relationship between sulfur
deposiuon' at a particular location due to the sulfur emissions at another
location. Spatial and temporal scales of this matrix depend on its applica-
tion. For example the matrix used for analysis of control strategies in the
IIASA RAINS model (see, e.g. Alcamo et al 1985, and Hordijk, 1985) has

country emissions, grid element deposition and an annual time scale.

It is feasible to assemble source-receptor matrices from a number of
models and make them available for interactive policy analysis. This
approach is being included in the RAINS model. As noted in Section 6.2, com-
parison of output from different models will yleld information about model
structure uncertainty but will say little about parameter and other uncer-

tainty.

'Or. in principle, any of the other model state variables such as SO2 air concentration.
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We can, however, examine the possible effect of interannual meteoro-
logical variability by comparing results from different source-receptor
matrices based on the same model but with different meteorological input,
Recall that in Section 7 we used 4 annual source-receptor matrices to
investigate uncertainty which may be at.t.ribut.ed' to interannual meteorolog-
ical variability. These four annual matrices have also been implemented for
routine use in the RAINS model and are used to calculate deposition. Figure
81 compares the sulfur deposition calculated by using the four different

matrices for a particular sulfur emission scenario.

A variation of this approach would be to use a “climatologically stan-
dard™™" source receptor matrix for routine calculations which accounts for
interannual meteorological fluctuations. Results from this "standard”
matrix could be compared, for example, to results from the four annual
matrices mentioned above, in order to estimate the possible effect of
interannual meteorological variability. This approach has been developed

by den Tonkelaar (1985).

8.2. Uncertainty Ranges

Another simple approach to the problem of incorporating uncertainty
information in decision making is to assign uncertainty ranges (¢ in this
paper) to elements of a source-receptor matrix. This uncertainty range
could be a confidence interval, a standard deviation, or other statistical

measure of the frequency distributions of sulfur deposition, concentration,

-—

In Section 7 we noted that it is not certain whether the interannvel variability of sulfur
deposition as computed in model experiments is positively due to meteorological factors,
though it is suspected to be.

“Tlua matrix is “climatologically standard” in that it reflects source-receptor relstion-
ships which result from long-term averages of meteorological variables.
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etc., presented throughout this paper. The question of which statistic is
most appropriate as a standard of model uncertainty is very important but

is outside the scope of this paper.

As an example of this approach we present Figures 8.2 and 8.3 which
show the effect of a +131 uncertainty range on computed sulfur clept:»sit.ion.'l
The effects of this uncertainty range vary greatly spatially (Figure 8.2) and
temporally (Figure 8.3). This is probably due to t.hev complex relationship
between deposition and the geographic patterns of sulfur emissions, back-
ground deposition, and other factors. Figures 8.2 and 8.3 translate uncer-
tainty into a form relevant to policy analysis. For example, Figure 8.2 indi-
cates by how many kilometers a particular deposition computation could
vary (based on a +13X uncertainty range). Figure 8.3 portrays the shift in
the percentage of European area where total sulfur deposition is above a

specified level; also for +13X uncertainty range.

By comparing Figures 8.2a and 8.2b and 8.3a and 8.3b, one can also see
how much the effect of a +131 uncertainty depends on the deposition level
and location of interest. We can also deduce that the effect of this uncer-
tainty depends on sulfur emission levels, since it is only sulfur emission lev-
els which change with time in Figures 8.3a and b. The change in the width of
these lines with time (i.e. their uncertainty) must therefore be due only to

changing sulfur emissions.

-—

The +13% uncertainty range is based on the European-muan relative deviation of annual
sulfur deposition computed in Section 7 and thought to be due to interannual meteorologi-
cal variability.
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9. CONCLUSIONS

In this paper we have assembled ideas relevant to assessing the uncer-

tainty of a long range air pollutant transport model. We have also taken the

first steps in organizing these ideas into a comprehensive framework for

model uncertainty analysis and have applied this framework to EMEP model

uncertainty. Since this research is in its early stages, we have described

plans for future work in Sections 6.4 and 7.3.

The following are conclusions we have reached to this point:

1)

(i1)

(1)

There is a distinction between uncertainty analysis, sensitivity
analysis and calibration/verification. However, sensitivity
analysis and calibration/verification have a role in uncertainty
analysis, apart from their importance in model development (Sec-

tion 1.2).

Sensitivity analysis can be used for ’screening and ranking”
uncertainty sources, i.e. to limit the number of uncertainty

sources which must be quantitatively evaluated (Section 1.2).

Information from model calibration/verification (i.e. comparing
model output with observations) cannot be directly used to quan-
tify model uncertainty. However, observations can be used to
indirectly check the uncertainty analysis procedure (Sections 2.1,

6.1).

(iv) The taxonomy of model uncertainty presented in this paper was

useful for organizing uncertainties of the EMEP model (Section

4.2).



)

(vi)
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A method was presented to analyze 'composite” uncertainty
(parameters, forcing functions and initial state) which uses Monte
Carlo simulation. In preliminary applications, we found this method
to be a general and flexible way of examining this composite

uncertainty (Section 6.3).

Using the above Monte Carlo method, we investigated the compo-~
site effect of uncertainty of the dry deposition rate (v4), mixing
height (h), SO, transformation rate (k,) and SO, wet deposition
rate (k,,). This model experiment was conducted for the United
Kingdom as a sulfur source and Southern Sweden as a sulfur
receptor. Meteorologic data from 1980 were used as input and
results with an annual time scale were analyzed. The "largest”
uncertainty (as defined by the largest coefficient of variation)
was observed for computed SO, air concentration, the smallest for
computed dry deposition. The smaller uncertainty of computed dry
deposition can be explained by the way in which the EMEP model
computes dry deposition. This may or may not be a good reflection
of nature. Of the four parameters tested, k; created the largest
uncertainty (i.e. coefficient of variation) in total annual sulfur
deposition. This result depends on the frequency distributions
assigned to the parameters. Since model uncertainty estimates
are very dependent on these assigned frequency distributions, a
large effort will be devoted to improving their estimation (Section

€.3).
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(vii) The possible effect of interannual meteorological variability on
uncertainty of EMEP calculations was investigated by statistical
analysis of results from EMEP source-receptor matrices. We found
that the effect of interannual meteorological variability strongly
depends on the geographic pattern and magnitude of sulfur emis-
sions. We also found that the mean relative deviation of sulfur
deposition in all European grid elements, in a four-year period
between 1978-82, was approximately 13X. As discussed in the text,
these results are possibly, but not positively, related to interan-

nual meteorological variability (Section 7.2).

(viii)An uncertainty which is expressed in constant percentage terms,
e.g. "the uncertainty range of each grid element is + 13% of the
mean computed deposition’, can have a widely-varying spatial and
temporal effect on computed sulfur deposition patterns in Europe.
The effect depends on the location, deposition level, and sulfur

emission pattern (Section 8).
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